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Adaptive mesh refinement (AMR) is increasingly being used to simulate fluid flows that 
have vastly different resolution requirements throughout the computational domain. Proper 
orthogonal decomposition (POD) is a common tool to extract coherent structures from flow 
data and build reduced order models, but current POD algorithms do not take advantage 
of potential efficiency gains enabled by multi-resolution data from AMR simulations. 
Here, we explore a new method for performing POD on AMR data that eliminates 
repeated operations arising from nearest-neighbor interpolation of multi-resolution data 
onto uniform grids. We first outline our approach to reduce the number of computations 
with examples and provide the complete algorithms in the appendix. We examine the 
computational acceleration of the new algorithms compared to the standard POD method 
using synthetically generated AMR data and operation counting. We then use CPU times 
and operation counting to analyze data from an AMR simulation of an axisymmetric 
buoyant plume, finding that we are able to reduce the computational time by a factor of 
approximately 2 − 5 when using three levels of grid refinement. The new POD algorithm is 
the first to eliminate redundant operations for matrix multiplications with repeated values 
in each matrix, making it ideal for POD of data from AMR simulations.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

High Reynolds number turbulent fluid flows found in nature and engineering typically involve large temporal and spatial 
scale separations [1]. In many cases, there is also considerable variation in the extent of small-scale motions at different 
locations. This is most apparent in free shear flows, such as mixing layers, jets, and wakes, where substantial complexity and 
small-scale structure occur near regions of high shear, while other locations in the flow are relatively (or even completely) 
quiescent across a broad range of scales. Similar spatial variations in scale separation occur, for example, in supersonic 
flows with shock waves and in reacting flows with spatially localized chemical reactions. In other flows, such as those with 
moving shocks or flame fronts, the location of fine-scale flow features can vary rapidly.

These types of flows pose considerable challenges for numerical simulations, particularly those employing uniform grids 
where very fine grid resolution is used in part of the domain to resolve small-scale features, but the same fine-scale grid 
is also applied in regions where such resolutions are not required to capture the local flow physics. Statically refined (i.e., 
non-uniform) grids provide a possible solution to this inefficiency, for example in free shear flows where the region of 
fine-scale structure does not vary substantially in time. However, static approaches still incur a large computational cost in 
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flows where the region of fine-scale physics changes dynamically (e.g., in simulations of propagating flames or problems 
with variable geometry).

An increasingly common technique to overcome these challenges is to reduce the computational cost of fluid flow simu-
lations using adaptive mesh refinement (AMR). In AMR simulations, the computational mesh dynamically changes to resolve 
a particular phenomenon or feature of the flow, typically based on gradients or error estimates. There are many different 
ways of implementing AMR, including hp refinement using finite elements [2], unstructured grid deformation [3], and block-
structured AMR [4]. In the present study, we focus on the last of these approaches and consider block structured AMR to 
be the union of rectilinear grids that span the entirety of the computational domain, where the increase in resolution along 
each dimension is an exact integer multiple from the coarsest to any finer resolution. There are many ways to achieve this 
dynamic refinement, including by tagging and splitting cells and then solving the governing equations on all cells simul-
taneously [5], or by tagging and solving finer resolutions independent of the coarser underlying grids [6]. For the present 
purposes it is not necessary to distinguish between these two approaches, and we only require that a simulation be based 
on block-structured AMR.

Although AMR has the potential to reduce the computational cost of simulating many different flows, it introduces 
new complexities when post-processing and analyzing the resulting data. In this study, we develop a new tool to perform 
more efficient proper orthogonal decomposition (POD) of nearest-neighbor-interpolated data from block-structured AMR 
simulations. The POD methodology [7] is a versatile tool for studying flow fields, including building reduced-order models 
[8] and analyzing coherent structures [9]. The resulting basis functions, or POD modes, are optimal in the sense that they 
capture the greatest amount of variance in the fewest possible modes [10]. POD analysis has been applied in a wide range 
of fluid flow applications, including jets [11], wakes [9], and flames [12], and a review of applications in which POD has 
been used can be found in Ref. [7].

Despite the utility of both AMR and POD individually, there are many complications that arise when performing POD 
on data from AMR simulations. First, POD requires that the grid be fixed for all times, which is not generally the case in 
AMR simulations. Second, the non-uniformity of AMR grids requires a dynamic weighting function. Third, cells at different 
resolutions in an AMR simulation represent different spatial locations when solution values are defined, for example, at cell 
centers (as is the case in many finite-volume codes).

The most common approach to overcome these issues is to interpolate data from each simulation output to a fixed 
reference mesh that is constant in time, and to use an appropriate weighting for the inner product during POD if the mesh 
is non-uniform [13]. To date, spatially adaptive numerical grids and POD have been used together in a variety of contexts, 
most commonly in the construction of reduced-order adaptive POD models. In particular, for simulations performed using 
AMR, it is most efficient to construct a POD-based model that also uses AMR. This technique has been used in ocean 
modeling [13,14] and wake flows [15], including applications using dynamic mode decomposition [16,17]. In each of these 
examples, AMR simulation data was first interpolated to a fixed non-uniform reference mesh to make the POD computation 
possible.

While technically feasible and advantageous from a memory usage perspective, interpolation of AMR simulation data 
to a non-uniform mesh requires a series of steps that depend on the structure of the output data, which is generally not 
consistent between different simulation codes. Prior to non-uniform mesh interpolation, all output data from the simulation 
must first be scanned to determine the finest grid level at each location; typically, this information would be stored on an 
auxiliary fixed uniform mesh refined at the level of the finest resolution. After this scan is complete, a fixed non-uniform 
reference mesh is generated and the output data are interpolated to this mesh prior to performing POD.

Because of the cost associated with the first step in this process (or complexity, if a simulation code must be modified 
to output this information at run-time), as well as the increasing availability of high-memory nodes on modern high per-
formance computing (HPC) systems, it is often more convenient to instead interpolate the AMR output data directly to a 
fixed uniform mesh, in many cases spanning only a sub-region of the full computational domain. The resulting data can 
then be straightforwardly used for visualization [18,19], calculation of statistics such as temporal averages [20], and analysis 
of integrated quantities such as total heat release [21]. Many different software packages also already provide simple tools 
to extract data onto uniform meshes [22–24], and extraction tools for non-uniform meshes are less common. Although the 
uniform mesh approach does impose larger memory requirements, the additional cost can often be mitigated by only an-
alyzing part of the simulation domain, particularly if the region of interest is fixed (e.g., in a jet flow). There may also be 
little difference in memory requirements if the region of refinement does change substantially during the simulation, such 
that non-uniform and uniform meshes have similar cell counts.

Although various interpolation methods (e.g., cubic or Akima splines) can be used to map AMR output data onto either 
non-uniform or uniform meshes, an interesting opportunity arises when using nearest-neighbor interpolation onto fixed 
uniform meshes. Namely, the POD calculation itself can be accelerated by taking advantage of the data repetition intro-
duced by the nearest-neighbor method when representing data at coarse mesh locations on the finer resolution fixed mesh. 
As outlined in this study, repeated computations during the calculation of POD modes and temporal coefficients can be 
weighted and skipped to reduce the computational cost. Our approach is most similar to a prior wavelet-based approach 
[25] where biorthogonal wavelets were used to refine and coarsen the block-structured grid. The wavelet coefficients can 
then be used directly in the POD computation in a fast and efficient manner. This, however, relies on the availability of 
the wavelet coefficients. In contrast, our proposed algorithm can be computed easily from any reasonable representation of 
primitive variables on disk. It should also be noted that other approaches in variational settings [26,27] have been used to 
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handle both grid non-uniformity and varying numbers of spatial points through time. The present study addresses the same 
challenges, but in an approach that uses the redundancies created by nearest-neighbor interpolation of AMR data to achieve 
an efficient implementation.

In Section 2, we outline the matrix operations associated with POD, as well as provide a discussion of why we consider 
data interpolated to a uniform grid using a nearest-neighbor algorithm. From there, we provide an overview of the new 
algorithm in Section 3, with details of the algorithm provided in the appendix. We quantify improvements in computational 
efficiency in Section 4 by counting operations and tracking processing times. Finally, we conclude with a summary and 
additional remarks on future work in Section 6.

2. Background: proper orthogonal decomposition

The POD technique extracts dominant spatio-temporal features in a flow by computing an orthogonal set of basis func-
tions, or POD modes, based on time series of velocity fields or other quantitative flow data. These modes are optimal in the 
sense that no alternative set of orthogonal basis functions can capture more of the variance in the chosen field using the 
same number of modes, or fewer [10]. Typically, POD in turbulent flows is performed using fluctuating velocities due to 
their connection with the turbulence kinetic energy, although thermodynamic variables can also be included in the decom-
position when they are dynamically relevant [28]. Temporal coefficients are computed by projecting flow-field data onto the 
spatial modes.

In the following description of POD, we distinguish various forms of matrices and snapshots by using a boldface upper-
case symbol with no subscripts to denote the full matrix, a boldface upper-case symbol with a single subscript to denote 
the corresponding data in the form of the original data at the mode number or time indicated by the subscript, and a 
lower-case boldface symbol for the corresponding vector form of these matrices. For example, the matrix containing all POD 
modes is !, the fourth POD mode with the same shape as the original data is denoted !4, and the corresponding data 
reshaped into a vector is denoted φ4. The only exception to this formalism is the snapshot matrix where the corresponding 
matrices (in the same order as above) are X, Ui , and ui to remain consistent with notation used in prior studies. To refer to 
a particular element of a vector or matrix, we do not use boldface for the symbol and the subscripts refer to that element 
of the vector or matrix. For example, the element in the ith row and jth column of X is given as Xij .

2.1. Snapshot POD

In this study, the algorithm for efficient POD of AMR data is based on the widely-used snapshot POD method first 
proposed by Sirovich [29]. The first step in this method is to form the snapshot matrix X, in which each column contains 
the discrete spatial solution u j for each instant j in time (denoted a ‘snapshot’). The total number of spatial points, Ns , in 
each snapshot corresponds to the number of rows in X, and the number of time steps, Nt , corresponds to the number of 
columns. The snapshot matrix is generally formed by taking two- or three-dimensional (2D or 3D, respectively) flow-field 
data, U j , reshaping this data into a column vector u j of length Ns, and then assigning this vector to the appropriate column 
of X. Note that the subscript j corresponds here to instances in time, as opposed to velocity components. However, an 
arbitrary number of flow-field variables can be used in the computation by ‘stacking’ the variables in the same column of 
X (the appendix in Taira et al. [9] provides a more detailed description of this formulation). Although the more efficient 
algorithm outlined here is presented for a single variable to improve clarity, it can easily be generalized to account for 
multiple variables. Finally, as in the standard snapshot POD method, we assume that each spatial location carries the same 
weight, as is the case when AMR grids are interpolated to uniform grids for post-processing (as described in more detail in 
Section 2.2).

After the snapshot matrix X has been constructed from the flow-field data, the next step in the snapshot POD method 
is to compute the covariance matrix R as

R = XTX . (1)

The eigenvalues and eigenvectors of R are then computed by solving the eigenvalue problem

R" = #" , (2)

where " is a matrix containing the eigenvectors ψn of R, and # is a diagonal matrix containing the corresponding eigen-
values λn . The orthonormal spatial modes are calculated as

! = X"#−1/2 . (3)

Each eigenvalue, λn , corresponds to the amount of variance, or energy, contained in each spatial mode, φn . Additionally, 
these eigenvalues and modes are ordered such that λ1 ≥ λ2 ≥ · · · ≥ λn . Finally, temporal coefficients, an , corresponding to 
each spatial mode, φn , are calculated by

A = XT! , (4)
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where A is the resulting combination of temporal coefficients for modes ! and constitutes the outcome of the POD pro-
cedure. Given the sorting of the eigenvalues, the modes are ordered such that the lower modes account for the greatest 
variance in the data.

To summarize the snapshot POD method, there are five primary steps: (i) forming the snapshot matrix X, (ii) computing 
the covariance R, (iii) computing the eigenvalues and eigenvectors of R, (iv) computing the spatial modes !, and (v) com-
puting the temporal coefficients A. These are the steps that will be addressed in creating the more efficient POD algorithm 
for AMR data.

2.2. Computing snapshot POD on AMR data

Two challenges arise when performing the snapshot POD method on block-structured AMR data: (i) the non-uniformity 
of the grid and (ii) the unequal number of spatial points, represented by the total number of computational grid cells Ns , 
as a function of time in the simulation. The former challenge can be solved by changing the definition of the inner product 
in the equations in Section 2.1 to weight cells appropriately (i.e., R is computed as Rij = 〈ui, u j〉, where 〈·, ·〉 is the inner 
product). However, the latter challenge is not as easily addressed because the number of spatial points varies as a function 
of time, causing X to have a “ragged” bottom edge due to the time dependence of Ns, making it impossible to perform 
any true matrix operation without zero padding or another data insertion approach. Additionally, for dynamically evolving 
simulations, the context of each spatial location would be lost as the grid evolves, causing ambiguity when reshaping the 
flow-field data into each column of X. In general, the most common workaround is to simply interpolate the data with 
sufficiently high-order to one fixed, well-resolved (possibly non-uniform) mesh [13,14]. Other approaches, such as those 
developed in Refs. [26,27], can perform POD directly on the AMR data, and here we additionally focus on developing an 
efficient implementation for modern HPC architectures.

An even simpler procedure to overcome these issues is to interpolate the data using a nearest-neighbor algorithm to a 
uniform grid with a resolution equivalent to the finest grid cell size in the simulation. This method gives X with dimensions 
Ns × Nt, where Ns = NxN y Nz is the number of spatial points in 3D, or Ns = NxN y in 2D. Here, Nx , N y , and Nz represent 
the number of grid cells in each direction of the static uniform grid with resolution equivalent to that used at the finest 
AMR level. This method overcomes the challenges mentioned above because: (i) interpolating to a uniform grid ensures no 
ragged bottom edge in X, since all snapshots are interpolated to the same number of grid points and (ii) nearest-neighbor 
interpolation naturally gives additional weighting to coarser cells by repeating the value of that cell; the number of repeti-
tions in each dimension is equal to the ratio of coarse to fine cell sizes. It is assumed that despite the inaccuracies incurred 
by using a low-order nearest-neighbor interpolation, the first several POD modes will not be substantially affected because 
POD is targeted at understanding large-scale coherent structures; however, it is important to confirm this for different data 
sets. Additionally, as will be discussed in Section 5, this approach is amenable to an efficient and scalable implementation.

In the context of POD, a provocative opportunity emerges when using nearest-neighbor interpolation on AMR data. 
Namely, there are several steps in the snapshot POD method where operations are performed on repeated data. As the 
computational domain size and number of AMR levels increase, these repeated calculations can occupy an increasingly 
large portion of the overall time taken for the snapshot POD method, limiting the ability to apply POD to long time series, 
large data sets, and rapid development of reduced-order models for design and control purposes. However, we can also take 
advantage of this repetition, and in this study we present a new algorithm that leverages the repetition of nearest-neighbor-
interpolated AMR data to reduce the computational cost of snapshot POD.

3. Methods: efficient algorithm to compute POD on AMR datasets

In the following, we describe each of the steps used in the efficient snapshot POD algorithm for nearest-neighbor-
interpolated AMR data; these steps correspond to the five primary steps used in the traditional snapshot POD method 
summarized at the end of Section 2.1. We use the terms “standard” and “AMR” to refer to standard matrix multiplication 
and the newly developed algorithm, respectively. Each step in POD presents a unique arrangement of repeated computations 
that require different tactics to minimize the repetition; hence, we outline the improvements for each step of snapshot 
POD individually. It is likely that, for some datasets, there is no computational advantage to using the improved algorithm 
for certain steps of the POD method, so presenting the steps individually will allow users to decide whether a standard 
technique or the AMR algorithm would be more efficient for a particular step. It should also be noted that we present 
the algorithms in this section independent of computer language and choice of compiler, and a discussion of quantitative 
improvements in algorithm speed is provided later in Section 4.

Before continuing, we require additional notation beyond that used for the description of standard snapshot POD. A 
companion matrix Xgrid of identical size to X after nearest-neighbor interpolation is used to identify the grid level at the 
corresponding location in X. The coarsest grid level (sometimes called the “base” grid) is denoted by " = 0 and the finest 
grid level is denoted by " = f , such that " ∈ [0, f ] and there are f + 1 total grid levels. The matrix Xgrid thus consists of 
the finest AMR grid level " used for the nearest-neighbor interpolation at each spatial location in the simulation domain. 
We can then identify how many times a cell is repeated at a given level using Xgrid and the dimensionality of the POD 
computation. We define c" to be the number of repeated cells at AMR grid level " resulting from the nearest-neighbor 
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Fig. 1. Illustration of the iterative reshaping procedure given in Algorithm 1 of the appendix with an initial grid of Nx = N y = 16, d = 2 and f = 3. Shades 
of purple indicate " = 0; shades of yellow indicate " = 1; shades of pink indicate " = 2; and shades of gray indicate " = 3. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

interpolation of coarse grid levels to the finest grid. For a simulation with total number of dimensions d (e.g., d = 2 in 2D 
and d = 3 in 3D), the total number of repeated cells is then cd

" .
Below, we present the algorithms as generally as possible, but we do make a few simplifications to improve the clarity 

of the presentation. In particular, for all AMR levels, we assume a refinement ratio of 2, meaning that a coarse cell is always 
split in half along each spatial dimension for the next finer resolution. As a result, c" = 2 f −" gives the total number of 
repeated cells in one dimension at AMR grid level ". Additionally, we only consider POD with one variable, even though 
it is typical to use more than one variable (for example, the three components of the velocity vector). It should be noted, 
however, that the algorithmic improvements outlined here do not depend on these simplifications, and the new algorithm 
can be easily extended to account for different refinement ratios or additional variables.

3.1. Forming the snapshot matrix X

As described in Section 2.1, the snapshot matrix X is formed by reshaping the solution values of each snapshot, U j , into 
a column vector u j and storing these in the jth column of Xij , where the rows of X correspond to the Ns spatial locations. 
The order of the elements in a particular column of X is irrelevant for snapshot POD as long as a particular row of X
corresponds to the same physical location for all times. We take advantage of this property by proposing a new procedure 
that converts each snapshot U j to a column u j such that cells that have identical values (as a result of the nearest-neighbor 
interpolation) are contiguous in the final snapshot vector u j . The more common approach would be simply constructing 
u j with the same order as the elements in U j that are contiguous in memory (this is the normal procedure used by 
many built-in reshaping routines). Either approach is valid since they both adhere to rows of X corresponding to the same 
physical location. However, the new procedure allows us to more easily weight and skip repeated operations in subsequent 
POD steps.

To construct X in this manner, we first reshape U j over f + 1 iterations, where f is the finest AMR grid level. For 
a single iteration, this procedure consists of various calls to reshape and permutation routines such that, after a single 
iteration, repeated values are contiguous in the matrix, but not memory, until the last iteration. In 2D after each iteration, 
the matrix has been reshaped into a more elongated matrix with width c" while in 3D, there is one elongated direction and 
two dimensions with equal widths of c" . This procedure visually makes the matrix appear as if blocks are being re-shaped; 
consequently, we call this a “blockwise” re-shaping procedure.

An illustration of this procedure is shown in Fig. 1, and the detailed algorithm is provided in the appendix as Algorithm 1. 
The final result is a one-dimensional (1D) column vector, u j , of length Ns with contiguous repeated values (since vectors 
are 1D, this also implies contiguous in memory) that can be inserted into columns of X. The same procedure is also applied 
to the companion matrix Xgrid.
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It should be noted that this procedure is sensitive to how the code stores matrix values in memory, since the permutation 
and reshaping must be performed considering the memory layout to retain the contiguity of cells. Therefore, we provide 
this reshaping methodology for both row- and column-major programming languages in Algorithm 1 of the appendix.

3.2. Computing the covariance matrix R

Each element of the covariance matrix R is an inner product of snapshots defined as Rij = 〈ui, u j〉 =
∑

k Xki Xkj . If 
Xgrid,ki < f and Xgrid,kj < f , then we know there must be cd

"max
repeated computations, where "max = max

[
Xgrid,ki , Xgrid,kj

]

for a given k. We can eliminate this repetition by instead weighting a single computation by the number of repeated 
operations, cd

"max
, and then skipping the next cd

"max
− 1 operations. We can accomplish this in a straightforward manner 

because the blockwise reshaping technique described in Section 3.1 forces all cells with the same value to be contiguous in 
the final 1D column vector.

To compute Rij = ∑
k Xki Xkj , we start by initializing a scalar variable for storage, rsum = 0, that will contain the final 

value of the i, j component of R. Iterating along the spatial dimension, k, we first determine "max. If i = j, we simply use 
"max = Xgrid,ki . Next, if "max = f , we add Xki Xkj to rsum for k to k + cd

"max
− 1. Otherwise, we add Xki Xkj to rsum weighted 

by the number of repeated operations cd
"max

, then skip the next cd
"max

− 1 operations. After iterating over all k, we assign 
rsum to Rij . This sequence is only performed for lower triangular elements of R, with the symmetry of R used to assign the 
remaining off-diagonal components of R as R ji = Rij . The detailed algorithm is given as Algorithm 2 in the appendix.

The one peculiarity in this algorithm is that if "max = f , not only do we add an unweighted Xki Xkj to rsum, but we also 
immediately know that the next cd

f −1 − 1 computations do not need to be weighted. We thus use an unweighted version 
because it is always true that cd

f = 1, independent of the numeric values for f and d. Additionally, due to the nature of 
AMR, there is a minimum of cd

f −1 cells at "max = f that must be grouped together. This can be seen in Fig. 1, where the 
smallest possible grouping of cells at " = f must be the same size as the groupings for a cell at " = f − 1; in that example, 
the smallest possible grouping is 4.

To illustrate this algorithm further, consider a 1D simulation with two levels of AMR (i.e., d = 1 and f = 2), with elements 
of X and Xgrid defined, respectively, in this example as

X ≡





X11 X12 X13 · · ·
X21 X22 X23 · · ·
X31 X32 X33 · · ·
X41 X42 X43 · · ·
X51 X52 X53 · · ·
X61 X62 X63 · · ·
X71 X72 X73 · · ·
X81 X82 X83 · · ·
...

...
...

. . .





, Xgrid ≡





0 1 2 · · ·
0 1 2 · · ·
0 1 1 · · ·
0 1 1 · · ·
1 1 0 · · ·
1 1 0 · · ·
2 2 0 · · ·
2 2 0 · · ·
...

...
...

. . .





. (5)

Comparing the computation of a diagonal element of R, such as R11, using standard matrix multiplication and the new AMR 
algorithm, we obtain

Rstandard
11 = X2

11 + X2
21 + X2

31 + X2
41 + X2

51 + X2
61 + X2

71 + X2
81 + · · · , (6)

RAMR
11 = 4X2

11 + 2X2
51 + X2

71 + X2
81 + · · · . (7)

The computation of an off-diagonal element, such as R32, is given by

Rstandard
32 = X13 X12 + X23 X22 + X33 X32 + X43 X42 + X53 X52 + · · · , (8)

RAMR
32 = X13 X12 + X23 X22 + 2X33 X32 + 2X53 X52 + · · · . (9)

These two different elements of R highlight how the computations can be weighted to reduce the total number opera-
tions. There is, however, additional computational overhead associated with checking the grid level for the AMR algorithm. 
Specifically, for R11, we need to check the grid level before computing the first three terms, but not before the fourth term; 
for R32, we need to check the grid level before computing the first, third, and fourth terms, but not the second term. The 
computational overhead associated with checking the grid level is generally smaller compared to the redundant additions 
and multiplications required in the standard approach, but this issue is nevertheless explored in more detail in Section 4.

3.3. Computing eigenvalues and eigenvectors of the covariance matrix R

We next consider the computation of the eigenvalues λn and eigenvectors ψn of R. Each element of R corresponds to the 
dot product of snapshots at different times. However, because there is no spatial dependence, only temporal dependence, 
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there is no way to take advantage of the spatial repetitions due to AMR. It is important to note that, in many AMR codes, 
there is sub-cycling in time that could lead to a variable temporal output at different AMR levels; however, in practice, 
extracting information during sub-cycling is not advised because the data are often incorrect until a correction/synchroniza-
tion step has been performed when all levels of AMR are at the same instant in time. Therefore, we do not consider POD 
on simulations with adaptive temporal resolution. However, the outer timestep between snapshots is allowed to vary, for 
example due to a maximum Courant-Friedrichs-Levy (CFL) condition.

3.4. Computing the POD spatial modes !

Accelerating the computation of the POD spatial modes ! generated using nearest-neighbor-interpolated AMR datasets 
poses a different challenge than the computation of R. In particular, the computation of ! is difficult to accelerate because 
the first step in the computation of a single element of ! is a dot product of a row of X with a column of ", both of which 
are vectors varying in time, and thus contain no repeated values from nearest-neighbor interpolation. After this step, no 
computations can be eliminated when multiplying X" by #−1/2, since # is a diagonal matrix.

Despite these challenges, however, there are at least two ways in which the computation of ! can be accelerated when 
performing POD on nearest-neighbor-interpolated data from AMR simulations. This is simplest to illustrate through an 
example. Consider a small simulation with d = 1, f = 2, Ns = 8, and Nt = 4, where X is defined as in Eq. (5) and Xgrid, ", 
and # are defined, respectively, as

Xgrid ≡





0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0
1 1 0 2
1 1 0 2
2 2 0 2
2 2 0 2





, " ≡





#11 #12 #13 #14
#21 #22 #23 #24
#31 #32 #33 #34
#41 #42 #43 #44



 , # ≡





$11 0 0 0
0 $22 0 0
0 0 $33 0
0 0 0 $44



 . (10)

The element %11 is computed as

%11 = (X11#11 + X12#21 + X13#31 + X14#41)$
−1/2
11 . (11)

None of the terms in this expression for %11 are redundant, regardless of the grid level for each value of Xij . Now consider 
the computation of the element %21, which is given by

%21 = (X21#11 + X22#21 + X23#31 + X24#41)$
−1/2
11 . (12)

This computation does not contain any redundancies within itself. However, since Xgrid,11 = 0, this implies that X11 =
X21 = X31 = X41, which then implies that X11#11 = X21#11. Therefore, the first term in computing %21 is a redundant 
computation since it was already computed for %11. In fact, since Xgrid,1i < f for every i, we find that %11 = %21, making 
the entire computation of %21 redundant.

The redundancy of the individual terms that contribute to the computation of an element ! is exploited in the following 
sections to accelerate the computation of !. To this end, we propose two different algorithms that are advantageous for 
different AMR patterns.

3.4.1. Method 1 for computing !
The first method for computing !, denoted “method 1,” takes advantage of the fact that if a particular spatial location 

(i.e., a row of X) never reaches the finest AMR level at any time, the elements of ! at that spatial location must be equal, 
such that we can entirely eliminate the computation of the redundant elements of !. The advantages of this approach are 
that it is simple to identify where repetitions occur and it requires very little additional computational cost compared to 
standard matrix multiplication. Simulations with AMR that are relatively static in time, such as many shear flow problems 
(e.g., jets, wakes, and plumes) where outer boundary regions are not refined, can easily leverage the repetition. However, if 
the simulation is dynamically evolving, for example in the case of a propagating flame, and all spatial locations are refined 
to the finest level for any of the snapshots, this algorithm will not yield any computational improvement.

The general outline to compute ! using method 1 is as follows. We initialize a vector g of length cd
0. The maximum grid 

level that occurs in the first cd
0 rows of Xgrid is stored in g; in other words, gi = max j(Xgrid,i j). We then compute the first 

cd
0 rows of the first column of %i1. If gi < f , we know that the next cd

gi
− 1 elements in the column j of %i j are identical 

to %i j . So, after computing %i j = ∑
k Xik#kj$

−1/2
j j , this value is immediately assigned to the next cd

gi
− 1 elements in the 

column j without repeating the computation. This sequence is then repeated for the remaining columns of !. After these 
remaining values are computed, we consider the next cd

0 rows of X. This is repeated until all spatial locations are computed. 
The detailed algorithm for method 1 is given in the appendix as Algorithm 3.

7
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As a demonstration of the method, consider Xgrid , ", and # from Eq. (10). We first compute g to be gi = [1; 1; 1; 1] then 
compute the first element of !, which is given in Eq. (11). We then find that g1 = 1 < f , implying that %11 is repeated 
cd

g1
= 1 additional times. Therefore, we assign %21 = %11. Continuing, %31 is computed analogously to Eq. (11) and, since 

g3 = 1 < f , we assign %41 = %31. We next compute the first cd
0 = 4 rows of the second column of ! using the same values 

for g . This is then also done for the third and fourth columns of !. Afterwards, we move to the next cd
0 = 4 rows of X, 

recomputing g as gi = [2, 2, 2, 2]. Since all elements of g are equal to f , there are no repeated elements in these rows of 
!, and each element in rows 5-8 of ! must be computed individually.

There is additional computational overhead compared to standard matrix operations due to the computation of g and 
the need to check which elements of ! are repeated based on g . Although the cost of these steps is, in general, small 
compared to the full computation of !, in order to achieve a computational acceleration we require regions of the flowfield 
where " < f for all of time. This constraint motivates the second method for computing !.

3.4.2. Method 2 for computing !
We now consider a second method, denoted “method 2,” to reduce redundant computations in the calculation of !. 

When considering the individual terms that contribute to a single element of !, such as the terms to compute %11 in 
Eq. (11), if the grid level associated with the term to compute the X element is less than f , then the value of that term is 
identical to the terms for a different element of !.

For example, in Eq. (10), the grid level associated with the first term, X11#11, in Eq. (11) is one, which is less than f ; 
therefore, in computing %21, instead of repeating the multiplication X11#11, we could have stored that value and simply 
added it to the last three terms in Eq. (12). This idea of storing individual contributions to a particular element of ! is the 
basic premise behind method 2. The advantage of this approach is that most of the repeated computations will be avoided, 
even if the mesh is dynamically changing from snapshot to snapshot. However, this method also requires more overhead 
than that either method 1 or standard matrix operations, due to the increased storage requirements and the cost of the 
search algorithm used to determine the grid levels.

Overall, the method 2 algorithm is quite complex, so we refer the reader to Algorithm 4 in the appendix for the complete 
methodology. A rough outline of the algorithm is as follows. We will consider the computation of cd

0 rows of ! at a time, 
just as we did with method 1. First, we aggregate cell locations of X corresponding to the level in the first cd

0 rows and store 
the indices in an initially empty matrix G. We next initialize an additional matrix H of size Ns × ( f + 1) filled with zeros. 
The columns here correspond to the contributions of %i j = ∑

k Xik#kj$
−1/2
j j for a single grid level value (i.e., column 1 

corresponds to " = 0 contributions, column 2 corresponds to " = 1 contributions, etc.). This computation is only performed 
for unique elements of H. So, for example, if H11 is unique then H21, H31, · · · are not unique because they are equal to 
H11. Values in H that are not unique (i.e., the elements of H that are identical to already computed elements of H) are then 
filled by the unique value. Finally, we sum rows of H and divide by the appropriate value of #, which directly corresponds 
to values of the appropriate elements of !. This process is repeated over groups of cd

0 rows for all Ns. Overall, this method 
requires more computational resources than either the standard or method 1 approaches to computing !, due to the need 
to tabulate cells in G and to store an additional matrix H, but this method can still be advantageous for dynamically evolving 
simulations.

As a demonstration of the performance gains enabled by method 2, consider again the example in Eq. (10). We first 
initialize the empty matrix G, which has size ( f + 1) × cd

1 × Nt = 3 × 2 × 4. We then store the indices for " = 0 elements, 
then " = 1 elements, and finally " = 2 elements for the first cd

0 rows of X; for this example, this leads G to be

G1 jk =
[

1 4 − −
1 4 − −

]
, G2 jk =

[
2 3 − −
2 3 − −

]
, G3 jk =

[− − − −
− − − −

]
, (13)

where dashes are empty values of G. The second dimension of G only needs to be of length cd
1 because the smallest grouping 

of cells at the grid level is cd
f −1, as discussed in Section 3.2, so we only need length cd

1 to track the grid level (although the 
minimum grouping of " = f cells is cd

f −1, these are not identical values in general due to the use of AMR).

Using G, we next compute H of size cd
0 × n" for unique cells then assign the remaining non-unique cells, giving

Hij =





X11#11 + X14#41 X12#21 + X13#31 0
↓ ↓ 0
↓ X32#21 + X33#31 0
↓ ↓ 0



 , (14)

where the down arrow represents a value that was filled from the unique computation above it. The column of %i1 is 
computed by summing over rows of H and dividing by the square root of the appropriate diagonal element of $

%i1 =




∑

j

(Hij)



$
−1/2
11 . (15)

8
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This process is then repeated for the remaining columns of !. For this, G does not need to be re-tabulated, but H does need 
to be recomputed. After all columns of ! are computed, we then move to rows 5-8 of !. More briefly, for these rows, G
would be

G1 jk =
[

3 − − −
3 − − −

]
, G2 jk =

[
1 2 − −
− − − −

]
, G3 jk =

[
4 − − −
1 2 4 −

]
. (16)

Using this, we compute H for the first column of !, which is

Hij =





X53#31 X51#11 + X52#21 X54#41
↓ ↓ X64#41
↓ 0 X71#11 + X72#21 + X74#41
↓ 0 X81#11 + X82#21 + X84#41



 . (17)

Elements of ! can be computed using H analogous to the computation of %i1 above. This process is again repeated for the 
remaining columns of !.

3.5. Computing the POD temporal coefficients A

Elements in A are calculated as inner products of snapshots and POD spatial modes, namely Aij = 〈ui, φ j〉. Similar to 
the calculation of R, repeated computations for this inner product only occur if the maximum level between u i and φ j
at a given spatial location is less than the finest level. As is discussed in Section 3.4, repetitions in φ j can only occur if a 
spatial location is never refined to the finest level for all Nt (method 1 of computing ! takes advantage of this repetition). 
Therefore, to determine whether there will be any repeated computations, we simply need to determine the maximum grid 
level reached at a particular spatial location for all snapshots. This makes the more efficient algorithm for computing A
fairly straightforward to implement.

The general procedure is as follows, with the detailed algorithm provided as Algorithm 6 in the appendix. We first 
determine the maximum grid level occurring over all Nt for a particular spatial location i and store this in a vector g
(specifically, gi = max j(Xgrid,i j)). The grid level at gi is then converted to a weight as gi = cd

gi
. For each element A jk , we 

then follow a similar procedure to that outlined for the computation of R in Section 3.2. We initialize a scalar asum, then 
iterating along the spatial location i, we identify the number of repeated computations using gi for the operation Xij%ik . If 
gi = 1, this implies gi = f and we perform the next cd

f −1 operations without weighting the contribution. The motivation for 
not weighting the next cd

f −1 computations is the same as that described for the computation of R in Section 3.2. Otherwise, 
we weight Xij%ik by gi , and skip the next cd

" −1 contributions. The contributions (weighted or unweighted) are cumulatively 
added to asum. After iterating over all Ns, we assign asum to the appropriate element of A, then repeat over the remaining 
elements of A, without repeating the computation of g .

Using the example from Eq. (10), as well as the terminology in Eq. (5) for X and an analogous definition for !, we 
illustrate the algorithm. First, we compute gi = [1; 1; 1; 1; 2; 2; 2; 2], which is then converted to the number of repetitions 
gi = [2; 2; 2; 2; 1; 1; 1; 1]. We then compute each element of A using g for the weighting. Element A11 would be computed 
as

A11 = 2X11%11 + 2X31%31 + X51%51 + X61%61 + X71%71 + X81%81 . (18)

The weightings for the first and second terms are simply g1 and g3, respectively. This is then repeated for other elements 
of A without recomputing gi . As with the computation of R, there is additional computational overhead associated with 
computing the weighting vector g and checking the grid level during the inner product. Specifically, for A11, we need to 
check the grid level before computing the first, second, third, and fifth terms, but not before the fourth and sixth terms. In 
the following section describing the algorithm performance, we explore the trade-off between the additional computational 
overhead and the removal of repeated calculations.

After performing the computation of the POD temporal coefficients A, we must undo the reshaping procedure described 
in Section 3.1 to put cells in ! in their original physical locations. This can be done by a procedure similar to that outlined 
in Section 3.1, with the main differences being that each iteration shrinks the elongated dimension and the last iteration 
puts the grid into the original dimensions. The detailed algorithm is provided in the appendix as Algorithm 5.

4. Results and discussion: algorithm performance

4.1. Performance metrics

To quantify the performance of the algorithm outlined in Section 3, as compared to the snapshot POD approach using 
standard matrix operations, we will use two measures of the computational cost, T : the number of primitive operations 
(denoted ‘ops’) and the CPU time (denoted ‘CPU’). We use primitive operation counting to eliminate uncertainties in the 
coding language, compiler, processing speed, environment, etc; this is known as a random access machine (RAM) model, or 

9



M.A. Meehan, S. Simons-Wellin and P.E. Hamlington Journal of Computational Physics 469 (2022) 111527

Table 1
Several examples demonstrating how we count primitive operations.

Code narth nlog nacc nasn nfun ntot

rsum ← rsum + cval ∗ X[k, i] ∗ X[k, j] 3 0 2 1 0 6
A ← empty(Nt, Nt) 0 0 0 1 1 2
for i ← 1 to n do n 0 0 n 0 2n
i ← 0; while i < n do {i ← i + 1} n n 0 n + 1 0 3n + 1
![m + i,n] ← hsum ∗ (λ[n])−1/2 3 0 2 1 1 7

a RAM algorithm [30]. In Section 4.2, we will use this model on synthetic AMR data to unambiguously quantify performance 
gains of the new algorithm as a function of the proportion of the domain refined at different AMR levels and the length of 
the time series, Nt. In Section 4.3, we use both the RAM model and CPU time as metrics to show that the new algorithm is 
faster than the snapshot POD method with standard matrix operations for genuine AMR data from a simulation of a buoyant 
plume. All of the code used to compute the computational cost is publicly available at https://github .com /tesla -cu /amrPOD. 
The operation counting code is written in python in order to provide a user-friendly environment, and the CPU timing code 
is written in Fortran 90 [31].

With respect to operation counting, the primitive operations we consider are arithmetic operations (e.g., a − b, a ∗ b, a/b, 
a2), logical operations (e.g., a < b, a ≥ b, a == b), accessing operations (e.g., a[i], X[i, j]), assignment operations (e.g., a ← b), 
and function calls (e.g., f (a)); the numbers of each operation are denoted narth, nlog, nacc, nasn, and nfun, respectively. The 
total number of operations is then given by ntot = narth + nlog + nacc + nasn + nfun, where we equally weight each of the 
operations in computing ntot. The decision to use equal weightings is based on previous studies [32] that approximate the 
computational effort involved in each of these operations as taking O(1) time. This decision has its limitations, especially 
for the deep memory hierarchy in modern HPC systems, but identifying the exact coefficients is a research topic in itself. 
Rather, we ignore any constant coefficients associated with the time complexity of individual operations and, for simplicity, 
we count them as single units. These coefficient values can be easily changed using the code provided at https://github .
com /tesla -cu /amrPOD. In Table 1, we provide several examples of pseudocode and a demonstration of how operations are 
counted.

For more complicated programmatic structures such as for loops, we reduce each structure to a series of primitive 
operations. For example, we deconstruct for loops into an arithmetic operation used to increment the iterative variable 
and an assignment operation used to assign the new incremented value to the iterative variable. We deconstruct while
loops into a for loop coupled with an if statement, where the if statement serves as the logical check to determine 
whether iteration within the for loop should stop. Accessing operations such as those seen in the third example of Table 1
are treated as unit operations regardless of the dimension or size of the data being accessed.

It should be noted before continuing that we are not attempting to change the order O(N2
t ) of the POD computation. 

Rather, we are attempting to show that we reduce the leading constant of the order of the computation, which we deem 
to be a faster algorithm practically. Since we are not changing the order, it is not obvious whether we have improved 
the computation or not with just one metric. Hence, we use two metrics, primitive operation count and CPU time, to 
demonstrate the computational advantages of the new algorithm.

Lastly, we do not discuss the performance in terms of error between the standard and AMR algorithms. While error 
is an important metric to consider, especially for techniques that rely on statistical properties such as the randomized 
singular value decomposition (rSVD) [33], the presented algorithms are only affected by finite precision arithmetic errors. 
Using double precision (as we use herein) leads to an error in terms of the relative maximum absolute difference in the 
covariance matrix R of error(R) + 10−14 − 10−16. Again using this error metric, we see that the error is a little larger for !
and A, roughly error(!) + 10−8 − 10−10 and error(A) + 10−10 − 10−12. However, the larger relative errors are exclusively on 
the less energetic modes while the more energetic modes have an error roughly equivalent to R. We consider these errors 
sufficiently low for most purposes.

4.2. Tests using synthetic AMR data

We first test the algorithm outlined in Section 3 on synthetically generated AMR data that is intended to mimic, in a 
parametrically controlled fashion, data from genuine AMR simulations. To generate this data, we randomly create different 
AMR grids for specified values of the proportion of the domain refined at each level, with no temporal correlation between 
the grids in successive snapshots. The purpose of these tests is to parametrically control the redundancy of the data in each 
snapshot and to subsequently demonstrate the efficiency of the new algorithm for a “worst case” scenario where there is no 
temporal correlation between snapshots. We consider this the “worst case” scenario because, in a typical AMR simulation, 
grid refinement is performed to capture particular features in the flow, which are naturally correlated from snapshot to 
snapshot. In some flows (e.g., turbulent jets), large quiescent regions also result in persistent coarse grids at the same 
locations in successive snapshots.

Subsequent to these tests, we then introduce temporally correlated grid refinements where a persistent static grid is 
imposed in part of the domain across all snapshots. As will be seen in the following sections, these correlated refinement 
regions actually make our algorithm more efficient. Moreover, the computation of A and method 1 for computing ! require 
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Fig. 2. Five snapshots of synthetically generated AMR data with Nx = N y = 64, d = 2, and f = 1 for p0 = p1 = 1/2 and p̃max
0 = p̃max

1 = 1/4. This data is 
generated by assigning " = 0 ∀ x ∈ [1, 16], y ∈ [1, 64] and " = 1 ∀ x ∈ [17, 32], y ∈ [1, 64]. The remaining portion of the domain is randomly refined according 
to the desired values of p" . Note that 1/4 ≤ pmax

0 ≤ 1/2, and 1/2 ≤ pmax
1 ≤ 3/4, limNt→∞ pmax

0 = 1/4, and limNt→∞ pmax
1 = 3/4.

regions of " < f for all Nt to have any practical advantage; this motivates the inclusion of the statically refined regions for 
some snapshot sequences.

In the following synthetic AMR tests, we will separately examine the algorithmic speed-ups for the computations of R, !
and A. This approach will allow us to assess each step of the snapshot POD approach individually, enabling a user to choose 
which steps to accelerate as a result of the specific properties of their AMR dataset. For example, with a highly dynamic 
mesh, it will likely be fastest to use only the AMR algorithms for R and ! (specifically, method 2 for the calculation of !) 
and to use regular matrix operations for A. Here we quantify the algorithmic improvements using ratios of the run-time 
for the new AMR algorithm over the run-time for the standard approach, denoted T AMR/T std, where (·) is the run-time 
averaged over the number of samples, nsamp, tested for those parameters. Using this approach, the new AMR algorithm 
is determined to be faster than the standard algorithm when T AMR/T std < 1 or log10(T AMR/T std) < 0. Note that, we do 
not include the reshaping cost in the calculation since this procedure becomes negligible in cost as compared to other 
operations with increasing Nt .

4.2.1. Parameterization of the synthetic AMR data
We specify two new quantities to parameterize the synthetic AMR data. The first measures the proportion of the domain 

for each snapshot that is at a particular grid level ", as given by

p"(n) = 1
Ns

Ns∑

i=1

δ(" − Xgrid,in) , (19)

where n = 1, . . . , Nt denotes the snapshot number, Ns is the total number of spatial locations, δ is the Dirac measure, and 
p" ∈ [0, 1] for any n. The second quantity measures the proportion of the domain that has reached a specified maximum 
level of refinement " within any of the snapshots in the data record; this quantity is defined as

pmax
" = 1

Ns

Ns∑

i=1

δ
[
" − max

n
(Xgrid,in)

]
, (20)

where pmax
" ∈ [0, 1]. Note that 

∑ f
"=0 p" = ∑ f

"=0 pmax
" = 1 and, in the limit as Nt → ∞, a grid that is entirely randomly 

refined will have pmax
" → 0 for " < f and pmax

" → 1 for " = f .
In the synthetically generated AMR data, we are able to exactly control p" from snapshot to snapshot, and this is one 

of the parameters that we will vary in the following analysis. In order to generate data where pmax
" > 0 for " < f when 

Nt → ∞, we set regions of constant " for all of time, denoted by p̃max
" . For example, in Fig. 2, we set p̃max

0 = p̃max
1 =

1/4 by setting " = 0 ∀ x ∈ [1, 16], y ∈ [1, 64] and " = 1 ∀ x ∈ [17, 32], y ∈ [1, 64]. The remaining portion of the domain is 
randomly refined. This results in limNt→∞ pmax

0 = 1/4 and limNt→∞ pmax
1 = 3/4. Note that, in general, p" = p"(n) varies 

in time, and in Section 4.3 where we test the algorithm on genuine AMR data we will instead report the average value 
〈p"〉 = (1/Nt) 

∑Nt
n=1 p"(n).

4.2.2. Synthetic AMR test results: fully random grids
We first examine the performance of the new algorithm for different values of p1 and Nt with refinement up to one 

AMR level, f = 1, using synthetic AMR data where every location in the domain is randomly refined (that is, there are no 
statically refined regions, p̃max

0 = p̃max
1 = 0). The synthetic data is two dimensional (d = 2) with Nx = N y = 64 and Ns = 642. 

Both p1 and Nt are varied to span the parameter space, and we obtain ensemble statistics for the run-time calculations by 
testing Nsamp = 64 independent randomly generated datasets for each value of p1 and Nt.

The top row of Fig. 3 shows the resulting parameter spaces of T AMR/Tstd for the calculations of R, ! using methods 1 and 
2, and A, where T is a measure of the total operation count ntot . For each of the snapshot POD steps in Fig. 3, as Nt → ∞, 
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Fig. 3. Top row: Run-time ratios log10(T AMR/Tstd), where T corresponds to the total number of operations ntot, as functions of p1 and Nt for the compu-
tations of R, ! (methods 1 and 2), and A (left to right) using randomly refined synthetic AMR data with Nx = N y = 64, Ns = 642, d = 2 and f = 1. The 
ratios are computed over an ensemble with Nsamp = 64 samples. Shaded blue regions indicate parameters where the new AMR algorithm is faster than the 
standard algorithm, and shaded red regions are the inverse; the black dashed line shows the boundary between these two regions. Bottom row: Root-mean 
square fluctuations in the sampled values of T with respect to the average T for each step in the snapshot POD method.

the boundary defining the transition between T AMR/Tstd < 1 (i.e., the new algorithm is faster, indicated by blue regions 
in the figure) and T AMR/Tstd > 1 (i.e., the standard algorithm is faster, indicated by red regions) asymptotically approaches 
specific values of p1. This is to be expected because the new algorithm includes additional fixed costs as compared to the 
standard algorithm, such as pre-computing pm

" in the calculation of both ! and A. These additional costs can be dominant 
for small Nt but become less relevant as Nt increases, resulting in the asymptotic behaviors of the algorithm efficiency 
boundary (i.e., the T AMR/T std = 1 contour in Fig. 3).

Fig. 3 shows that the efficiency boundary approaches p1 = 0 for both method 1 of computing ! and in the calculation of 
A. This occurs because both of these algorithms require 

∑ f −1
"=0 pmax

" > 0 in order to produce any computational advantage. 
However, with randomly refined grids, as Nt → ∞, pmax

f → 1 and 
∑ f −1

"=0 pmax
" → 0, and there is thus no computational 

advantage using the AMR algorithm for these two steps of the snapshot POD method.
By contrast, Fig. 3 shows that the efficiency boundaries for the calculations of R and ! using method 2 approach non-

zero values of p1. For R, this occurs because the primary computational advantage of the new algorithm is realized when 
the grid levels at k in Rij = Xki Xkj for both i and j are smaller than f . For the method 2 calculation of !, the asymptotic 
approach to nonzero p1 occurs because cells are first tabulated according to grid level before computing any element of 
%i j , which removes any dependence in time of repeated computations.

The bottom row of Fig. 3 shows how much fluctuation there is in the ensemble samples, measured by the root-mean-
square, T rms = (T ′ 2)1/2 where T ′ = T − T , relative to the average number of operations. The new algorithms for computing 
both R and ! (method 2) show very little fluctuation between samples. This is for similar reasons as mentioned above; 
there is a computational advantage primarily as a result of p" , not pmax

" . The other two algorithms, however, rely primarily 
on pm

" , which changes as Nt increases. Specifically, the probability of pmax
0 at a specific spatial location for randomly refined 

grids, as is the case here, is pmax
0 = (p0)

Nt → 0 since p0 < 1 when p1 > 0.
The regions of relatively large fluctuations in the computations of ! (method 1) and A in the bottom row of Fig. 3

occur because pmax
0 can vary substantially between samples, thus giving larger T rms . However, even in these regions, the 

fluctuations are still relatively small in comparison to the average number of operations (note the multiplier of 103 on the 
colorbar). Given these results, we thus only report the mean of the samples in subsequent sections since there is very little 
deviation from the mean between samples.

Finally, we use the fully randomized synthetic AMR data to examine the role of the data dimensionality, d. Fig. 4 shows 
the same parameter space as in Fig. 3, for data with d = 3, Nx = N y = Nz = 16 and Ns = 163 (note that we also use fewer 
samples, Nsamp, for d = 3). The trends for d = 3 are similar to those for d = 2, except for changes in the asymptotic values 
of p1 for the efficiency boundaries in the algorithms for R and ! (method 2). For a higher dimension d, there are more 
repeated values for a given coarse cell than for smaller d, thus giving more repeated computations that can be skipped. 
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Fig. 4. Top row: Run-time ratios log10(T AMR/T std), where T corresponds to the total number of operations ntot , as functions of p1 and Nt for the computa-
tions of R, ! (methods 1 and 2), and A (left to right) using randomly refined synthetic AMR data with Nx = N y = Nz = 16, Ns = 163, d = 3 and f = 1. The 
ratios are computed over an ensemble with Nsamp = 8 samples. Colors are the same as described in the caption of Fig. 3. Bottom row: Comparison between 
the d = 2 results from Fig. 3 and the d = 3 results in the top row for three values of p1.

On the bottom row of Fig. 4, the ratio T AMR/T std is consistently smaller for all Nt and the three chosen values of p1 for 
R and ! (method 2), indicating that the new AMR algorithms become increasingly efficient, as compared to the standard 
algorithms, as the dimensionality increases.

4.2.3. Synthetic AMR test results: mixed static and random grids
From the results in Section 4.2.2, it may appear that under no circumstance do the new algorithms for computing !

(method 1) and A have any computational advantage in the asymptotic limit as Nt → ∞. This is certainly true when the 
entire computational domain is randomly refined at each instance in time and pmax

" + 0 for " < f . However, in most AMR 
simulations of practical flows, we generally find that pmax

" > 0 for " < f and, for these conditions, there can be a substantial 
computational advantage when using the new AMR algorithms. We demonstrate this improvement in Fig. 5, where we 
examine run-times for different values of p̃max

0 and p̃max
1 using synthetic AMR data with p0 = p1 = 1/2, Nx = N y = 64, 

Ns = 642, Nt = 50, d = 2, and f = 1. The resulting data includes regions of both static and random grid refinement, as 
shown for example in Fig. 2 for p̃max

0 = p̃max
1 = 1/4.

Fig. 5 shows that the run-time improvements in the calculations of ! (method 1) and A depend almost exclusively on 
the choice of p̃max

0 , due primarily to the fact that these algorithms can only take advantage of repeated computations if 
pmax

0 > 0. In the region of the domain that is randomly refined, it is very likely that all spatial locations will be tagged with 
" = f = 1 in this case. For example, if p0 = p1 = 1/2, Nt = 50, and we fix p̃max

0 = p̃max
1 = 1/4, the probability of having 

" = 0 for all times at a given spatial location that is randomly refined is
[

1 − (p1 − p̃max
1 ) − ∑ f

"=0 p̃max
"

1 − ∑ f
"=0 p̃max

"

]Nt

=
(

1
2

)50

+ 10−17 . (21)

Thus, for many of the cases, the regions of random refinement are likely to be all tagged with " = 1 at some instant in 
time, giving pmax

1 + 1 − p̃max
0 , and varying p̃max

1 has essentially no impact since p̃max
0 primarily dictates pmax

1 . Note that 
the thin blue regions at the top of the parameter spaces for ! (method 1) and A in Fig. 5 are due to the fact that setting 
p̃max

1 = p1 = 1/2 necessarily means that p0 = pmax
0 = 1/2, thus providing repeated computations.

We can also use Fig. 5 to understand how the choice of p̃max
" affects the calculations of R and ! (method 2). For R, 

Fig. 5 shows that setting p̃max
" for any " increases the correlation between cells where " = 0, in turn increasing the number 

of repeated computations. There is approximate reflection symmetry about p̃max
0 = p̃max

1 because setting either above zero 
necessarily increases correlations between cells where " = 0. For ! (method 2), there is very little change in the run-time 
ratio when varying pmax

" , since cells are first tabulated according to grid level before computing any element in !, removing 
all dependence on time. Variations in the run-time ratio would only come from f = 0 for any " for a spatial location, which 
only changes the performance of the algorithm marginally by not computing contributions for that " in that location.

13
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Fig. 5. Run-time ratios log10(T AMR/T std), where T corresponds to the total number of operations ntot , as functions of p̃max
0 and p̃max

1 for the computations 
of R, ! (methods 1 and 2), and A (left to right) using synthetic AMR data with both static and random refinement regions and simulation parameters 
p0 = p1 = 1/2, Nx = N y = 64, Ns = 642, Nt = 50, d = 2, and f = 1 using Nsamp = 8. The shading and colors are identical to those in Figs. 3 and 4.

Fig. 6. Run-time ratios T AMR/T std, where T corresponds to the total number of operations ntot , as functions of p0 and p1 (and implicitly p2) for R and 
! (method 2), and as functions of p̃max

0 = p0 and p̃max
1 = p1 (and implicitly p̃max

2 = p2) for ! (method 1) and A. The analysis is performed on synthetic 
AMR data with both static and random refinement regions and simulation parameters Nx = N y = 64, Ns = 642, Nt = 50, d = 2 and f = 2 using Nsamp = 8. 
Bottom row: Relative error between the data and the proposed fit in Table 2. The numbers on the top and bottom of each colorbar represent the bounds 
of the colorbar. Pink shading corresponds to a higher relative error for a given computation, and white regions indicate where the error is identically zero 
for double precision.

4.2.4. Synthetic AMR test results: two levels of AMR
To this point, we have only examined synthetic AMR data with one level of AMR (i.e., f = 1), where it is generally easier 

to assess the effects of different parameter choices on the performance of the new algorithms. In practical AMR simulations, 
however, it is common to use several levels of AMR in order to drive the computational cost down without significant loss 
of accuracy. It is therefore of interest to demonstrate the performance of the new algorithms for more than one level of 
AMR

We first consider the performance of the algorithms when f = 2. The top row of Fig. 6 shows T AMR/Tstd for synthetic 
AMR data with both static and random refinement using simulation parameters Nx = N y = 64, Ns = 642, Nt = 50, d = 2, 
and f = 2, with Nsamp = 8. Here we only consider how p" affects the calculations of R and ! (method 2), and how pmax

"
affects ! (method 1) and A. Note that setting p̃max

0 = p0 implies p̃max
0 = pmax

0 . Overall, Fig. 6 shows that, in comparison 
to the results using synthetic AMR data with f = 1, there is a significant improvement in the speed of the snapshot POD 
method when using the new algorithms for data with f = 2, because coarser cells have more repeated computations.

While Fig. 6 provides a good sense of the parameter space for f = 2, we still do not have a complete description of 
the performance of the algorithm because in Fig. 6, we are only visualizing two-dimensional slices of three-dimensional 
spaces. We would like to understand the performance more generally in a way that does provide as complete description as 
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Table 2
Fitted coefficients for Bij and bi from Eq. (22) using d = 2, Ns = 642, Nt = 50, Nsamp = 8, 
f = 2, p0 = k/16, p1 = m/16 and p2 = 1 − p0 − p1, where k, m ∈ [0, 8] are integers, for 
R and ! (method 2). The same values are used for ! (method 1) and A, but we also set 
p̃max

" = p" . Quantities after ± are two standard deviation errors of the fitted parameters as 
provided by the scipy curve fitting toolbox.

R (p")

B00 = 0.19 ± 1.7 × 10−4 B01 = 0.74 ± 1.2 × 10−4 B02 = 1.33 ± 6.6 × 10−5

B11 = 0.74 ± 1.7 × 10−4 B12 = 1.34 ± 6.6 × 10−5 B22 = 1.35 ± 2.8 × 10−5

! (method 1) (p̃max
" = p") ! (method 2) (p") A (p̃max

" = p")

b0 = 0.47 ± 2.7 × 10−17 b0 = 0.56 ± 8.2 × 10−4 b0 = 0.14 ± 2.2 × 10−17

b1 = 0.58 ± 2.7 × 10−17 b1 = 0.73 ± 8.2 × 10−4 b1 = 0.53 ± 2.2 × 10−17

b2 = 1.03 ± 1.3 × 10−17 b2 = 1.35 ± 3.9 × 10−4 b2 = 1.29 ± 1.1 × 10−17

possible such that detailed parameters sweeps are not necessary. In order to do so, we propose the following functions to 
closely approximate the performance of the new algorithms

R :
f∑

i=0

f∑

j=0

Bij pi p j, ! (method 1) and A :
f∑

i=0

bi pmax
i , ! (method 2) :

f∑

i=0

bi pi, (22)

where Bij and bi are fitting parameters. Note the symmetry pi p j = p j pi ; hence, there are only ( f + 1) + ( f + 1) f /2 values 
to fit for R, rather than ( f + 1)2.

The functions in Eq. (22) make intuitive sense for the following reasons. Each element of Rij is computed by the inner 
product of two snapshots, and the resulting number of repetitions is based on the maximum grid level between the two 
snapshots at a given spatial location. So, for R, we use two summations because the number of repetitions is dependent 
upon the composition of each of the two snapshots. For ! (method 1) and A, only one pattern of AMR matters in how many 
repeated computations there are: pmax

" , for reasons given in Section 3. Since each of these operations are linear operations, 
only one summation is required. Finally, only one of the matrices (i.e., X) in the computation of ! (method 2) has repeated 
values from the AMR, and this computation method is essentially independent of pmax

" (as shown in Fig. 5), so we can get 
a good approximation of performance using one summation and p" .

We use non-linear least squares to fit the coefficients Bij and bi in Eq. (22) to the data T AMR/Tstd shown in the top row 
of Fig. 6. These coefficients are given in Table 2 along with 95% confident intervals. Using these values of Bij and bi , we 
then estimate the performance of our algorithm for the parameters in the top row of Fig. 6, and in the bottom row of this 
figure we show the relative error between the computed performance (top row) and the estimated performance.

The bottom row of Fig. 6 shows that for R, ! (method 1), and A, our proposed functions provide excellent agreement 
with the computed performance. For R, the estimate is only off by a maximum of + 10−7.6 and the variations in the error 
are fairly random throughout the parameter space, indicating a good fit. For ! (method 1) and A, the estimate is essentially 
exact, with a maximum error of + 10−36 and many areas of white, where the estimate was exactly what was computed 
to double precision. This is to be expected because setting pmax

" = p" removes any statistical variation from snapshot to 
snapshot in a simulation; since these are linear operations, it would be appropriate that a linear approximation would fit 
exactly. Even if there was a statistical variation, this would only affect the pre-computation of the maximum grid level, 
which would not substantially impact the fit.

By contrast, the estimate for ! (method 2) does not appear to fit the data as closely, as indicated by the distinct 
triangular feature in the error plot shown in the bottom row of Fig. 6. This feature is the result of a nuance in the code that 
avoids computing the contribution of a level " if that " does not appear in that spatial location for all of time. The pink 
regions for ! (method 2) are where there is intermittent behavior of " not appearing for all spatial locations. For example, 
consider p0 = 3/8, p1 = 1/32, and p2 = 19/32, which is one of parameters shown in Fig. 6. The probability of a spatial 
location containing at least one instance of " for a given Nt is 1 − (1 − p")

Nt . For this situation, the probability of having 
" = 0, " = 1, and " = 2 for a given spatial location would be + 1 − 10−11, + 0.8, and + 1, respectively. Thus, there will be 
many instances of spatial locations that will not have " = 1 for all times, providing a change in the number of operation 
counts that cannot be accounted for by the proposed linear fit. Regions of high error are where the probability of having 
an " is not close to 0 or 1. Nonetheless, even with this imperfection in the function, the estimate still has very small error, 
with a maximum of + 10−3.5 for the entire parameter space.

4.2.5. Synthetic AMR test results: generalizations for additional levels of AMR
In addition to providing a good fit for data with d = 2 and f = 2, we can identify more general trends in the coefficients 

to better understand the algorithm performance with additional levels of AMR. The Bij in Table 2 for the computation 
of R show that some of these values are approximately equal, namely B02 + B12 + B22 and B01 + B11. From previous 
discussions, the number of repeated computations is determined by the maximum grid level at a spatial location between 
the two snapshots. Since B02, B12, and B22 account for the computational advantage between cells with " = 0 and " = 2, 
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Table 3
Fitted coefficients for Bij and bi from Eq. (22) using d = 3, Ns = 162 × 32, Nt = 50, Nsamp =
8, f = 3, p0 = k/16, p1 = m/16, p2 = n/16 and p3 = 1 − p0 − p1 − p2, where k, m, n ∈ [0, 5]
are integers, for R and ! (method 2). The same values are used for ! (method 1) and A, 
but we also set p̃max

" = p" . Quantities after ± are two standard deviation errors of the fitted 
parameters as provided by the scipy curve fitting toolbox.

R (p")

B00 = 0.0054 ± 2.5 × 10−3 B01 = 0.045 ± 1.3 × 10−3 B02 = 0.37 ± 1.3 × 10−3

B03 = 1.16 ± 5.6 × 10−4 B11 = 0.046 ± 2.5 × 10−3 B12 = 0.37 ± 1.3 × 10−3

B13 = 1.15 ± 5.6 × 10−4 B22 = 0.37 ± 2.5 × 10−3 B23 = 1.16 ± 5.6 × 10−4

B33 = 1.18 ± 1.7 × 10−4

! (method 1) (p̃max
" = p") ! (method 2) (p") A (p̃max

" = p")

b0 = 0.44 ± 8.1 × 10−17 b0 = 0.53 ± 4.8 × 10−3 b0 = 0.0044 ± 6.4 × 10−17

b1 = 0.44 ± 8.1 × 10−17 b1 = 0.54 ± 4.8 × 10−3 b1 = 0.034 ± 6.4 × 10−17

b2 = 0.51 ± 8.1 × 10−17 b2 = 0.64 ± 4.8 × 10−3 b2 = 0.27 ± 6.4 × 10−17

b3 = 1.03 ± 2.7 × 10−17 b3 = 1.34 ± 1.6 × 10−3 b3 = 1.14 ± 2.1 × 10−17

" = 1 and " = 2, and two " = 2 cells, respectively, there is approximately the same computational advantage between all 
three since the finest level in all three is " = 2. Similar reasoning leads to the conclusion that B01 + B11. More generally, 
we would expect that

Bij + B"" where " = max(i, j). (23)

Note that B f f > 1 because there is no computational advantage as a result of the AMR.
For " < f , there is a clear pattern that emerges in the coefficients B"" and b" for computing R and A, respectively. In 

these coefficients for the fit for A, we can see that

B""

B("−1)("−1)
or

b"

b"−1
+ 2d for 1 ≤ " < f . (24)

This occurs because, if there is any repetition as a result of the AMR, that contribution to Rij or Aij is weighted and skipped 
in the exact same manner if " < f . Since we assume a refinement ratio of 2, there are 2d additional repetitions for each 
successive level of refinement, which is also clearly indicated by cd

" . This pattern is not present between " = f and " = f −1
because we do not weight and skip operations if " = f .

There is a markedly different pattern in the case of computing ! for " < f . Namely, we do not see ratios similar to 
Eq. (24), and it appears that lim f →∞ b0 1+ 0, unlike R and A. In computing !, we need to fill the entirety of !, which still 
requires accessing and assigning all Ns and Nt. Since the computation of a single element of ! requires five operations, 
and we need to access and assign each element of !, which we deem two operations in our operation counting scheme, 
we see lim f →∞ b0 + 2/5, where the result is only approximate due to the many other features of the algorithm that may 
marginally vary this value. This limit will be more clear in further discussions. Of course, this number would change if a 
different scheme was used for operation counting.

Note that this limit is true for both methods 1 and 2 of computing !. In method 1, this limit is more clear since 
performance is only based on pmax

" , while in method 2, the convoluted maneuvering through the matrices complicates this 
limit, but the same principle is still apparent in computing H before computing !. As a result of this different asymptotic 
behavior, the ratios as expressed by Eq. (24) are not present for !, and a more thorough examination of the code would be 
required to identify the behavior of bi .

To validate this approach, we perform the exact same analysis on a different set of parameters: d = 3, Ns = 162 × 32, 
Nt = 50, Nsamp = 8, f = 3, p0 = k/16, p1 = m/16, p2 = n/16 and p3 = 1 − p0 − p1 − p2, where k, m, n ∈ [0, 5] are integers, 
for R and ! (method 2). The same values are used for ! (method 1) and A, but we also set p̃max

" = p" . The fitted values 
are given in Table 3; here, we identify similar trends as found with f = 2 and d = 2; namely, Eq. (23) in computing R, 
Eq. (24) in computing R and A, lim f →∞ b0 + 0 for R and A, and lim f →∞ b0 + 2/5 for !. By verifying these trends, we are 
confident that we can approximately predict the performance of our algorithm using operation counts under a wide range 
of conditions.

4.3. Tests using genuine AMR data

Ultimately, the most important assessment of the new algorithm is to determine whether, and under what conditions, 
the algorithm accelerates the snapshot POD method on genuine AMR data from a fluid flow simulation. In this section, we 
show that the new algorithm can reduce operation counts and CPU time in a compiled and optimized code for data from an 
AMR simulation of an axisymmetric buoyant jet. The speedups are examined for three different finest levels of AMR: f = 1, 
f = 2, and f = 3.

16



M.A. Meehan, S. Simons-Wellin and P.E. Hamlington Journal of Computational Physics 469 (2022) 111527

Fig. 7. Top row: Two-dimensional slices of the density field from an AMR simulation of an axisymmetric buoyant jet with solution grids annotated. Columns 
correspond to instances in time relative to the eddy turnover time, τ , where τ + 22(t and (t = 0.01 s is the simulation output rate. Bottom row: 
Two-dimensional slices of the corresponding grid level " at each time.

4.3.1. Computational implementation
We programmed the algorithms in Fortran 90 and compiled using Intel Fortran Compiler version 17.0.5 with the com-

mand ifort with optimization setting -O3 and the Intel Math Kernel Library, -mkl [34]. All computations in this section 
were done on Onyx, a supercomputer that is part of the U.S. Department of Defense High Performance Computing Modern-
ization Program. Onyx is a Cray XC40/50 with two 2.8-GHz Intel Xeon E5-2699v4 Broadwell 22-core processors per compute 
node. Computations for the f = 1 and f = 2 data sets presented below were done on the standard compute nodes with 
128 GB of DDR4 memory, and computations for the f = 3 data sets were done on the large memory nodes with 1 TB 
of DDR4 memory. All computations were done in serial in order to mitigate any complexities due to parallelization, but 
parallelization is fairly straightforward for these matrix computations by splitting X and Xgrid into sub-matrices along each 
spatial dimension so that each processor can easily perform the same operations on smaller sections of the data.

We used the dgemm (matrix multiplication) routine from BLAS [35] as our benchmark for standard operations. Because 
Fortran stores arrays in column-major order, we needed to make slight modifications for the computation of ! in order 
to traverse memory properly, since the algorithms in the appendix were developed without knowledge of memory layout. 
The slight modifications are, generally, inverting loops in the matrix computation at the cost of additional accesses. This 
could not be done for the entirety of the algorithm without completely restructuring the code, so we only invert loops 
for the computation of ! that are done on the finest AMR level (i.e., " = f ). We leave the full restructuring for future 
work. The computation of R and A naturally aligns with the order in which data is stored in Fortran, and thus requires no
modifications from the original AMR algorithms. All of this code is publicly available at https://github .com /tesla -cu /amrPOD.

4.3.2. Numerical simulations
The AMR data we use is generated from a simulation of a buoyant plume, where helium is axisymmetrically injected 

into quiescent ambient air with a radius of 6.25 cm at the bottom of a 1.5 m3 computational domain. Using AMR for 
plumes is particularly beneficial because the flow stream needs to be sufficiently far from the outer boundary condition for 
proper entrainment, but only a small fraction of the domain has complex flow features that require high grid resolution. 
The simulation was conducted using PeleLM [20], but we will not discuss the solution methods used to produce the data 
here (see Wimer et al. [36] for a detailed discussion) since this information is not of critical importance to the computation 
of POD on AMR data sets.

In Fig. 7, we show five two-dimensional slices of the density field and the corresponding grid level for the f = 3 data. 
The data were truncated to a 1 m3 portion of the domain to reduce memory requirements. We then extracted nearest-
neighbor-interpolated data using yt [23] at three different levels of finest resolution: f = 1, f = 2, and f = 3, leading 
to grid sizes, respectively, of 1283, 2563, and 5123. We show the corresponding average composition, 〈p"〉 and pmax

" , as a 
function of Nt in Fig. 8, where the average operator 〈·〉 denotes an average in time as opposed to samples. In comparing the 
grid composition with the results from Section 4.2, we can see that this data is conducive for the new algorithm to provide 
a computational advantage compared to the standard snaphost POD method.

4.3.3. Genuine AMR test results
In order to quantify the computational advantage of the new algorithm, we use both operation counts and average CPU 

time, both of which we show in Fig. 9 for Nt ∈ [10, 80]. Blue lines indicate the ratio T AMR/Tstd using operation counts 
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Fig. 8. Properties of the AMR grids for each of the axisymmetric buoyant jet simulations, showing 〈p"〉 and pmax
" as functions of Nt for " = 0, . . . , 3 and 

finest resolutions (a) f = 1, (b) f = 2, and (c) f = 3.

and the black lines are using CPU times. All quantities are normalized by Tstd for Nt = 10. The fluctuations of CPU time 
within the Nsamp = 16 samples of the ensemble were found to be small compared to the average CPU times, so they are 
not reported.

For all algorithms, we see several clear trends. The first is that there is an O(N2
t ) scaling of the computational cost, 

as anticipated, for all algorithms, with a slight deviation in CPU times for ! for larger Nt as a result of developing the 
algorithms without knowledge of memory layout. Asymptotically, the proposed algorithms in Section 3 do not change the 
order of computation, rather they change the leading coefficients. The next trend we see is that the new algorithms continue 
to improve with increasing f . This is to be expected because, as f increases, an increasing number of operations can be 
skipped with the AMR algorithm for a given ". For example, comparing the amount of repeated information for " = 0 for 
f = 2 and f = 3, we have increased the number of repeated cells from 43 = 64 to 83 = 512, making repeated computations 
significantly more computationally advantageous to skip. This speed-up is important because many fluid flow simulations 
use more than three levels of AMR (e.g., in Ref. [36] five levels of AMR are used), and the computational savings will 
continue to improve as f increases.

In determining whether our new algorithms are practically faster than standard matrix multiplications, we look to the 
CPU times. For R and A, we need f > 2 for any Nt to have any computational advantage, while both methods 1 and 2 
of computing ! are advantageous when f > 1. Although these results depend on the specific details of the numerical 
simulations and would need to be re-evaluated for different data, they do again indicate that the computational speed-up 
of the new algorithm compared to the standard approach will continue to become more pronounced as the number of AMR 
levels increases.

In comparing T AMR/Tstd for operation counts and CPU time, we often see large disparities between the two for the fol-
lowing reasons. In the computations of R and A, the disparity is likely due to a high cache miss rate when large amounts 
of operations are skipped. Eventually with many repeated computations, such as for f = 3, the new algorithm can over-
come the increased latency. For !, the disparity is likely due to overestimating the weights associated with accesses and 
assignments that are needed for all elements in !, as discussed in Section 4.2. Further investigation is needed to validate 
that these are the exact reasons for the disparities. Nonetheless, the algorithm presented here has not been optimized for 
any particular hardware configuration, nor have we tuned the coefficients of the weights of each operation (e.g., arithmetic, 
assignment, etc. operations) to align with the performance of the machine, so these are not expected to align perfectly. 
These improvements are beyond the scope of this paper but are avenues for future work.

5. Practical considerations

In Sections 3 and 4, we presented the proposed algorithms and assessed their computational performance (in serial) 
when AMR output data had already been nearest-neighbor interpolated to a uniform common mesh of equivalent resolution 
to that of the finest cells. In those sections, we neglected important practical effects that would further affect the overall 
computation, such as the cache miss rate, memory hierarchy, and disk usage. These effects were neglected for two reasons: 
(i) to make the presentation of the new algorithms as clear as possible, given their already significant complexity; and (ii)
these effects can vary substantially between different computing architectures, and we do not want to draw conclusions that 
could be unique to a specific computing environment. In this section, we discuss how the algorithms presented in Section 3
could be optimized for particular use-cases.
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Fig. 9. Computed operation counts (blue) and CPU times (black) of the standard and AMR algorithms as functions of Nt for (a, d, g) R; (b, e, h) !; and (c, f, 
i) A when using a finest level of (a-c) f = 1, (d-f) f = 2, and (g-i) f = 3 in the axisymmetric buoyant plume simulations. The line styles correspond to the 
different algorithms used. All quantities are normalized by Tstd at Nt = 10. The two different methods of computing ! are given in (b, e, h) and denoted 
by M1 for method 1 and M2 for method 2. Note that the solid black and solid blue lines are almost identical.

5.1. Partial loading

One of the primary limitations of the presented algorithms is the immense memory requirements for some of the larger 
computations, such as the finest resolution in Section 4.3. However, we can reduce these requirements by noting that all of 
the data does not need to be stored in memory simultaneously and, instead, only portions of the data need to be loaded at 
any given time.

To demonstrate this, consider the computation of R as given in Section 3.2. The computation of any element Rij can be 
split as

Rij =
Ns∑

k=1

Xki Xkj =
Ns/2∑

k=1

Xki Xkj

︸ ︷︷ ︸
R1

i j

+
Ns∑

k=Ns/2+1

Xki Xkj

︸ ︷︷ ︸
R2

i j

, (25)

where R1
i j and R2

i j are the covariance matrices corresponding to the first and second “chunks” of data, respectively. By 
decomposing the computation this way, the memory requirements have been cut in half because R1

i j can first be computed 
using only half Ns and stored in Rij . The first data chunk can then be unloaded after loading the second data chunk, and 
element-wise contributions of R2

i j can be added directly to Rij .
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More generally, we could consider decomposing the data into a certain number of chunks Nc as

Rij =
Nc∑

c=1

cNs/Nc∑

k=d

Xki Xkj

︸ ︷︷ ︸
Rc

i j

(26)

where d = (c − 1)Ns/Nc + 1. By performing the computation of R in this way, we can reduce the memory requirements by 
a factor of Nc by loading only the data required for Rc

i j . The algorithm described in Section 3.2 is completely amenable to 
this decomposition as long as Ns/Nc ≥ cd

0, a condition that still permits many chunks. Note that the computation of ! and 
A can be split in almost an identical way.

While implementation of this approach is straightforward, we did not include this decomposition in Sections 3 or 4 be-
cause there is an additional practical consideration regarding the balance between input-output and memory requirements. 
Specifically, even though memory requirements decrease as Nc increases, the throughput on storage devices increases. De-
pending on the memory hierarchy, increasing the number of chunks such that each can fit into the cache could be optimal 
compared to increased throughput. As a result, the number of chunks required to minimize computational time can vary 
substantially between different computing environments. Therefore, we do not address this at the algorithmic level and 
instead take a worst-case scenario approach and show that our algorithm can reduce the computation time where memory 
hierarchy is not utilized to capacity.

5.2. Parallelization

The target application of these algorithms is on large scale simulation data and, as such, a discussion of parallelization 
is necessary. A simple way to parallelize the algorithms is to use the same methods outlined in Section 5.1, where it was 
noted that the computation of R, !, and A can be computed incrementally with a small fraction of the data loaded at any 
given instant. With distributed memory (e.g., MPI), each processor is able to load a single small chunk, perform the small 
computation, then a collective call can be made to communicate between all processors. For R and A, these collective calls 
would be summations to combine contributions from each processor, and for ! the collective call would be a write to disk.

Given that memory serves as a major limiter in the proposed algorithms, parallelization across many nodes in an HPC 
environment may be necessary. However, if this is done purely using distributed memory, many processors will be accessing 
the data. If Ns is not evenly divisible by Nc, the work will thus not be evenly distributed between processors. To circumvent 
this, we recommend a hybrid parallelization approach by using fewer tasks per node than cores, possibly as few as one 
task per node, and then make use of the remaining cores by using threads that share memory to parallelize mathematical 
operations for each data chunk. We expect this parallelization strategy to scale well given the very little communication 
required between processors (e.g., only collective calls at the very end of the operation) and the simple division of work 
between processors.

5.3. Bypassing the interpolation step

The entirety of Sections 3 and 4 have focused on the algorithms after the AMR output data has already been interpolated 
to a uniform grid. However, bypassing this interpolation step would reduce disk usage, retain compression of the data, 
remove a step in the overall computation, and could ultimately be leveraged to improve the algorithms further. However, 
bypassing the interpolation step to perform POD directly on the simulation data is highly sensitive to how the data is stored 
on disk and will vary between applications. For these reasons, we did not consider this approach in Section 3, but we 
provide a discussion here of how this approach could be taken and what advantages may be realized.

We illustrate some advantages of using the simulation data directly by considering an example. Consider simulation data 
that was produced with rectangular collections of cells of equivalent resolution denoted “grids” (this is a common approach 
of AMR codes [4]) and specifically focus on computing R. We can iterate over spatial regions in chunk sizes (as discussed in 
Section 5.1) of the simulation data that correspond to the minimum grid size, which we will denote “blocks.” These are often 
4, 8, 16, or 32 cells per dimension. By doing this, the elements in the dot product between two blocks (these blocks would 
have the same spatial extent but different instances in time) would be weighted identically and, therefore, we could remove 
a substantial amount of computational overhead in Section 3.2 associated with checking the grid level in Xgrid and weighting 
individual cell contributions (i.e., by replacing this with weighting blocks). This would further improve cache utilization and 
memory requirements. Moreover, if two blocks have the same resolution, a standard dot product can be taken between 
the two and can be weighted appropriately for the contribution of R without first interpolating to the finest resolution as 
required by our algorithm. By computing R in this manner, we retain the compression of the data and substantially reduce 
the additional computational overhead required when the data was interpolated using a nearest-neighbor method.

If we now consider the same type of simulation data but focus specifically on the computation of ! and A, there is a 
reduced computational advantage to bypassing the interpolation step. Retaining identical compression of the simulation data 
as we did with R is impossible to do for ! with an adaptive mesh, for the reasons discussed in Section 3.4. However, some 
compression can still be achieved (relative to a grid that was uniformly at the finest resolution) if there are some spatial 
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regions of the flow that are never resolved to the finest resolution (i.e., pmax
f < 1). This is essentially the approach already 

taken in Sections 3.4.1 and 3.5. To maximize compression for the POD modes, we would define the non-uniform common 
mesh that would be resolved only to the finest resolution that was observed in a particular spatial region throughout the 
simulation data. It would then be straightforward to perform the exact same computation as put forth in Section 3, except 
using a local value of finest resolution, rather than the global finest resolution, similar to that in the wavelet-based method 
outlined by Krah et al. [25].

Ultimately, we do not discuss this technique in Section 3 because this approach would most appropriately be applied in a 
format native to the original data. This would therefore require substantial analysis of whether the additional computational 
overhead is favorable, as compared to simply using a uniform common grid at the finest level that is followed by down-
sampling repeated data to improve data compression.

6. Conclusions and future work

In this work, we explored new algorithms to compute each step of the snapshot POD method on data from AMR sim-
ulations, taking advantage of repeated solution values as a result of nearest-neighbor interpolation to weight and skip 
unnecessary computations. This was done by reshaping each snapshot iteratively, such that at the end of the iteration se-
quence, all cells that had identical values were contiguous in the column vector. From there, each step in the snapshot POD 
method was analyzed to determine algorithms that effectively leverage those repetitions and skip unnecessary operations.

After developing the algorithms, we analyzed their performance using operation counts and CPU time. Using operation 
counts, we performed detailed parameter sweeps with synthetically generated data that allowed us to identify key charac-
teristics of our algorithms. We found that both ! (method 1) and A require that the maximum grid level " for all Nt be less 
than the finest level (i.e., " < f ) to have any computational advantage. By contrast, accelerating the calculation of R simply 
requires correlations of coarser cells and accelerating the calculation of ! (method 2) primarily requires the presence of 
coarser cells in the snapshot matrix X. Additionally, we were able to determine the approximate behavior of each algorithm 
with additional levels of AMR by fitting equations with properties of the synthetically generated data. Using CPU time, we 
were able to show that, with a compiled Fortran code, we do in fact reduce CPU time by a factor of roughly 2 − 5 for 
data from an AMR simulation of an axisymmetric buoyant plume when using three levels of grid refinement, without fully 
optimizing the algorithms to the computing environment (e.g., language, cache, etc.). This speed-up will become even more 
pronounced for a greater number of AMR levels.

This work has focused on the development of the new algorithm for computing snapshot POD on AMR data as concisely 
and as generally as possible. Therefore, we do not directly address many factors that would be crucial to performing this 
computation practically, including partial loading and parallelization. Although these are simple to implement in practice, by 
introducing any of these in the description of the fundamental algorithms provided in Section 3, we would also introduce 
dependencies of the algorithms on the system architecture, such as memory hierarchy, disk storage, and communication. 
In an effort to remain impartial to emerging hardware components, we only provide a discussion (in Section 5) of how to 
implement partial loading and parallelization. Further, the most optimal way to perform POD using AMR data could be to 
use the simulation data directly, rather than to require an intermediate interpolation step, but we do not do this here, again 
to retain generality.

We benchmark our algorithm against standard matrix multiplication which is O(N3) if the matrices are of equal dimen-
sion (i.e., N = Ns = Nt for the operations here). Our algorithm is not readily amenable to more advanced algorithms, such 
as Strassen’s algorithm [37], to reduce the order below 3. However, we do not expect that these advanced algorithms will 
drastically increase the speed of the operation in general because it is expected that Ns 2 Nt with Nt + 103 as an approxi-
mate upper bound. Even with some of the most recent code optimizations using modern computer architectures, this is the 
approximate Nt bound where the reduction in multiplications overcomes the overhead of more additions [38].

Recent advances in matrix computations have shown great promise in substantially improving the computational de-
mands to perform POD for large-scale flow data. One of the most promising amongst these is the rSVD method developed 
from randomized numerical linear algebra [33]. This tool can dramatically reduce the computational cost by using a small 
random matrix to reduce the size of the problem X and produce the same POD data with very little error; see Brunton and 
Kutz [39] for further discussion. To integrate our algorithms with the rSVD approach (amongst other modal decompositions), 
a more general procedure for performing matrix operations with repeated solution values would need to be developed. This 
would likely hinge on ideas used in Section 3.4.2. Since we believe the present study is the first to deal with repeated values 
in matrix operations, we leave a more general approach as future work.

Finally, we did not attempt to match the CPU time with the operation counts. This is primarily due to the fact that 
the algorithm was developed independent of any computing environment (e.g., language, processor, etc.) and without any 
code optimization based on the caching architecture. Further developments could substantially improve the algorithm with 
respect to CPU time, and we could begin to bridge the gap between CPU time and operation counts, allowing us to ensure 
the authenticity of the bounds where we determine our AMR algorithm to be faster than the standard algorithm. This has 
only been done recently with standard matrix multiplication [40], and we leave these improvements for future work.

Ultimately, this is the first study that addresses the challenge of reducing the computational cost of linear operations 
when repeated values are present in data generated by AMR simulations. This is somewhat surprising because, considering 
the importance compression methods for images and audio [41], there are not algorithms that address computing quantities 
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across data that have already been compressed. Although we do not address compression methods to compute POD for 
AMR data, it might be possible to transform the AMR data using efficient compression methods and directly perform POD 
on the compressed data, as has recently been done using wavelet-based methods [25]. Additionally, this type of repeated 
computation has not been addressed in a theoretical context bounding the number of operations required.
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Appendix A. Detailed algorithms

In this appendix, we provide the detailed algorithms that were introduced in Section 3 and analyzed in Section 4. In the 
pseudo-code, we use zero-based indexing for the array accesses. Lastly, we use typical terminology that is used in high-
level computing languages to represent standard operations. These include: size(arr,dim) to compute the size of array
arr along dimension dim; permute(arr,dims) to rearrange the indices of multi-dimensional array arr according to
dims; reshape(arr,dims) to redistribute elements in arr into a new array with dimensions dims while maintain-
ing contiguous elements in memory; and empty(dim0,dim1,· · ·) and zeros(dim0,dim1,· · ·) initialize arrays with 
dimensions dim0 × dim1 × · · · , respectively, with non-exist and zero values. The remaining nomenclature (e.g., indexing, 
assignment, math operations, etc.) is straightforward.

Algorithm 1 Reshaping Ui into ui for a column of X for a row–major code. The difference for a column–major order code 
is provided on the right hand side.

U1D ← Ui
if d = 1 then

No reshaping required
else if d = 2 then

for c in c" do
nxr ← size(U1D, 0)

m1 ← Ns/(c ∗ nxr)

m2 ← Ns/c

U1D ← permute(U1D, (1, 0))

U1D ← reshape(U1D, (m1, c, nxr)) 3 U1D ← reshape(U1D, (nyr , c, m1))

U1D ← permute(U1D, (1, 0, 2)) 3 U1D ← permute(U1D, (0, 2, 1))

U1D ← reshape(U1D, (m2, c))
end for

else if d = 3 then
for c in c" do

nxr ← size(U1D, 0)

nyr ← size(U1D, 1)

m1 ← Ns/(c ∗ nxr ∗ nyr)

m2 ← Ns/(c2 ∗ nxr)

m3 ← Ns/c2

U1D ← permute(U1D, (2, 1, 0))

U1D ← reshape(U1D, (m1, c, nyr , nxr)) 3 U1D ← reshape(U1D, (nzr , nyr , c, m1))

U1D ← permute(U1D, (1, 0, 2, 3)) 3 U1D ← permute(U1D, (0, 1, 3, 2))

U1D ← reshape(U1D, (c, m2, c, nxr)) 3 U1D ← reshape(U1D, (nzr , c, m2, c))
U1D ← permute(U1D, (0, 2, 1, 3))

U1D ← reshape(U1D, (c, c, m3)) 3 U1D ← reshape(U1D, (m3, c, c))
end for

end if
ui ← U1D
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Algorithm 2 Computing R = XT X.
R ← empty(Nt, Nt)

cd
f −1 ← cd[ f − 1]

for m ← 0 to Nt − 1 do
for n ← 0 to m do

rsum ← 0
i ← 0
if m = n then

while i < Ns do
if Xgrid[i, m] = f then

for j ← i to i + cd
f −1 − 1 do

rsum ← rsum + X[ j, n] ∗ X[ j, m]
end for
i ← i + cd

f −1
else

cval ← cd[Xgrid[i, m]]
rsum ← rsum + cval ∗ X[i, n] ∗ X[i, m]
i ← i + cval

end if
end while

else
while i < Ns do

if Xgrid[i, m] = f or Xgrid[i, n] = f then
for j ← i to i + cd

f −1 − 1 do
rsum ← rsum + X[ j, n] ∗ X[ j, m]

end for
i ← i + cd

f −1
else

if Xgrid[i, m] > Xgrid[i, n] then
cval ← cd[Xgrid[i, m]]

else
cval ← cd[Xgrid[i, n]]

end if
rsum ← rsum + cval ∗ X[i, n] ∗ X[i, m]
i ← i + cval

end if
end while

end if
R[m, n] ← rsum
R[n, m] ← rsum

end for
end for

Algorithm 3 Computing ! = X"#−1/2 – Method 1.
! ← empty(Ns, Nt)

c0 ← cd[0]
for i ← 0 to Ns − 1 inc c0 do

G ← empty(c0)

j ← i
j∗ ← 0
while j∗ < c0 do

Xmax ← Xgrid[ j, 0]
for m ← 1 to Nt − 1 do

if Xgrid[ j, m] > Xmax then
Xmax ← Xgrid[ j, m]
if Xmax = f then

Terminate for loop
end if

end if
end for
gval ← cd[Xmax]
G[ j∗] ← gval
j ← j + gval
j∗ ← j∗ + gval

end while
for m ← 0 to Nt − 1 do

j ← i
j∗ ← 0
while j∗ < c0 do

)sum ← 0
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for n ← 0 to Nt − 1 do
)sum ← )sum + X[ j, n] ∗ "[n, m]

end for
gval ← g[ j∗]
)sum ← )sum ∗ λ

−1/2
m

for k ← j to j + gval − 1 do
![k, m] = )sum

end for
j ← j + gval
j∗ ← j∗ + gval

end while
end for

end for

Algorithm 4 Computing ! = X"#−1/2 – Method 2.
! ← empty(Ns, Nt)

c0 ← cd[0]
c1 ← cd[1]
cd

f −1 ← cd[ f − 1]
nlev ← f + 1
for i ← 0 to Ns − 1 inc c0 do

G ← empty(nlev , c1, Nt)

n" ← empty(nlev , c1)

for n ← 0 to Nt − 1 do
" ← Xgrid[i, n]
if " = 0 then

G[0, 0, n"[0, 0]] ← n
n"[0, 0] ← n"[0, 0] + 1

else
if f > 1 then

j ← i
j∗ ← 0
while j∗ < c1 do

" ← Xgrid[ j, n]
if " = f then

G[ f , j∗, n"[ f , j∗]] ← n
n"[ f , j∗] ← n"[ f , j∗] + 1
j ← j + cd

f −1
j∗ ← j∗ + 1

else
G[", j∗, n"[", j∗]] ← n
n"[", j∗] ← n"[", j∗] + 1
j ← j + cd["]
j∗ ← j∗ + cd[" + 1]

end if
end while

else
G[1, 0, n"[1, 0]] ← n
n"[1, 0] ← n"[1, 0] + 1

end if
end if

end for
for n ← 0 to Nt − 1 do

H ← empty(c0, nlev )

if n"[0, 0] > 0 then
"sum ← 0
for m ← 0 to n"[0, 0] − 1 do

k ← G[0, 0, m]
"sum ← "sum + X[i, k] ∗ "[k, n]

end for
for m ← 0 to c0 do

H[m, 0] ← "sum
end for

end if
if n"[0, 0] < Nt then

if f > 2 then
for L ← 1 to f − 2 do

j∗ ← 0
for j ← i to i + c0 inc cd[L] do

if n"[L, j∗] > 0 then
"sum ← 0
for m ← 0 to n"[L, j∗] − 1 do
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k ← G[L, j∗, m]
"sum ← "sum + X[ j, k] ∗ "[k, n]

end for
for m ← j∗ ∗ cd

f −1 to j∗ ∗ cd
f −1 + cd[L] − 1 do

H[m, L] ← "sum
end for

end if
j∗ ← j∗ + cd[L + 1]

end for
end for

end if
if f > 1 then

j∗ ← 0
for j ← i to i + c0 − 1 inc cd[ f − 1] do

if n"[ f − 1, j∗] > 0 then
L ← f − 1
"sum ← 0
for m ← 0 to n"[L, j∗] − 1 do

k ← G[L, j∗, m]
"sum ← "sum + X[ j, k] ∗ "[k, n]

end for
for m ← j∗ ∗ cd[L] to ( j∗ + 1) ∗ cd[L] − 1 do

H[m, L] ← "sum
end for

end if
if n"[ f , j∗] > 0 then

for k ← j to j + cd[ f ] − 1 do
"sum ← 0
for m ← 0 to n"[ f , j∗] − 1 do

p ← G[ f , j∗, m]
"sum ← "sum + X[k, p] ∗ Psi[p, n]

end for
H[k − j + cd

f −1 ∗ j∗, f ] ← "sum

end for
end if
j∗ ← j∗ + 1

end for
else

for k ← i to i + c0 − 1 do
"sum ← 0
for m ← 0 to n"[1, 0] − 1 do

p = G[1, 0, m]
"sum ← "sum + X[k, p] ∗ "[p, n]

end for
H[k − i, 1] ← "sum

end for
end if

end if
for m ← 0 to c0 − 1 do

Hsum ← 0
for L ← 0 to f do

Hsum ← Hsum + H[m, L]
end for
![m + i, n] ← Hsum ∗ λ−1/2[n]

end for
end for

end for

Algorithm 5 Reshaping )i into the original flowfield shape for a row–major code. The difference for a column–major order 

code is provided on the right hand side.
%1D ← )i
if d = 1 then

No reshaping required
else if d = 2 then

for c in reversed c" excluding last element do
nxr ← size(%1D, 0) 3 nyr ← size(%1D, 1)

m1 ← Ns/(c ∗ nxr) 3 m1 ← Ns/(c ∗ nyr)

m2 ← Ns/c

%1D ← reshape(%1D, (nxr , m1, c)) 3 %1D ← reshape(%1D, (c, m1, nyr))

%1D ← permute(%1D, (1, 0, 2)) 3 %1D ← permute(%1D, (0, 2, 1))

%1D ← reshape(%1D, (m2, c)) 3 %1D ← reshape(%1D, (c, m2))

25



M.A. Meehan, S. Simons-Wellin and P.E. Hamlington Journal of Computational Physics 469 (2022) 111527

%1D ← permute(%1D, (1, 0))

end for
nxr ← size(U1D, 0) 3 nyr ← size(U1D, 1)

m1 ← Ns/(nx ∗ nxr) 3 m1 ← Ns/(ny ∗ nyr)

%1D ← reshape(%1D, (nxr , m1, nx)) 3 %1D ← reshape(%1D, (ny , m1, nyr))

%1D ← permute(%1D, (1, 0, 2)) 3 %1D ← permute(%1D, (0, 2, 1))

%1D ← reshape(%1D, (ny , nx))

%1D ← permute(%1D, (1, 0))

else if d = 3 then
for c in reversed c" excluding last element do

nxr ← size(%1D, 0) 3 nyr ← size(%1D, 1)

nyr ← size(%1D, 1) 3 nzr ← size(%1D, 2)

m1 ← Ns/(c ∗ nxr ∗ nyr) 3 m1 ← Ns/(c ∗ nyr ∗ nzr)

m2 ← Ns/(c2 ∗ nxr) 3 m2 ← Ns/(c2 ∗ nzr)

m3 ← Ns/c2

%1D ← reshape(%1D, (nxr , nyr , m1, c)) 3 %1D ← reshape(%1D, (c, m1, nyr , nzr))

%1D ← permute(%1D, (0, 2, 1, 3))

%1D ← reshape(%1D, (nxr , m2, c, c)) 3 %1D ← reshape(%1D, (c, c, m2, nzr))

%1D ← permute(%1D, (1, 0, 2, 3)) 3 %1D ← permute(%1D, (0, 1, 3, 2))

%1D ← reshape(%1D, (m3, c, c)) 3 %1D ← reshape(%1D, (c, c, m3))

%1D ← permute(%1D, (2, 1, 0))

end for
nxr ← size(%1D, 0) 3 nyr ← size(%1D, 1)

nyr ← size(%1D, 1) 3 nzr ← size(%1D, 2)

m1 ← Ns/(nx ∗ nxr ∗ nyr) 3 m1 ← Ns/(nz ∗ nyr ∗ nzr)

m2 ← Ns/(nx ∗ ny ∗ nxr) 3 m2 ← Ns/(nz ∗ ny ∗ nzr)

%1D ← reshape(%1D, (nxr , nyr , m1, nx)) 3 %1D ← reshape(%1D, (nz, m1, nyr , nzr))

%1D ← permute(%1D, (0, 2, 1, 3))

%1D ← reshape(%1D, (nxr , m2, ny , nx)) 3 %1D ← reshape(%1D, (nz, ny , nzr , m2))

%1D ← permute(%1D, (1, 0, 2, 3)) 3 %1D ← permute(%1D, (0, 1, 3, 2))

%1D ← reshape(%1D, (nz, ny , nx))

%1D ← permute(%1D, (2, 1, 0))

end if

Algorithm 6 Computing A = XT !.
A ← empty(Nt, Nt)

g ← empty(Ns)

i ← 0
cd

f −1 ← cd[ f − 1]
while i < Ns do

Xmax ← Xgrid[i, 0]
for m ← 0, Nt − 1 do

if Xgrid[i, m] > Xmax then
Xmax ← Xgrid[i, m]
if Xmax = f then

Terminate for loop.
end if

end if
end for
if Xmax = f then

g[i] ← 1
i ← i + cd

f −1
else

g[i] ← cd[Xmax]
i ← i + g[i]

end if
end while
for m ← 0, Nt − 1 do

for n ← 0, Nt − 1 do
i ← 0
asum ← 0
while i < Ns do

if g[i] = 1 then
for j ← i to i + cd

f −1 − 1 do
asum ← asum + X[ j, m] ∗ ![ j, n]

end for
i ← i + cd

f −1
else

asum ← asum + g[i] ∗ X[i, m] ∗ ![i, n]

26



M.A. Meehan, S. Simons-Wellin and P.E. Hamlington Journal of Computational Physics 469 (2022) 111527

i ← i + g[i]
end if

end while
A[m, n] ← asum

end for
end for
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