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Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric
field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation
measurements we report the experimental observation of a universal closing of the charge neutrality gap in
the Hofstadter spectrum of TDBG at 1=2 magnetic flux per unit cell, in agreement with theoretical
predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that
the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the
emergent valley symmetry or the single-particle band topology.
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Moiré patterns of two-dimensional (2D) materials pro-
vide a highly tunable platform for exploring correlated
electronic states in electronic bands with flat dispersion.
Celebrated examples include the twisted bilayer graphene
(TBG) at the magic angle θ ≃ 1.1° [1–5], twisted double-
bilayer graphene [6–9], ABC trilayer graphene on hexago-
nal boron-nitride (hBN) [10,11], twisted trilayer graphene
[12–15], as well as fractional Chern insulators in twisted
bilayer MoTe2 [16–18] and pentalayer rhombohedral
graphene on hBN [19], all of which exhibit superconduct-
ing or correlated insulator phases. Theoretical calculations
show that a new emergent symmetry—which decouples
two originally strongly intertwined valleys [1]—appears,
and that, per each of the two valley emergent symmetry
sectors, the electron bands of many moiré systems are
topologically nontrivial. For example, twisted double
bilayer graphene (TDBG) and ABC trilayer graphene on
hBN carry nonzero emergent-valley Chern numbers 2 and
3, respectively, under a transverse electric field [20–25].
Unlike correlated Chern insulators induced by interactions
in the flat moiré bands, the valley Chern insulators in these
systems stem from the nontrivial band topology protected
by time-reversal invariance.
Experimental signatures of nontrivial band topology

include transport experiments of the quantum spin Hall
effect in 2D time-reversal invariant systems [26], the
quantum anomalous Hall effect of Chern insulators in
magnetic topological insulator thin films [27], and the

angle-resolved photoemission spectroscopy and scanning
tunneling microscope studies of 3D time-reversal invariant
topological insulators [28–30]. In TDBG under transverse
electric field the gap at charge neutrality carries a topo-
logical valley Chern number CV ¼ 2, protected by an
emergent valley U(1) symmetry [20–23,25]. This emergent
symmetry may be broken on the edge, leading to back-
scattering between the counterpropagating edge states from
different valleys. Although interactions may drive moiré
systems into a correlated Chern insulator with protected
edge states [17–19,31–34], such state is not necessarily
related to the noninteracting band topology protected by the
emergent valley symmetry. A bulk measurement of the
band topological character per emergent symmetry sector
(valley) is therefore necessary.
Theoretical studies suggest that the nontrivial band

topology manifests itself in the Hofstadter butterfly, and
can be observed through bulk magnetotransport [35–39]. In
particular, a noninteracting band gap that carries a topo-
logical valley Chern number CV > 0 is predicted to close at
or before magnetic flux per unit cell Φ ¼ ð1=CVÞΦ0

(Φ0 ¼ h=e is the flux quanta). Here, we present a combined
experimental and theoretical study of magnetotransport in
TDBG at θ ¼ 0.97°, 1.01°, and 1.33°. As a function of
perpendicular magnetic field (B) the experimental data
show an unexpected closing of the gap at charge neutrality
when the flux per moiré unit cell Φ ≈ ð1=2ÞΦ0 or smaller,
in contrast with the tenets of the quantum Hall effect, which
dictate that gaps increase as a function of B. This
observation is consistent with the valley Chern number*Contact author: etutuc@mail.utexas.edu

PHYSICAL REVIEW LETTERS 133, 246401 (2024)

0031-9007=24=133(24)=246401(7) 246401-1 © 2024 American Physical Society



CV ¼ 2 of the valley-filtered flat bands, which supports
both the band topology and the emergent symmetry that
protects it. Furthermore, by theoretically analyzing the
effect of interactions, we show that our experiment implies
an interaction energy scale larger than the bandwidth of the
flat bands in TDBG at θ ¼ 1.01°, and that the interaction
does not spoil the single-particle band topology and the
emergent valley symmetry at charge neutrality.
Figure 1(a) shows a schematic of the TDBG sample, with

hBN dielectrics and three gates—top, bottom, and substrate
gates. The top and the bottom gates are used to independ-
ently control the carrier density (n) and transverse electric
field (E) in the TDBG. For the θ ¼ 0.97° sample the bottom
gate, which is made of monolayer graphene and contacted
with several electrodes, also acts as a resistively detected
Kelvin probe to the TDBG chemical potential. The sub-
strate gate is added to the dual gated geometry to tune the
transverse E-field at which the TDBG chemical potential is
measured [34].
Figure 1(b) shows the longitudinal resistance (Rxx) as a

function of n and E in a TDBG sample with θ ¼ 1.01°. The
twist angle is defined such that in the limit θ ¼ 0° the

TDBG approaches AB-AB stacking [Fig. 1(c)]. Rxx
maxima along lines of constant n indicate energy gaps
in the moiré band structure. The data show E-dependent
gaps at charge neutrality (n ¼ 0) and at fixed densities �ns
and �3ns. Here, ns is the carrier density required to fill a
moiré unit cell with fourfold spin-valley degeneracy, and is
related to the twist angle by

ns ¼ 4
2
ffiffiffi

3
p

�

sinðθ
2
Þ

ða=2Þ

�

2

;

a ¼ 2.46 Å is the graphene lattice constant. At charge
neutrality, the band gap is initially small and increases with
E, while the gaps at �ns decrease and eventually close at
finite E. In addition, there are emerging Rxx maxima at
n ¼ þ 1

2
ns within small windows of E around�0.3 V=nm,

corresponding to developing correlated insulators at half-
filling of the first conduction moiré band. Correlated
insulators appear at half and quarter moiré band filling
in TDBG flat bands as a result of strong electron-electron
interaction [6–9,40].
For small θ the TDBG moiré pattern reciprocal vector is

much smaller than the intervalley momentum difference,
which leads to distinct moiré Brillouin zones at theK andK0

valleys of the parent graphene bilayers that are exponentially
(in 1=θ) decoupled from one another [Fig. 1(c)]. This
decoupling gives the moiré bands a valley degree of free-
dom, and an emergent valley U(1) rotation symmetry.
Figures 1(d) and 1(e)show θ ¼ 1.01° band structure calcu-
lations for zero and finite on-site energy difference (V)
between neighboring graphene layers, respectively, and
demonstrate the valley dependence of the bands. The V
values are proportional to the applied transverse electric field
E [41]. Furthermore, the calculated V dependence is con-
sistent with experimental observations, showing that the gap
at charge neutrality opens with increasing E, and the gaps
between the first and second moiré bands reduce or close.
At finite V, the gap that opens at charge neutrality is

predicted to be topologically nontrivial [20–23,25], with a
valley-dependent Chern number of CK ¼ þ2 or CK0 ¼ −2

[Fig. 1(e)], which originates from the opening of two
double Dirac cones of the same helicity in each valley.
The gap thus carries a valley Chern number CV ¼ ðCK −

C0
KÞ=2 ¼ 2 per spin, protected by the emergent valley U(1)

symmetry, a bulk symmetry that can be broken by edge
roughness. Instead, we explore here bulk signatures of the
nonzero valley Chern number by examining the magneto-
transport of TDBG in perpendicular magnetic fields, with
an emphasis on the gap at charge neutrality. Figure 2(a)
shows Rxx as a function of n and B for E ¼ 0.31 V=nm in
θ ¼ 1.01° TDBG. The combination of perpendicular mag-
netic fields and the spatial modulation of the moiré pattern
leads to equally spaced Landau levels in the energy
spectrum, and quantum Hall states (QHSs) when n and
Φ satisfy the Streda formula [46,47]:
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FIG. 1. (a) TDBG sample schematic with graphite top gate and
graphene bottom gate. For chemical potential measurements the
bottom gate is made of monolayer graphene and has multiple
contacts. A substrate gate below the bottom gate is used to tune
the E-field at which the chemical potential is measured. (b) Con-
tour plot of Rxx vs n and E measured in the TDBG sample with
θ ¼ 1.01° at T ¼ 1.5 K. The top axis shows n in units of ns.
(c) Decoupled moiré Brillouin zones arise at the K and K0 points
of the graphene bilayers. The enlarged view of the moiré
Brillouin zone shows the high symmetry points and the path
taken in momentum space for the (d),(e) calculations. (d),
(e) Calculated moiré band structures at (d) V ¼ 0 and
(e) V ¼ 5 meV. Solid (dashed) lines represent the moiré bands
in the K (K0) valleys of the graphene bilayers. At finite V, the gap
at charge neutrality has Chern numbers þ2 and −2 in the K and
K0 valleys, respectively.
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n

ns
¼ ν

4

Φ

Φ0

þ σ;

where Φ ¼ BAM, AM ¼ 4=ns is the moiré unit cell area,
and ν and σ are Landau level and moiré band filling factors,
respectively. The best developed QHSs are labeled by their
corresponding ν value in Fig. 2(a). An advantage of small
twist angle TDBG is the large unit cell area, which makes
high magnetic flux values relatively easy to access exper-
imentally. As shown on the right axes of Fig. 2(a), Φ=Φ0

exceeds 1=2 at B ¼ 14 T, values at which the predicted
topological signatures should manifest.
Focusing now on the Φ=Φ0 dependence of the gap at

charge neutrality, Fig. 2(a) shows that Rxx at charge
neutrality is initially large, and generally independent of
B for low and moderate fields, but then decreases as Φ=Φ0

approaches 1=2. While resistance is not necessarily a direct
measure of an energy gap, especially when topological
edge states may be present, these findings suggest that the
gap at charge neutrality decreases at high magnetic flux in
the vicinity of Φ=Φ0 ¼ 1=2. To substantiate this finding, a

bulk measurement is needed. To that end, we measure the
gap (Δ) at charge neutrality as a function of Φ=Φ0 using a
combination of thermodynamic measurements and thermal
activation. Figures 2(b)–2(d) show the thermodynamic
measurements in the θ ¼ 0.97° TDBG. In Fig. 2(b), Rxx
as a function of VTG and VBG is shown, where the
resistance maxima along the diagonal represent the
TDBG charge neutrality. Figure 2(c) shows the resistance
of the graphene bottom gate RBG as a function of VTG and
VBG measured at E ¼ 0.38 V=nm and B ¼ 0 T. The RBG is
measured around the TDBG charge neutrality in the range
marked by the green rectangle in Fig. 2(b), with the
substrate gate at a fixed bias to shift the neutrality point
of the bottom gate graphene to the target E-field. As
detailed in Ref. [34], by tracing the charge neutrality of the
bottom gate graphene, the chemical potential of the TDBG
can be measured directly, revealing the bulk properties at
charge neutrality. Specifically, the chemical potential of the
TDBG can be calculated with μ ¼ eVBGð1þ Cs=CBGÞ−
eVsCs=CBG. Here, CBG and Cs are the capacitance per unit
area of the bottom and substrate gate dielectric,
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FIG. 2. (a) Rxx vs n and B at E ¼ 0.31 V=nm for TDBG with θ ¼ 1.01°. The top axis shows n in units of ns, and the right axis shows
Φ=Φ0. The Landau level filling factor for well-developed quantum Hall states are labeled. (b) Rxx vs VTG and VBG for the θ ¼ 0.97°
TDBG. The top axis shows n=ns for the diagonal resistance maxima. (c),(d) RBG vs VTG and VBG measured at (c) B ¼ 0 T and (d) 8 T.
Black dashed lines mark charge neutrality loci of the bottom gate graphene. Data are taken at T ¼ 1.5 K in (a)–(d). (e) Δ vs Φ=Φ0 at
different E fields for three TDBG samples. The triangles represent thermodynamic measurements in the θ ¼ 0.97° TDBG; the circles
and squares represent thermal activation measurements in the θ ¼ 1.01° and 1.33° TDBGs. Inset shows Arrhenius plot of Rxx vs 1=T at
charge neutrality for E ¼ 0.47 V=nm, and at different B-fields for the θ ¼ 1.01° TDBG.
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respectively, and Vs is the substrate gate bias. Accordingly,
the change of μ is proportional to the change of VBG when
tracing the bottom gate charge neutrality plotted in
Fig. 2(c), and the step the charge neutrality loci take at
VBG ≈ 3.8 V reflects the TDBG thermodynamic gap at its
charge neutrality, which is Δ ¼ 20 meV. The data for the
same measurement at B ¼ 8 T are shown in Fig. 2(d),
where no gap is observed. The values of Δ vs Φ=Φ0

measured in the θ ¼ 0.97° TDBG at fixed E-field values are
shown in Fig. 2(e) (triangle symbols). Meanwhile, we
perform thermal activation measurements on the θ ¼ 1.01°
and 1.33° TDBGs [Fig. 2(e) inset], and summarize the
thermodynamic and activation measurement results of Δ vs
Φ=Φ0 in Fig. 2(e). Although differences exist between
datasets, in both types of measurements the charge neutral-
ity gap shows a closing behavior near or before
Φ=Φ0 ¼ 1=2, which suggests a common origin of the
gap closing. In the θ ¼ 1.33° TDBG, Δ shows a similar
decreasing trend, but is only measurable up to Φ=Φ0 ≃ 0.3
due to the larger twist angle.
The observations in Fig. 2 are surprising. For typical

band structures energy gaps are expected to open with
increasing B. In magic angle TBG, a similar system with
flat bands and strong interactions, compressibility mea-
surements reveal the charge neutrality gap increases with
B [48]. Consequently, as we explain below, the observed
gap closing near Φ=Φ0 ¼ 1=2 is compelling evidence of
the nontrivial topology of charge neutrality gap in TDBG,
and of the emergent symmetry that protects the valley
Chern number. It is important to distinguish between the
valley Chern insulator in TDBG, and the correlated Chern
insulators in TBG that break time reversal symmetry
[49–51]. The fillings of the latter disperse in a perpendi-
cular magnetic field according to the Streda formula
[46,47], similar to a quantum Hall state. The valley
Chern gap in TDBG does not break time reversal sym-
metry, and is not expected to disperse according to the
Streda formula.
In the noninteracting band theory, the Hofstadter spec-

trum of a trivial band is usually bounded within its
bandwidth, leaving the gap between topologically trivial
bands open at any Φ=Φ0 as shown in Fig. 3(a) [41]. In
contrast, a topological gap will generically close at a certain
magnetic flux, connecting the Hofstadter spectra above and
below the gap. The simplest example is a Chern number C
gap between two Chern bands of Chern numbers �C,
which is topologically enforced to close at Φ=Φ0 ¼ 1=jCj
[35,38,39,41]. Two examples of Chern number C ¼ 1

and C ¼ 2 gaps are shown in Figs. 3(b) and 3(c),
respectively [41].
In TDBG with nonzero V, each valley has a Chern

number �2 gap at charge neutrality, which is forced to
close at Φ=Φ0 ¼ 1=2. Figures 3(d) and 3(e) show the
Hofstadter butterflies at valley K and K0 calculated [35,38]
using the noninteracting TDBG continuum model at θ ¼
1.01° and V ¼ 5 meV. The spectra of the lowest two moiré

bands are shown in green. As expected, at Φ=Φ0 ¼ 1=2,
the Chern number CK ¼ 2 (CK0 ¼ −2) charge neutrality
gap of valley K (K0) closes at the top (bottom) of the lowest
two moiré bands. Figure 4(a) shows the single valley gap
with respect to Φ=Φ0 at different V. This strongly suggests
that the experimentally observed charge neutrality gap
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FIG. 3. (a)–(c) Hofstadter butterflies of two-band Chern in-
sulator tight-binding models with Chern numbers 0,1, and 2,
respectively. A gap of Chern number C is topologically protected
to close at Φ=Φ0 ¼ 1=C. (d),(e) The Hofstadter spectra of TDBG
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higher moiré bands (blue). The integers label the Chern numbers
of the dominant Hofstadter gaps.
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finite magnetic field, leading to a total charge neutrality gap
closing before Φ=Φ0 ¼ 1=2. (c) The total noninteracting charge
neutrality gap of all spins and valleys of TDBG vs Φ=Φ0, where
the spin g-factor 2 is used. (d) Illustration of the effective
Hofstadter spectra under interaction by mean field theory, where
the Cη ¼ �2 Chern gaps of valleys K and K0 are enlarged and
shifted towards each other, leading to a total charge neutrality gap
closing around Φ=Φ0 ¼ 1=2.
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closing at Φ=Φ0 ¼ 1=2 in TDBG is due to the valley-
dependent Chern number CK ¼ −CK0 ¼ 2.
However, the midgap energies of the CK ¼ 2 and CK0 ¼

−2 Chern gaps at valleys K andK0 disperse oppositely with
Φ, which differ by ∼10 meV at Φ=Φ0 ¼ 1=2 [Figs. 3(d)
and 3(e)]. Furthermore, the Zeeman spin splitting is
∼1 meV at Φ=Φ0 ¼ 1=2. Therefore, the total single-par-
ticle valley Chern gap of all spins and valleys at charge
neutrality would close before Φ=Φ0 ¼ 1=2 due to energy
band overlaps, as illustrated in Fig. 4(b). The calculated
total valley Chern gap Δ of all spins and valleys for TDBG
at θ ¼ 1.01° and different V closes no later than Φ=Φ0 ≈

0.2 [Fig. 4(c)], and shows a gap reopening around 0.2 <
Φ=Φ0 < 0.4 due to other, further, Landau level gaps,
different from our experimental observation. This discrep-
ancy can be resolved by considering electron-electron
interactions, which we treat here in a mean-field theory.
Denote the bottom and top of the first conduction (valence)
moiré band at Φ ¼ 0 as M1 (−M0) and M0 (−M1),
respectively, as shown in Fig. 4(b) (M0 > M1 > 0). For
simplification, we assume the Chern gap of valley η (þ1 for
K and −1 for K0) decreases linearly and closes at energy
ηM0 at Φ=Φ0 ¼ 1=2. The number of conduction (valence)
states per area above (below) the gap at valley η and spin s
is given by Nm;ηðΦÞ ¼ ð1 − 2mηΦ=Φ0Þ=AM (m ¼ �1 for
conduction and valence bands, respectively).
We consider a local interaction particle-hole symmetric

about charge neutrality:

HI ¼
U0AM

2

X

m;m0;η;η0;s;s0
³
m0η0s0
mηs ðΦÞñm;η;sñm0;η0;s0 ;

where U0 > 0 is the short-range interaction energy,
ñm;η;s ¼ nm;η;s − ½Nm;ηðΦÞ=2� is the electron density of
indices fm; η; sg relative to half-filling, with 0 f

nm;η;s f Nm;ηðΦÞ, and ³
m0η0s0
mηs ðΦÞ ¼ 1 − ´m;m0´η;η0´s;s0 −

´m;−m0´η;η0´s;s0ζðΦÞ accounts for reduced interaction within
the same valley and spin due to Pauli exclusion [41]. We
assume each band fm; η; sg has a uniform density of states.
This allows us to calculate the total mean-field energy at the
filling of charge neutrality, and derive the ground-state
charge neutrality gap ΔðΦÞ with respect to Φ [41]. We find
two interaction effects: first, the charge neutrality gap at
Φ ¼ 0 increases from the single-particle gap 2M1 to
Δð0Þ ¼ 2M1 þ U0. Second, the charge-neutrality valley
Chern gap ΔðΦÞ closes at Φ=Φ0 ¼ ½ð2M1 þ U0Þ=ð4M0 þ
4M1 − 2U0Þ� < 1=2 for weak interactions 0 < U0 < M0

(but is larger than noninteracting cases), while the gap
closes at Φ=Φ0 ≈ 1=2 for strong interactions U0 g M0,
analogous to the single valley gap in Fig. 4(a).
Heuristically, this is because the interaction increases the
energy cost for a valence electron to jump into a conduction
band, stabilizing the charge neutrality gap. In the mean-
field picture, the bands of the two valleys are effectively

deformed by interaction as shown in Fig. 4(d), with their
Chern gaps enlarged and shifted towards each other. Such a
simplified mean field picture is further verified by our
numerical Hartree-Fock calculation of the Hofstadter spec-
trum of a valley Chern number 2 tight-binding model with
on-site Hubbard interactions [41].
Our experimental observations reveal the TDBG charge

neutrality gap under a transverse E-field shows an unusual
closing in the presence of a perpendicular magnetic field,
consistent with a valley Chern insulator with CV ¼ 2.
Moreover, the interaction energy U0, although larger than
the flat band widths in TDBG near θ ¼ 1°, preserves the
emergent valley U(1) symmetry and the valley Chern
number. Our study provides a novel method to detect
the band topology of 2D moirés and other superlattice
systems by measurement of their bulk energy spectra.
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