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Abstract
Graph-based anomaly detection is pivotal in diverse security ap-
plications, such as fraud detection in transaction networks and
intrusion detection for network tra�c. Standard approaches, includ-
ing Graph Neural Networks (GNNs), often struggle to generalize
across shifting data distributions. For instance, we observe that a
real-world eBay transaction dataset revealed an over 50% decline in
fraud detection accuracy when adding data from only a single new
day to the graph due to data distribution shifts. This highlights a
critical vulnerability in purely data-driven approaches. Meanwhile,
real-world domain knowledge, such as “simultaneous transactions
in two locations are suspicious,” is more stable and a common ex-
isting component of real-world detection strategies. To explicitly
integrate such knowledge into data-driven models such as GCNs,
we propose KnowGraph, which integrates domain knowledge with
data-driven learning for enhanced graph-based anomaly detection.
KnowGraph comprises two principal components: (1) a statistical
learning component that utilizes a main model for the overarching
detection task, augmented by multiple specialized knowledge mod-
els that predict domain-speci�c semantic entities; (2) a reasoning
component that employs probabilistic graphical models to exe-
cute logical inferences based on model outputs, encoding domain
knowledge through weighted �rst-order logic formulas. In addi-
tion, KnowGraph has leveraged the Predictability-Computability-
Stability (PCS) framework for veridical data science to estimate
and mitigate prediction uncertainties. Empirically, KnowGraph has
been rigorously evaluated on two signi�cant real-world scenarios:
collusion detection in the online marketplace eBay and intrusion
detection within enterprise networks. Extensive experiments on
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these large-scale real-world datasets show that KnowGraph consis-
tently outperforms state-of-the-art baselines in both transductive
and inductive settings, achieving substantial gains in average preci-
sion when generalizing to completely unseen test graphs. Further
ablation studies demonstrate the e�ectiveness of the proposed rea-
soning component in improving detection performance, especially
under extreme class imbalance. These results highlight the poten-
tial of integrating domain knowledge into data-driven models for
high-stakes, graph-based security applications.
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1 Introduction
Graphs are ubiquitous data structures with applications in various
domains, such as social networks, biological networks, and commu-
nication networks. In recent years, graph neural networks (GNNs)
[75, 93] and other graph representation learning techniques, such
as node2vec [20], have emerged as powerful techniques for learning
on graph-structured data. These methods have achieved remarkable
success in applications that involve graphs such as recommenda-
tion [16], drug discovery [90], NLP [53], tra�c forecasting [34],
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and social network analysis [51]. In addition, graph data-based at-
tacks have led to various real-world scenarios, such as fraudulent
transactions in �nancial networks [8, 56, 72, 74], fake reviews or
accounts in social networks [7, 26, 29], and network intrusions in
computer networks [17, 39, 43]. Due to the large economic cost
of these anomalies [1, 48], it is crucial to develop automated and
robust methods to detect them.

Anomaly detection on graphs aims to identify these abnormal
entities, connections, or substructures that deviate signi�cantly
from the expected patterns, summarized in Fig. 1. However, real-
world graphs are often larger and more complex, holding properties
such as extreme label imbalance and heterogeneity. For example,
a single graph might have both locally homophilous and locally
heterophilous regions [94], making generalization, especially to
unseen graphs in inductive settings, challenging. While recent tech-
niques leverage the structural nature of network or marketplace
data through GNNs [5, 39, 44, 45, 72], several challenges remain
when applied to large-scale real-world graphs, hindering their ef-
fectiveness in these critical domains. For instance, when a GCN
model is deployed on a real-world eBay marketplace transaction
dataset to detect fraudulent activities, its accuracy drops by 50%
when only a single day’s worth of new transactions is added to the
graph, highlighting the challenge of maintaining performance on
constantly evolving graphs.

This issue arises largely because current machine learning sys-
tems for anomaly detection are often purely data-driven, relying
on the availability of large amounts of labeled data to learn pat-
terns and anomalies [46]. However, this approach faces several
challenges. One major challenge is information heterogeneity [71],
as these techniques must leverage diverse sources of information,
such as zip codes, item details, account data, authentication types,
IP addresses, and event timestamps. Another challenge is label im-
balance, as anomalous events or transactions are often extremely
rare compared to benign ones, making it di�cult to train ML sys-
tems that can reliably distinguish between them while maintaining
a low false positive rate [47]. Collecting labels for every graph
component is also costly and challenging, especially for large-scale
graphs with millions of nodes. These factors make inductive gen-
eralization especially challenging, which is crucial as real-world
graphs constantly evolve with millions of new events daily.

In contrast, traditional intrusion detection approaches often rely
on human-de�ned rules and heuristics [4, 6, 11, 58]. While these
rules may not be as �exible as data-driven methods, they can help
address some of the challenges faced by current ML systems. For
instance, domain experts can provide insights into the most infor-
mative features for fraud detection or lateral movement, reducing
the reliance on costly labeled data. They can also de�ne logical rules
that character the relationships between di�erent entities in the
graph, enhancing the interpretability and robustness of the model.
Furthermore, incorporating domain knowledge can guide the model
to focus on the most relevant subgraphs or patterns, improving
its ability to generalize to unseen graphs. However, standard GNN
architectures, such as GCN [40], rely on global graph properties
and cannot incorporate valuable human knowledge. Intuitively,
integrating domain-speci�c knowledge into these architectures can
signi�cantly improve their generalization and interpretability.

Graph 
Anomaly 
Detection

Node Detection

Edge Detection

Subgraph Detection

Figure 1: Examples of anomaly detection on graph-structure
data with GNN models. Data-driven learning approaches
have been successful on node-level, edge-level, and subgraph-
level tasks but tend to consider di�erent levels of the graph
separately, focusing on a single level.

In this paper, we propose a framework, KnowGraph, that inte-
grates expert knowledge into graph neural networks to bridge the
gap between purely data-driven and rule-based approaches. Our
framework consists of two key components: (1) a learning com-
ponent that utilizes a main model for the overarching detection
task, augmented by multiple specialized knowledge models that are
trained with diverse objectives and can predict domain-speci�c se-
mantic entities; (2) a reasoning component that utilizes probabilistic
graphical models to perform logical inferences based on the outputs
of each knowledge model. For statistical learning, we develop a
set of complex models that can predict various aspects of graph
data, such as node attributes, edge properties, and subgraph pat-
terns. This expands the representational capacity of the main model,
which is otherwise limited to a single overall facet. For reasoning,
domain knowledge is encoded through �rst-order logic formulas
with learned weights that organize each model’s output, allowing
the framework to learn how to leverage ground-truth information
and constraints during inference. Due to the high-stakes nature of
our experimental setting, we follow the Predictability, Computabil-
ity, and Stability (PCS) framework [81–84] for our evaluation and
introduce weight noise ensembling to all models, improving induc-
tive generalization and ensuring prediction stability and reliability.

We demonstrate that our approach can be applied to both graph
edges and subgraph detection, enabling it to capture both local and
global patterns in the graph. We evaluate KnowGraph on two large-
scale, real-world graph datasets: an eBay dataset containing over
40 million transactions from 40 days for collusion detection and
the Los Alamos National Laboratory (LANL) network event dataset
[37] consisting of 1.6 billion authentication events over 58 days for
intrusion detection. These datasets present signi�cant challenges
due to their size, heterogeneity, label imbalance, and low frequency
of malicious to benign events. Our experiments demonstrate that
KnowGraph consistently outperforms state-of-the-art GNN mod-
els and baselines in both transductive and inductive settings. We
summarize our contributions below
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• We propose the �rst framework that integrates purely data-
driven models with knowledge-enabled reasoning for en-
hanced anomaly detection on graph data. Ourmethod, Know-
Graph, combines multiple GNN models operating on di�er-
ent graph structures with a probabilistic logical reasoning
component, which encodes human knowledge.

• We employ the Predictability, Computability, Stability (PCS)
framework for veridical data science and introduce a weight
noise ensembling approach to mitigate uncertainty and im-
prove the inductive generalization ability of the framework.

• We evaluate KnowGraph on two large real-world datasets:
an eBay dataset for collusion detection and the Los Alamos
National Laboratory (LANL) network event dataset for in-
trusion detection. Our results demonstrate that KnowGraph
consistently outperforms state-of-the-art baselines in both
transductive and inductive settings with as few as three rules.

2 Related Work
Graph Neural Networks. Graph neural networks (GNNs) have

become a cornerstone in machine learning for graph data, e�ec-
tively encapsulating local graph structures and feature informa-
tion by transforming and aggregating representations from neigh-
bors. Common architectures include graph convolutional networks
(GCN) [40], which uses convolutions directly on graph structures
to capture dependencies, GraphSAGE [23], which learns induc-
tive representations through sampling and aggregating neighbor-
hood information, and GAT [66], which introduces an attention
mechanism to aggregate neighborhood information. To represent
long-range dependencies in disassortative graphs, Geom-GCN [54]
introduces a geometric aggregation scheme that enhances the con-
volution operation by leveraging the continuous space underlying
the graph. GraphSAINT [86] proposes a graph sampling-based
training method that allows for e�cient and scalable learning on
large graphs by iteratively sampling small subgraphs and perform-
ing GNN computations on them. DR-GCN [61] employs a class-
conditioned adversarial network to mitigate bias in node classi-
�cation tasks with imbalanced class distributions. More recently,
Graphormer [78] proposes a graph transformer model employing
attention mechanisms to leverage structural information well.

Generalization of GNNs. While some standard GNN architec-
tures [23, 86] have been proposed for inductive settings, gener-
alization remains challenging for graphs with class imbalance or
diverse structures. Standard techniques such as resampling [9, 25]
or reweighting [32, 42] are often sensitive to over�tting on mi-
nority classes and less e�ective on shifts to new graphs. Instead,
many techniques aim to learn more robust and generalizable graph
representations through data augmentation [24, 91] or large-scale
pretraining [30, 79, 80]. In addition, GNN capacity can be enhanced
by model combination techniques such as model ensemble [63, 73],
where the predictions of multiple models are combined to improve
performance. Mixture-of-experts (MoE) [15, 33, 60] is a similar tech-
nique where the problem space is divided by routing inputs to spe-
cialized experts. Recent work adopts MoE for GNNs to address the
class imbalance issue [31, 68, 85]. We also aim to address class imbal-
ance and inductive generalization but leverage many task-speci�c
GNNs organized through more deliberate domain knowledge.

To evaluate the generalization and uncertainty of GNNs in a
principled manner, we draw upon the Predictability, Computability,
and Stability (PCS) framework [83, 84]. PCS emphasizes three key
principles: predictability, which serves as a reality check for mod-
els; computability, which considers the feasibility and scalability
of methods; and stability, which assesses the consistency of results
under perturbations to data and models. In this work, we focus on
the stability aspect and propose to incorporate weight noise en-
sembling [3] into KnowGraph to mitigate uncertainty and improve
generalization to out-of-distribution graphs.

Graph anomaly detection. Graph anomaly detection has become
an increasingly important research area, with applications span-
ning various domains such as network security, �nancial fraud
detection, and social network analysis. The goal of graph anomaly
detection is to identify abnormal nodes, edges, or subgraphs within
a graph-structured dataset that deviates from the expected patterns
or behaviors. In this paper, we focus on two representative settings:
lateral movement detection and collusion detection.

In network security, graph anomaly detection is crucial in de-
tecting and mitigating lateral movement, a key stage in the MITRE
ATT&CK framework [50]. Lateral movement refers to the prop-
agation of malware through a network to compromise new sys-
tems in search of a target, often involving pivoting through mul-
tiple systems and accounts using legitimate credentials or mal-
ware. Research on mitigating lateral movement in computer net-
works generally follows three main approaches: enhancing secu-
rity policies, detecting malicious lateral movement, and develop-
ing forensic methods for post-attack analysis and remediation
[14, 17, 22, 23, 27, 39, 43, 55, 62]. While proactive security mea-
sures can help reduce the attack surface, they cannot eliminate
all potential paths an attacker might exploit. Many lateral move-
ment detection techniques represent internal network logins as
a machine-to-machine graph and employ rule-based or machine
learning algorithms to identify suspicious patterns [4, 27, 37]. How-
ever, these methods often struggle with scalability, generate ex-
cessive false alarms, or fail to detect attacks that do not match
prede�ned signatures. Recent approaches improve detection by
leveraging the structural nature of network data [5, 39], formulat-
ing the problem as a temporal graph link prediction task. These
methods aim to identify edges with low likelihood scores corre-
lated with anomalous connections indicative of lateral movement.
However, challenges remain in generalizing these models to new
networks in inductive settings.

In the domain of �nancial fraud detection, graph anomaly detec-
tion has also gained signi�cant attention due to the economic cost
and prevalence of fraud in various settings, such as social networks
[7], online payment systems [92], and online marketplace plat-
forms [8, 44, 56]. Early explorations focused on rule-based methods
[11] and association rules [6, 58], but these approaches often fail to
adapt to evolving fraudulent behaviors over time.With the availabil-
ity of large-scale transaction data, data-driven and learning-based
methods have gained popularity, including SVM-based ensemble
strategies [67], graph-mining-based approaches [64, 65], convolu-
tional neural networks (CNNs) [18], and recurrent neural networks
(RNNs) for sequence-based fraud detection [35, 70, 89].
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More recently, GNNs have been applied to various fraud detec-
tion problems, leveraging the structural nature of transaction data
[41, 44, 45, 69, 72]. Some works have also combined homogeneous
and heterogeneous graphs to help information propagation through
various types of nodes and edges [41, 56]. Despite these advance-
ments, our proposed setting of detecting collusive fraud, where
multiple adversaries conspire for illegal �nancial gain, remains
particularly challenging due to the limited normal transaction his-
tory of colluders, severe label imbalance, and the diverse range of
collusion mechanisms employed by fraudsters.

Knowledge-based logical reasoning. Machine learning models are
often purely data-driven and cannot directly use human knowledge
to improve performance. Integrating human knowledge, such as
relationships between classes, has been shown to improve Ima-
geNet [13] classi�cation accuracy [12] or adversarial robustness
[21] for deep neural networks. In addition, Bayesian logic programs
[38], relational Markov networks [19], Bayesian networks [59], and
Markov logic networks [57] have also been adopted for logical
reasoning. Recent work has combined these methods into learning-
reasoning frameworks [21, 77, 87] that organize the predictions of
various classi�ers with knowledge rules whose weights are learned
with a logical inference model. However, these works only con-
sider simple models and tasks, such as small classi�ers and datasets.
The scalability of learning-reasoning frameworks, especially on
large-scale graph data, has not been explored.

3 Preliminaries
Graph Neural Networks. Given a graph ⌧ = (+ , ⇢,. ), where

+ is the set of nodes, ⇢ is the set of edges, and . is the set of
labels associated with the graph elements (nodes, edges, or the
entire graph), the overall task of graph neural networks (GNNs)
is to learn a mapping 5 : ⌧ ! . that predicts the labels of the
graph elements based on their local neighborhood structure. To
achieve this, GNNs learn representations of the graph elements
by repeatedly performing neighborhood aggregation or message
passing across multiple layers. The learned representations can then
be used for various graph-related tasks, such as node classi�cation
(5 : + ! . ), edge prediction (5 : ⇢ ! . ), or graph classi�cation
(5 : ⌧ ! . ).

Let x9 2 R�0 be the input feature vector of node 9 2 + ,⌘
(✓ )
9 2 R�

be the representations or embeddings of node 9 learned by layer
✓ (✓ � 1), and 4 (:, 9 ) 2 R�2 be optional features of the edge (:, 9)
from nodes : to 9 . The message passing procedure that produces
the embeddings of node 9 via the ✓-th GNN layer can be described
as follows:

⌘ (✓ )9 = W (✓ ) ©≠
´

 
:2N( 9 )

k (✓ )
⇣
⌘ (✓�1)9 ,⌘ (✓�1)

:
, 4 (:, 9 )

⌘™Æ
¨
, (1)

Here, C (0)8 is set to G 9 , N( 9) is the neighborhood of node 9 , and
k (·) is a function that extracts a message for neighborhood aggre-
gation, which summarizes the information of the nodes 9 and : , as
well as the optional edge features 4 (:, 9 ) if available.

…
(·) denotes

a permutation-invariant function (e.g., mean or max) to aggregate
incoming messages, and W (·) is a function that produces updated

embeddings of node 9 by combining node 9 ’s embeddings with
aggregated messages. With multi-layer GNNs, the embeddings of a
node learned via local message passing capture information from
its :-hop neighborhood.

The �nal output of a GNN model, denoted as C8 (·), is obtained
from the last layer’s embeddings C (!)8 , where ! is the total number
of layers in the GNN. The model’s prediction con�dence for node
9 is represented by I 9 , which is derived from C8 using a separate
output function (e.g., a softmax layer).

Markov Logic Networks. MLNs combine �rst-order logic and
probabilistic graphical models to enable probabilistic reasoning
over knowledge bases. An MLN is essentially a set of weighted
�rst-order logic formulas, where each formula is associated with a
weight that re�ects its importance or con�dence.

In the context of MLNs, the relationships between entities are
represented using predicates. A predicate ? (·) is a logical function
that maps tuples of variables to binary truth values. Given a set
of variables V = {E1, . . . , E# }, where each E8 represents a logical
constant (e.g., an entity or an attribute), a predicate is de�ned as:

? (·) : V ⇥ . . . ⇥V ! {0, 1}. (2)
First-order logic formulas in MLNs combine predicates using

logical connectives (e.g., ^, _, ¬). A formula 5 (·) is de�ned over a
set of predicates and maps tuples of variables to binary truth values:

5 (·) : V ⇥ . . . ⇥V ! {0, 1}. (3)
Each formula 58 in an MLN is associated with a weightF8 2 R,

which represents the con�dence or importance of that formula.
Given a set of observed predicates (evidence) E, an MLN de�nes

a joint probability distribution over all possible worlds (i.e., possible
assignments to all predicates):

%F (X = G |E) =
1

/ (F)
exp

 
"’
8=1

F8=8 (G)

!
, (4)

where X is the set of all predicates, G is a possible world (one
possible assignment for the predicates)," is the number of formulas
in the MLN, =8 (G) represents true/false value of formula 58 in G ,
and / (F) is the partition function.

Inference in MLNs involves computing the probabilities of spe-
ci�c predicates or formulas given the observed evidence. Various
techniques, such as Markov chain Monte Carlo (MCMC) methods
or lifted inference algorithms, can be used.

In the context of integrating knowledge into graph neural net-
works, MLNs can represent domain knowledge and perform prob-
abilistic reasoning over the predictions of multiple GNN models.
The models’ outputs can be treated as observed predicates, and the
MLN can be used to infer the most likely overall predictions based
on the de�ned logical formulas and their associated weights.

4 KnowGraph
4.1 Overview
To e�ectively integrate domain knowledge into data-driven graph
neural networks (GNNs), we propose KnowGraph. In particular,
KnowGraph consists of two components: a learning component
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Graph Input G ~ {V, E, Y} Intrusion 
GNN 

Authentication 
GNN 

2-Hop 
GNN

Main Model

Knowledge Models

tauth(G) = NTLM = 1

tmain(G) = 1

t2-hop(G) = 1

1. Data-driven learning

Predicates
Intrusion(G); NTLM(G); 2-Hop(G)

Knowledge rules
NTLM(G) => MaliciousEdge(G)
2-Hop1(G) => MaliciousEdge(G) 
2-Hop2(G) => MaliciousEdge(G)

Rule weights
9.9 10.1 ↑
5.5 5.2 ↓
6.7 6.5 ↓

2. Reasoning based on knowledge rules

Variational posterior
Q!(Intrusion(G) = 1) ↑
Q!(NTLM(G) = 1) ↑
Q!(2-Hop(G) = 1) ↓

Knowledge graph

Figure 2: An overview of the learning and reasoning components of KnowGraph. KnowGraph consists of a learning component
composed of a main GNNmodel trained on the overall task and multiple knowledge GNNmodels trained on separate objectives,
such as predicting relevant sub-attributes. The reasoning component performs logical reasoning based on the outputs of each
model, which is organized based on domain knowledge rules. These rules are assigned weights, modeled by a learned scalable
reasoning model parameterized by \ , which explicitly ensures that the �nal predictions comply with the domain knowledge
rules, improving reliability.

and a reasoning component. Speci�cally, the learning component
comprises a main model and several knowledge models. The main
model focuses on the main function (e.g., malicious edge detection
in intrusion detection), delivering multi-class predictions based
on graph inputs. The knowledge models take the same graph as
input to predict speci�c semantic entities (e.g., authentication type
of an edge). The internal relationships among these models are
represented by expert-designed knowledge rules (e.g., a malicious
edge indicates a speci�c authentication type), which are embedded
in a reasoning component for logical inference. For example, in an
edge-level intrusion detection task, the main model is trained to
predict whether an edge is malicious, and a knowledge model is
trained to predict the authentication type of the edge. The outputs
of these models are then sent to a reasoning component to check
whether they satisfy the domain knowledge rules such as “malicious
edges indicate anNTLM [49] authentication type”. During inference,
if the knowledge is violated, the prediction of the main model
will be automatically corrected, leading to a more resilient �nal
prediction. In KnowGraph, every model in the learning component
is a trained GNN model, distinguishing KnowGraph from some
previous frameworks [21, 77, 87] that rely on simpler deep neural
network (DNN) classi�ers.

Concretely, the knowledge rules are formalized as �rst-order
logic rules, such as “IsNTLM(x) =) IsMalicious(x)” within the
reasoning component, which learns a weight for each rule from its
direct usefulness. The reasoning component itself is implemented
using probabilistic graphical models, such as a Markov Logic Net-
work (MLN) [57]. Due to the computationally intensive nature of
MLN inference from the exponential complexity of constructing
the ground Markov network, we use a scalable variational inference
method [87] to learn a GNN to embed the knowledge rules. We uti-
lize the Expectation-Maximization (EM) algorithm that iteratively
enhances the GCN’s accuracy in learning the GCN model weights
(E step) and re�nes the weighting of knowledge rules (M step)
within the latent MLN. During inference, the learned reasoning
GCN component ensures that the prediction outputs of the main
and knowledge models satisfy the de�ned domain knowledge rules
and achieve resilient �nal predictions.
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ITM USRTXN

pickup_id            0
itm_quantity      10.0
gmv                200.0
billing_zip       95348
dlvry_zip        17932

…

leaf_itm_price   10
meta_id              3
item_idx            255
snapshot         01-29

…

acc_age           10
tot_fdbk            2.0
tot_pos_fdbk    2.0  
tot_neg_fdbk    0.0

…

ITM USRTXN

pickup_id            0
itm_quantity      1.0
gmv                  20.0
billing_zip       61820
dlvry_zip        61820

…

leaf_itm_price     2
meta_id              3
item_idx            225
snapshot         01-29

…

acc_age         2793
tot_fdbk           52.0
tot_pos_fdbk   36.0  
tot_neg_fdbk   16.0

…

Adversary User

Figure 3: An illustration of the graph from real eBay marketplace data containing the core entities of a transaction, which are
represented as nodes in a knowledge graph consisting of nodes of transactions (TXN), users (USR), and items (ITM). Examples
of collusive and benign transactions are shown. Example node attributes are listed below the entity, such as gross merchandise
value (gmv), account age (acc_age), and total feedback (tot_fdbk). Domain knowledge suggests that collusive transactions
typically involve discrepancies between billing and delivery zip codes and are associated with users who have minimal feedback
and newer accounts. This understanding has led to the formulation of rules such as “[feedback amt < 0] ^ [(seller_age <
1 _ buyer_age < 2)] ) collusion”, which help re�ne the main model’s predictions based on these indicators.

4.2 Learning with knowledge-enabled
reasoning on graph data

In the learning component of KnowGraph, we train a set of GNN
models to predict the main task and knowledge models for as-
sistant tasks. The knowledge models are conceptualized as predi-
cates within this framework, outputting binary predictions for each
knowledge model.

Formally, we denote the output of the i-th model by C8 (·) as C8 ,
with I8 representing the con�dence level of its prediction. For a
given input graph ⌧ = (+ , ⇢,. ) with nodes + , edges ⇢, and labels
. , the GNN model’s prediction is denoted as C8 (⌧). Upon receiving
input⌧ and the assorted model predictions C8 (⌧), these predictions
are interlinked through their logical interrelations and a Markov
Logic Network (MLN) [57], enabling the reasoning capability in
KnowGraph.

Speci�cally, KnowGraph involves a primary model alongside
multiple knowledge models C8 (⌧), serving as predicates within the
MLN framework. Logical connections between these predicates are
established to formulate di�erent logical expressions. Assuming !
models in total, an MLN de�nes a joint probability distribution over
the pre-de�ned logical expressions (i.e., knowledge rules), which
can be expressed as follows:

%F (C1, ..., C!) =
1

/ (F)
exp ©≠

´
’
5 2F

F 5 5 (C1, ..., C!)
™Æ
¨
, (5)

with / (F) symbolizing the partition function, summing across all
predicate assignments.

KnowGraph’s reasoning component manages logic formulas
articulated as �rst-order logic rules. Following [87], we consider
three types of logic rules:

• Attribute rule (C8 =) C 9_C 9_...): This rule leverages speci�c
attributes associated with prediction classes to formulate
knowledge-based rules.

• Hierarchy rule (C8 =) C 9 ): Re�ecting the hierarchical
nature among classes, this rule aids in constructing logical
expressions like 5 (C8 , C 9 ) = ¬C8 _ C 9 .

• Exclusion rule (C8 � C 9 ): This rule addresses the inherent
exclusivity among some class predictions, ensuring that an
entity cannot simultaneously belong to mutually exclusive
classes.

After designing themodels and rules, the �nal step of KnowGraph is
to learn and assign a weight for each rule to re�ect the impact of
their prediction con�dence I8 for each model C8 (·). To achieve this,
we utilize the logarithm of the odds ratio, log[I8/(1 � I8 )], as the
weight for model C8 .

4.3 Scalable reasoning with a GCN
To reduce the computational complexity of training the MLN, we
employ variational inference [87] to optimize the variational evi-
dence lower bound (ELBO) of the data log-likelihood. This approach
is motivated by the intractability of directly optimizing the joint
distribution %F (O,U), which requires computing the partition
function / (F) and integrating over all observed predicates O and
unobserved predicates U. The ELBO is formulated as follows:

log %F (O) � LELBO (&\ , %F) = E&\ (U |O) [log %F (O,U)]

� E&\ (U |O) [log&\ (U|O)] ,
(6)

where &\ (U|O) is the variational posterior distribution. The rep-
resentation of model outputs and knowledge rules as a graph moti-
vates the use of Graph Convolutional Networks (GCNs) for encod-
ing &\ (·).

We adopt a variational EM algorithm to re�ne the ELBO and
learn the MLNweightsF . In the E-step, the GCN parameters&\ are
updated tominimize the KL divergence between&\ (T ) and %F (T ),
where T = C1, C2, ..., C! are the model outputs. The optimization ob-
jective is enhanced with a supervised negative log-likelihood term
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Lsupervised to leverage available label information during training:

LELBO (&\ , %F) := E&\ (T) [log %F (T )]�E&\ (T) [log&\ (T )] .
(7)

where [ is a hyperparameter balancing the importance of the ELBO
and the supervised term. This approach ensures that the class em-
bedding vectors Æ̀ are re�ned during the optimization of the GCN,
enhancing the model’s expressiveness.

Conversely, the M-step �xes &\ while updating the weights
F . Since directly integrating over all variables is intractable, we
follow [87] and optimize the pseudo-likelihood [2] instead, which
is formulated as:

%⇤F (C1, ..., C!) :=
!÷
8=1

%F (C8 |"⌫ (C8 )) , (8)

where 5 (C8 = 0) and 5 (C8 = 1) re�ect the formula 5 ’s ground truth
values under the hypothetical scenarios of C8 being 0 or 1, respec-
tively, with other variables held constant.

This strategy addresses the intractability of directly optimizing
the complex log-likelihood by maximizing the expectation of the
pseudo-log-likelihood, which is estimated through multiple sam-
plings from the variational distribution &\ .

For a more detailed description of the variational inference pro-
cedure, including the derivation of the equations and the speci�c
formulations of the ELBO terms, please refer to [52, 87].

4.4 Uncertainty mitigation with PCS
To further improve inductive generalization, we draw upon the Pre-
dictability, Computability, and Stability (PCS) framework [83, 84],
which is a comprehensive approach to ensure the reliability, repro-
ducibility, and transparency of data-driven results when employing
complex modeling techniques. The PCS framework emphasizes
three key principles: predictability, which serves as a reality check
for models; computability, which considers the feasibility and scal-
ability of methods; and stability, which assesses the consistency
of results under perturbations to data and models. When applying
KnowGraph to critical real-world tasks, uncertainty quanti�cation
helps to assess and mitigate the uncertainty associated with our
results. Adding uncertainty information to KnowGraph can be valu-
able for decision-making, as it allows us to identify cases where the
model is less con�dent and may require additional investigation or
human intervention.

In particular, the stability principle in PCS emphasizes the im-
portance of assessing the stability of data results with respect to
data and model perturbations. We propose incorporating a weight
noise ensembling technique into the stability principle of the PCS
framework. Weight noise ensembling introduces random pertur-
bations to the weights of the neural network during training and
inference, allowing us to capture the uncertainty in the model’s
parameters by considering a distribution over the weights rather
than a single point estimate. This approach acts as a regularization
technique, reducing over�tting in our setting with extreme label
imbalance and promoting the learning of robust features that can
generalize to new graphs.

To integrate weight noise ensembling into our pipeline within
the PCS framework, we modify the statistical learning and reason-
ing components of KnowGraph. Within the learning component,

we train multiple instances of the GNN model, each with di�erent
random perturbations added to the weights. These perturbations
are sampled from a predetermined probability distribution (e.g.,
Gaussian distribution with mean 0 and a speci�ed variance). In
the reasoning component, we perform inference using each per-
turbed model and collect the predictions from each instance. We
then compute summary statistics (e.g., mean and variance) of the
ensemble predictions to mitigate the uncertainty associated with
each collusion detection result, allowing us to make more robust
updates to the learned rule weights and GCN posterior.

Discussion. Conceptually, KnowGraph has several intuitive ad-
vantages as a framework for graph-based anomaly detection: (1)
Flexibility: KnowGraph improves performance with even a small
number of well-designed rules. The usefulness of each rule is en-
coded in its learned weight, allowing the framework to default
to the original base model prediction if the rule is not helpful. (2)
Scalability: The learning component trains knowledge models in
parallel, scaling linearly with the number of models. The reasoning
component’s complexity depends on the number of rules, where
each rule adds only a few nodes and edges to the reasoning compo-
nent, allowing for easy expansion of knowledge models and rules
without signi�cant computational overhead. (3) Adaptability: By
combining data-driven learning with knowledge-based reasoning,
KnowGraph demonstrates strong generalization capabilities. This
hybrid approach allows the framework to adapt to new patterns
and evolving scenarios, making it particularly suited for dynamic
environments where attack strategies may change over time. Both
new knowledge models and rules can also be added, only requiring
the reasoning component to be retrained.

5 Experiments
5.1 Intrusion detection on LANL
In this section, we describe our results on intrusion detection on
the public Los Alamos National Labs (LANL) [36] dataset.

Dataset. We conduct experiments on a open-sourced intrusion
detection dataset1 from Los Alamos National Labs (LANL) [36]. The
LANL dataset contains a 58-day log within their internal computer
network, among which the malicious authentication events are
identi�ed. The dataset comprises 12,425 users, 17,684 computers,
and 1.6B authentication events. We model the dataset as a graph
so that a node represents a server in the network and an edge
represents an authentication event (e.g. log-in / log-out) from one
server to another. We will remove the repeated edges in the graph
so that the overall number of edges is 45M. Our goal is to detect
whether an edge is malicious or not.

Labels. Each edge in the graph has a ground-truth label by the
dataset, indicating whether the authentication event is malicious
or not. Only 518 malicious edges are among the 45M edges, making
the dataset highly unbalanced.

Settings and baselines. We mainly follow the data pre-processing
procedure as in the Euler [39] work. We use the training and valida-
tion set that consists of all the information before the �rst anoma-
lous edge appears, with 5% of them being the validation set and the

1Detailed dataset information can be found at https://csr.lanl.gov/data/cyber1/.
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Table 1: An overview of the learning models and rules designed for lateral movement detection on LANL [36], which we
formulate as a link prediction problem to identify malicious edges. We design three models and three knowledge rules to
ensure resilient inference of the base model. The rules are designed from domain knowledge and veri�ed in the dataset.

Model Description Rule

Main Main model to predict if an edge is malicious Used in all rules as the overall base model

Auth Binary edge classi�er to determine if the authen-
tication type of an edge is NTLM

Authentication rule: “[main = Mal] ) [auth =
NTLM]”

2-hop Model to predict if a edge is malicious using a
2-hop enclosing graph

Subgraph rules: “[EncG = Mal] ) [main = Mal]”,
“[EncG = Benign] ) [main = Benign]”

Table 2: Detection Performance of the baselines and our
KnowGraph framework. We observe better performance
for KnowGraph in both transductive and inductive settings.
Transductive settings involve learning and testing on the
same graph, leveraging its entire structure, whereas induc-
tive settings require the model to generalize to new graphs
or unseen parts of a graph based on learned patterns.

Transductive

Method AUC AP TP@0.5FP TP@1FP TP@2FP

Euler [39] 0.9946 0.0433 0.7777 0.9444 1.0
EncG [88] 0.9995 0.3249 1.0 1.0 1.0
KnowGraph 0.9999 0.8886 1.0 1.0 1.0

Inductive

Method AUC AP TP@0.5FP TP@1FP TP@2FP

Euler [39] 0.8973 0.0193 0.0 0.0 0.2534
EncG [88] 0.8269 0.0338 0.1648 0.2755 0.3950
KnowGraph 0.9112 0.0852 0.3554 0.4643 0.5910

rest being the training set. We split the dataset into multiple graphs
so that each graph consists of the edges within a time window of
1,800 seconds. After training the model, we will evaluate it on the
test set, which consists of the edges after the �rst anomalous edge
appears. To compare the detection performance, we will evaluate
the AUC, Average Precision (AP), and the True Positive rate at a
certain False Positive rate (e.g., TP@0.5FP denotes the true positive
rate when the false positive rate is 0.5%).

We adopt two baselines. The �rst baseline is the Euler [39] work,
where the authors use graph neural networks (with or without a
recurrent neural network header) to detect the malicious edges.
The inputs to the model include the node and edges within a time
window. The GNN processes the information and returns a value
for each edge, indicating the probability that it is malicious. The
model will be trained with negative sampling. In each training step,
the model will be trained to give a low malicious probability for
the existing edges and a high malicious probability for a randomly
sampled set of non-connected node pairs.

The second baseline uses link prediction with an Enclosing
Graph (EncG) [88]. EncG extracts the K-hop enclosing subgraph

Figure 4: Detection AUC of baselines and KnowGraph given
di�erent time shifts on the LANL dataset. In the challenging
inductive setting (yellow), the baseline performance drops
signi�cantly while KnowGraph still maintains high detec-
tion performance.

for each edge and trains a subgraph classi�cation model to deter-
mine whether the corresponding edge is malicious. We use  = 2
considering the tradeo� between e�ciency and e�ectiveness.

Knowledge models. We have three models for this task. First, we
have the main model to determine whether the edge is malicious,
with the same model architecture as in the Euler work. Second, we
have the auth model, which is also a binary edge classi�er to deter-
mine whether the authentication type of the model is NTLM or not.
Finally, we have a EncG model that follows the same methodology
in the EncG [88] work to judge the edge maliciousness based on
the enclosing graphs.

Knowledge rules. We designed three rules for the task, which
are as follows: (1) Authentication rule, which states that malicious
authentications are likely to be in type NTLM, “[main = Mal] )

[auth = NTLM]”. This rule incorporates the human knowledge that
NTLM authentication is usually a less secured authentication pro-
tocol (compared with, for example, Kerberos), and most malicious
authentications are using NTLM authentication. (2) Subgraph rule 1
which states that the main model should be malicious if 2hop model
predicts a malicious, “[EncG = Mal] ) [main = Mal]”. (3) Subgraph
rule 2 which states that the main model should be benign if 2hop
model predicts a benign, “[EncG = Benign] ) [main = Benign]”.
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Table 3: Detection performance (AUC) of the models and
KnowGraph framework with partial knowledge. We observe
that KnowGraph with the �nal reasoning framework indeed
achieves the best detection performance.

Model Transductive Inductive

main 0.9946 0.8973
auth 0.9440 0.7950
EncG 0.9995 0.8269
main+auth 0.9947 0.9003
main+EncG 0.9997 0.9006
main+auth+EncG 0.9999 0.9112

Note that rules (2) and (3) combined indicate that the prediction
outputs of the mainmodel and the 2hopmodel should be consistent.

Main Results. Based on our intensive evaluations, we show the
model and detection performance of the �nal reasoning pipeline in
Table 2. We observe that in the transductive setting, all models per-
form well with close performance given similar training and testing
data distributions. In particular, the detection performance of the
baselines can achieve over 0.99 AUC in the inductive setting. By in-
tegrating the model information, we can improve the performance
and achieve a close-to-perfect detection performance. However, the
model performance drops to below 0.9 under the inductive learning
setting with out-of-distribution data. By integrating knowledge
rules and reasoning, KnowGraph can better aggregate the infor-
mation from the models in this OOD scenario and signi�cantly
improve detection performance. This showcases the robustness
of the reasoning framework against OOD cases and matches our
intuition of including human knowledge in the pipeline.

In addition, we also show the detection AUC and prediction
logits change on the time domain for both Euler and our method
in Figure 4 and Figure 5, respectively. We can observe that, as the
timestamp goes to the later days, the detection AUC will gradu-
ally drop due to the OOD issues. For both Euler and EncG, many
benign OOD cases are viewed as malicious by the model, which
is not seen in the transductive setting. Moreover, many malicious
accesses receive a low malicious score in EncG. By comparison, the
distribution of benign and malicious accesses is generally similar
in both transductive and inductive settings. We attribute it to the
stability of the reasoning framework with human knowledge.

Ablation Studies. We show the ablation study of model perfor-
mance in Table 3. We can observe that every model has a relatively
good performance (with transductive AUC larger than 0.9 and in-
ductive AUC larger than 0.8). After combining the models with our
reasoning framework, we can further improve the performance
in both transductive and inductive settings. Note that the reason-
ing framework is ubiquitously better than each of its components,
showing its superiority over simple methods, which, for example,
average the results. In addition, we observe a trend that combining
better-performing models can yield better reasoning results, which
shows the importance of training better models and designing the
reasoning framework.

Figure 5: Model prediction logits on the di�erent time shifts
for (top) Euler, (middle) EncG, and (bottom) KnowGraph. Low
prediction logits indicate that the access is considered mali-
cious. We can observe that all approaches perform well for
the transductive setting; for the inductive setting, it is easier
for KnowGraph to separate the malicious accesses by setting
a threshold at around -1.5. However, it is di�cult to classify
benign and malicious accesses based on the prediction logits
of Euler and EncG.
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Table 4: An overview of the models and knowledge rules designed for collusion detection on the real-world eBay dataset, a
heterogeneous graph of marketplace transactions. We design a total of eight data-driven learning models and six knowledge
rules to enhance the inference of the main task model. These rules are designed by experts with domain knowledge.

Model Description Knowledge Rule

Main Main model to predict if a user, transaction, or
item node is an instance of collusion

Used in all rules as the overall base model

Secondary Same objective as the main model, but trained on
a larger graph snapshot with balanced sampling

Used in the Ensemble Rules: “[main =
collusion] ) [secondary = collusion]”
and “[secondary = collusion] ) [main =
collusion].”

Account Takeover Model to predict collusion subclass where one of
the colluding parties fraudulently takes control
of another account

Used in Hierarchy Rule: “[ATO = collusion] )

[main = collusion].”

Sign-In Model to predict collusion subclass accompanied
by some problem indicator related to sign-in

Used in Hierarchy Rule: “[sign-in =
collusion] ) [main = collusion].”

One Day Reg Model to predict collusion subclass where buyers
register and purchase an item on the same day

Used in Hierarchy Rule: “[one-day-reg =
collusion] ) [main = collusion].”

US eBay Decline Model to predict collusion subclass where the
transaction is declined by eBay but overridden by
the colluding party

Used in Hierarchy Rule, “[ebay-decline =
collusion] ) [main = collusion].”

Account Age Domain knowledge using labeled attributes on
the age and amount of user feedback of an account

Used in Business Rule, “[feedback amt < 0] ^
[(seller_age < 1 _ buyer_age < 2)] )

collusion”

Business Domain knowledge using labeled attributes of the
zip code, price, and gross value of a transaction

Used in Business Rule, “[(gmv � price >
3] ^ [billing_zip < delivery_zip] )

collusion”

5.2 Collusion detection on real-world eBay
marketplace dataset

In this section, we describe the real-world eBay marketplace dataset
and our collusion detection results and analysis in detail.

Dataset. We use a large-scale proprietary dataset on real-world
marketplace transactions from the popular online shopping website
eBay, which has more than 135 million users [76]. The dataset con-
tains transactions from 40 days total, each with around 4 million
transactions, collected from January to February of 2022. Each trans-
action consists of three entities: a seller, a buyer, and an item. These
transactions and entities are organized into a knowledge graph,
where each entity is a node with bidirectional edge relationships
with other entities in the same transaction. The corresponding task
aims to train models that predict if a transaction indicates buyer-
seller collusion, a type of fraud in which buyers and sellers conspire
for illegal �nancial gain. This fraud can involve manipulating prices
or exchanging fake feedback to deceive the marketplace, leading to
signi�cant �nancial losses. Due to the scale of the marketplace, this
has a �nancial cost of millions of dollars a year based on proprietary
estimates, making automated detection crucial.

Labels. Each transaction has ground-truth collusion labels from
real collusion cases and additional data based on various buyer,
seller, and item features. These include relevant knowledge features

such as transaction zip code, item price, and shipping cost, com-
prising 26 features across the three entities. This is summarized
in Fig. 2, which contains example di�erences between benign and
anomalous transactions. The ground-truth collusion labels include
a single overall binary classi�cation label and multiple �ne-grained
class or collusion subclass labels. Subclasses are based on speci�c
instances of collusion, such as collusion from a particular group
or those exhibiting speci�c collusive modus operandi. The num-
ber of positive labels is extremely sparse, with only around 1330
new collusion cases daily. This makes the exact ratio of positive to
negative labels 1 : 3269.371, a case of extreme label imbalance.

Settings and baselines. To manage label sparsity in our data, we
segment the graph into temporal subgraphs, each spanning 20 con-
secutive days. The initial model training is conducted on a subgraph
containing the �rst 20 days of transactions, a portion of which is
reserved as a test set for evaluation. We use additional 20-day snap-
shots from subsequent periods to test time-shift generalization in
the inductive setting. These later snapshots vary in their degree of
temporal overlap with the training snapshot; ’overlap’ here refers
to days that are included in both the training snapshot and test-
ing snapshots. In the most challenging setting, the test snapshot
comprises the latter 20 days and has no overlapping days with the
training set. We evaluate the AUC, Average Precision (AP), and the
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Table 5: Overall performance of baselines and KnowGraph.
KnowGraph outperformes the baseline DGI [66] in both the
transductive and inductive settings. The performance is fur-
ther improved with PCS framework. We report AUC and
average precision with : = 0.5, where : is the proportion of
the total dataset considered when evaluating average preci-
sion. We bold results with an improvement larger than 1%.

Transductive

Method AUC AP TP@0.5FP TP@1FP TP@2FP

GCN [40] 0.953 0.723 0.719 0.742 0.790
DGI [66] 0.892 0.587 0.717 0.738 0.788
KnowGraph 0.978 0.755 0.714 0.745 0.788
KnowGraph+PCS 0.968 0.731 0.731 0.757 0.814

Inductive

Method AUC AP TP@0.5FP TP@1FP TP@2FP

GCN [40] 0.501 0.0001 0.0 0.0096 0.0096
DGI [66] 0.498 0.0001 0.0 0.0096 0.0096
KnowGraph 0.609 0.121 0.0048 0.0096 0.0144
KnowGraph+PCS 0.649 0.167 0.0287 0.0383 0.0431

True Positive rate at a certain False Positive rate (e.g., TP@0.5FP
denotes the true positive rate when the false positive rate is 0.5%).

The data is organized into a Heterogeneous Knowledge Graph
[28] comprising three core entities in the eBay e-commerce set-
ting – users, items, and transactions. Edges de�ne transactional
relationships between buyers and sellers (users) for speci�c items.
The heterogeneous knowledge graph with GCN layers is trained on
node graph features with Deep Graph Infomax (DGI) [66] to learn
label agnostic node embeddings. Inductive prediction generates
heterogeneous node embeddings for the four key entities within
the transactional sub-graph: transaction, buyer, seller, and item.
These embeddings are combined to form a feature set for the sub-
graph, which is then input into an XGBoost [10] classi�er trained
to perform node-level collusion classi�cation. This con�guration
serves as the primary baseline and main model within KnowGraph,
and is also used in the GNN architecture for the knowledge models.
It is also the main component in the current automated collusion
detection system at eBay, and our overall goal is to improve its
performance and generalization. We also compare using only do-
main knowledge and a simpler GCN [40] baseline trained with
supervised learning, which has strong transductive performance
but weaker generalization. Since we focus on the inductive setting,
it is not used as a model in KnowGraph.

eBay Dataset Challenges. For the transductive setting, the model
has access to the entire graph during training but not the collusion
labels for nodes in the test set. The model must generalize to a new
snapshot with an unseen graph for the inductive setting. We control
the di�culty of this setting by changing the amount of overlapping
days with the training snapshot. We observe that generalization is
challenging in this context due to several reasons:

Figure 6: AUC of test graph snapshots with decreasing over-
lap with the training snapshot. KnowGraph consistently out-
performs baselines. We observe similar performance regard-
less of how di�erent the new graph is, indicating Know-
Graph is robust to the magnitude of the time shifts.

• The high volumes of eBay transactions (4-5 million per day)
provide substantial changes to the graph structure and label
distribution across graph snapshots.

• The noise induced by the inductive sub-graph sampling for
graph inference can be signi�cant as the entire graph is too
large for tractable message passing.

• The extreme label imbalance coupled with collusive partici-
pants who aremostly new to the platform, often lacking prior
purchasing or selling history, composes fewer anomalous
links in the graph.

• The dataset does not model dynamic time-varying features
for users and items, instead relying on static input node fea-
tures for each such reference entity within a single snapshot.

Due to these challenges, baselines cannot generalize to the in-
ductive setting and have performance close to random guessing.
However, while not as e�ective for the transductive setting, expert-
designed knowledge rules have higher performance due to invari-
ance to this distribution shift.

Knowledge models. For the learning component of the frame-
work, we augment the unsupervised embedding model trained on
the main classi�cation task with several knowledge models cen-
tered aroundmore speci�c tasks for a total of eight models. Utilizing
the �ne-grained collusion labels, we train a model for each �ne-
grained class for four models. These labels are derived from speci�c
instances or cases of collusion. Next, we train a second binary col-
lusion model on upsampled data. These models are independently
trained XGBoost classi�ers on their respective tasks using the same
unsupervised graph embeddings. Finally, we use graph features
on buyer and seller account age, zip code, and price to construct
two additional models. Unlike the other models, these are matrices
directly derived from the graph.

Knowledge rules. For the reasoning component of the framework,
we organize the model’s predictions into logical rules. The mod-
els are predicates of the main model and are organized into the
following six rules.
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Table 6: Final rule weights of KnowGraph applied to collusion detection on the real-world eBay dataset. We observe similar
weights in similar rules, such as the hierarchy rule. Rules with higher magnitude have a larger overall e�ect on inference.

ATO Sign-in One Day Reg US Ebay Decline Exclusion Ensemble Account Price/Shipping

Weight -1.2227e-02 -1.2221e-02 -1.2221e-02 -1.2221e-02 -2.2177e-10 -1.5172e-02 1.6767e-03 1.5844e-03

Table 7: Knowledge model performance under the transductive and inductive settings for the main task (�rst two rows) and
their own semantic tasks (third row). We report average precision with : = 0.5. The knowledge models perform well on their
own semantic tasks in general and perform poorly when directly mapped to the main task.

Methods Main Secondary ATO Sign-in One Day Reg US Ebay Decline Account Age Business

Transductive 0.587 0.5805 0.0002 0.0011 0.0047 0.0014 0.0434 0.0378
Inductive 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0526 0.0692

Knowledge Task 0.587 0.5805 0.681 0.521 0.353 0.251 1.0 1.0

• Hierarchy rule that denotes the hierarchical relation between
the binary and collusion subclasses,
“[subclass = collusion] ) [main = collusion].”

• Exclusion rule that utilizes the mutually exclusive nature of
�ne-grained classes, formulated as “[collusion8 = true] )

[(collusion0 = false) ^ · · ·^ (collusion8�1 = false) ^

(collusion8+1 = false) ^ · · · ^ (collusion= = false)].”
where 8 is the class index up to = = 4

• Ensemble rules that ensembles the predictions of the two
models trained on the overall classi�cation task by ensuring
consistency,
“[main = collusion] ) [secondary = collusion]” and
“[secondary = collusion] ) [main = collusion].”, where
secondary refers to the model trained on a larger graph with
balanced sampling.

• Business rule that uses expert knowledge of existing features
to pinpoint likely cases of collusion, “[feedback amt < 0]^
[(seller_age < 1 _ buyer_age < 2)] ) collusion” and
“[(gmv� price > 3] ^ [billing_zip < delivery_zip] )

collusion”, where 0, 1, 2 , 3 are hyperparameters. The busi-
ness rules and hyperparameters are based on domain exper-
tise and have been veri�ed in the graph.

PCS implementation. To improve inductive generalization and
mitigate uncertainty, we implement weight noise ensembling into
KnowGraph, following the PCS framework. During the statistical
learning component, we add random perturbations sampled from
a zero-mean Gaussian distribution with a noise scale of 0.1 to the
weights of each GNN model. In the reasoning component, we per-
form ten forward passes through the GCN for each batch during
the E-step of the variational EM algorithm, accumulating the loss
and rule scores from each sample and computing their average
to obtain a more robust estimate of the variational posterior. As
demonstrated by our empirical results, incorporating weight noise
ensembling within the PCS framework improves KnowGraph’s
generalization performance and calibration. We measure calibra-
tion with the Expected Calibration Error (ECE), which quanti�es
the di�erence between the model’s predicted probabilities and the

Figure 7: Model calibration for the KnowGraph framework
with and without weight noise ensembling for the data-
drivenmodels. KnowGraph shows amore volatile calibration
curve, deviating signi�cantly from the dashed line repre-
senting perfect calibration. In contrast, KnowGraph+PCS
maintains a closer alignment to the perfectly calibrated line,
suggesting more reliable probability estimates. The ECE val-
ues for KnowGraph (0.106) and KnowGraph +PCS (0.0755)
quantify these observations, with the latter indicating amore
accurately calibrated model.

observed frequencies of correct predictions. A lower ECE indicates
better calibration and reliability.

Main Results. Combining model predictions with the main model
in the reasoning framework improves performance in both the
transductive and inductive settings. Notably, in Tab. 5 we observe a
0.086 AUC gain and 0.032 AP gain in the transductive setting over
the individual main model DGI [66]. This is also comparable to the
highest performing baseline for the transductive setting, a GCN [40]
trained with supervised learning. There is a more signi�cant gain in
the inductive setting, where we observe a 0.111 AUC and 0.120 AP
improvement. Furthermore, adding weight noise ensembling from
PCS further improves inductive generalization performance to 0.649
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AUC and 0.167 AP, a 0.151 and 0.166 gain over the baseline, and the
highest performance on this dataset. However, using PCS slightly
lowers transductive AUC and AP but still outperforms baselines
while improving TP at lower FP rates.

In addition, we �nd in Fig. 6 that this performance improvement
is consistent over various overlapping days, including the fully
inductive setting where the model is evaluated on a new graph at
a 20-day time shift. Performance appears to be independent from
the degree the graph shifts, indicating the learned features and
rules are robust to changes in the graph in future days. Since it is
prohibitively expensive to label new nodes, this is the �rst time
a fully automated pipeline can classify new transactions on this
dataset with the potential to assist human experts. However, due
to the low performance of the main model, there is still a large gap
between transductive and inductive performance, which we leave
for future work.

Ablation Studies. The reasoning component of KnowGraph learns
a weight for each rule corresponding to their signi�cance on the
�nal classi�cation decision of the framework. We list the associated
weight for each rule in Tab. 6. Rules with associated weights with
higher magnitudes have a larger e�ect on inference.

Besides inductive generalization ability, it is also important for
models to be well-calibrated; the probability associated with the
predicted class label should re�ect its ground truth correctness
likelihood. We conduct a calibration analysis shown in Fig. 7. In
this diagram, the x-axis represents the model’s predicted probability
(con�dence), divided into twenty bins. The y-axis represents the
actual fraction of positive instances within each bin.We �nd in Fig. 7
that the base KnowGraph exhibits higher variability in its predicted
probabilities with a noticeable peak around the 0.6 mark on the
fraction of true positives, indicating a point of overcon�dence in
its predictions. In contrast, KnowGraph with PCS remains closer to
the perfectly calibrated line, suggesting that it is better calibrated
and more consistent in its predictive probabilities across di�erent
thresholds. This is also supported by the ECE values, where adding
PCS reduces ECE from 0.106 to 0.0755.

6 Discussion and Conclusion
We propose KnowGraph , the �rst framework that integrates knowl-
edge reasoning with GNNs for enhanced graph-based anomaly
detection. KnowGraph combines multiple GNN models operating
on di�erent graph structures with a probabilistic logical reasoning
component. We employ the PCS framework and introduce weight
noise ensembling to mitigate uncertainty and improve the inductive
generalization ability of our model. KnowGraph is �exible to vari-
ous amounts and designs of rules, highly scalable to large graphs,
and demonstrates robust performance in challenging scenarios
with class imbalance and heterogeneous information. Experiments
on two large-scale real-world datasets, an eBay dataset for collu-
sion detection and the LANL network event dataset for intrusion
detection, demonstrate KnowGraph’s superior performance over
state-of-the-art GNN baselines in both transductive and inductive
settings. These real-world graph datasets present signi�cant chal-
lenges, such as extreme class imbalance, heterogeneous information,
and the need for inductive generalization to new graphs. Know-
Graph’s ability to e�ectively address these challenges highlights

the potential of integrating domain knowledge into data-driven
models for high-stakes, graph-based security applications.

KnowGraph’s modular architecture paves the way for more ac-
curate and interpretable graph learning systems, bridging the gap
between symbolic and neural approaches to graph learning. The
reasoning approach introduced in this paper opens up new oppor-
tunities for leveraging domain knowledge in various real-world
applications. Future research directions include exploring more ad-
vanced GNN architectures and investigating alternative inference
techniques. Additionally, developing more e�cient and scalable
reasoning components could further enhance the applicability of
KnowGraph to even larger real-world graphs.
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