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1. Introduction

High Reynolds number turbulent fluid flows found in nature and engineering typically involve large temporal and spatial
scale separations [1]. In many cases, there is also considerable variation in the extent of small-scale motions at different
locations. This is most apparent in free shear flows, such as mixing layers, jets, and wakes, where substantial complexity and
small-scale structure occur near regions of high shear, while other locations in the flow are relatively (or even completely)
quiescent across a broad range of scales. Similar spatial variations in scale separation occur, for example, in supersonic
flows with shock waves and in reacting flows with spatially localized chemical reactions. In other flows, such as those with
moving shocks or flame fronts, the location of fine-scale flow features can vary rapidly.

These types of flows pose considerable challenges for numerical simulations, particularly those employing uniform grids
where very fine grid resolution is used in part of the domain to resolve small-scale features, but the same fine-scale grid
is also applied in regions where such resolutions are not required to capture the local flow physics. Statically refined (i.e.,
non-uniform) grids provide a possible solution to this inefficiency, for example in free shear flows where the region of
fine-scale structure does not vary substantially in time. However, static approaches still incur a large computational cost in
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flows where the region of fine-scale physics changes dynamically (e.g., in simulations of propagating flames or problems
with variable geometry).

An increasingly common technique to overcome these challenges is to reduce the computational cost of fluid flow simu-
lations using adaptive mesh refinement (AMR). In AMR simulations, the computational mesh dynamically changes to resolve
a particular phenomenon or feature of the flow, typically based on gradients or error estimates. There are many different
ways of implementing AMR, including hp refinement using finite elements [2], unstructured grid deformation [3], and block-
structured AMR [4]. In the present study, we focus on the last of these approaches and consider block structured AMR to
be the union of rectilinear grids that span the entirety of the computational domain, where the increase in resolution along
each dimension is an exact integer multiple from the coarsest to any finer resolution. There are many ways to achieve this
dynamic refinement, including by tagging and splitting cells and then solving the governing equations on all cells simul-
taneously [5], or by tagging and solving finer resolutions independent of the coarser underlying grids [6]. For the present
purposes it is not necessary to distinguish between these two approaches, and we only require that a simulation be based
on block-structured AMR.

Although AMR has the potential to reduce the computational cost of simulating many different flows, it introduces
new complexities when post-processing and analyzing the resulting data. In this study, we develop a new tool to perform
more efficient proper orthogonal decomposition (POD) of nearest-neighbor-interpolated data from block-structured AMR
simulations. The POD methodology [7] is a versatile tool for studying flow fields, including building reduced-order models
[8] and analyzing coherent structures [9]. The resulting basis functions, or POD modes, are optimal in the sense that they
capture the greatest amount of variance in the fewest possible modes [10]. POD analysis has been applied in a wide range
of fluid flow applications, including jets [11], wakes [9], and flames [12], and a review of applications in which POD has
been used can be found in Ref. [7].

Despite the utility of both AMR and POD individually, there are many complications that arise when performing POD
on data from AMR simulations. First, POD requires that the grid be fixed for all times, which is not generally the case in
AMR simulations. Second, the non-uniformity of AMR grids requires a dynamic weighting function. Third, cells at different
resolutions in an AMR simulation represent different spatial locations when solution values are defined, for example, at cell
centers (as is the case in many finite-volume codes).

The most common approach to overcome these issues is to interpolate data from each simulation output to a fixed
reference mesh that is constant in time, and to use an appropriate weighting for the inner product during POD if the mesh
is non-uniform [13]. To date, spatially adaptive numerical grids and POD have been used together in a variety of contexts,
most commonly in the construction of reduced-order adaptive POD models. In particular, for simulations performed using
AMR, it is most efficient to construct a POD-based model that also uses AMR. This technique has been used in ocean
modeling [13,14] and wake flows [15], including applications using dynamic mode decomposition [16,17]. In each of these
examples, AMR simulation data was first interpolated to a fixed non-uniform reference mesh to make the POD computation
possible.

While technically feasible and advantageous from a memory usage perspective, interpolation of AMR simulation data
to a non-uniform mesh requires a series of steps that depend on the structure of the output data, which is generally not
consistent between different simulation codes. Prior to non-uniform mesh interpolation, all output data from the simulation
must first be scanned to determine the finest grid level at each location; typically, this information would be stored on an
auxiliary fixed uniform mesh refined at the level of the finest resolution. After this scan is complete, a fixed non-uniform
reference mesh is generated and the output data are interpolated to this mesh prior to performing POD.

Because of the cost associated with the first step in this process (or complexity, if a simulation code must be modified
to output this information at run-time), as well as the increasing availability of high-memory nodes on modern high per-
formance computing (HPC) systems, it is often more convenient to instead interpolate the AMR output data directly to a
fixed uniform mesh, in many cases spanning only a sub-region of the full computational domain. The resulting data can
then be straightforwardly used for visualization [18,19], calculation of statistics such as temporal averages [20], and analysis
of integrated quantities such as total heat release [21]. Many different software packages also already provide simple tools
to extract data onto uniform meshes [22-24], and extraction tools for non-uniform meshes are less common. Although the
uniform mesh approach does impose larger memory requirements, the additional cost can often be mitigated by only an-
alyzing part of the simulation domain, particularly if the region of interest is fixed (e.g., in a jet flow). There may also be
little difference in memory requirements if the region of refinement does change substantially during the simulation, such
that non-uniform and uniform meshes have similar cell counts.

Although various interpolation methods (e.g., cubic or Akima splines) can be used to map AMR output data onto either
non-uniform or uniform meshes, an interesting opportunity arises when using nearest-neighbor interpolation onto fixed
uniform meshes. Namely, the POD calculation itself can be accelerated by taking advantage of the data repetition intro-
duced by the nearest-neighbor method when representing data at coarse mesh locations on the finer resolution fixed mesh.
As outlined in this study, repeated computations during the calculation of POD modes and temporal coefficients can be
weighted and skipped to reduce the computational cost. Our approach is most similar to a prior wavelet-based approach
[25] where biorthogonal wavelets were used to refine and coarsen the block-structured grid. The wavelet coefficients can
then be used directly in the POD computation in a fast and efficient manner. This, however, relies on the availability of
the wavelet coefficients. In contrast, our proposed algorithm can be computed easily from any reasonable representation of
primitive variables on disk. It should also be noted that other approaches in variational settings [26,27] have been used to
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handle both grid non-uniformity and varying numbers of spatial points through time. The present study addresses the same
challenges, but in an approach that uses the redundancies created by nearest-neighbor interpolation of AMR data to achieve
an efficient implementation.

In Section 2, we outline the matrix operations associated with POD, as well as provide a discussion of why we consider
data interpolated to a uniform grid using a nearest-neighbor algorithm. From there, we provide an overview of the new
algorithm in Section 3, with details of the algorithm provided in the appendix. We quantify improvements in computational
efficiency in Section 4 by counting operations and tracking processing times. Finally, we conclude with a summary and
additional remarks on future work in Section 6.

2. Background: proper orthogonal decomposition

The POD technique extracts dominant spatio-temporal features in a flow by computing an orthogonal set of basis func-
tions, or POD modes, based on time series of velocity fields or other quantitative flow data. These modes are optimal in the
sense that no alternative set of orthogonal basis functions can capture more of the variance in the chosen field using the
same number of modes, or fewer [10]. Typically, POD in turbulent flows is performed using fluctuating velocities due to
their connection with the turbulence kinetic energy, although thermodynamic variables can also be included in the decom-
position when they are dynamically relevant [28]. Temporal coefficients are computed by projecting flow-field data onto the
spatial modes.

In the following description of POD, we distinguish various forms of matrices and snapshots by using a boldface upper-
case symbol with no subscripts to denote the full matrix, a boldface upper-case symbol with a single subscript to denote
the corresponding data in the form of the original data at the mode number or time indicated by the subscript, and a
lower-case boldface symbol for the corresponding vector form of these matrices. For example, the matrix containing all POD
modes is ®, the fourth POD mode with the same shape as the original data is denoted ®4, and the corresponding data
reshaped into a vector is denoted ¢,. The only exception to this formalism is the snapshot matrix where the corresponding
matrices (in the same order as above) are X, U;, and u; to remain consistent with notation used in prior studies. To refer to
a particular element of a vector or matrix, we do not use boldface for the symbol and the subscripts refer to that element
of the vector or matrix. For example, the element in the i™ row and j™ column of X is given as Xij.

2.1. Snapshot POD

In this study, the algorithm for efficient POD of AMR data is based on the widely-used snapshot POD method first
proposed by Sirovich [29]. The first step in this method is to form the snapshot matrix X, in which each column contains
the discrete spatial solution u; for each instant j in time (denoted a ‘snapshot’). The total number of spatial points, Ns, in
each snapshot corresponds to the number of rows in X, and the number of time steps, N¢, corresponds to the number of
columns. The snapshot matrix is generally formed by taking two- or three-dimensional (2D or 3D, respectively) flow-field
data, Uj, reshaping this data into a column vector u; of length N5, and then assigning this vector to the appropriate column
of X. Note that the subscript j corresponds here to instances in time, as opposed to velocity components. However, an
arbitrary number of flow-field variables can be used in the computation by ‘stacking’ the variables in the same column of
X (the appendix in Taira et al. [9] provides a more detailed description of this formulation). Although the more efficient
algorithm outlined here is presented for a single variable to improve clarity, it can easily be generalized to account for
multiple variables. Finally, as in the standard snapshot POD method, we assume that each spatial location carries the same
weight, as is the case when AMR grids are interpolated to uniform grids for post-processing (as described in more detail in
Section 2.2).

After the snapshot matrix X has been constructed from the flow-field data, the next step in the snapshot POD method
is to compute the covariance matrix R as

R=X"X. (1)
The eigenvalues and eigenvectors of R are then computed by solving the eigenvalue problem
RY =AV, (2)

where ¥ is a matrix containing the eigenvectors ¥, of R, and A is a diagonal matrix containing the corresponding eigen-
values X,. The orthonormal spatial modes are calculated as

& =XWA /2, (3)

Each eigenvalue, A,, corresponds to the amount of variance, or energy, contained in each spatial mode, ¢,. Additionally,
these eigenvalues and modes are ordered such that A; > Ay > --- > A,. Finally, temporal coefficients, a,, corresponding to
each spatial mode, ¢,, are calculated by

A=X"®, (4)
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where A is the resulting combination of temporal coefficients for modes ® and constitutes the outcome of the POD pro-
cedure. Given the sorting of the eigenvalues, the modes are ordered such that the lower modes account for the greatest
variance in the data.

To summarize the snapshot POD method, there are five primary steps: (i) forming the snapshot matrix X, (ii) computing
the covariance R, (iii) computing the eigenvalues and eigenvectors of R, (iv) computing the spatial modes ®, and (v) com-
puting the temporal coefficients A. These are the steps that will be addressed in creating the more efficient POD algorithm
for AMR data.

2.2. Computing snapshot POD on AMR data

Two challenges arise when performing the snapshot POD method on block-structured AMR data: (i) the non-uniformity
of the grid and (ii) the unequal number of spatial points, represented by the total number of computational grid cells N,
as a function of time in the simulation. The former challenge can be solved by changing the definition of the inner product
in the equations in Section 2.1 to weight cells appropriately (i.e., R is computed as R;; = (u;, uj), where (-, ) is the inner
product). However, the latter challenge is not as easily addressed because the number of spatial points varies as a function
of time, causing X to have a “ragged” bottom edge due to the time dependence of Ns, making it impossible to perform
any true matrix operation without zero padding or another data insertion approach. Additionally, for dynamically evolving
simulations, the context of each spatial location would be lost as the grid evolves, causing ambiguity when reshaping the
flow-field data into each column of X. In general, the most common workaround is to simply interpolate the data with
sufficiently high-order to one fixed, well-resolved (possibly non-uniform) mesh [13,14]. Other approaches, such as those
developed in Refs. [26,27], can perform POD directly on the AMR data, and here we additionally focus on developing an
efficient implementation for modern HPC architectures.

An even simpler procedure to overcome these issues is to interpolate the data using a nearest-neighbor algorithm to a
uniform grid with a resolution equivalent to the finest grid cell size in the simulation. This method gives X with dimensions
Ns x Nt, where Ns = NxyNyN; is the number of spatial points in 3D, or Ny = NxNy in 2D. Here, Ny, Ny, and N represent
the number of grid cells in each direction of the static uniform grid with resolution equivalent to that used at the finest
AMR level. This method overcomes the challenges mentioned above because: (i) interpolating to a uniform grid ensures no
ragged bottom edge in X, since all snapshots are interpolated to the same number of grid points and (ii) nearest-neighbor
interpolation naturally gives additional weighting to coarser cells by repeating the value of that cell; the number of repeti-
tions in each dimension is equal to the ratio of coarse to fine cell sizes. It is assumed that despite the inaccuracies incurred
by using a low-order nearest-neighbor interpolation, the first several POD modes will not be substantially affected because
POD is targeted at understanding large-scale coherent structures; however, it is important to confirm this for different data
sets. Additionally, as will be discussed in Section 5, this approach is amenable to an efficient and scalable implementation.

In the context of POD, a provocative opportunity emerges when using nearest-neighbor interpolation on AMR data.
Namely, there are several steps in the snapshot POD method where operations are performed on repeated data. As the
computational domain size and number of AMR levels increase, these repeated calculations can occupy an increasingly
large portion of the overall time taken for the snapshot POD method, limiting the ability to apply POD to long time series,
large data sets, and rapid development of reduced-order models for design and control purposes. However, we can also take
advantage of this repetition, and in this study we present a new algorithm that leverages the repetition of nearest-neighbor-
interpolated AMR data to reduce the computational cost of snapshot POD.

3. Methods: efficient algorithm to compute POD on AMR datasets

In the following, we describe each of the steps used in the efficient snapshot POD algorithm for nearest-neighbor-
interpolated AMR data; these steps correspond to the five primary steps used in the traditional snapshot POD method
summarized at the end of Section 2.1. We use the terms “standard” and “AMR” to refer to standard matrix multiplication
and the newly developed algorithm, respectively. Each step in POD presents a unique arrangement of repeated computations
that require different tactics to minimize the repetition; hence, we outline the improvements for each step of snapshot
POD individually. It is likely that, for some datasets, there is no computational advantage to using the improved algorithm
for certain steps of the POD method, so presenting the steps individually will allow users to decide whether a standard
technique or the AMR algorithm would be more efficient for a particular step. It should also be noted that we present
the algorithms in this section independent of computer language and choice of compiler, and a discussion of quantitative
improvements in algorithm speed is provided later in Section 4.

Before continuing, we require additional notation beyond that used for the description of standard snapshot POD. A
companion matrix Xgriq of identical size to X after nearest-neighbor interpolation is used to identify the grid level at the
corresponding location in X. The coarsest grid level (sometimes called the “base” grid) is denoted by ¢ = 0 and the finest
grid level is denoted by £ = f, such that ¢ € [0, f] and there are f + 1 total grid levels. The matrix Xgq thus consists of
the finest AMR grid level ¢ used for the nearest-neighbor interpolation at each spatial location in the simulation domain.
We can then identify how many times a cell is repeated at a given level using Xgiq and the dimensionality of the POD
computation. We define ¢, to be the number of repeated cells at AMR grid level ¢ resulting from the nearest-neighbor
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Fig. 1. lllustration of the iterative reshaping procedure given in Algorithm 1 of the appendix with an initial grid of Ny =Ny =16, d =2 and f = 3. Shades
of purple indicate ¢ = 0; shades of yellow indicate ¢ = 1; shades of pink indicate ¢ = 2; and shades of gray indicate ¢ = 3. (For interpretation of the colors
in the figure(s), the reader is referred to the web version of this article.)

interpolation of coarse grid levels to the finest grid. For a simulation with total number of dimensions d (e.g., d =2 in 2D
and d = 3 in 3D), the total number of repeated cells is then c‘g.

Below, we present the algorithms as generally as possible, but we do make a few simplifications to improve the clarity
of the presentation. In particular, for all AMR levels, we assume a refinement ratio of 2, meaning that a coarse cell is always
split in half along each spatial dimension for the next finer resolution. As a result, c; = 2f~¢ gives the total number of
repeated cells in one dimension at AMR grid level ¢. Additionally, we only consider POD with one variable, even though
it is typical to use more than one variable (for example, the three components of the velocity vector). It should be noted,
however, that the algorithmic improvements outlined here do not depend on these simplifications, and the new algorithm
can be easily extended to account for different refinement ratios or additional variables.

3.1. Forming the snapshot matrix X

As described in Section 2.1, the snapshot matrix X is formed by reshaping the solution values of each snapshot, Uj, into
a column vector u; and storing these in the j™ column of Xij, where the rows of X correspond to the Ns spatial locations.
The order of the elements in a particular column of X is irrelevant for snapshot POD as long as a particular row of X
corresponds to the same physical location for all times. We take advantage of this property by proposing a new procedure
that converts each snapshot U; to a column u; such that cells that have identical values (as a result of the nearest-neighbor
interpolation) are contiguous in the final snapshot vector u;. The more common approach would be simply constructing
u; with the same order as the elements in U; that are contiguous in memory (this is the normal procedure used by
many built-in reshaping routines). Either approach is valid since they both adhere to rows of X corresponding to the same
physical location. However, the new procedure allows us to more easily weight and skip repeated operations in subsequent
POD steps.

To construct X in this manner, we first reshape U; over f + 1 iterations, where f is the finest AMR grid level. For
a single iteration, this procedure consists of various calls to reshape and permutation routines such that, after a single
iteration, repeated values are contiguous in the matrix, but not memory, until the last iteration. In 2D after each iteration,
the matrix has been reshaped into a more elongated matrix with width ¢, while in 3D, there is one elongated direction and
two dimensions with equal widths of c,. This procedure visually makes the matrix appear as if blocks are being re-shaped;
consequently, we call this a “blockwise” re-shaping procedure.

An illustration of this procedure is shown in Fig. 1, and the detailed algorithm is provided in the appendix as Algorithm 1.
The final result is a one-dimensional (1D) column vector, u;, of length Ns with contiguous repeated values (since vectors
are 1D, this also implies contiguous in memory) that can be inserted into columns of X. The same procedure is also applied
to the companion matrix Xgrid-
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It should be noted that this procedure is sensitive to how the code stores matrix values in memory, since the permutation
and reshaping must be performed considering the memory layout to retain the contiguity of cells. Therefore, we provide
this reshaping methodology for both row- and column-major programming languages in Algorithm 1 of the appendix.

3.2. Computing the covariance matrix R

Each element of the covariance matrix R is an inner product of snapshots defined as Rjj = (u;, uj) = > ) Xii Xyj. If
Xgrid ki < f and Xgrig kj < f, then we know there must be cgmx repeated computations, where ¢my,x = max [Xgrid,ki R Xgrid,kj]
for a given k. We can eliminate this repetition by instead weighting a single computation by the number of repeated
operations, Cgmx, and then skipping the next cgmx — 1 operations. We can accomplish this in a straightforward manner
because the blockwise reshaping technique described in Section 3.1 forces all cells with the same value to be contiguous in
the final 1D column vector.

To compute R;j = ) XiiXkj, we start by initializing a scalar variable for storage, rsym = 0, that will contain the final
value of the i, j component of R. Iterating along the spatial dimension, k, we first determine ¢max. If i = j, we simply use
Lmax = Xgrid,ki- Next, if €max = f, we add Xj;Xy; to reum for k to k + cf_,’ — 1. Otherwise, we add X;X; to rsym weighted
by the number of repeated operations cf , then skip the next Ce —1 operations. After iterating over all k, we assign
rsum to Rjj. This sequence is only performed for lower triangular elements of R, with the symmetry of R used to assign the
remaining off-diagonal components of R as Rj; = R;;. The detailed algorithm is given as Algorithm 2 in the appendix.

The one peculiarity in this algorithm is that if £max = f, not only do we add an unweighted Xj;Xy; to rsym, but we also
immediately know that the next c o1 1 computations do not need to be weighted. We thus use an unweighted version

because it is always true that cd = =1, independent of the numeric values for f and d. Additionally, due to the nature of

AMR, there is a minimum of c‘}_1 cells at £max = f that must be grouped together. This can be seen in Fig. 1, where the
smallest possible grouping of cells at £ = f must be the same size as the groupings for a cell at £ = f — 1; in that example,
the smallest possible grouping is 4.

To illustrate this algorithm further, consider a 1D simulation with two levels of AMR (i.e.,, d =1 and f = 2), with elements
of X and Xgiq defined, respectively, in this example as

X1 X12 Xi3 - 01 2
X21 X2 Xo3 01 2
Xa1 X4 Xag3 01 1
—| Xs1 X520 Xs3 |1 10
X=X X Xes c Xeid=10 )
X711 X72 X73 220

Comparing the computation of a diagonal element of R, such as R11, using standard matrix multiplication and the new AMR
algorithm, we obtain

Rtandard — x2 4 x2 4 X2, + X3, + xgl + X XA X (6)

ROMR — 4x2, +2X2, + X2, + X3, + - (7)

The computation of an off-diagonal element, such as R3», is given by

RFM = X13X12 + X23X22 + X33X32 + Xa3Xaz + X53Xs2 + -+, (8)
REYR = X13X12 + X23X22 + 2X33X32 + 2Xs53X52 + -+ . )

These two different elements of R highlight how the computations can be weighted to reduce the total number opera-
tions. There is, however, additional computational overhead associated with checking the grid level for the AMR algorithm.
Specifically, for R11, we need to check the grid level before computing the first three terms, but not before the fourth term;
for R3, we need to check the grid level before computing the first, third, and fourth terms, but not the second term. The
computational overhead associated with checking the grid level is generally smaller compared to the redundant additions
and multiplications required in the standard approach, but this issue is nevertheless explored in more detail in Section 4.

3.3. Computing eigenvalues and eigenvectors of the covariance matrix R

We next consider the computation of the eigenvalues A, and eigenvectors ¥, of R. Each element of R corresponds to the
dot product of snapshots at different times. However, because there is no spatial dependence, only temporal dependence,

6
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there is no way to take advantage of the spatial repetitions due to AMR. It is important to note that, in many AMR codes,
there is sub-cycling in time that could lead to a variable temporal output at different AMR levels; however, in practice,
extracting information during sub-cycling is not advised because the data are often incorrect until a correction/synchroniza-
tion step has been performed when all levels of AMR are at the same instant in time. Therefore, we do not consider POD
on simulations with adaptive temporal resolution. However, the outer timestep between snapshots is allowed to vary, for
example due to a maximum Courant-Friedrichs-Levy (CFL) condition.

3.4. Computing the POD spatial modes ®

Accelerating the computation of the POD spatial modes ® generated using nearest-neighbor-interpolated AMR datasets
poses a different challenge than the computation of R. In particular, the computation of @ is difficult to accelerate because
the first step in the computation of a single element of @ is a dot product of a row of X with a column of ¥, both of which
are vectors varying in time, and thus contain no repeated values from nearest-neighbor interpolation. After this step, no
computations can be eliminated when multiplying X% by A~1/2, since A is a diagonal matrix.

Despite these challenges, however, there are at least two ways in which the computation of ® can be accelerated when
performing POD on nearest-neighbor-interpolated data from AMR simulations. This is simplest to illustrate through an
example. Consider a small simulation with d =1, f =2, Ny =8, and Nt =4, where X is defined as in Eq. (5) and Xgiq, ¥,
and A are defined, respectively, as

0O 1 1 07
0110
0110 Vi1 Wi WYi3 WY A1 0 0 0
o 0110 | W21 Wy Wp3 Wy B 0 Ap O 0
Xgria = 11 0 2 V= W3y W3y W33 Wiy | A= 0 0 A3z O (10)
110 2 Wy Wy Wy3 Yyu 0 0 0 Aug
2 2 0 2
12 2 0 2]
The element ®11 is computed as
—-1/2
<D11=(X11‘V11+X12‘I’21+X13‘I’31+X14‘1’41)A11/ . (11)

None of the terms in this expression for ®1; are redundant, regardless of the grid level for each value of X;;. Now consider
the computation of the element ®;,;, which is given by

“1,2
Do = (X21W11 + X2 W21 + Xo3W31 + X24Wa1) A /2. (12)

This computation does not contain any redundancies within itself. However, since Xgiq,11 = 0, this implies that X;; =
X1 = X31 = X41, which then implies that X11W¥q1 = X21¥11. Therefore, the first term in computing ®;; is a redundant
computation since it was already computed for ®11. In fact, since Xgig,1; < f for every i, we find that ®q; = ®»1, making
the entire computation of ®,; redundant.

The redundancy of the individual terms that contribute to the computation of an element & is exploited in the following
sections to accelerate the computation of ®. To this end, we propose two different algorithms that are advantageous for
different AMR patterns.

3.4.1. Method 1 for computing ®

The first method for computing ®, denoted “method 1,” takes advantage of the fact that if a particular spatial location
(i.e., a row of X) never reaches the finest AMR level at any time, the elements of & at that spatial location must be equal,
such that we can entirely eliminate the computation of the redundant elements of ®. The advantages of this approach are
that it is simple to identify where repetitions occur and it requires very little additional computational cost compared to
standard matrix multiplication. Simulations with AMR that are relatively static in time, such as many shear flow problems
(e.g., jets, wakes, and plumes) where outer boundary regions are not refined, can easily leverage the repetition. However, if
the simulation is dynamically evolving, for example in the case of a propagating flame, and all spatial locations are refined
to the finest level for any of the snapshots, this algorithm will not yield any computational improvement.

The general outline to compute ® using method 1 is as follows. We initialize a vector g of length cg. The maximum grid

level that occurs in the first cg rows of Xgiq is stored in g; in other words, g;i = max;(Xgriq,ij). We then compute the first

cg rows of the first column of ®;p. If gj < f, we know that the next cg,i — 1 elements in the column j of ®;; are identical

to ®;j. So, after computing ®;; =Y, Xl-klllijj_j]/z, this value is immediately assigned to the next cgi — 1 elements in the
column j without repeating the computation. This sequence is then repeated for the remaining columns of ®. After these
remaining values are computed, we consider the next cg rows of X. This is repeated until all spatial locations are computed.
The detailed algorithm for method 1 is given in the appendix as Algorithm 3.

7
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As a demonstration of the method, consider Xgiq, ¥, and A from Eq. (10). We first compute g to be g; =[1;1; 1; 1] then
compute the first element of ®, which is given in Eq. (11). We then find that g1 =1 < f, implying that ®; is repeated
Cgl =1 additional times. Therefore, we assign ®;; = ®11. Continuing, ®3;1 is computed analogously to Eq. (11) and, since
g3=1< f, we assign ®41 = &31. We next compute the first cg =4 rows of the second column of ® using the same values
for g. This is then also done for the third and fourth columns of ®. Afterwards, we move to the next cg =4 rows of X,
recomputing g as g; =[2, 2, 2, 2]. Since all elements of g are equal to f, there are no repeated elements in these rows of
®, and each element in rows 5-8 of ® must be computed individually.

There is additional computational overhead compared to standard matrix operations due to the computation of g and
the need to check which elements of ® are repeated based on g. Although the cost of these steps is, in general, small
compared to the full computation of ®, in order to achieve a computational acceleration we require regions of the flowfield
where ¢ < f for all of time. This constraint motivates the second method for computing ®.

3.4.2. Method 2 for computing ®

We now consider a second method, denoted “method 2,” to reduce redundant computations in the calculation of ®.
When considering the individual terms that contribute to a single element of ®, such as the terms to compute &7 in
Eq. (11), if the grid level associated with the term to compute the X element is less than f, then the value of that term is
identical to the terms for a different element of ®.

For example, in Eq. (10), the grid level associated with the first term, X1 W1, in Eq. (11) is one, which is less than f;
therefore, in computing ®,1, instead of repeating the multiplication X1 W17, we could have stored that value and simply
added it to the last three terms in Eq. (12). This idea of storing individual contributions to a particular element of ® is the
basic premise behind method 2. The advantage of this approach is that most of the repeated computations will be avoided,
even if the mesh is dynamically changing from snapshot to snapshot. However, this method also requires more overhead
than that either method 1 or standard matrix operations, due to the increased storage requirements and the cost of the
search algorithm used to determine the grid levels.

Overall, the method 2 algorithm is quite complex, so we refer the reader to Algorithm 4 in the appendix for the complete
methodology. A rough outline of the algorithm is as follows. We will consider the computation of cg rows of @ at a time,
just as we did with method 1. First, we aggregate cell locations of X corresponding to the level in the first cg rows and store
the indices in an initially empty matrix G. We next initialize an additional matrix H of size Ns x (f + 1) filled with zeros.
The columns here correspond to the contributions of ®;j =", Xik\llijj_j]/z for a single grid level value (i.e., column 1
corresponds to £ =0 contributions, column 2 corresponds to ¢ =1 contributions, etc.). This computation is only performed
for unique elements of H. So, for example, if Hy; is unique then Hy1, H31, --- are not unique because they are equal to
H11. Values in H that are not unique (i.e., the elements of H that are identical to already computed elements of H) are then
filled by the unique value. Finally, we sum rows of H and divide by the appropriate value of A, which directly corresponds
to values of the appropriate elements of ®. This process is repeated over groups of cg rows for all Ns. Overall, this method
requires more computational resources than either the standard or method 1 approaches to computing ®, due to the need
to tabulate cells in G and to store an additional matrix H, but this method can still be advantageous for dynamically evolving
simulations.

As a demonstration of the performance gains enabled by method 2, consider again the example in Eq. (10). We first
initialize the empty matrix G, which has size (f +1) x c‘f x Nt =3 x 2 x 4. We then store the indices for £ = 0 elements,
then £ =1 elements, and finally £ =2 elements for the first cg rows of X; for this example, this leads G to be

14 — — 2 3 - - - - - -
G1jk=[1 4 — _}, szkZ[z 3 _ _], G3jk:|:_ o _}, (13)
where dashes are empty values of G. The second dimension of G only needs to be of length c‘{ because the smallest grouping
of cells at the grid level is c‘}_r as discussed in Section 3.2, so we only need length c‘f to track the grid level (although the

minimum grouping of ¢ = f cells is c‘}il,
Using G, we next compute H of size cg x ng for unique cells then assign the remaining non-unique cells, giving

these are not identical values in general due to the use of AMR).

X11W11 + X14W41  X12Wo1 + X13W31 0

L | J 0
Hij = 2 X32W21 + X33W3; 0| (14)
¥ \ 0

where the down arrow represents a value that was filled from the unique computation above it. The column of ®;; is
computed by summing over rows of H and dividing by the square root of the appropriate diagonal element of A

@i = | > (Hyj | A7 (15)
j
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This process is then repeated for the remaining columns of ®. For this, G does not need to be re-tabulated, but H does need
to be recomputed. After all columns of & are computed, we then move to rows 5-8 of ®. More briefly, for these rows, G
would be

3 - — — 1 2 — — 4 — — —
G]jk= |:3 _ _ _] ) szk= |:_ _ _ _] ) G3jk= [1 2 4 _] . (]6)

Using this, we compute H for the first column of ®, which is

Xs53W31  Xs51W11 + X5 W01 X54W4q
2 \? X64aWa
H:i: — 17
Y J 0 X71¥11 + X72W21 + X74Wgq (an
J 0 Xg1W11 + Xg2W21 + XgaWay

Elements of @ can be computed using H analogous to the computation of ®;; above. This process is again repeated for the
remaining columns of &.

3.5. Computing the POD temporal coefficients A

Elements in A are calculated as inner products of snapshots and POD spatial modes, namely Ajj = (u;, ¢;). Similar to
the calculation of R, repeated computations for this inner product only occur if the maximum level between u; and ¢;
at a given spatial location is less than the finest level. As is discussed in Section 3.4, repetitions in ¢; can only occur if a
spatial location is never refined to the finest level for all Ny (method 1 of computing ® takes advantage of this repetition).
Therefore, to determine whether there will be any repeated computations, we simply need to determine the maximum grid
level reached at a particular spatial location for all snapshots. This makes the more efficient algorithm for computing A
fairly straightforward to implement.

The general procedure is as follows, with the detailed algorithm provided as Algorithm 6 in the appendix. We first
determine the maximum grid level occurring over all N¢ for a particular spatial location i and store this in a vector g
(specifically, g; = max;(Xgrig,ij))- The grid level at g; is then converted to a weight as g; = cfgii. For each element A j, we
then follow a similar procedure to that outlined for the computation of R in Section 3.2. We initialize a scalar agym, then
iterating along the spatial location i, we identify the number of repeated computations using g; for the operation X;;®;. If
gi = 1, this implies g; = f and we perform the next c‘}71 operations without weighting the contribution. The motivation for

not weighting the next c‘f’_l computations is the same as that described for the computation of R in Section 3.2. Otherwise,

we weight X;;®; by g;, and skip the next cg —1 contributions. The contributions (weighted or unweighted) are cumulatively
added to asym. After iterating over all Ng, we assign asym to the appropriate element of A, then repeat over the remaining
elements of A, without repeating the computation of g.

Using the example from Eq. (10), as well as the terminology in Eq. (5) for X and an analogous definition for ®, we
illustrate the algorithm. First, we compute g; = [1; 1; 1; 1; 2; 2; 2; 2], which is then converted to the number of repetitions
gi=1[2;2;2;2;1;1;1; 1]. We then compute each element of A using g for the weighting. Element A{; would be computed
as

A11 =2X11 P11 + 2X31P31 + X51 P51 + X1 P61 + X71 P71 + X31Ps1 - (18)

The weightings for the first and second terms are simply g; and g3, respectively. This is then repeated for other elements
of A without recomputing g;. As with the computation of R, there is additional computational overhead associated with
computing the weighting vector g and checking the grid level during the inner product. Specifically, for A1, we need to
check the grid level before computing the first, second, third, and fifth terms, but not before the fourth and sixth terms. In
the following section describing the algorithm performance, we explore the trade-off between the additional computational
overhead and the removal of repeated calculations.

After performing the computation of the POD temporal coefficients A, we must undo the reshaping procedure described
in Section 3.1 to put cells in @ in their original physical locations. This can be done by a procedure similar to that outlined
in Section 3.1, with the main differences being that each iteration shrinks the elongated dimension and the last iteration
puts the grid into the original dimensions. The detailed algorithm is provided in the appendix as Algorithm 5.

4. Results and discussion: algorithm performance
4.1. Performance metrics

To quantify the performance of the algorithm outlined in Section 3, as compared to the snapshot POD approach using
standard matrix operations, we will use two measures of the computational cost, T: the number of primitive operations
(denoted ‘ops’) and the CPU time (denoted ‘CPU’). We use primitive operation counting to eliminate uncertainties in the

coding language, compiler, processing speed, environment, etc; this is known as a random access machine (RAM) model, or
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Table 1

Several examples demonstrating how we count primitive operations.
Code Narth Njog Nace Nasn Nfyn Ntot
Tsum < Tsum + Cval * X[k, 1] % X[k, j] 3 0 2 1 0 6
A < empty(N¢, Ny) 0 0 0 1 1 2
for i < 1ton do n 0 0 n 0 2n
i< 0;whilei<ndo {i <i+1)} n n 0 n+1 0 3n+1
®[m +i,n] < hsym * (A[n])~1/2 3 0 2 1 1 7

a RAM algorithm [30]. In Section 4.2, we will use this model on synthetic AMR data to unambiguously quantify performance
gains of the new algorithm as a function of the proportion of the domain refined at different AMR levels and the length of
the time series, N¢. In Section 4.3, we use both the RAM model and CPU time as metrics to show that the new algorithm is
faster than the snapshot POD method with standard matrix operations for genuine AMR data from a simulation of a buoyant
plume. All of the code used to compute the computational cost is publicly available at https://github.com/tesla-cu/amrPOD.
The operation counting code is written in python in order to provide a user-friendly environment, and the CPU timing code
is written in Fortran 90 [31].

With respect to operation counting, the primitive operations we consider are arithmetic operations (e.g., a—b, axb, a/b,
a?), logical operations (e.g., a < b, a > b, a == b), accessing operations (e.g., a[i], X[i, j]), assignment operations (e.g., a < b),
and function calls (e.g., f(a)); the numbers of each operation are denoted nuh, Niog, Macc, Masn, and nNgypn, respectively. The
total number of operations is then given by nt = Narth + Niog + Nacc + Nasn + Nfun, Where we equally weight each of the
operations in computing ng¢. The decision to use equal weightings is based on previous studies [32] that approximate the
computational effort involved in each of these operations as taking O(1) time. This decision has its limitations, especially
for the deep memory hierarchy in modern HPC systems, but identifying the exact coefficients is a research topic in itself.
Rather, we ignore any constant coefficients associated with the time complexity of individual operations and, for simplicity,
we count them as single units. These coefficient values can be easily changed using the code provided at https://github.
com/tesla-cu/amrPOD. In Table 1, we provide several examples of pseudocode and a demonstration of how operations are
counted.

For more complicated programmatic structures such as for loops, we reduce each structure to a series of primitive
operations. For example, we deconstruct for loops into an arithmetic operation used to increment the iterative variable
and an assignment operation used to assign the new incremented value to the iterative variable. We deconstruct while
loops into a for loop coupled with an if statement, where the if statement serves as the logical check to determine
whether iteration within the for loop should stop. Accessing operations such as those seen in the third example of Table 1
are treated as unit operations regardless of the dimension or size of the data being accessed.

It should be noted before continuing that we are not attempting to change the order O(Nf) of the POD computation.
Rather, we are attempting to show that we reduce the leading constant of the order of the computation, which we deem
to be a faster algorithm practically. Since we are not changing the order, it is not obvious whether we have improved
the computation or not with just one metric. Hence, we use two metrics, primitive operation count and CPU time, to
demonstrate the computational advantages of the new algorithm.

Lastly, we do not discuss the performance in terms of error between the standard and AMR algorithms. While error
is an important metric to consider, especially for techniques that rely on statistical properties such as the randomized
singular value decomposition (rSVD) [33], the presented algorithms are only affected by finite precision arithmetic errors.
Using double precision (as we use herein) leads to an error in terms of the relative maximum absolute difference in the
covariance matrix R of error(R) ~ 10714 — 10716, Again using this error metric, we see that the error is a little larger for ®
and A, roughly error(®) ~ 108 — 10~19 and error(A) ~ 10~1% — 10~12. However, the larger relative errors are exclusively on
the less energetic modes while the more energetic modes have an error roughly equivalent to R. We consider these errors
sufficiently low for most purposes.

4.2. Tests using synthetic AMR data

We first test the algorithm outlined in Section 3 on synthetically generated AMR data that is intended to mimic, in a
parametrically controlled fashion, data from genuine AMR simulations. To generate this data, we randomly create different
AMR grids for specified values of the proportion of the domain refined at each level, with no temporal correlation between
the grids in successive snapshots. The purpose of these tests is to parametrically control the redundancy of the data in each
snapshot and to subsequently demonstrate the efficiency of the new algorithm for a “worst case” scenario where there is no
temporal correlation between snapshots. We consider this the “worst case” scenario because, in a typical AMR simulation,
grid refinement is performed to capture particular features in the flow, which are naturally correlated from snapshot to
snapshot. In some flows (e.g., turbulent jets), large quiescent regions also result in persistent coarse grids at the same
locations in successive snapshots.

Subsequent to these tests, we then introduce temporally correlated grid refinements where a persistent static grid is
imposed in part of the domain across all snapshots. As will be seen in the following sections, these correlated refinement
regions actually make our algorithm more efficient. Moreover, the computation of A and method 1 for computing ® require
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Fig. 2. Five snapshots of synthetically generated AMR data with Ny =Ny =64, d =2, and f =1 for po = p; =1/2 and pg'®* = p"** = 1/4. This data is
generated by assigning £ =0Vx € [1,16],y €[1,64] and £ =1Vx €[17,32], y €[1, 64]. The remaining portion of the domain is randomly refined according
to the desired values of p,. Note that 1/4 < pi™® <1/2, and 1/2 < p"™ < 3/4, limy,_ 00 p{'™ = 1/4, and limy,_. o0 pT™* =3/4.

regions of £ < f for all N¢ to have any practical advantage; this motivates the inclusion of the statically refined regions for
some snapshot sequences.

In the following synthetic AMR tests, we will separately examine the algorithmic speed-ups for the computations of R, ®
and A. This approach will allow us to assess each step of the snapshot POD approach individually, enabling a user to choose
which steps to accelerate as a result of the specific properties of their AMR dataset. For example, with a highly dynamic
mesh, it will likely be fastest to use only the AMR algorithms for R and ® (specifically, method 2 for the calculation of ®)
and to use regular matrix operations for A. Here we quantify the algorithmic improvements using ratios of the run-time
for the new AMR algorithm over the run-time for the standard approach, denoted Tamr/Tstd, Where (-) is the run-time
averaged over the number of samples, nsamp, tested for those parameters. Using this approach, the new AMR algorithm
is determined to be faster than the standard algorithm when Tamgr/Tsqq < 1 or log;o(Tamr/Tsta) < 0. Note that, we do
not include the reshaping cost in the calculation since this procedure becomes negligible in cost as compared to other
operations with increasing N¢.

4.2.1. Parameterization of the synthetic AMR data
We specify two new quantities to parameterize the synthetic AMR data. The first measures the proportion of the domain
for each snapshot that is at a particular grid level ¢, as given by

N
1 S
pem =5~ ;w — Xgid.in) (19)
where n=1, ..., N¢ denotes the snapshot number, Ns is the total number of spatial locations, § is the Dirac measure, and

pe €0, 1] for any n. The second quantity measures the proportion of the domain that has reached a specified maximum
level of refinement ¢ within any of the snapshots in the data record; this quantity is defined as

N
1 S
py = N E ) [E - m;lx(xgrid,in)] , (20)

i=

where p** € [0, 1]. Note that Z;{:o pe = ZLO py®™* =1 and, in the limit as Ny — oo, a grid that is entirely randomly
refined will have p{™®* — 0 for £ < f and p™®* — 1 for £ = f.

In the synthetically generated AMR data, we are able to exactly control p,; from snapshot to snapshot, and this is one
of the parameters that we will vary in the following analysis. In order to generate data where py'®* > 0 for £ < f when
Nt — oo, we set regions of constant £ for all of time, denoted by p}***. For example, in Fig. 2, we set pJ'®* = p7'™* =
1/4 by setting ¢ =0Vx e [1,16],y €[1,64] and £ =1Vx € [17,32], y € [1, 64]. The remaining portion of the domain is
randomly refined. This results in limy, o pg'® = 1/4 and limp,, o p7"®* = 3/4. Note that, in general, p, = p,(n) varies
in time, and in Section 4.3 where we test the algorithm on genuine AMR data we will instead report the average value

(pe) = (1/N) XN, pe(n).

4.2.2. Synthetic AMR test results: fully random grids

We first examine the performance of the new algorithm for different values of p; and N; with refinement up to one
AMR level, f =1, using synthetic AMR data where every location in the domain is randomly refined (that is, there are no
statically refined regions, pg'®* = p7"®* = 0). The synthetic data is two dimensional (d = 2) with Ny =Ny =64 and Ns = 642
Both p; and N¢ are varied to span the parameter space, and we obtain ensemble statistics for the run-time calculations by
testing Nsamp = 64 independent randomly generated datasets for each value of p; and Ni.

The top row of Fig. 3 shows the resulting parameter spaces of T amr/Tsid for the calculations of R, ® using methods 1 and
2, and A, where T is a measure of the total operation count nyy. For each of the snapshot POD steps in Fig. 3, as Ny — oo,

11
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Fig. 3. Top row: Run-time ratios log;o(Tamr/Tsta), Where T corresponds to the total number of operations nt, as functions of py and N for the compu-
tations of R, ® (methods 1 and 2), and A (left to right) using randomly refined synthetic AMR data with Ny =Ny, =64, Ns = 642, d=2 and f =1. The
ratios are computed over an ensemble with Nsamp = 64 samples. Shaded blue regions indicate parameters where the new AMR algorithm is faster than the
standard algorithm, and shaded red regions are the inverse; the black dashed line shows the boundary between these two regions. Bottom row: Root-mean
square fluctuations in the sampled values of T with respect to the average T for each step in the snapshot POD method.

the boundary defining the transition between Tamr/Tstd < 1 (i.e., the new algorithm is faster, indicated by blue regions
in the figure) and Tamr/Tsid > 1 (i.e., the standard algorithm is faster, indicated by red regions) asymptotically approaches
specific values of pq. This is to be expected because the new algorithm includes additional fixed costs as compared to the
standard algorithm, such as pre-computing p}" in the calculation of both ® and A. These additional costs can be dominant
for small N¢ but become less relevant as N; increases, resulting in the asymptotic behaviors of the algorithm efficiency
boundary (i.e., the Tamgr/Tstq = 1 contour in Fig. 3).

Fig. 3 shows that the efficiency boundary approaches p; =0 for both method 1 of computing ® and in the calculation of
A. This occurs because both of these algorithms require Z[f;g py®* > 0 in order to produce any computational advantage.

However, with randomly refined grids, as Ny — oo, p?ax — 1 and Z{:—(} py™* — 0, and there is thus no computational

advantage using the AMR algorithm for these two steps of the snapshot POD method.

By contrast, Fig. 3 shows that the efficiency boundaries for the calculations of R and ® using method 2 approach non-
zero values of pi. For R, this occurs because the primary computational advantage of the new algorithm is realized when
the grid levels at k in R;; = X;Xy; for both i and j are smaller than f. For the method 2 calculation of @, the asymptotic
approach to nonzero p; occurs because cells are first tabulated according to grid level before computing any element of
®;j, which removes any dependence in time of repeated computations.

The bottom row of Fig. 3 shows how much fluctuation there is in the ensemble samples, measured by the root-mean-
square, T™S = (T’2)1/2 where T’ =T —T, relative to the average number of operations. The new algorithms for computing
both R and ® (method 2) show very little fluctuation between samples. This is for similar reasons as mentioned above;
there is a computational advantage primarily as a result of p¢, not p***. The other two algorithms, however, rely primarily
on py', which changes as N increases. Specifically, the probability of pg'** at a specific spatial location for randomly refined
grids, as is the case here, is pf'™ = (po)Nt — 0 since pg <1 when p; > 0.

The regions of relatively large fluctuations in the computations of ® (method 1) and A in the bottom row of Fig. 3
occur because pg'** can vary substantially between samples, thus giving larger T™°. However, even in these regions, the
fluctuations are still relatively small in comparison to the average number of operations (note the multiplier of 103 on the
colorbar). Given these results, we thus only report the mean of the samples in subsequent sections since there is very little
deviation from the mean between samples.

Finally, we use the fully randomized synthetic AMR data to examine the role of the data dimensionality, d. Fig. 4 shows
the same parameter space as in Fig. 3, for data with d =3, Ny=Ny, =N, =16 and Ns = 163 (note that we also use fewer
samples, Nsamp, for d = 3). The trends for d = 3 are similar to those for d = 2, except for changes in the asymptotic values
of p; for the efficiency boundaries in the algorithms for R and ® (method 2). For a higher dimension d, there are more
repeated values for a given coarse cell than for smaller d, thus giving more repeated computations that can be skipped.
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Fig. 4. Top row: Run-time ratios logw(TAMR/Tstd), where T corresponds to the total number of operations n, as functions of p; and N; for the computa-
tions of R, ® (methods 1 and 2), and A (left to right) using randomly refined synthetic AMR data with Ny=N, =N; =16, Ny = 163, d=3 and f = 1. The
ratios are computed over an ensemble with Nsamp = 8 samples. Colors are the same as described in the caption of Fig. 3. Bottom row: Comparison between
the d = 2 results from Fig. 3 and the d = 3 results in the top row for three values of pi.

On the bottom row of Fig. 4, the ratio Tamr/Tstq is consistently smaller for all Ny and the three chosen values of p; for
R and ® (method 2), indicating that the new AMR algorithms become increasingly efficient, as compared to the standard
algorithms, as the dimensionality increases.

4.2.3. Synthetic AMR test results: mixed static and random grids

From the results in Section 4.2.2, it may appear that under no circumstance do the new algorithms for computing ®
(method 1) and A have any computational advantage in the asymptotic limit as Ny — oo. This is certainly true when the
entire computational domain is randomly refined at each instance in time and p}™* ~ 0 for £ < f. However, in most AMR
simulations of practical flows, we generally find that p}"** > 0 for £ < f and, for these conditions, there can be a substantial
computational advantage when using the new AMR algorithms. We demonstrate this improvement in Fig. 5, where we
examine run-times for different values of pg®* and pT"®* using synthetic AMR data with pg = p; =1/2, Ny =Ny =64,
Ns =642, Ny =50, d =2, and f = 1. The resulting data includes regions of both static and random grid refinement, as
shown for example in Fig. 2 for pg®* = p"™* =1/4.

Fig. 5 shows that the run-time improvements in the calculations of & (method 1) and A depend almost exclusively on
the choice of pi'®*, due primarily to the fact that these algorithms can only take advantage of repeated computations if
pg™* > 0. In the region of the domain that is randomly refined, it is very likely that all spatial locations will be tagged with
¢=f =1 in this case. For example, if pg = p1 =1/2, Ny =50, and we fix p§™* = p"™* = 1/4, the probability of having
£ =0 for all times at a given spatial location that is randomly refined is

5 - N
[1 — (p1 —pﬁm")—ZLoP?’”} t: <l)50%1017. (21)
1- Y1, pm 2

Thus, for many of the cases, the regions of random refinement are likely to be all tagged with ¢ =1 at some instant in
time, giving p7™ ~ 1 — p{"®, and varying pT"® has essentially no impact since pg** primarily dictates p"®*. Note that
the thin blue regions at the top of the parameter spaces for ® (method 1) and A in Fig. 5 are due to the fact that setting
p™* = p1 =1/2 necessarily means that po = p§'®* = 1/2, thus providing repeated computations.

We can also use Fig. 5 to understand how the choice of p™** affects the calculations of R and @ (method 2). For R,
Fig. 5 shows that setting py™®* for any £ increases the correlation between cells where £ =0, in turn increasing the number
of repeated computations. There is approximate reflection symmetry about pg®* = pJ™®* because setting either above zero
necessarily increases correlations between cells where ¢ = 0. For ® (method 2), there is very little change in the run-time
ratio when varying p}*®*, since cells are first tabulated according to grid level before computing any element in @, removing
all dependence on time. Variations in the run-time ratio would only come from f =0 for any ¢ for a spatial location, which
only changes the performance of the algorithm marginally by not computing contributions for that ¢ in that location.

13



M.A. Meehan, S. Simons-Wellin and PE. Hamlington Journal of Computational Physics 469 (2022) 111527

R ® (method 1) ® (method 2) A
4 -: - : 0.04 |£
! =
{1t : '1 0.00 =
| &
. -: _ . -0.04 n%
' I : -0.08 =
1/8 2/8 3/8 1/8 2/8 3/8 1/8 2/8 3/ 1/8 2/8 3/8
p*(r)nax ﬁbnax p‘anax ﬁbnax

Fig. 5. Run-time ratios 10g;o(Tamr/Tstd), Where T corresponds to the total number of operations neo, as functions of pJ* and p"®* for the computations
of R, ® (methods 1 and 2), and A (left to right) using synthetic AMR data with both static and random refinement regions and simulation parameters
po=p1=1/2, Ny=Ny, =64, Ns = 642, Ny =50,d=2, and f =1 using Nsamp = 8. The shading and colors are identical to those in Figs. 3 and 4.
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Fig. 6. Run-time ratios Tamr/Tsq, Where T corresponds to the total number of operations n, as functions of pg and p; (and implicitly p,) for R and
® (method 2), and as functions of pg'™ = po and p"** = py (and implicitly pJ'** = py) for ® (method 1) and A. The analysis is performed on synthetic
AMR data with both static and random refinement regions and simulation parameters Ny = Ny =64, N5 = 642, Ny =50,d=2 and f =2 using Nsamp = 8.
Bottom row: Relative error between the data and the proposed fit in Table 2. The numbers on the top and bottom of each colorbar represent the bounds
of the colorbar. Pink shading corresponds to a higher relative error for a given computation, and white regions indicate where the error is identically zero
for double precision.

4.2.4. Synthetic AMR test results: two levels of AMR

To this point, we have only examined synthetic AMR data with one level of AMR (i.e.,, f =1), where it is generally easier
to assess the effects of different parameter choices on the performance of the new algorithms. In practical AMR simulations,
however, it is common to use several levels of AMR in order to drive the computational cost down without significant loss
of accuracy. It is therefore of interest to demonstrate the performance of the new algorithms for more than one level of
AMR

We first consider the performance of the algorithms when f = 2. The top row of Fig. 6 shows Tawr/Tsq for synthetic
AMR data with both static and random refinement using simulation parameters Ny = Ny, = 64, N5 = 642, Ny =50, d =2,
and f =2, with Nsamp = 8. Here we only consider how p affects the calculations of R and ® (method 2), and how p**
affects @ (method 1) and A. Note that setting pg'™* = po implies py'® = pg'**. Overall, Fig. 6 shows that, in comparison
to the results using synthetic AMR data with f =1, there is a significant improvement in the speed of the snapshot POD
method when using the new algorithms for data with f =2, because coarser cells have more repeated computations.

While Fig. 6 provides a good sense of the parameter space for f =2, we still do not have a complete description of
the performance of the algorithm because in Fig. 6, we are only visualizing two-dimensional slices of three-dimensional
spaces. We would like to understand the performance more generally in a way that does provide as complete description as
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Table 2

Fitted coefficients for B;; and b; from Eq. (22) using d =2, Nsy = 642, Ny = 50, Nsamp = 8,
f =2, po=k/16, py =m/16 and p, =1 — po — p1, where k,m € [0, 8] are integers, for
R and ® (method 2). The same values are used for ® (method 1) and A, but we also set
PP = p¢. Quantities after & are two standard deviation errors of the fitted parameters as
provided by the scipy curve fitting toolbox.

R (pe)

Boo=0.194+1.7 x 10~ Bo1 =0.744+1.2x 10~ Boz =1.33+6.6 x 107>
B11=0.74+1.7 x 10~* B2 =1.34+6.6 x 10~ By =135+28x 107>
® (method 1) (p7™ = py) @ (method 2) (pe¢) A (PP =po)

by =0.47 £2.7 x 107" bo=0.56+8.2x 1074 bo=0.14+22x10""
b1 =0.58+£2.7 x 10°"7 b1 =0.73+£82x 1074 b1 =0.53+£22x 10"
b, =1.03+13x 10" by =1.35+3.9x 10~* b, =129+1.1x10""

possible such that detailed parameters sweeps are not necessary. In order to do so, we propose the following functions to
closely approximate the performance of the new algorithms

ff f f
R:ZZBijpipj, Q(methodl)andA:Zbip;““, & (method 2) :Zbip,-, (22)
i=0 j=0 i=0 i=0

where Bjj and b; are fitting parameters. Note the symmetry p;p;j = p;p;; hence, there are only (f + 1)+ (f +1) f/2 values
to fit for R, rather than (f + 1)2.

The functions in Eq. (22) make intuitive sense for the following reasons. Each element of R;j is computed by the inner
product of two snapshots, and the resulting number of repetitions is based on the maximum grid level between the two
snapshots at a given spatial location. So, for R, we use two summations because the number of repetitions is dependent
upon the composition of each of the two snapshots. For ® (method 1) and A, only one pattern of AMR matters in how many
repeated computations there are: p}™®, for reasons given in Section 3. Since each of these operations are linear operations,
only one summation is required. Finally, only one of the matrices (i.e., X) in the computation of ® (method 2) has repeated
values from the AMR, and this computation method is essentially independent of p}"** (as shown in Fig. 5), so we can get
a good approximation of performance using one summation and py.

We use non-linear least squares to fit the coefficients B;; and b; in Eq. (22) to the data Tamr/Tstd shown in the top row
of Fig. 6. These coefficients are given in Table 2 along with 95% confident intervals. Using these values of Bj; and b;, we
then estimate the performance of our algorithm for the parameters in the top row of Fig. 6, and in the bottom row of this
figure we show the relative error between the computed performance (top row) and the estimated performance.

The bottom row of Fig. 6 shows that for R, ® (method 1), and A, our proposed functions provide excellent agreement
with the computed performance. For R, the estimate is only off by a maximum of ~ 10~7-6 and the variations in the error
are fairly random throughout the parameter space, indicating a good fit. For ® (method 1) and A, the estimate is essentially
exact, with a maximum error of ~ 10736 and many areas of white, where the estimate was exactly what was computed
to double precision. This is to be expected because setting pj'** = p, removes any statistical variation from snapshot to
snapshot in a simulation; since these are linear operations, it would be appropriate that a linear approximation would fit
exactly. Even if there was a statistical variation, this would only affect the pre-computation of the maximum grid level,
which would not substantially impact the fit.

By contrast, the estimate for ® (method 2) does not appear to fit the data as closely, as indicated by the distinct
triangular feature in the error plot shown in the bottom row of Fig. 6. This feature is the result of a nuance in the code that
avoids computing the contribution of a level ¢ if that £ does not appear in that spatial location for all of time. The pink
regions for ® (method 2) are where there is intermittent behavior of ¢ not appearing for all spatial locations. For example,
consider po =3/8, p1 = 1/32, and p; = 19/32, which is one of parameters shown in Fig. 6. The probability of a spatial
location containing at least one instance of £ for a given Ny is 1 — (1 — p¢)t. For this situation, the probability of having
£=0,¢£=1, and £ =2 for a given spatial location would be ~ 1 —10~'1, ~ 0.8, and ~ 1, respectively. Thus, there will be
many instances of spatial locations that will not have ¢ =1 for all times, providing a change in the number of operation
counts that cannot be accounted for by the proposed linear fit. Regions of high error are where the probability of having
an ¢ is not close to 0 or 1. Nonetheless, even with this imperfection in the function, the estimate still has very small error,
with a maximum of 2 1073 for the entire parameter space.

4.2.5. Synthetic AMR test results: generalizations for additional levels of AMR

In addition to providing a good fit for data with d =2 and f =2, we can identify more general trends in the coefficients
to better understand the algorithm performance with additional levels of AMR. The B;j in Table 2 for the computation
of R show that some of these values are approximately equal, namely Bgy ~ Biy =~ By, and Bgp; =~ By1. From previous
discussions, the number of repeated computations is determined by the maximum grid level at a spatial location between
the two snapshots. Since By, B12, and By account for the computational advantage between cells with £ =0 and ¢ =2,
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Table 3

Fitted coefficients for Bj; and b; from Eq. (22) using d =3, Ny = 162 x 32, Ny =50, Nsamp =
8, f =3, po=k/16, py =m/16, p, =n/16 and p3 =1— po — p1 — p2, where k,m,n € [0, 5]
are integers, for R and ® (method 2). The same values are used for ® (method 1) and A,
but we also set pj"®* = p,. Quantities after & are two standard deviation errors of the fitted
parameters as provided by the scipy curve fitting toolbox.

R (pe)

Boo = 0.0054 +2.5 x 1073 Bo; =0.045+1.3 x 1073 Boz =0.37+1.3 x 1073
Bo3 =1.16+5.6 x 10~* B11 =0.046 £2.5 x 103 B1 =037+1.3x 1073
Bi3=1.15+56x10"% By =0.37+2.5x 1073 By3=1.164+56x 10"
B33 =1.18+1.7 x 10~*

@ (method 1) (PP =p;) @ (method 2) (p¢) A (PP =po)
bo=0.44+8.1x 10" bg=0.53+4.8 x 1073 bo =0.0044 4+ 6.4 x 10~17
b1 =0.44+8.1x10"" b1 =0.54+4.8 x 1073 b1 =0.034+6.4x 10°"7
b, =0.51+£8.1x 10" b, =0.64+4.8 x 1073 by =027+6.4x 10717
b3 =1.03+2.7 x 10~ b3=1.34+1.6x103 b3 =1.14+2.1x 107"

£=1 and ¢ =2, and two ¢ = 2 cells, respectively, there is approximately the same computational advantage between all
three since the finest level in all three is ¢ = 2. Similar reasoning leads to the conclusion that Bg; ~ B1;. More generally,
we would expect that

Bij ~ By where £ =max(i, j). (23)

Note that Bfs > 1 because there is no computational advantage as a result of the AMR.
For ¢ < f, there is a clear pattern that emerges in the coefficients By, and b, for computing R and A, respectively. In
these coefficients for the fit for A, we can see that

_ B by o 1<t<f. (24)
Be—1ye—1)  be—1
This occurs because, if there is any repetition as a result of the AMR, that contribution to R;j or A;j is weighted and skipped
in the exact same manner if £ < f. Since we assume a refinement ratio of 2, there are 2¢ additional repetitions for each
successive level of refinement, which is also clearly indicated by cg. This pattern is not present between £ = f and £ = f —1
because we do not weight and skip operations if ¢ = f.

There is a markedly different pattern in the case of computing ® for £ < f. Namely, we do not see ratios similar to
Eq. (24), and it appears that lims_, ., bo % 0, unlike R and A. In computing ®, we need to fill the entirety of ®, which still
requires accessing and assigning all N5 and N. Since the computation of a single element of @ requires five operations,
and we need to access and assign each element of ®, which we deem two operations in our operation counting scheme,
we see lims_, o, bg ~ 2/5, where the result is only approximate due to the many other features of the algorithm that may
marginally vary this value. This limit will be more clear in further discussions. Of course, this number would change if a
different scheme was used for operation counting.

Note that this limit is true for both methods 1 and 2 of computing ®. In method 1, this limit is more clear since
performance is only based on p}"®*, while in method 2, the convoluted maneuvering through the matrices complicates this
limit, but the same principle is still apparent in computing H before computing ®. As a result of this different asymptotic
behavior, the ratios as expressed by Eq. (24) are not present for ®, and a more thorough examination of the code would be
required to identify the behavior of b;.

To validate this approach, we perform the exact same analysis on a different set of parameters: d =3, Ny = 16 x 32,
Ny =50, Nsamp =8, f =3, po=k/16, py =m/16, p =n/16 and p3 =1— pg — p1 — p2, where k,m,n € [0, 5] are integers,
for R and ® (method 2). The same values are used for ® (method 1) and A, but we also set py"®* = p,. The fitted values
are given in Table 3; here, we identify similar trends as found with f =2 and d = 2; namely, Eq. (23) in computing R,
Eq. (24) in computing R and A, lims_, . bo ~ 0 for R and A, and limy_, ., bg & 2/5 for ®. By verifying these trends, we are
confident that we can approximately predict the performance of our algorithm using operation counts under a wide range
of conditions.

4.3. Tests using genuine AMR data

Ultimately, the most important assessment of the new algorithm is to determine whether, and under what conditions,
the algorithm accelerates the snapshot POD method on genuine AMR data from a fluid flow simulation. In this section, we
show that the new algorithm can reduce operation counts and CPU time in a compiled and optimized code for data from an
AMR simulation of an axisymmetric buoyant jet. The speedups are examined for three different finest levels of AMR: f =1,
f=2,and f =3.
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Fig. 7. Top row: Two-dimensional slices of the density field from an AMR simulation of an axisymmetric buoyant jet with solution grids annotated. Columns
correspond to instances in time relative to the eddy turnover time, t, where T ~ 22At and At =0.01 s is the simulation output rate. Bottom row:
Two-dimensional slices of the corresponding grid level ¢ at each time.

4.3.1. Computational implementation

We programmed the algorithms in Fortran 90 and compiled using Intel Fortran Compiler version 17.0.5 with the com-
mand ifort with optimization setting -03 and the Intel Math Kernel Library, -mk1 [34]. All computations in this section
were done on Onyx, a supercomputer that is part of the U.S. Department of Defense High Performance Computing Modern-
ization Program. Onyx is a Cray XC40/50 with two 2.8-GHz Intel Xeon E5-2699v4 Broadwell 22-core processors per compute
node. Computations for the f =1 and f =2 data sets presented below were done on the standard compute nodes with
128 GB of DDR4 memory, and computations for the f =3 data sets were done on the large memory nodes with 1 TB
of DDR4 memory. All computations were done in serial in order to mitigate any complexities due to parallelization, but
parallelization is fairly straightforward for these matrix computations by splitting X and Xgiq into sub-matrices along each
spatial dimension so that each processor can easily perform the same operations on smaller sections of the data.

We used the dgemm (matrix multiplication) routine from BLAS [35] as our benchmark for standard operations. Because
Fortran stores arrays in column-major order, we needed to make slight modifications for the computation of & in order
to traverse memory properly, since the algorithms in the appendix were developed without knowledge of memory layout.
The slight modifications are, generally, inverting loops in the matrix computation at the cost of additional accesses. This
could not be done for the entirety of the algorithm without completely restructuring the code, so we only invert loops
for the computation of & that are done on the finest AMR level (i.e., £ = f). We leave the full restructuring for future
work. The computation of R and A naturally aligns with the order in which data is stored in Fortran, and thus requires no
modifications from the original AMR algorithms. All of this code is publicly available at https://github.com/tesla-cu/amrPOD.

4.3.2. Numerical simulations

The AMR data we use is generated from a simulation of a buoyant plume, where helium is axisymmetrically injected
into quiescent ambient air with a radius of 6.25 cm at the bottom of a 1.5 m? computational domain. Using AMR for
plumes is particularly beneficial because the flow stream needs to be sufficiently far from the outer boundary condition for
proper entrainment, but only a small fraction of the domain has complex flow features that require high grid resolution.
The simulation was conducted using PeleLM [20], but we will not discuss the solution methods used to produce the data
here (see Wimer et al. [36] for a detailed discussion) since this information is not of critical importance to the computation
of POD on AMR data sets.

In Fig. 7, we show five two-dimensional slices of the density field and the corresponding grid level for the f =3 data.
The data were truncated to a 1 m> portion of the domain to reduce memory requirements. We then extracted nearest-
neighbor-interpolated data using yt [23] at three different levels of finest resolution: f =1, f =2, and f =3, leading
to grid sizes, respectively, of 1283, 2563, and 5123. We show the corresponding average composition, (p,) and py*, as a
function of N; in Fig. 8, where the average operator (-) denotes an average in time as opposed to samples. In comparing the
grid composition with the results from Section 4.2, we can see that this data is conducive for the new algorithm to provide
a computational advantage compared to the standard snaphost POD method.

4.3.3. Genuine AMR test results
In order to quantify the computational advantage of the new algorithm, we use both operation counts and average CPU
time, both of which we show in Fig. 9 for N € [10, 80]. Blue lines indicate the ratio Tamr/Tstqa USing operation counts
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Fig. 8. Properties of the AMR grids for each of the axisymmetric buoyant jet simulations, showing (p¢) and pj™®* as functions of N¢ for £=0,..., 3 and

finest resolutions (a) f =1, (b) f =2, and (c) f =3.

and the black lines are using CPU times. All quantities are normalized by Tgq for Ny = 10. The fluctuations of CPU time
within the Nsamp = 16 samples of the ensemble were found to be small compared to the average CPU times, so they are
not reported.

For all algorithms, we see several clear trends. The first is that there is an O(Ntz) scaling of the computational cost,
as anticipated, for all algorithms, with a slight deviation in CPU times for & for larger N; as a result of developing the
algorithms without knowledge of memory layout. Asymptotically, the proposed algorithms in Section 3 do not change the
order of computation, rather they change the leading coefficients. The next trend we see is that the new algorithms continue
to improve with increasing f. This is to be expected because, as f increases, an increasing number of operations can be
skipped with the AMR algorithm for a given ¢. For example, comparing the amount of repeated information for ¢ = 0 for
f=2and f =3, we have increased the number of repeated cells from 4> = 64 to 8% =512, making repeated computations
significantly more computationally advantageous to skip. This speed-up is important because many fluid flow simulations
use more than three levels of AMR (e.g., in Ref. [36] five levels of AMR are used), and the computational savings will
continue to improve as f increases.

In determining whether our new algorithms are practically faster than standard matrix multiplications, we look to the
CPU times. For R and A, we need f > 2 for any N¢ to have any computational advantage, while both methods 1 and 2
of computing ® are advantageous when f > 1. Although these results depend on the specific details of the numerical
simulations and would need to be re-evaluated for different data, they do again indicate that the computational speed-up
of the new algorithm compared to the standard approach will continue to become more pronounced as the number of AMR
levels increases.

In comparing Tamr/Tsta for operation counts and CPU time, we often see large disparities between the two for the fol-
lowing reasons. In the computations of R and A, the disparity is likely due to a high cache miss rate when large amounts
of operations are skipped. Eventually with many repeated computations, such as for f =3, the new algorithm can over-
come the increased latency. For @, the disparity is likely due to overestimating the weights associated with accesses and
assignments that are needed for all elements in ®, as discussed in Section 4.2. Further investigation is needed to validate
that these are the exact reasons for the disparities. Nonetheless, the algorithm presented here has not been optimized for
any particular hardware configuration, nor have we tuned the coefficients of the weights of each operation (e.g., arithmetic,
assignment, etc. operations) to align with the performance of the machine, so these are not expected to align perfectly.
These improvements are beyond the scope of this paper but are avenues for future work.

5. Practical considerations

In Sections 3 and 4, we presented the proposed algorithms and assessed their computational performance (in serial)
when AMR output data had already been nearest-neighbor interpolated to a uniform common mesh of equivalent resolution
to that of the finest cells. In those sections, we neglected important practical effects that would further affect the overall
computation, such as the cache miss rate, memory hierarchy, and disk usage. These effects were neglected for two reasons:
(i) to make the presentation of the new algorithms as clear as possible, given their already significant complexity; and (ii)
these effects can vary substantially between different computing architectures, and we do not want to draw conclusions that
could be unique to a specific computing environment. In this section, we discuss how the algorithms presented in Section 3
could be optimized for particular use-cases.
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Fig. 9. Computed operation counts (blue) and CPU times (black) of the standard and AMR algorithms as functions of N; for (a, d, g) R; (b, e, h) ®; and (c, f,
i) A when using a finest level of (a-c) f =1, (d-f) f =2, and (g-i) f =3 in the axisymmetric buoyant plume simulations. The line styles correspond to the
different algorithms used. All quantities are normalized by Tsq at Ny = 10. The two different methods of computing @ are given in (b, e, h) and denoted
by M1 for method 1 and M2 for method 2. Note that the solid black and solid blue lines are almost identical.

5.1. Partial loading

One of the primary limitations of the presented algorithms is the immense memory requirements for some of the larger
computations, such as the finest resolution in Section 4.3. However, we can reduce these requirements by noting that all of
the data does not need to be stored in memory simultaneously and, instead, only portions of the data need to be loaded at
any given time.

To demonstrate this, consider the computation of R as given in Section 3.2. The computation of any element R;; can be
split as

Ns Ns/2 Ns
Rij=_ XuiXij=Y_ XX+ Y. XXy (25)
k=1 k=1 k=N;/2+1
—_—
Rl.lj Rizj

where R}j and Rizj are the covariance matrices corresponding to the first and second “chunks” of data, respectively. By

decomposing the computation this way, the memory requirements have been cut in half because R}. can first be computed
using only half Ns and stored in R;j. The first data chunk can then be unloaded after loading the second data chunk, and
element-wise contributions of Rizj can be added directly to Rj;.
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More generally, we could consider decomposing the data into a certain number of chunks N as

N¢ ¢cNs/Nc

Rij=>" > XX (26)

c=1 k=d
B
R
where d = (c — 1)Ns/N¢ + 1. By performing the computation of R in this way, we can reduce the memory requirements by
a factor of N by loading only the data required for Rfj The algorithm described in Section 3.2 is completely amenable to

this decomposition as long as Ns/N¢ > cg, a condition that still permits many chunks. Note that the computation of ® and
A can be split in almost an identical way.

While implementation of this approach is straightforward, we did not include this decomposition in Sections 3 or 4 be-
cause there is an additional practical consideration regarding the balance between input-output and memory requirements.
Specifically, even though memory requirements decrease as N increases, the throughput on storage devices increases. De-
pending on the memory hierarchy, increasing the number of chunks such that each can fit into the cache could be optimal
compared to increased throughput. As a result, the number of chunks required to minimize computational time can vary
substantially between different computing environments. Therefore, we do not address this at the algorithmic level and
instead take a worst-case scenario approach and show that our algorithm can reduce the computation time where memory
hierarchy is not utilized to capacity.

5.2. Parallelization

The target application of these algorithms is on large scale simulation data and, as such, a discussion of parallelization
is necessary. A simple way to parallelize the algorithms is to use the same methods outlined in Section 5.1, where it was
noted that the computation of R, ®, and A can be computed incrementally with a small fraction of the data loaded at any
given instant. With distributed memory (e.g., MPI), each processor is able to load a single small chunk, perform the small
computation, then a collective call can be made to communicate between all processors. For R and A, these collective calls
would be summations to combine contributions from each processor, and for @ the collective call would be a write to disk.

Given that memory serves as a major limiter in the proposed algorithms, parallelization across many nodes in an HPC
environment may be necessary. However, if this is done purely using distributed memory, many processors will be accessing
the data. If N is not evenly divisible by N, the work will thus not be evenly distributed between processors. To circumvent
this, we recommend a hybrid parallelization approach by using fewer tasks per node than cores, possibly as few as one
task per node, and then make use of the remaining cores by using threads that share memory to parallelize mathematical
operations for each data chunk. We expect this parallelization strategy to scale well given the very little communication
required between processors (e.g., only collective calls at the very end of the operation) and the simple division of work
between processors.

5.3. Bypassing the interpolation step

The entirety of Sections 3 and 4 have focused on the algorithms after the AMR output data has already been interpolated
to a uniform grid. However, bypassing this interpolation step would reduce disk usage, retain compression of the data,
remove a step in the overall computation, and could ultimately be leveraged to improve the algorithms further. However,
bypassing the interpolation step to perform POD directly on the simulation data is highly sensitive to how the data is stored
on disk and will vary between applications. For these reasons, we did not consider this approach in Section 3, but we
provide a discussion here of how this approach could be taken and what advantages may be realized.

We illustrate some advantages of using the simulation data directly by considering an example. Consider simulation data
that was produced with rectangular collections of cells of equivalent resolution denoted “grids” (this is a common approach
of AMR codes [4]) and specifically focus on computing R. We can iterate over spatial regions in chunk sizes (as discussed in
Section 5.1) of the simulation data that correspond to the minimum grid size, which we will denote “blocks.” These are often
4, 8, 16, or 32 cells per dimension. By doing this, the elements in the dot product between two blocks (these blocks would
have the same spatial extent but different instances in time) would be weighted identically and, therefore, we could remove
a substantial amount of computational overhead in Section 3.2 associated with checking the grid level in Xgiq and weighting
individual cell contributions (i.e., by replacing this with weighting blocks). This would further improve cache utilization and
memory requirements. Moreover, if two blocks have the same resolution, a standard dot product can be taken between
the two and can be weighted appropriately for the contribution of R without first interpolating to the finest resolution as
required by our algorithm. By computing R in this manner, we retain the compression of the data and substantially reduce
the additional computational overhead required when the data was interpolated using a nearest-neighbor method.

If we now consider the same type of simulation data but focus specifically on the computation of ® and A, there is a
reduced computational advantage to bypassing the interpolation step. Retaining identical compression of the simulation data
as we did with R is impossible to do for ® with an adaptive mesh, for the reasons discussed in Section 3.4. However, some
compression can still be achieved (relative to a grid that was uniformly at the finest resolution) if there are some spatial
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regions of the flow that are never resolved to the finest resolution (i.e., pffnax < 1). This is essentially the approach already
taken in Sections 3.4.1 and 3.5. To maximize compression for the POD modes, we would define the non-uniform common
mesh that would be resolved only to the finest resolution that was observed in a particular spatial region throughout the
simulation data. It would then be straightforward to perform the exact same computation as put forth in Section 3, except
using a local value of finest resolution, rather than the global finest resolution, similar to that in the wavelet-based method
outlined by Krah et al. [25].

Ultimately, we do not discuss this technique in Section 3 because this approach would most appropriately be applied in a
format native to the original data. This would therefore require substantial analysis of whether the additional computational
overhead is favorable, as compared to simply using a uniform common grid at the finest level that is followed by down-
sampling repeated data to improve data compression.

6. Conclusions and future work

In this work, we explored new algorithms to compute each step of the snapshot POD method on data from AMR sim-
ulations, taking advantage of repeated solution values as a result of nearest-neighbor interpolation to weight and skip
unnecessary computations. This was done by reshaping each snapshot iteratively, such that at the end of the iteration se-
quence, all cells that had identical values were contiguous in the column vector. From there, each step in the snapshot POD
method was analyzed to determine algorithms that effectively leverage those repetitions and skip unnecessary operations.

After developing the algorithms, we analyzed their performance using operation counts and CPU time. Using operation
counts, we performed detailed parameter sweeps with synthetically generated data that allowed us to identify key charac-
teristics of our algorithms. We found that both ® (method 1) and A require that the maximum grid level ¢ for all N; be less
than the finest level (i.e., £ < f) to have any computational advantage. By contrast, accelerating the calculation of R simply
requires correlations of coarser cells and accelerating the calculation of ® (method 2) primarily requires the presence of
coarser cells in the snapshot matrix X. Additionally, we were able to determine the approximate behavior of each algorithm
with additional levels of AMR by fitting equations with properties of the synthetically generated data. Using CPU time, we
were able to show that, with a compiled Fortran code, we do in fact reduce CPU time by a factor of roughly 2 — 5 for
data from an AMR simulation of an axisymmetric buoyant plume when using three levels of grid refinement, without fully
optimizing the algorithms to the computing environment (e.g., language, cache, etc.). This speed-up will become even more
pronounced for a greater number of AMR levels.

This work has focused on the development of the new algorithm for computing snapshot POD on AMR data as concisely
and as generally as possible. Therefore, we do not directly address many factors that would be crucial to performing this
computation practically, including partial loading and parallelization. Although these are simple to implement in practice, by
introducing any of these in the description of the fundamental algorithms provided in Section 3, we would also introduce
dependencies of the algorithms on the system architecture, such as memory hierarchy, disk storage, and communication.
In an effort to remain impartial to emerging hardware components, we only provide a discussion (in Section 5) of how to
implement partial loading and parallelization. Further, the most optimal way to perform POD using AMR data could be to
use the simulation data directly, rather than to require an intermediate interpolation step, but we do not do this here, again
to retain generality.

We benchmark our algorithm against standard matrix multiplication which is O(N3) if the matrices are of equal dimen-
sion (i.e., N = Ny = N; for the operations here). Our algorithm is not readily amenable to more advanced algorithms, such
as Strassen’s algorithm [37], to reduce the order below 3. However, we do not expect that these advanced algorithms will
drastically increase the speed of the operation in general because it is expected that N >> N with N; ~ 103 as an approxi-
mate upper bound. Even with some of the most recent code optimizations using modern computer architectures, this is the
approximate N; bound where the reduction in multiplications overcomes the overhead of more additions [38].

Recent advances in matrix computations have shown great promise in substantially improving the computational de-
mands to perform POD for large-scale flow data. One of the most promising amongst these is the rSVD method developed
from randomized numerical linear algebra [33]. This tool can dramatically reduce the computational cost by using a small
random matrix to reduce the size of the problem X and produce the same POD data with very little error; see Brunton and
Kutz [39] for further discussion. To integrate our algorithms with the rSVD approach (amongst other modal decompositions),
a more general procedure for performing matrix operations with repeated solution values would need to be developed. This
would likely hinge on ideas used in Section 3.4.2. Since we believe the present study is the first to deal with repeated values
in matrix operations, we leave a more general approach as future work.

Finally, we did not attempt to match the CPU time with the operation counts. This is primarily due to the fact that
the algorithm was developed independent of any computing environment (e.g., language, processor, etc.) and without any
code optimization based on the caching architecture. Further developments could substantially improve the algorithm with
respect to CPU time, and we could begin to bridge the gap between CPU time and operation counts, allowing us to ensure
the authenticity of the bounds where we determine our AMR algorithm to be faster than the standard algorithm. This has
only been done recently with standard matrix multiplication [40], and we leave these improvements for future work.

Ultimately, this is the first study that addresses the challenge of reducing the computational cost of linear operations
when repeated values are present in data generated by AMR simulations. This is somewhat surprising because, considering
the importance compression methods for images and audio [41], there are not algorithms that address computing quantities
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across data that have already been compressed. Although we do not address compression methods to compute POD for
AMR data, it might be possible to transform the AMR data using efficient compression methods and directly perform POD
on the compressed data, as has recently been done using wavelet-based methods [25]. Additionally, this type of repeated
computation has not been addressed in a theoretical context bounding the number of operations required.
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Appendix A. Detailed algorithms

In this appendix, we provide the detailed algorithms that were introduced in Section 3 and analyzed in Section 4. In the
pseudo-code, we use zero-based indexing for the array accesses. Lastly, we use typical terminology that is used in high-
level computing languages to represent standard operations. These include: size (arr,dim) to compute the size of array
arr along dimension dim; permute (arr,dims) to rearrange the indices of multi-dimensional array arr according to
dims; reshape (arr,dims) to redistribute elements in arr into a new array with dimensions dims while maintain-
ing contiguous elements in memory; and empty (dim0,diml,---) and zeros (dim0,diml,---) initialize arrays with
dimensions dim0 x diml x ---, respectively, with non-exist and zero values. The remaining nomenclature (e.g., indexing,
assignment, math operations, etc.) is straightforward.

Algorithm 1 Reshaping U; into u; for a column of X for a row-major code. The difference for a column-major order code
is provided on the right hand side.

Uip < U;
if d =1 then
No reshaping required
else if d =2 then
for c in ¢, do
Ny < size(U1p, 0)
my <= Ng/(C*nyr)
my < Ns/c

Uip < permute(U1p, (1, 0))

Uqp < reshape(U1p, (M1, C, nxr)) > Ujp < reshape(U1p, (nyr, c,my))
U1ip < permute(U1p, (1,0, 2)) > Uip < permute(U1p, (0, 2, 1))
Uqp < reshape(Uqp, (M3, ¢))

end for

else if d =3 then
for c in ¢, do
Ny < size(Uqp, 0)
nyy < size(Uip, 1)
my <= Ns/(C* Ny * Nyr)
my < Ns/(C2 *Tyr)
m3 < Ng/c?

Uip < permute(U1p, (2,1, 0))

U1p < reshape(U1p, (m1, ¢, Nyr, Nyr)) > Uqp < reshape(U1p, (zr, nyr, ¢, myq))
Uip < permute(Uqp, (1,0, 2, 3)) > Ujp <« permute(Uqp, (0, 1, 3, 2))
U1p < reshape(U1p, (c,mz, c,ny)) > Uqp <« reshape(Uqp, (g, ¢, mz,c))
Uip < permute(U1p, (0,2, 1, 3))
U1p <« reshape(Uip, (c, c,m3)) > Uqp <« reshape(U1p, (m3,c,¢))
end for
end if
u; < Urp
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Algorithm 2 Computing R = XTX.

R < empty(N¢, Ny)
cf}fl <df-1
for m < 0toN;— 1 do
for n < Otom do
T'sum < 0
i<0
if m =n then
while i < Ns do
if Xgrig[i,m] = f then
forj<—itoi+c‘}_1 —1do
Tsum < Tsum + X[Jj, n] * X[j, m]
end for
i<—i+ C‘}L1
else
Cval <= cl [Xgridli» m]]
Tsum < T'sum ~+ Cval * X[i, n] x X[i, m]
i <14 Cyal
end if
end while
else
while i < Ns do
if Xgriq[i, m] = f or Xgg[i,n] = f then
forj<—itoi+c‘}_1 —1do
Tsum < T'sum + X[j, n * X[, m]
end for
i—i+ c‘}f1
else
if Xgria[i, m] > Xgrig[i, n] then
Cval — €[ Xgriali, m]]
else
Cval <= cl [xgrid [i,n]]
end if
Tsum < T'sum + Cval * X[i, n] * X[i, m]
i <14 Cyal
end if
end while
end if
R[m, n] < rsym
R[n,m] < reym
end for
end for

Algorithm 3 Computing ® = XWA~1/2 - Method 1.

P < empty(Ns, Ny)
co < c?[0]
for i < 0to Ny — 1inccy do
G < empty(co)
j<i
j* <0
while j* < ¢y do
Xmax < xgrid [J,0]
for m < 1to Ny — 1 do
if Xgrig[j, m] > Xmax then
Xmax < Xgrid [j.m]
if Xmax = f then
Terminate for loop
end if
end if
end for
8val <— Cd[Xmax]
G[j*] < gval
J < J+8va
J* 7+ gual
end while
for m < 0toN;—1 do
Jji
j* <0
while j* < ¢y do

¢$sum < 0
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forn < 0toN¢—1 do
Psum < GPsum + X[j, n] * ¥[n, m]

end for

&val < &lJ*]

$sum < Psum * Ay

for k < jto j+ gya — 1 do
@[k, m] = psum

end for

J < J+ &a

J* 7+ gval

end while
end for
end for
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Algorithm 4 Computing ® = XWA~1/2 - Method 2.

® < empty(Ns, Ny)
co < ct[0]
C1 <—cd[1]
c‘}q <df-1
Mey < f+1
for i < 0to Ny — 1inccy do
G < empty(ey, c1, N)
ng < empty(fjey, €1)
forn < 0to Nt — 1 do
€ < Xgriali, n]
if £ =0 then
G[0,0,n,[0,0]] «<—n
ng[0, 0] < ny[0,0]+1
else
if f > 1 then
j<i
j* <0
while j* <c; do
< Xgrid [j.n]
if £ = f then
GLf, j* melf, j* ]l <=n
nlf, j*1 < mlf, j*1+1
J=i+ct,
Jre g+
else
Gl¢, j*, me[L, j*]] <= n
nll, j*1 < mele, j*1+1
jej+cie
J* e+ 1
end if
end while
else
G[1,0,n,[1,0]] «<—n
ne[1,0] < mg[1,0]+1
end if
end if
end for
for n <~ 0to Ny — 1 do
H < empty(co, Njey)
if n,[0, 0] > O then

Loym < 0
for m < 0tony[0,0] — 1 do

k < G[0,0,m]

Lsum < Lsum + X[i, k] * W[k, n]
end for

for m < 0tocg do
H[m, 0] < €sym
end for
end if
if n,[0, 0] < N; then
if f > 2 then
for L« 1to f —2 do
j* <0
for j < itoi—+coincc?[L] do
if ng[L, j*] > 0 then

Lsym <0

for m < O0tony[L, j*]—1 do
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k < G[L, j*, m]
Lsum < Lsum + X[Jj, k] * W[k, n]
end for
for m < j* *C(}71 to j* >x<c‘}71 +c4[L]—1 do
H[m, L] < fsum
end for
end if
JF e+ 1]
end for
end for
end if
if f > 1 then
j* <0
for j < itoi+co—1incci[f —1] do
if ng[f — 1, j*] > 0 then
L« f-1
Lsuym < 0
for m <~ O0tong[L, j*]—1 do
k < GI[L, j*,m]
Lsum < Lsum + XL[j, k] * W[k, n]
end for
for m < j* xc4[L] to (j* + 1) xcq[L] — 1 do
H[m, L] < foum
end for
end if
if ng[f, j*] > 0 then
for k < jto j+ci[f]—1 do

Lsum <= 0
for m < Otong[f, j*]— 1 do
p <GLf, j*,m]
Lsum < €sum + X[k, p] + Psi[p, n]
end for
Hk = j+ ¢y %%, f1< €sum
end for
end if
Jre g+
end for
else
fork<itoi+co—1do
Lsum <0
for m < 0tong[1,0] — 1 do
p=G[1,0,m]
Lsum < Lsum + X[k, p] * ¥[p,n]
end for
Hlk — i, 1] < Lsum
end for
end if
end if
for m<0tocyp—1 do
Hsum <= 0

for L < 0to f do
Hsym < Hsum +H[m, L]
end for
®[m +i,n] < Hsum * 2~ 1/2[n]
end for
end for
end for

Algorithm 5 Reshaping ¢; into the original flowfield shape for a row-major code. The difference for a column-major order

code is provided on the right hand side.
Pip < i
if d=1 then
No reshaping required
else if d =2 then
for c in reversed c, excluding last element do

Ny < size(®qp, 0) > Nyy < size(P1p, 1)
mq <= Ns/(C* nyr) > myp &Ns/(c*nyr)
my < Ng/c

®1p <« reshape(Pqp, (Ny, My, C)) > ®1p <« reshape(®1p, (¢, m1, nyr))
®1p < permute(Pqp, (1,0, 2)) > ®qp < permute(d1p, (0,2, 1))
®1p < reshape(Pqp, (my, ) > ®qp < reshape(®1p, (c,my))
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®1p <« permute(P1p, (1, 0))
end for
Ny < size(Uqp, 0)
mq < Ns/(nx xNxr)

®1p < reshape(®1p, (M, M1, Ny))
®1p < permute(d1p, (1,0,2))
®qp < reshape(d1p, (ny,ny))
®qp <« permute(®1p, (1, 0))

else if d =3 then

for c in reversed c; excluding last element do

Nxr < SiZe(CI)]D, 0)

Ny, < size(®1p, 1)

my <= Ns/(C* Ny * Nyr)
my < Ng/(c? % ny)

m3 < Ng/c?

®qp < reshape(P1p, (nx, Nyr, My, €))
®1p <« permute(Pqp, (0,2, 1, 3))
®1p <« reshape(®1p, (ny, my, ¢, c))
®1p < permute(®1p, (1,0, 2, 3))
®1p <« reshape(®qp, (ms3,c,c))
®1p < permute(Pqp, (2,1, 0))

end for

Ny < size(®1p, 0)

ny; < size(®1p, 1)

my < Ns/(ny * ny nyr)

my <= Ns/(Nx * Ny * Nyr)

®1p < reshape(Pip, (Mxr, Nyr, My, Ny))
®1p <« permute(Pqp, (0,2, 1, 3))
®1p <« reshape(P1p, (Nyr, M2, Ny, Ny))
®1p <« permute(Pqp, (1,0, 2, 3))
®1p « reshape(®1p, (n, ny, ny))
®1p « permute(d1p, (2, 1, 0))

end if
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> ny; < size(Uip, 1)
> my < Ns/(ny *nyr)

> ®1p « reshape(®ip, (ny, my, nyr))
> ®&1p <« permute(dqp, (0,2, 1))

> Nyr < size(P1p, 1)
> Ngr < size(®qp, 2)
> My <= Ns/(C* Nyy * Nz)
> My < Ns/(C2 *Tgr)

> ®1p < reshape(®1p, (¢, My, Nyr, Nzr))

> ®1p < reshape(P1p, (¢, ¢, My, Ny))
> ®1p « permute(Pqp, (0, 1, 3,2))
> @1p « reshape(®1p, (c, ¢, m3))

> Nyy < size(P1p, 1)
> Ny < size(®Pqp, 2)
> M1 <= Ns/(Nz * Nyp % Ngp)
> My < Ns/(Nz * Ny * Nz)

> ®1p < reshape(dip, (nz, My, Nyr, Nzr))

> ®1p < reshape(®1p, (nz, ny, nzr, my))
> ®1p <« permute(Pqp, (0, 1, 3,2))

Algorithm 6 Computing A = X" .

A < empty(N¢, N¢)
g < empty(Ns)
i<0
cj'c_] <~cdf-1
while i < Ng do
Xmax < Xgridli, 0]
for m < 0, Ny — 1 do
if Xgrid [i,m] > Xmax then
Xmax < Xgriali, m]
if Xmax = f then
Terminate for loop.
end if
end if
end for
if Xmax = f then
gli] <1
i—i+cl,
else
£li] < ¢*[Xmax]
i<«i+ gli]
end if
end while
for m <0, Nt — 1 do
for n < 0,N; — 1 do
i<0
Gsum < 0
while i < Ns do
if g[i]=1 then
for j—itoi+cf_, —1do
Asum < Gsum -+ X[j, m] % ®[j, n]
end for
i<—i+ 6?71
else
Asum < Adsum + &li] * X[i, m] * ®[i, n]
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i<« i+ g[i]
end if
end while
A[m, n] < asym
end for
end for
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