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ABSTRACT
Federated learning (FL) enables multiple participants to train a
global machine learning model without sharing their private train-
ing data. Peer-to-peer (P2P) FL advances existing centralized FL
paradigms by eliminating the server that aggregates local models
from participants and then updates the global model. However,
P2P FL is vulnerable to (i) honest-but-curious participants whose
objective is to infer private training data of other participants, and
(ii) Byzantine participants who can transmit arbitrarily manipu-
lated local models to corrupt the learning process. P2P FL schemes
that simultaneously guarantee Byzantine resilience and preserve
privacy have been less studied. In this paper, we develop Brave, a
protocol that ensures Byzantine Resilience And priVacy-prEserving
property for P2P FL in the presence of both types of adversaries.
We show that Brave preserves privacy by establishing that any
honest-but-curious adversary cannot infer other participants’ pri-
vate data by observing their models. We further prove that Brave is
Byzantine-resilient, which guarantees that all benign participants
converge to an identical model that deviates from a global model
trained without Byzantine adversaries by a bounded distance. We
evaluate Brave against three state-of-the-art adversaries on a P2P
FL for image classi�cation tasks on benchmark datasets CIFAR10
andMNIST. Our results show that global models learnedwith Brave
in the presence of adversaries achieve comparable classi�cation
accuracy to global models trained in the absence of any adversary.
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1 INTRODUCTION
Peer-to-Peer federated learning (P2P FL) [5] allows multiple partici-
pants to collaboratively train a global model while avoiding sharing
their private data in a distributed manner. However, P2P FL intro-
duces vulnerabilities due to the lack of central coordination, which
can allow unauthorized participants to access sensitive data and/or
disrupt the training process. An honest-but-curious participant may
be able to infer private training data by launching a membership
inference attack (MIA) [9], highlighting the urgent need of privacy-
preserving training techniques in P2P FL. Moreover, Byzantine
participants can send inconsistent models to di�erent participants
in P2P networks, inject biased models, or even withhold their up-
dates [2, 10], ultimately degrading the global model or causing the
FL to fail. This underscores the need for Byzantine-resilient train-
ing techniques. However, techniques that simultaneously preserve
privacy and are resilient to Byzantine adversaries have not yet been
thoroughly investigated.

In this work in progress, we design a P2P FL scheme that achieves
Byzantine resilience while preserving privacy. We consider the pres-
ence of both honest-but-curious and Byzantine participants, and
de�ne three properties: information-theoretic privacy, n-convergence,
and agreement. Information-theoretic privacy ensures that no in-
formation about the participants’ local models is leaked during the
training process, n-convergence implies that the distance between
global models learned with and without Byzantine participants is at
most n , and agreement indicates the global model of all benign par-
ticipants are identical. We guarantee information-theoretic privacy
by �rst letting each participant make a commitment of its local
model, which will be ‘locked’ and thus not editable in the future.
We then utilize multiparty computation (MPC) [12] to compare
and sort the participants’ local models without disclosing their true
values. Each participant then invokes a trimming scheme to exclude
the largest and smallest 5 local models when updating the global
model, where 5 is the maximum number of Byzantine participants.
The main contributions of our paper are summarized as follows.

• We propose Brave, a Byzantine Resilience And priVacy-
prEserving protocol for P2P FL. We prove that Brave en-
sures the local model of each participant to be information-
theoretically private during the learning process.
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• We design a privacy-preserving trimming scheme to ensure
n-convergence in the presence of Byzantine adversaries. We
leverage distributed consensus to ensure agreement. We the-
oretically prove Brave is resilient to Byzantine participants
given# > 35 +2, where# is the total number of participants.

• We evaluate Brave against three state-of-the-art adversaries
on two image classi�cation tasks. Our results show that
Brave guarantees n-convergence if # > 35 + 2 holds. Fur-
thermore, the global model trained using P2P FL that imple-
ments Brave achieves comparable classi�cation accuracy to
a global model learned in the absence of any adversary.

2 THREAT MODEL
We consider a P2P FL framework where both passive and Byzan-
tine adversaries exist and potentially overlap, with the remaining
participants identi�ed as benign.

Adversary Goals and Actions. The passive adversaries [9]
follow the procedure of P2P FL but aim to obtain the local models
from the other participants, thereby extrapolating private training
data by launching MIA [9] on these local models. The Byzantine ad-
versaries aim at compromising the learning performance of P2P FL
by biasing the local models of other participants. In pursuit of their
objectives, the Byzantine adversaries can create compromised local
models, and send di�erent local models to di�erent participants or
just remain silent in the communication process.

Adversary Capabilities. The adversaries are assumed to have
full access to the messages they receive but are incapable of eaves-
dropping or intercepting the communications of others. Further-
more, these adversaries have limited computational capability to
solve the discrete logarithms problem [7]. This assumption is widely
adopted for security of public key systems and protocols [3].
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Figure 1: This �gure shows the overall work�ow of Brave.

3 DESIGN OF BRAVE
We design Brave, a protocol in P2P FL that comprises four stages:
Commitment, Privacy-preserving Comparison, Sorting & Trimming,
and Aggregation & Veri�cation. The proposed protocol is proven to
achieve information-theoretic privacy and Byzantine resilience if
# > 35 + 2. To defend against Byzantine adversaries who might
input di�ering models at various stages, Brave starts with a com-
mitment stage (¿) after participants update their local models in
each iteration. Following this, Brave enters a privacy-preserving
comparison stage (¡), which enables the sorting of local models
without revealing any information about their true values. Brave
then incorporate trimmed mean [13] in the sorting & trimming

stage (¬) to remove the outliers possibly introduced by Byzantine
adversaries. In the last aggregation & veri�cation stage (√), MPC
[1] is performed to aggregate models while preserving privacy. This
stage also veri�es the consistency of the aggregated model with
the commitment.

4 EXPERIMENTS
In this section, we evaluate Brave against three state-of-the-art
adversaries using two image classi�cation tasks.

4.1 Experimental Setup
In what follows, we describe the experimental setup.

Brave Setup.We implement Brave on two P2P FL with di�erent
settings. In the �rst P2P FL, the participants train a 2-hidden-layer
model (2NN) using samples from the MNIST dataset [6]. In the sec-
ond P2P FL, the participants learn a Convolutional Neural Network
(CNN) model using the CIFAR10 dataset [4]. In both P2P FL, the
training images from the CIFAR10 or MNIST dataset are indepen-
dently and identically distributed (i.i.d.) to the participants so that
each participant has |D8 | = 2000 images within its private dataset.
The participants update their local modelsF8 (C) using stochastic
gradient descent (SGD) algorithm with learning rate [ = 0.01 [8].

Baseline Setup. We present the e�ectiveness of Brave by com-
paring with a baseline, P2P FL-naïve. The baseline implements the
classic P2P FL as in [5].

Threat Models. We evaluate Brave against Byzantine adver-
saries who adopt distinct strategies: No Attack, Label Flip Attack
[10], Sign Flip Attack [11] and Gaussian Attack [2].

Evaluation Metric. We use classi�cation accuracy over the
testing dataset as the evaluation metric.

4.2 Experimental Results
In what follows, we demonstrate the e�ectiveness of Brave.

Byzantine Resilience of Brave. We evaluate the classi�cation
accuracy of the learned global models obtained by P2P FL with
# = 10 participants and 5 = 2 Byzantine adversaries. In Table 1,
we present the classi�cation accuracy of the learned 2NN and CNN
when the Byzantine adversaries adopt di�erent attack strategies.
We observe that if the Byzantine adversaries does not initiate any
attack, then Brave retains comparable accuracy compared with
classic P2P FL that does not implement Brave. Furthermore, Brave
guarantees signi�cantly higher accuracy of the learned model once
the Byzantine adversaries send compromised local models to the
other participants, and thereby is Byzantine-resilient.

n-convergence of Brave. We demonstrate n-convergence of
Brave in Fig. 2a-2c. We observe that when # > 35 + 2, then Brave
guarantees that the global model learned in the presence of Byzan-
tine adversaries remains n-close to the global model learned when
5 = 0. We further notice that the value of n increases with respect to
the number of Byzantine adversaries. The presence of more Byzan-
tine adversaries could introduce additional bias to the learned global
model, or even cause FL to fail (as shown in Fig. 2a when 5 = 4).

5 CONCLUSION
In this paper, we considered P2P FL in the presence of both pas-
sive and Byzantine adversaries. The passive adversaries aimed at

1935



POSTER: Brave: Byzantine-Resilient and Privacy-Preserving Peer-to-Peer Federated Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 1: This table presents the classi�cation accuracy of the learned 2NN and CNN using a P2P FL with # = 10 and 5 = 2. The
second row of the table represents the scenario where the Byzantine adversaries send their true local models and do not launch
any attack. Rows 3-6 correspond to di�erent threat models. We observe that Brave ensures the P2P FL to learn a global model
with near-optimal classi�cation accuracy against all threat models, and hence is Byzantine-resilient.

Adversary Strategy w/o Brave Brave

2NN+MNIST CNN+CIFAR10 2NN+MNIST CNN+CIFAR10

No Attack 97.35% 63.94% 97.21% 63.55%
Label Flip 89.91% 52.15% 96.74% 60.91%
Sign Flip 11.35% 48.68% 97.02% 63.54%

Gaussian (f = 0.1) 92.02% 55.58% 96.92% 63.08%
Gaussian (f = 1) 53.01% 10.01% 97.12% 61.92%
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(a) Label Flip Attack
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(b) Sign Flip Attack
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(c) Gaussian Attack (f = 1)

Figure 2: This �gure presents the accuracy of 2NN learned using P2P FL with # = 10 participants at each iteration C . When the
number of Byzantine adversaries 5 satis�es # > 35 + 2, i.e., 5 2 {0, 1, 2}, Brave ensures n-convergence property. When 5 violates
# > 35 + 2, the Byzantine adversaries can corrupt the learned 2NN, and even prevent FL from converging (Fig. 2a, 5 = 4).

inferring the other participants’ private information during the
training process, whereas Byzantine adversaries could arbitrarily
manipulate the information it sent to disrupt the learning algo-
rithm. We developed a four-stage P2P FL protocol named Brave
that information-theoretically preserves privacy and is resilient
to malicious attacks caused by Byzantine adversaries. We evalu-
ated Brave using two image classi�cation tasks with CIFAR10 and
MNIST datasets. Our results showed that Brave can e�ectively
defend against the state-of-the-art adversaries.
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