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ABSTRACT. A subset R of integers is a set of Bohr recurrence if every rotation
on T? returns arbitrarily close to zero under some non-zero multiple of R. We
show that the set {k!2™3™: k,m,n € N} is a set of Bohr recurrence. This is
a particular case of a more general statement about images of such sets under
any integer polynomial with zero constant term. We also show that if P is a
real polynomial with at least one non-constant irrational coefficient, then the
set {P(2™3™): m,n € N} is dense in T, thus providing a joint generalization
of two well-known results, one of Furstenberg and one of Weyl.

1. INTRODUCTION AND MAIN RESULTS

1.1. Notions of recurrence. The recurrence properties of a dynamical system
are a classical way to study the system’s qualitative and quantitative properties.
We focus on recurrence in a topological dynamical system (X, T'), meaning that X
is a compact metric space and T': X — X is a homeomorphism, and further assume
that the system is minimal, meaning that no proper closed set in X is T-invariant.
A set R C Nis a set of (topological) recurrence if for every minimal system (X, T)
and non-empty open set U C X, there is some r» € R such that UNT"U # 0.
It follows quickly from the compactness of X that N is a set of recurrence, and
many sparser subsets have been shown to be sets of recurrence. These include, for
example, the set of differences of an infinite set (see [6] for this example and others),
the set {P(n) : n € N} where P is any integer valued polynomial with no constant
term (see [5l[13]), and the set of shifted primes {p — 1 : p is a prime} (see [14]). Tt
is also easy to check that parity obstructions give rise to examples, such as the odd
numbers or any shift of the primes other than £1, that cannot be sets of recurrence.

A natural question is if restricting the class of topological systems changes the
possible sets of recurrence. The most basic non-trivial systems to consider are
rotations on the d-dimensional torus T¢ = RY/Z4. For x € R%, write ||x|p« :=
d(z,Z%), and we define sets of recurrence for these systems.

Definition. A subset R of the integers is a set of Bohr recurrence if for every
integer d € N, all ay,...,a4 € R, and every € > 0, there exists non-zero r € R such

Received by the editors June 14, 2024, and, in revised form, July 5, 2024, and July 9, 2024.

2020 Mathematics Subject Classification. Primary 37B20; Secondary 37A44, 37C85, 11J71,
05B10.

Key words and phrases. Bohr recurrence, non-lacunary semigroups, Furstenberg’s theorem,
Weyl’s theorem.

The first author was supported by the research grant ELIDEK HFRI-NextGenerationEU-
15689 and the third author was partially supported by the National Science Foundation grant
DMS-2348315.

(©2024 American Mathematical Society
181

Licensed to Northwestern Univ. Prepared on Thu Mar 6 18:23:09 EST 2025 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/17006

182 NIKOS FRANTZIKINAKIS, BERNARD HOST, AND BRYNA KRA

that
lrajllr <e forj=1,...,d.

Equivalently, the set R is a set of Bohr recurrence if for every integer d € N and
every z € T?, the point 0 belongs to the closure of the set {rz: r € R\ {0}} in T¢.
By building an appropriate rotation, one can check that no lacunary set can be a
set of Bohr recurrence, and therefore cannot be a set of recurrence. An important
open problem, popularized by Katznelson [10], is whether a set of Bohr recurrence
is necessarily a set of topological recurrence. See [3|[7H9][16] for various equivalent
formulations of this question and related results.

1.2. Non-lacunary semigroups. Our objective is to derive recurrence and den-
sity properties of sets generated by thin non-lacunary semigroups of the integers, a
prototypical example being the set {23™: m,n € N}. Again, parity reasons pre-
vent this from being a set of Bohr recurrence, but after removing this obstruction
we are led to the well-known question in dynamics whether the set

(k123" k,m,n € N}

is a set of topological recurrence (more generally one can ask if this is a set of mea-
surable multiple recurrence). Although we are unable to answer these questions, we
derive some recurrence results of intermediate strength, which follow from Fursten-
berg’s Diophantine Theorem (see Section[L.3), using elementary manipulations.
Two positive integers are multiplicatively independent if their only common
power is 1. The first main goal of this note is to establish the following result:

Theorem 1. Let p,q € N be multiplicatively independent integers. Then the set
{klp™q™: k,m,n € N} is a set of Bohr recurrence.

More generally, it follows from our argument that k! can be replaced by any
sequence that contains multiples of every positive integer.

On the other hand, considering rational multiples of elements of this set shows
that the multiplicative factor k! cannot be removed, and, in fact, it is necessary
for our argument to work even if the real numbers «q,..., a4 have no rational
relations. As shown in [12, Theorem 2|, for d > 4, there exists € T?¢ with
rationally independent coordinates for which the set {2™3"z: m,n € N} is not
dense in T?. Although for fixed d € N this particular obstruction can be removed if
more powers are included in the set (see [15] for a density statement on T? that uses
three powers), [12] Theorem 2] shows that the problem persists even when using ¢
powers instead of two and taking d large enough; in this case we have non-density
in T¢ for some = € T¢ with rationally independent coordinates whenever d > 2¢.
Furthermore, by slightly modifying the example in [I2] Lemma 4.2], we obtain a
point z € T* with rationally independent coordinates, such that for some £ > 0 we
have ||2"3™x||14 > € for every m,n € N (see Section [3.2).

We also remark that combining Theorem [T] with [9, Theorem 4.1] and [7] The-
orem A], we deduce that the sets in Theorem [I] (and in Theorem [2) are also good
for topological recurrence for all nilsystems and for a large class of skew product
systems.

In the proof of Theorem [I] we consider a more general situation where sets of
the form {p™q¢™: m,n € N} are replaced by more general non-lacunary semigroups
of N.
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Definition. A semigroup of N is a sub-semigroup of (N, ) and it is non-lacunary
if it contains two multiplicatively independent integers.

Equivalently, a semigroup is non-lacunary if it is not contained in the set of
powers of a single integer. It is shown in [4) Lemma IV.1] that a semigroup ¥ =
{s1 < s < ---} of N is non-lacunary if and only if s,,+1/s, — 1 as n — oo.

We say that P is an integer polynomial if it has integer coefficients. We prove
the following result, generalizing Theorem []

Theorem 2. Let 3 be a non-lacunary semigroup of N, K C N be a set that contains
multiples of every positive integer, and P be a non-constant integer polynomial with
P(0) = 0. Then the set {P(ks): k € K,s € X} is a set of Bohr recurrence.

In particular, if p, ¢ € N are multiplicatively independent and P is a non-constant
integer polynomial with zero constant term, then the set

{P(k!p™q"™): k,m,n € N}

is a set of Bohr recurrence. By taking P(n) = n, Theorem [T]follows.

The argument used to prove Theorem [2] can also be used, essentially without
change, to show that if Py, ..., P, are integer polynomials with zero constant terms,
then for every aq,...,a; € R and € > 0, there exist k¥ € K and s € ¥ such that
|1Pj(k-s)ajllr <eforj=1,...,¢

We prove Theorem [2]in Section[3] The main ingredient is Proposition[4] which is
of independent interest and shows the existence of a point with rational coordinates
in the orbit closure of non-lacunary semigroup actions of T¢. A special case of
this result is that if ¥ is a non-lacunary semigroup of N and A is a non-empty
closed subset of T¢, which is invariant under coordinate-wise multiplication by
elements of the form (s,...,s) for every s € ¥, then A contains a point with
rational coordinates. Theorem[I]is a direct consequence of this result.

1.3. A Weyl-type extension of Furstenberg’s result. We recall a celebrated
theorem of Furstenberg [4] Theorem IV.1] (see also [2] for an elementary proof):

Theorem (Furstenberg). Let ¥ be a non-lacunary semigroup of N and « be irra-
tional. Then the set {sa: s € X} is dense in T.

This immediately implies that a closed X-invariant subset of T is either dense or
finite. In the latter case, it consists entirely of rational points.
Another celebrated theorem, this time of Weyl [17], is as follows:

Theorem (Weyl). Let P € R[t] be a polynomial with at least one non-constant
irrational coefficient. Then the set {P(n): n € N} is dense in T.

We prove the following common generalization of these two density statements:

Theorem 3. Let ¥ be a non-lacunary semigroup and P € R[t] be a polynomial
with at least one non-constant irrational coefficient. Then the set

{P(s): s € &}
is dense in T.

It should be noted that Theorem 3 follows from |11, Theorem 1.2], but the
argument presented here is more streamlined and more detailed.

Taking P(n) := n gives Furstenberg’s result and taking ¥ := N gives Weyl’s
result. On the other hand, even for the simplest non-linear cases, such as P(n) =
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(n%4n)a, where o is irrational, it is not clear how to proceed and prove density, since
the set {P(s): s € ¥} does not seem to satisfy any useful 3-invariance property. A
key maneuver in our argument is to instead work with the subset {(sa, s?a): s € £}
of T2, which is invariant under multiplication by all elements of the set {(s,s?): s €
%}, In Proposition[5] we show that this invariance implies that the closure of this
set contains a line segment parallel to some coordinate axis. Theorem [3 follows
easily from this fact.

Finally, we note that more general d-dimensional versions of Theorem [Blfail. For
example, if Pi,..., P; € R[t] are such that every non-trivial integer combination of
the polynomials is a polynomial with at least one irrational non-constant coefficient,
and X is a non-lacunary semigroup of N, it is not always true that the set

{(P1(8),...,Pa(s)): s € X}
is dense in T? (this holds for ¥ := N since equidistribution follows from Weyl’s
criterion). To see this, take d = 4 and ¥ := {23": m,n € N}, P;(n) = nqo;,
j = 1,...,4, for the rationally independent reals ay,...,as constructed in |12}
Lemma 4.2], so that the above set is not dense.

1.4. Notation. We denote the set of positive integers by N. We let T denote the
one-dimensional torus R/Z, and we often identify it with [0, 1). We denote elements
of T by real numbers and we implicitly assume that these real numbers are taken
modulo 1.

If (t1,...,tq) and (x1,...,24) are two vectors in R%, we define their product by
coordinate-wise multiplication as follows

(t1s-sta) - (1, @a) = (tizn, . taza)-
Likewise, if (K1, ..., kq) € Z% and (x1,...,14) € T¢, we write
(kl, .. .,kd) . (.’L‘l, . ,:Ed) = (kll'l, .. .7kdl‘d).

If S is a subset of Z% and A a subset of T?, we say that A is S-invariant or invariant
under S if s-x € A for every s € S, x € A.

2. EXISTENCE OF RATIONAL POINTS

Furstenberg’s Theorem implies that if ¥ is a non-lacunary semigroup of N, then
a closed Y-invariant subset of T always contains a rational point. A natural ques-
tion to consider is whether there are generalizations of this statement in higher
dimensions. We prove that this is the case, and use this result in the proofs of both
Theorems[2 and [3] To give the precise statement, we need another definition.

Definition. A point z € T¢ is rational if its coordinates are rational. If ¥ is a
subset of N, we say that the denominators of a rational point x are relatively prime
to ¥ if its coordinates are rationals with denominators relatively prime to each
element of .. By convention, the denominator of 0 is 1.

Proposition 4. Let X be a non-lacunary semigroup, d € N, and ¢y, ...,¢; € N (not
necessarily distinct). Let A be a non-empty closed subset of T, invariant under

phoeoba = (s sh) s € B,
Then A contains a rational point with denominators relatively prime to 3.

Remark. For the proof of Theorem[I] only the case ¢; = --- = £4 = 1 is needed.
The more general case is needed in the proofs of Theorems [2]and [3]
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Proof. We proceed by induction on d € N. Throughout, for / € N we let
»i={s':sex}

The case d = 1. Since ¥% is a non-lacunary semigroup of N, by Furstenberg’s
Theorem (see Section [I.3) we have that A contains a rational point x = a/b with
a € Z and b € N. Write b = b'c, where b’ divides some element k of ¥ and c is
relatively prime to every element of ¥. Then kx = a(kT/b') and thus this point of A
is rational with denominator relatively prime to 3.

Suppose that the result holds for some d € N. We show that it holds for d + 1.
Let A be a non-empty closed subset of T4t invariant under X¢1-fa+1 where
ly,...,€411 € N. Let B be the image of A under the coordinate projection

($17-~-,$d,$d+1) = Td+1

of T onto T. Then B is a non-empty closed subset of T, invariant under the
non-lacunary semigroup $¢¢+1, and hence by the case d = 1, it contains a rational
point y with denominator relatively prime to .

Write y = a/m, where a € Z and m is a positive integer relatively prime to every
element of X, and let

Yni=XN(mZ+1).
Then X, is a semigroup of N with the property that
sy=1y for every s € ¥,,.

We claim that ¥, is non-lacunary. Indeed, if p and ¢ are two multiplicatively
independent integers belonging to X, then p and ¢ are relatively prime to m (because
the denominator of y = a/m is relatively prime to ). Hence, by Euler’s Theorem,
there exist integers ¢t and n such that p' = 1 (mod m) and ¢" = 1 (mod m).
Then p! and ¢" are multiplicatively independent and belong to ¥,, and thus the
semigroup 3, is non-lacunary.

We define the set

C = {($17...7l‘d) ETd: (xla"')xd7y) EA}

Then C is a closed subset of T¢, and is non-empty since y € B. We claim that C
is invariant under the semigroup

Yheota = f(s0 L sh) s e R, )
Indeed, if (z1,...,24) € C, using that sy = y for every s € 3, and the
invariance of A under Xf>%4+1 we have that

(s, s%xg,y) = (s"2y, ..., s%xg, sPt1y) € A for every s € B,,.

Using the defining property of C, we deduce that (s1xzy,...,s%z4) € C.
Using the induction hypothesis with C' substituted for A and X% substi-

tuted for 4% we deduce that C contains a rational point (yi,...,yq) with
denominators relatively prime to X. Then the point (y1,...,yq,y) is rational with
denominators relatively prime to X, and belongs to A, as desired. (Il
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3. PROOF OF THE BOHR-RECURRENCE RESULT

3.1. Proof of Theorem[2] Suppose that
P(n)=cin+ con?+ -4 cpn”

for some r € N and ¢q,...,¢. € Z, not all of them zero. Let ¢ > 0, d € N, and
= (x1,...,74) € T Let A be the closure of the set

2 2 r r .
{(sc11,...,8C1T4,8°CoT1, ..., 8°Cogy ..., 8 Cr1,...,8 Crtqg) 1 8 € X},

Then A is a non-empty closed subset of T™¢ that is invariant under

{(s,...,8,8%,...,8% ... ,8",...,8) s €%},

where each power of s is repeated d times. Therefore, by Proposition [4] A contains
a rational point y € T"?. Since K contains multiples of every positive integer, there
exists k € K such that all the coordinates of ky are integers. It follows that 0 (as
an element of T"%) belongs to the closure of the set

{(ksc1x, (ks)com, ..., (ks) cox) = s € B,
Since P(ks)x = kscix + (ks)?caz + -+ - + (ks)"c,x, we have that
1P ks) e < lhscralipa + [ (ks)2eallpa + - + | (bs) crlga.
It follows that 0 (as an element of T¢) belongs to the closure of the set
{P(ks)z: ke K:se X}
and so
(1) |P(ks)z||te <e, forsomek e K,s¢eX.

The polynomial P has finitely many zeros, all bounded by some integer N € N.
Estimate (I) also holds for the semigroup ¥ N (N, +o0) instead of ¥, and thus
replacing ¥ with this semigroup we deduce that there exist k € K and s € ¥ such
that P(ks) # 0 and || P(ks) x|z« < e. It follows that the set {P(ks): k € K,s € £}
is a set of Bohr recurrence. (]

3.2. Non Bohr recurrence of 23" for totally ergodic rotations. Although
the set {23™: m,n € N} is not good for recurrence of rational rotations, it is
reasonable to hope that it is good for recurrence for all x € T? that have rationally
independent coordinates. An even more optimistic conjecture is that it is good for
measurable recurrence for all totally ergodic systems. Unfortunately, we show that
neither claim holds.

We claim that there exists € T4 with rationally independent coordinates and
g > 0 such that [|2"3™z||pa > € for every m,n € N. Indeed, using [12] Lemma 4.2],
we have the existence of y = (y1,¥2,¥3,y4) € R* with rationally independent co-
ordinates such that for all but finitely many m,n € N we have {2"3"y;} < 1/10
for some j € {1,2,3,4}, where {t} denotes the fractional part of ¢ € R. Let
xzj=y; +1/5,j € {1,2,3,4}, and x = (21,22, 23,24); then obviously z also has
rationally independent coordinates. Since {2™3"/5} € [1/5,4/5] for all m,n € N, it
follows that for all but finitely many m,n € N we have {2™3"z;} € [1/5,9/10] for
some j € {1,2,3,4}. Then ||2"3"x||7+ > 1/10 for all but finitely many m,n € N.
This immediately implies the claim.

The situation does not improve much if we consider sets of the form

Yi={p"---pyfing,...,ng €N}
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Using [12] Lemma 4.2], we can show in a similar fashion that there exists x € T?
with rationally independent coordinates and ¢ > 0 such that ||sz|t2c > € for every
s€X.

However, the possibility that the set {23™: m,n € N} is good for measurable or
topological recurrence for systems without rotational factors (i.e. for weakly mixing
systems) remains open. For measurable recurrence this problem is explicitly stated
in [1] Question 3].

4. PROOF OF THE DENSITY RESULT

Our goal in this section is to prove Theorem 3]

4.1. A reduction. Theorem [3]is a direct consequence of the following higher di-
mensional density result. This higher dimensional setting has the advantage of
some dilation invariance that the 1-dimensional setting lacks.

Let eq,...,eq denote the standard unit vectors of T% or R%, depending on the
context.

Proposition 5. Let d € N, ¥ be a non-lacunary semigroup of N, and A be a closed
infinite subset of T? that is invariant under

{(s,8%,...,s): s € L}
Then {x +tej: t € T} C A for some rational point x € T¢ and j € {1,...,d}.

Proof of Theorem [3] assuming Proposition 5] Let ¢ > 0 and « € T be arbitrary. It
suffices to show that there exists s € ¥ such that ||P(s) — aflr <e.

We can assume that P(0) = 0 and write P(n) = c;n+ - +cqn? for some d € N
and real numbers ¢y, . . ., ¢q, at least one of which is irrational. Let A be the closure
of the set

{(c18,¢28%, ..., cqs?): n € B},
considered as a subset of T?. Clearly A is invariant under the map z + (s, s2,...,s%)-
x for every s € X, and since at least one of the c¢q,...,cq is irrational the set
A is infinite. It follows from Proposition [5] that there exist some rational point
= (r1,...,24) € T? and jo € {1,...,d} such that {x +te;,: t € T} C A. Hence,
for t:=a -3 ;.42; (mod 1) there exists s € ¥ such that

; 3 . . : g
llejs” —zjlle < = for j#jo and  [lejs™ —a+ > wmlr< 7
1<j<d, j#jo
Then
IP(s)—allr < > g —zjllr+ lejos —a+ Y e <e,
1<j<d, j#jo 1<5<d, j#do
completing the proof. O

4.2. A key density property on T¢. The main goal in this subsection is to prove
Proposition[7] In its proof we use the following fact:

Lemma 6. For every d € N and uy,...,uqg € R\ {0}, the set
{(tuy + k1, tPug, ... t%ug + kg): t € (0,400), k1, ..., ka € Z}

is dense in R<.
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Proof. We can assume that u; > 0. First, note that if we let ¢’ := tu; and u; =

uj/u{, for j = 2,...,d, we see that it is sufficient to verify the stated property when
u; = 1. We work with this assumption from now on.
Let z := (x1,...,74) € RL It suffices to show that for every e > 0 there exists

t > 0 such that
(2) It —z1||lr < e, [tPug — za|jr <&, ..., |[tPuqg — 24|/t < e.
So let € > 0. First, we claim that there exists dy € (0,¢) such that every non-
trivial integer combination of the polynomials (in k)
(k + 21+ 60)uz, . . ., (k+ 21 + do)%uq

has at least one irrational non-constant coefficient. Indeed, note that modulo ra-
tional multiples, the coefficients of the (degree 1) monomial k in these polynomials
are respectively

(xl + 50)“2, (251 + 50)2U3, ceey (q;l + 50)d_1ud.

So it suffices to choose g such that all non-trivial integer combinations of these
numbers are irrational. Such a choice of §y exists, since for any choice of 41, ...,¢4 €
Z, not all of them 0, the equation

lyusd + lousd® + - 4 Lygugd®t =0

has finitely many solutions in the variable 0, so there exists dg € (0,¢) such that
x1 + o avoids all these (countably many) solutions. This proves the claim.
For this choice of dy, Weyl’s criterion [17] gives that the sequence

((ki +x + (50)2’[12, R (k‘ +x1 + 50)dud)k€N

is equidistributed in T¢ and thus dense in T?. It follows that there exists an integer
ko > |z1| + do such that

(ko + 21+ 60)% — @2llr < e, ..., |[(ko + 21 + 0)* — zallr < €.
Letting ¢ := kg + x1 + o, and recalling that §y € (0,¢), we deduce that (2) holds,
completing the proof. |

Proposition 7. Let d € N, ¥ be a non-lacunary semigroup of N, and A be a closed
subset of T, invariant under

{(s,8%,...,s): s € L}
If 0 is a non-isolated point of A, then {tej: t € T} C A for some j € {1,...,d}.
Proof. For d = 1, this follows from Furstenberg’s Theorem (see Section[T.3). For
general d € N, we argue as follows using ideas from [4] and [I5], with the caveat
that we are not working with the Euclidean norm but with the quantity defined in
(3).

Let m: R? — T = R9/Z¢ be the natural projection and let B = 77 1(A) =
A+ 7% Then for every s € X, the closed subset B of R? is invariant under the
map =+ (s,5%,...,5%) -z, and the point 0 of R is a non-isolated point of B.

For x = (71,...,74) € R? let

(3) Il i= foa] + foal = + -+ |zl #.
Note that |||-||| satisfies the triangle inequality and we have the following identity
(4) |H(tx1, 2y, ... 7tdgcd)m = [t| I (z1, 22, ..., za)]l| -
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Note also that a sequence of vectors in R? converges to a vector 2 with respect to
the Euclidean norm if and only if it converges to x with respect to the distance

associated with |||-|||; we use this fact without further reference.
For every € > 0, we let
T T2 Ld
(5) D= { (T 2 L) e B o< lafl <<
) 1" {j)* 1
and

(6) D:=(D-.

e>0

Then D is a closed subset of the compact set {x € R?: ||z|| = 1}. Since, by
assumption, 0 is a non-isolated point of A (this is the only point where this as-
sumption is used), for every e > 0 the compact set D, is non-empty, so the set D
is non-empty.

We claim that for every u € D and every t > 0 we have (t,t%,...,t%)-u € B
(a similar statement holds for every ¢ € R but we do not need this). So let u =
(u1,...,uq) € D, t >0, and € > 0. It suffices to show that there exists b € B with

(7) It 22, th) - u— ||| <e.

Let ¥ = {s1 < 83 < ---}. Since ¥ is a non-lacunary semigroup of N, we have
lim, o0 S5 = 00 and lim,,_, o S;“ = 1. Hence, for every ¢ > 0 (to be chosen later,

depending on € and ¢ only) there exists M = M (6) > s1 such that if s,41 > M we
have

|5f1+1 —sl| <dsl, forj=1,...,d.
It follows that for every real o > M, there exists s € ¥ with
(8) |s? —od| <6-07, forj=1,...,d.
Indeed, we can choose s := sy, Where_ no € N satisfies s,, < 0 < 8,41, then
Sno+1 > M and we have |07 — s, | <|[s) | —s) | < ds), < do7.

Since u belongs to D, by (&) and (6) there exists z = (z1,...,z4) € B, depending
on g,t,u, M, with

t T To T4 €
() 0 <zl <~ and . T _f[< £
T el et e 3

Applying (8) with § := Witd) and o := m > M (by (9)), it follows that there
exists s € ¥ (depending on ¢, ¢, z) such that

ti ti gd
—j}_ = forj=1,...,d.
I{Eafl

(10) ‘Sj - : j P IR
(Il 24 {ll[l
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2 d . .
If we add and subtract (4%, 1%z 12Za) ip the expression below and use
Ml Wfl®> = i

the triangle inequality, we get

(11) |||(tu1, t2ug, ... thug) — (sz1, %20, .. ., sdajd))m <
T 2 o) d Zq
(g =2 ot - )+
H [El ll flll?
t t2 5 td d
(@r(rr = )y = )y s | <
Il ll1* [l
where the last estimate follows from (9) and as follows: By the first term
is equal to
1 o Tq 3
tI[( , e ) —ull| < =,
‘ e T 2

where the last estimate follows from (9). By the second term is equal to

el o] Joal |y ] g ]
T1|| = s+ 22| T | ——5 — 5 st |z =8,
Il [l [zl
and using (I0) we can bound this by
el 4 foal 4 laal ) = 5

~— T ] ce Tqg|t) = <.

2|zl 2
It follows from (II) that () holds for b := (s,s?,...,s%) -z, which is an element
of B since z € B and B is invariant under the map x ~ (s,s%,...,s%) - x. This

completes the proof of the claim.

Let u now be any element in D. We have just shown that the set C' :=
{(,#2,...,t) - u: t > 0} is contained in B and thus the closure of its image 7(C)
under the natural projection 7: R? — T? is contained in A = 7(B). Since u € D
we have |[||ul|| = 1, hence there exists jo € {1,...,d} such that u;, # 0. We deduce
from this and LemmalGlthat {te;,: t € R} C C+Z¢ C B, hence {te;,: t € T} C A.
This completes the proof. (Il

We deduce the following:

Corollary 8. Let d € N, 3 be a non-lacunary semigroup of N, and A be a closed
subset of T¢ that is invariant under

{(s,6%...,8Y): s € 2}.

If x is a non-isolated rational point of A, with denominators relatively prime to 3,
then {x +tej: t € T} C A for some j € {1,...,d}.

Proof. As in the proof of Proposition [4] we let m be an integer that is relatively
prime to every element of ¥ and such that the coordinates of  remain invariant
when multiplied by any element of the non-lacunary semigroup %, := XN (mZ+1).
Then the set A — x is closed, invariant under

{(s,8%...,80):5€2,},

and has 0 as a non-isolated point. Applying Proposition [7]with ¥,, instead of X,
we get that there exists j € {1,...,d} such that {te;: t € T} C A — z, completing
the proof. O
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4.3. Proof of Proposition Since A is an infinite subset of T?, the set A’ of
non-isolated points of A is non-empty. It is also closed and invariant under the set
$hwd of Proposition Applying Proposition [4] for ¢, := 1,...,4; := d, we get
that A’ contains a rational point with denominators relatively prime to 3. The
result now follows from Corollary[§ and the fact that A’ C A (since A is closed).
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