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Recent experiments in twisted bilayer WTe, revealed the existence of anisotropic Luttinger liquid behavior.
To generically characterize such anisotropic twisted bilayer systems, we study a model of a twisted bilayer of
two-dimensional (2D) arrays of coupled wires, which effectively form an array of coupled moiré wires. We
solve the model by the transfer matrix method, and identify quasi-1D electron bands in the system at small twist
angles. With electron interactions added, we show that the moiré wires have an effective Luttinger parameter
getr lower than that of the microscopic wires. This leads to a sliding Luttinger liquid (SLL) temperature regime,
in which power-law current voltage relations arise. For parameters partly estimated from WTe,, a microscopic
interaction U ~ 3 eV yields a temperature regime of SLL similar to that in the WTe, experiments.
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One-dimensional (1D) interacting electrons form Luttinger
liquids [1-6], which show non-Fermi-liquid physics such
as spin-charge separation and power-law voltage-current re-
lations violating the Ohm’s law. In highly anisotropic 2D
electron systems, it was proposed that interactions can lead
to a sliding Luttinger liquid (SLL) phase or regime [7-25],
which shows quasi-1D physics analogous to the 1D Luttinger
liquid [26-29]. Recent studies of moiré systems of twisted
homobilayer or heterobilayer 2D materials have enabled en-
gineering of a rich variety of 2D electron systems, such as flat
bands with strong interactions [5,29—46]. Intriguingly, in the
twisted bilayer WTe2, which hosts a rectangular moire pat-
tern, transport experiments [28,29] reveal a phase that exhibits
(1) a strong in-plane electronic anisotropy, (2) a power-law
scaled conductance in the hard direction, and (3) a nonlinear
differential resistance that vanishes at zero bias in the easy
direction. The phenomena strongly suggests quasi-1D physics
in a SLL regime. The tunability of moiré systems may allow
a thorough exploration of the physics of SLLs. Therefore,
it is important to understand theoretically the mechanism of
quasi-1D SLLs from twisted bilayer anisotropic systems, and
to investigate its dependence on twist angles and interaction
strengths.

In this paper, we study a model of a twisted bilayer of 2D
arrays of coupled wires, which effectively forms a network
model with interwire and interlayer hoppings. The goal of the
model is to give a simplified generic description of twisted
bilayer anisotropic systems, and investigate the emergence
of an array of coupled moiré wires showing SLL physics.
At small twist angles, the model can be solved from the
real space transfer matrix, which directly gives the Fermi
surface of moiré bands at the Fermi energy. We find that,
compared to the microscopic coupled wires, the emergent
coupled moiré wires show much smaller Luttinger parameter
geff, implying much stronger correlation effects. For param-
eters partly estimated from WTe,, a microscopic interaction
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U 2 3 eV yields an SLL temperature regime around that in
experiments.

The single-particle model. Monolayer WTe, has an
anisotropic crystal structure and an anisotropic band structure,
as shown in Fig. 1(a). In the valence band, which is relevant
to SLL experimentally [28,29], the W atom orbitals dominate.
In real space, the W atoms approximately form arrays of
quasi-1D wires [along the horizontal direction in Fig. 1(b)].
In twisted bilayer WTe,, the W atom quasi-1D wires of the
two layers form a moiré pattern in Fig. 1(b), which visu-
ally shows effective vertical moiré wires at a larger length
scale.

To give a generic simplified single-particle model of an
anisotropic moiré system such as twisted bilayer WTe,, we
approximate each layer by an array of coupled wires with
interwire distance [ as shown in Fig. 1(c), where the blue
and red wires are in the upper and lower layers, respectively.
The two layers differ by a twist angle 6. We assume the
electrons (or holes via a particle-hole transformation) in each
wire have a quadratic dispersion with an effective mass m,
and a hopping —¢, between two nearest neighbor wires in
each layer. Since the relevant hole band in WTe; is around
the I' point, the spin-orbital coupling can be neglected (as is
known for transition-metal dichalcogenides [47,48]), and thus
we can choose 7, to be real. As shown in Fig. 1(c), the wires
of the two layers cross at positions with x coordinates x =

nya,, where n, € 7 and a, = m. The vertical distance

between two neighboring wires in each layer is a, = m.
At each crossing of two wires from two layers [Fig. 1(d)], we
assume a delta function intralayer potential of strength A and
a delta function interlayer hopping of strength A’. For small
twist angle 6, we can approximate the coordinate along each
wire by x, and we use ¥, , (x) to denote the wave function
in the nyth wire (n, € Z) in layer & = =%. Note that because
of the relative twisting, the n,th wire in layer o crosses
with the (n, — an,)th wire in layer —a at x = n.a,. The
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FIG. 1. (a) DFT band structure of monolayer WTe,, showing
domination by W orbitals in the valence band around the I" point.
(b) W atom positions in twisted bilayer WTe,, and illustration of the
emergent moiré wires. (c) Twisted network model consisting of two
arrays of coupled wires with a twist angle 6. Dotted lines encircle a
moiré unit cell. (d) Zoom-in around a single interlayer intersection
point, across which the wave functions are related by transfer matrix
M.

single-particle Shrodinger equation at energy E (measured
from band bottom) is then

1?92
Ewot,nv = ZIL -— Il/ot,ny - tL(W{x,nv-&-l + 1pot,nv—l)
+48(x — nxax)()‘-Ipa,ny + )‘/W—a,ny—omx)- (D

While this oversimplified model does not correspondi to
a concrete material, our goal is to understand how moiré
patterns generically give rise to SLL physics. Hereafter, to
reflect the physics of twisted bilayer WTe, as much as possi-
ble, we take / = 0.627 nm, interlayer distance a, = 0.77 nm,
and m = 0.38m, where m, is the bare electron mass, as esti-
mated for the W atom chains in WTe, from density functional
theory (DFT). For the effective interwire hoppings, we take
t;. =20meV, A = 10 meV nm, and A’ = 20 meV nm, based
on the order of magnitude of direct hopping between W atoms
in DFT [see Supplemental Material (SM) [49] Secs. IV and V
for details (see also references [S0-52] therein)]. However, we
do not expect the above effective parameters to characterize
WTe, quantitatively, which experimentally shows substantial
deviations from DFT in some aspects, possibly due to strong
interactions [53-60]

The Schrodinger Eq. (1) for small 6 can be most easily
solved by the transfer matrix method. We consider the transfer
matrix in the x direction for a state with energy E and quasi-
momentum ¢, in the y direction. For (n, — 1)a, < x < n,a,,
such a state takes the form

. _a ~
Wa,n). (x) — et‘l}‘tl}"('l}‘ 2 nx)l//g;vqy (X),

wgfqy(x) — eik(X7nAaX)(pi£11§ 4 e*ik(xfnxal)(pg):;lf’ (2)
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FIG. 2. (a) Fermi surface solved for 6§ = 5° (left) and 6 = 3°
(right) twisted model with Fermi energy Er = 30 meV, using the
transfer matrix method [with parameters given below Eq. (1)].
(b) Zoomed-in plot of the red dotted region of the 3° Fermi surface
in (a). Ag, characterizes the flatness of g,-direction dispersion of the

band. (¢) 52 versus 6 for different Er. (d) Fermi velocity vg versus

angle @ for different Fermi energies Ey.

where k = h_]\/Zm{E + 2t, [cos(gyay) — 1]} is the free mo-
mentum along the wire, and ¢,% and @)} are the
right-moving and left-moving amplitudes, respectively. By
reorganizing the wave function into a four-component vector
Wy o0 = (¢ f , wf;y‘;f, (pf‘q'qu , <pfﬁ}f_ )T, the Shrodinger equa-
tion can be reformulated into the transfer matrix equation (SM

[49] Sec. 1)

\Iqu,nx+l = T(E, Qy)\quy,n,p (3)

The transfer matrix can be further decomposed into
two parts, T(E, qy)_: Q(E, qy)M(E, gqy), where Q(E, g,) =
diag(ekax gikar  e=ikar pikary ig the diagonal propagation ma-
trix, and one can show that

(ao — %so)e’% —’*kmsoe’T
M(E, qy) = ivm o —i % iX'm —i% @
ok Soe (00 — “s0)e ™"

is the scattering matrix at the node, where oy is the 2 x 2
identity matrix, and sop = o, + ioy in terms of the 2 x 2 Pauli
matrices oy, ;.

One can solve the eigenvectors of the transfer matrix
T(E, gy), and we denote the eigenvalue as £lxt

T(E, ‘]y)q/qv,qx = 4 ‘I’qy,qx' ©)

If g, is real, the eigenvector ‘I'qy,q,x gives an eigenstate of the
Shrodinger Eq. (1), with quasimomentum g, in the x direction
and g, in the y direction.

Taking E = Ef to be the Fermi energy, the above proce-
dure naturally gives the Fermi surface of the band structure
in the quasimomentum (g, g,) space. The transfer matrix is
thus advantageous if one focuses on the low energy states
near the Fermi surface. Figure 2(a) shows the Fermi surface
(black lines) calculated for Er = 30 meV at 5° (left) and 3°
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(right). Figure 2(b) shows zoomed in image of bands boxed in
red dotted lines in 3° Fermi surface. As shown in Fig. 2(a),
there are Fermi surfaces forming a periodic loop in the g,
direction, indicating that these bands are highly quasi-1D,
with effective coupled moiré wires as shown in Fig. 1(b).
We focus on the band with the flattest Fermi surface. We
characterize the anisotropy of the band by the dimensionless
number a,Ag,/m, where Ag, is the width of g, spanned by the
Fermi surface dispersion shown in Fig. 2(b). This anisotropy
as a function of twist angle 0 for different Er is shown by
the black lines in Fig. 2(c). We note that such quasi-1D Fermi
surfaces forming loops in g, only occur below a certain twist
angle 6., for instance, 6, ~ 6.3° for Er = 30 meV. Moreover,
we can numerically calculate the Fermi velocity of the band
vp =dE/dg, at q. =0 by slightly varying E and ¢g,. The
Fermi velocity vr as a function of 6 for different Er is given
in Fig. 2(d).

We can estimate the effective y direction hopping energy
of a moiré wire in Fig. 1(b) byﬁ = mvr/ay, using the fact
that 7 /a, is the half Brillouin zone size in the y direction.
The effective hopping across two nearest moiré wires can be
estimated by 7, = vy Agy, which is the energy scale inducing
the Fermi surface dispersion of width Ag,. Therefore, the
anisotropy of effective coupled moiré wires in Fig. 2(c) is also
equal to

a/ﬁ = ayAgy/T. (6)

The smaller 7, /7 is, the more quasi-1D in y direction the
moiré band is.

Interaction effect. We now add electron-electron interac-
tion to the model, and examine the emerging SLL physics in
the moiré scale. The emergent quasi-1D moiré bands in the
above model provide fertile ground for interaction induced
correlations. In the microscopic lattice scale, we consider a
generic spin-independent anisotropic screened repulsive inter-
action between two electrons with distance r (both intralayer
and interlayer):

Z2

Vi(r
7(r) 2

5 7)

=Uexp| — —+y—2+
0 0

In a 2D Thomas-Fermi screening model of Coulomb interac-

tion, the screening length is estimated as ry = 2”;—;‘* along a

direction with effective mass m, where e is the electric charge.
Along the x direction, taking €, &~ 10 (which is approximately
the value for WTe; [61]), and effective mass m = 0.38m,, one
arrives at a screening length xo ~ 1 nm. The quasi-1D nature
(along the x direction) of the microscopic system gives heavier
effective masses (by approximately one order of magnitude)
along the y and z directions, so we take yp =5 nm, z9 =
10 nm. We note that for low carrier densities with which we
are concerned, the bare interaction energy scale is likely larger
than the electron kinetic energy, so the Thomas-Fermi model
may overestimate the screening. Nevertheless, as a model
study, we fix xo, yo, and zp as above, and leave the microscopic
interaction U as B tuning parameter. For reference, taking
Vi(xp, 0, 0) ~ 4716 m yields a U of order 5 eV.

For a 1D moiré wire, the electrons with interaction become
a Luttinger liquid with spin-charge separation. The charge
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FIG. 3. (a) Plots of effective Luttinger parameter g.¢ and inter-
wire coupling 7, vs Fermi energy Er at 5° and U = 3 eV. The left y
axis shows 7, and the right y-axis shows ge. (b) Plot of g.i versus
twist angle 6 for different U at Fermi energy Er = 30 meV. (c) The
lower-bound SLL temperature 7, vs 0 for different U at Fermi energy
Er = 30 meV. (d) Phase diagram for a twisted system at different
angles 6 for U = 3 eV at Fermi energy Er = 30 meV. The upper and
lower boundaries are crossover temperatures Ty and T, respectively.

Luttinger parameter g.¢r and spin Luttinger parameter g ; are
given by [4,62]

B 2mvr +V (2qr)
8 =\ 2rvp +200) — V(2gr)

2JTUF + \7(2qF)
Gefts =/ -~ ®)
27Tv]: — V(zq]:)

where \7(0) and \7(2qp) are the interaction strength in the
quasimomentum g, space for scattering with zero momen-
tum change (forward scattering) and 2¢gr momentum change
(back scattering), respectively (see SM [49] Sec. II), and vy =
dE/dqy is the Fermi velocity. For repulsive interaction, one
usually has V(O) > V(2qF) and V(O) > 0, thus gegr < 1. For
the parameters we choose, we find |V(2qF)| ~ 10~ 3V(0) <
vp, so the spin Luttinger parameter is always approximately
8eff,s ~ 1.

We average over pairs of Fermi surface states at quasimo-
menta (g, =qr(g,)) to obtain the average charge Luttinger
parameter g.¢. Figure 3(a) shows ges as a function of Ep
calculated for U =3 eV and twist angle 6 = 5°, which is
below 0.3. The effective hopping 7, between neighboring
moiré wires is also plotted. Figure 3(b) shows how g.g de-
pends on the interaction strength U as a function of 6, where
Er =30 meV. We find that g.s increases as 6 decreases.
This is because the width a, of a moiré wire increases as 6
decreases, and thus two electrons in the moiré wire have less
chance to scatter with each other, leading to a weaker effective
interaction. In comparison, for a microscopic decoupled wire
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in a monolayer, which has a Fermi momentum kr = +/2mEF,
we can estimate its microscopic Luttinger parameter g simi-
larly to Eq. (8), which is generically larger (g = 0.6) than the
moiré effective Luttinger parameter g.g here given the same
U.

The moiré SLL regime. The temperature regime for SLL
physics depends on the effective moiré parameters 7 , ﬁ, and
geft [10,11,25,63], which we explain below. Without the inter-
wire hopping 7., and setting gefr,c = 1, each moiré wire along
the y direction has a zero-temperature 1D Luttinger liquid
Green’s function following [64]

G, 1) = (Tn.c O DY, (0,0))

1 PPN . =1
:E(y_gvct'i'l{() ) 2(y—§vxt+z§O )2
s ©
where ¢ = &£ stand for the modes moving in the £y di-
rections, resepectively, the charge mode has velocity v, =

%\/[271 vr + V(0)]2 — [V(2gFr) — V(0)]2, the spin mode has

velocity v, = i\/4n2v% — V(qu)2 ~ vp, and the anoma-

lous exponent n = (gest + g;ﬁl — 2)/4. In particular, n = 0 in
the noninteracting g.;r = 1 limit. At low energies, the local
density of states (spectral weight) scales as

x [y* —v2(t —i0")?]

1 ~
=_——I GP(0, ", 10
p(@) nm; 0, 0) x o (10)

where C~}}D (v, w) is the Fourier transform of Eq. (9) in time ¢.
As can be seen by a simple power counting, the full Fourier
transform of Eq. (9) in both y and ¢ scales as G}D(q, w) =

w”’lar" f(g/w) (which has the unit of inverse of energy),
where f(x) is some dimensionless function of order unity.
With the effective interwire hopping 7, , the hopping among
different moiré wires can be incorporated as a self-energy
correction to Eq. (9). The zero-temperature Green’s function
is perturbatively given by a Schwinger-Dyson equation [63]:

G (g, 0) ~ G°(q, ) +1.G"(q. ®)G; (g, w)

G"(q, w)

N ————. 11
] - tJ_GéD(% C()) ( )

In the case 0 < n < 1, for which the interaction is not too
strong, G}D (g, w) x a)"’ltNH*" diverges in the low energy limit
o — 0. Clearly, the perturbation estimation Eq. (11) will
break down when 'th}D(q, ) NtNLtN”_”w"“ > 1, namely,

when the energy scale w < a(;l /ﬁ)ﬁ. In this case, 7, can
no longer be treated as a perturbation, and the system will
behave as an intrinsically 2D system. For energy scales @ >
o /;ﬁ )l%v , the Green’s function in Eq. (11) resembles that of
the 1D Luttinger liquid closely, and SLL quasi-1D behaviors
are expected. In the case n > 1, G;"(g, w) does not diverge as
o — 0, and thus the SLL quasi-1D behavior persists down to
w=0.

At finite temperature, the temperature 7 plays the role
of the energy scale of the system, and thus the 1D Lut-
tinger liquid Green’s function G}D (q, w) x (kBT)”’I;‘T” in
the low energy limit w — 0, where kg is the Boltzmann con-

stant. Therefore, the quasi-1D SLL physics can only exist
for temperatures 7 > T,, where the lower bound crossover
temperature for 0 < n < 11is

T, ~ kT (0L /7)™ (12)

For n > 1, the SLL physics will persist down to T, = 0.

In the SLL temperature regime 7 > T, the transverse con-
ductivity o | across the moiré wires [namely, in the x direction
in Fig. 1(c)] at temperature 7T is known to exhibit a power-law
scaling [7-12,25], Treating 7, as perturbation, o, is governed
by the Kubo formula for tunneling between two neighboring
wires:

o T R [y D)

w

x Im (~}LD(y, ") Im 5&D(y, o+ o)
o)
BT (), (13)
T
where F(x) approaches 1 as x — 0, and scales as x*'~! as
x > 1. For transverse transport measurement with voltage V

between two neighboring moiré wires, the energy scale w can
be identified with V. Therefore, the transverse conductivity

Vo=l (eV > kgT),

72171 (eV < kgT), (14)

(e (V, T) X {
which is the key feature of SLL. The longitudinal conductivity
o) along the moiré wires [the y direction in Fig. 1(c)] is
expected to be similar to that of the 1D Luttinger liquid, which
increases as T decreases in the disorderless limit (diverging at
T = 0, if temperature T could reach zero).

Physically, the SLL regime cannot persist to arbitrarily
high temperature, since the Luttinger liquid theory is only
valid at low energies. In the literature [4,65], it is assumed that
the upper bound temperature is Ty ~ tNH /kg, which is a very
high temperature. Here we argue that the upper bound tem-
perature for the power-law behavior of o, (V, T) in Eq. (14)
is much lower, due to the presence of marginal and irrelevant
couplings (inelastic scattering with phonons, etc.). Note that
o, (V,T) in Eq. (13) considers only the relevant bare cou-
pling 71, which has the unit of energy. In general, irrelevant
couplings of dimension —A < 0 would induce effective cou-
plings scaling as (kzT)*, which grow as T increases. Without
a detailed knowledge of the irrelevant couplings, we expect
their corrections to be no longer negligible when kzT > 7, .
This sets an upper bound crossover temperature for the SLL
behavior as

Ty ~ kg '11, (15)

which we adopt here. The SLL regime is thus within the
temperature range T, < T < T.

Figure 3(c) shows the lower bound temperature 7, as a
function of twist angle 6 for Er = 30 meV and interaction
strength U ranging from O to 4eV, for which the Luttinger
liquid parameter g is shown in Fig. 2(b). Generically, we
find that T, decreases as 6 decreases, because of the de-
crease of 7, although g.s increases. As an example, Fig. 3(d)
shows the phase diagram plotted for Er = 30 meV,U = 3 eV
with respect to 6, where the lower and upper curves are the
crossover temperatures T, in Eq. (12) and 7Ty and Eq. (15),
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respectively, between which is the SLL regime. We note that
T, and Ty are both order estimations. At temperatures T > Ty,
one expects the anisotropy of the system to be suppressed
by strong thermal fluctuations and irrelevant couplings, which
we call the isotropic regime. For temperatures T < T, which
we denote as the 2D regime, the perpendicular hopping 7,
becomes important, and the system will behave intrinsically
as a low temperature 2D system. As the temperature 7 de-
creases, depending on interactions, the system may remain a
2D Fermi liquid till 7 = 0, or undergo a symmetry breaking
phase transition into charge density wave, etc., as studied in
the literature [8—11].

Discussion. We have seen that, for the effective coupled
moiré wires, the Luttinger parameter g (e.g., ~0.3 for U =
3 eV) is much lower than the Luttinger parameter g (~0.6 for
U = 3eV, see SM [49] Sec. III) of the monolayer microscopic
coupled wires. Generically, this is because of the lowering of
Fermi velocity vy and effectively longer range of interaction
broadened by the widths of moiré wires. The lower bound
temperature 7T, of the SLL regime can be rather sensitive to
U . For our parameters, at 0 = 5°, T, drops from 50 K to about

4 K as U increases from 2 to 4 eV. If U further increases, T,
would drop down to zero, leading to a zero-temperature SLL
quantum phase. In the WTe, experiments [28,29], T, ~ 2 K
at = 5°, and T, < 50 mK at 6 = 3°, which are similar to
our results for U 2 3 eV. This suggests that a strong micro-
scopic interaction is needed to explain the experiments. Future
studies with more accurate moiré models are needed for
quantitative understandings. More generally, we expect our
twisted coupled wire modeling to be applicable to twisted bi-
layers of 2D anisotropic systems, such as arrays of nanowires
[5,6], black phosphorus [66], etc., with different energy
scales.
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