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ABSTRACT
Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, 
in snow-dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non-
karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large frac-
tures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly 
fractured bedrock, or porous media bedrock grains. A well-connected karst aquifer will discharge a large portion of its accu-
mulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged 
response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydro-
logic records of gaged watersheds with exposed or near-surface carbonate layers accounting for > 30% of their drainage area. In 
western snow-dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and 
flow time series shows low-flow volume is strongly related to karst aquifer conditions and winter precipitation when compared 
to low-flow volumes present in non-karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of 
normalised streamflow and cumulative precipitation in karst watersheds show that low-flow conditions are highly dependent on 
the preceding winter precipitation and streamflow in both wet and dry periods. In non-karst watersheds, increased precipitation 
primarily impacts high-flow, spring runoff volumes with no clear relationship to low-flow periods. When comparing cumulative 
streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential 
filling and draining of large amounts of karst storage, whereas non-karst watersheds demonstrate a more stable storage regime. 
Communities in many western US watersheds are dependent on snow-dominated karst watersheds for their water supply. This 
analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these water-
sheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help 
manage water supplies.
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1   |   Introduction

The Intermountain West region in the U.S. is characterised by 
a semi-arid climate with hydrological regimes driven by winter 
snowfall and dry summers. These areas are highly dependent on 
surface water sources (rivers, and reservoirs) for their water sup-
ply. The US Geological Survey estimates that approximately 65% 
of water withdrawals in Intermountain West states are sourced 
from surface water. In Utah, Nevada, Idaho, and Arizona, 73%, 
51%, 70%, and 54% of total withdrawals are sourced from surface 
water, respectively (Dieter et al. 2018). Many watersheds in this 
region contain karst aquifers  characterised by heterogeneous 
distributions of sinkholes, conduits, and caves, offering the po-
tential for substantial groundwater storage (Bakalowicz  2005; 
Ford and Williams  2013; Pulido-Bosch  2021; Sloto, Cecil, and 
Senior 1991). Some of the primary groundwater flow paths con-
necting karst aquifers to surface water can have significantly 
shorter residence times compared to those in non-karst water-
sheds (Freeze and Cherry  1979; Worthington, Schindel, and 
Alexander Jr 2002). Longer residence time flow paths, includ-
ing flow through soils, fractured bedrock, or porous media bed-
rock grains, will be defined as matrix flow paths herein (Brooks 
et  al.  2015; Godsey, Kirchner, and Tague  2014; Liu, Williams, 
and Caine  2004; Liu et  al.  2008; Somers and McKenzie  2020; 
Winter  1995). The additional groundwater contributions to 
rivers and streams via karst flow paths can significantly influ-
ence surface water hydrologic regimes where karst geology un-
derlies a significant proportion of the watershed (Kresic 2012; 
Winter 1995). In karst watersheds where surface water is a crit-
ical component of the local water supply, understanding the ef-
fects of karst flow paths on the streamflow regimes can lead to 
more effective water resource management.

Streamflow regimes in western US watersheds are framed 
by the rapid melt of winter snowpack producing spring run-
off (Bales et  al.  2006; Barnhart et  al.  2016; Dettinger, Udall, 
and Georgakakos  2015; Knowles, Dettinger, and Cayan  2006; 
Rumsey, Miller, and Sexstone  2020). Spring runoff results 
in multiple orders of magnitude increase in streamflow fol-
lowed by a recession back to baseflow (Dettinger, Udall, and 
Georgakakos  2015; Hammond, Saavedra, and Kampf  2018; 
Knowles, Dettinger, and Cayan  2006; Rumsey, Miller, and 
Sexstone  2020). Baseflow in snowmelt-dominated mountain 
watersheds is typically defined as being sourced from ground-
water flow paths due to the lack of precipitation and minimal 
snowmelt post-spring runoff (Miller et  al.  2014; Rimmer and 
Salingar 2006; Winter 1995). The large storage volume in karst 
aquifers allows them to capture a significant fraction of snow-
melt during spring runoff (Land and Timmons 2016; Meeks and 
Hunkeler 2015; Spellman et al. 2022) and attenuate runoff pat-
terns non-linearly across a range of timescales (Atkinson 1977; 
Labat, Mangin, and Ababou  2002). This phenomenon is re-
ferred to as the “memory effect” and results from the currently 
observed baseflow condition being a combined signal from re-
cent precipitation and the prior baseflow condition (Iliopoulou 
et al. 2019; Mangin 1984; Nippgen et al. 2016).

Climate change is shifting precipitation regimes away from 
snowmelt-dominated towards more rainfall-dominated in the 
Intermountain West (Dettinger, Udall, and Georgakakos 2015; 
Ficklin, Robeson, and Knouft  2016; Knowles, Dettinger, and 

Cayan 2006). It is unknown how changes in precipitation and 
snowmelt patterns will affect recharge, karst/matrix contribu-
tions, and storage in karst watersheds, particularly given the 
potential for the continuation of the millennial-scale drought 
(Segura 2021; Sexstone et  al.  2018). Therefore, there is a clear 
need to understand controlling hydrologic variables and the role 
of karst geology in modulating the effects of varied precipitation 
on western watershed streamflow.

In water resources management, planning decisions are often 
made on a water year scale utilising predictive models. These 
models typically employ multi-linear regression (MLR) equa-
tions using various hydrological variables to generate stream-
flow forecasts (Garen 1992; Vogel, Wilson, and Daly 1999; Wolf 
et al. 2023). These hydrological variables represent climate and/
or watershed processes in streamflow generation (Fleming and 
Goodbody 2019; Vogel, Wilson, and Daly 1999). These models 
do not explicitly measure or incorporate variables represent-
ing groundwater storage and its contribution to streamflow, 
nor do they account for the impact of karst geology (Donovan 
et al. 2022; Jones et al. 2019; Land and Timmons 2016; Tennant, 
Crosby, and Godsey  2015). The anticipated continued shift in 
precipitation phase and patterns in the Intermountain West 
(Ficklin, Robeson, and Knouft  2016; Rumsey, Miller, and 
Sexstone 2020; Tennant, Crosby, and Godsey 2015) and the lim-
ited work on understanding the impacts of karst geology in these 
watersheds has led to significant limitations in our ability to pre-
dict shifts in streamflow regime.

To anticipate changes in streamflow regimes, we need to iden-
tify the significant hydrological variables for understanding 
karst watersheds and contrast them with our foundational un-
derstanding of non-karst watersheds. To address this need, we 
focus on identifying the key hydrologic factors that control run-
off and baseflow generation in snowmelt-dominant karst and 
non-karst watersheds using MLR methods (Garen 1992; Vogel, 
Wilson, and Daly 1999). We use variables derived from classical 
hydrologic metrics over characteristic periods to establish which 
variables exhibit the best relationship with high-flow volumes 
during spring runoff and low-flow volumes during baseflow 
conditions. These hydrologic metrics do not include any direct 
measures of groundwater conditions. By comparing the vari-
ables correlated with high-flow and low-flow volumes in these 
different watershed classifications, we can identify fundamen-
tal differences in the factors that control karst versus non-karst 
hydrologic regimes. Furthermore, we develop simple predictive 
regression models specific to each watershed based on hydro-
logic conditions prior to high and low flow periods to anticipate 
volumes during critical times.

2   |   Methods

We compared hydrologic metrics among seven watersheds in 
northern Utah and southeastern Idaho to determine if trends 
in streamflow metrics exist between karst and non-karst wa-
tersheds. Additionally, characteristic hydrologic variables were 
analysed using MLR to determine the hydrologic metrics and pe-
riods with the strongest relationships to low-flow and high-flow 
volumes. Further, simple MLR equations for predicting high-
flow and low-flow volumes were established using variables 
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measured over a period prior to the high-flow or low-flow period 
to facilitate planning.

2.1   |   Study Area

To minimise variability due to differing climate and hydrologic 
responses and timing, we examined seven snow-dominant wa-
tersheds in northern Utah and southeastern Idaho (Figure  1) 
that all have paired SNOTEL and United States Geological 
Survey (USGS) stream gaging stations. SNOTEL stations are au-
tomated snowpack and climate sensors operated in the western 
U.S. by the Natural Resources Conservation Service (NRCS), 
an agency of the United States Department of Agriculture, that 
provides publicly available data. The USGS operates and pro-
vides publicly available data for stream gages across the United 
States. In this analysis, SNOTEL station and USGS stream gage 
datasets were required to have at least 20 years of daily data and 

report data year-round. To avoid human storage influences, all 
selected watersheds have a reservoir design capacity that is less 
than 10% of the median total streamflow volume in a water year 
to ensure limited influence on streamflow regimes. Further, 
they have karst coverage ranging from 0% to 71% as defined 
by the presence of surface-exposed carbonate rock calculated 
from the national karst map (Doctor et  al.  2020). Two water-
sheds, the Logan River and Blacksmith Fork River are in the 
Idaho-Utah Bear River Range characterised by limestone and 
dolomite with some siltstone and quartzite intervals. Two water-
sheds, Red Butte Creek and American Fork are composed pri-
marily of limestone formations and quartz sandstone units, in 
Utah's Wasatch Range. Three watersheds, Bear River-Stillwater 
Fork (quartz sandstone with boulder till), Weber River (predom-
inantly quartz sandstone interspersed with limestone forma-
tions), and Lake Fork (quartzite and quartz sandstone), are in 
Utah's Uintah Range (Figure 1). Table S1 includes information 
on the SNOTEL stations and USGS gaging stations used in each 

FIGURE 1    |    USGS stream gages and SNOTEL stations in selected watersheds for analysis. Surface exposed carbonate rock, shown in orange, is 
given as a percentage of watershed area.
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watershed, while Table S2 provides details on the reservoir stor-
age upstream of each gage (U.S. Army Corps of Engineers 2024).

2.2   |   Data

The watershed area for each stream gage was delineated in 
ArcGIS Pro using USGS 10-m DEMs (Gesch et  al.  2018). The 
surface carbonate rock area for each watershed was determined 
using a nationwide layer provided by Doctor et al. (2020). Daily 
SNOTEL data, USGS streamflow data, and site metadata were 
acquired for each site from the National Water Information 
System (U.S. Geological Survey  2016). The publicly available 
4-km gridded PRISM data (The PRISM Climate Group  2024) 
was used to derive watershed area-weighted values for precip-
itation (Precip.) and air temperature (Air Temp.). Streamflow 
data include daily averaged flow (m3s−1). Daily streamflow in 
cm (q) was determined by dividing the daily flow volume by the 
watershed area to aid in comparisons between different-sized 
watersheds. SNOTEL data included daily snow-adjusted pre-
cipitation (PRCPSA) and daily snow water equivalent (SWE) 
(Table 1). Using PRCPSA and SWE, daily snowmelt (Snowmelt), 
daily rainfall (Rain), and daily snowfall (Snow) were calculated 
for each SNOTEL station.

The Logan River has two gaged diversions upstream of the 
USGS gage, the Highline Canal (U.S. Geological Survey 2024) 
and Dewitt Springs (Utah Division of Water Rights 2024). The 
reported daily average flow from these diversions was added to 
the streamflow reported at the USGS gage to represent the total 
streamflow of the Logan River.

2.3   |   Characteristic Metrics and Periods

Past work in the Intermountain West has shown that certain 
hydrologic characteristic metrics measured over hydrologic pe-
riods are good predictors of streamflow (Brooks et al. 2021; Wolf 
et al. 2023). A pool of variables for evaluation using MLR was 
derived by parsing characteristic hydrologic metrics across sig-
nificant hydrologic periods (Table 1; Figure 2).

The period between October 1st and the start of spring runoff ex-
hibits relatively consistent streamflow because the streamflow is 
predominantly composed of baseflow over this period (Ficklin, 
Robeson, and Knouft 2016; Miller et al. 2014; Rumsey, Miller, 
and Sexstone 2020). Streamflow recorded during this low-flow 
period is assumed to be representative of the aquifer(s) stor-
age condition (Neilson et al. 2018; Rimmer and Salingar 2006; 
Rumsey, Miller, and Sexstone 2020; Wolf et al. 2023).

The high-flow period, between the start of spring runoff and 
October 1st, captures a majority of the peak in streamflow due 
to spring snowmelt in the western U.S. (Barnhart et  al.  2016; 
Hammond, Saavedra, and Kampf  2018; Harrison et  al.  2021; 
Miller et  al.  2014; Neilson et  al.  2018; Rumsey, Miller, and 
Sexstone 2020). The correlation between winter precipitation and 
streamflow during the high-flow period is typically quite strong 
in watersheds in the Intermountain West (Dettinger, Udall, and 
Georgakakos 2015; Rumsey, Miller, and Sexstone 2020; Stewart, 

TABLE 1    |    Hydrologic characteristic metrics and hydrologic periods 
(Figure 2).

Metric Description Units

Daily streamflow 
in cm (q)

Cumulative Daily 
streamflow volume divided 

by watershed area.

cm day−1

Daily snow and 
rain measured 
as depth of water 
(PRCPSA)

Daily precipitation measured 
by a precipitation bucket 
adjusted for snow under-
catch at SNOTEL station.

cm day−1

Daily 
precipitation 
(Precip.)

Average daily precipitation 
across the watershed 

from PRISM.

cm day−1

Snow water 
equivalent (SWE)

Depth of water contained in 
snow measured by a snow 

pillow at a SNOTEL station.

cm

Daily rainfall 
(Rain)

Daily rainfall measured 
by a precipitation bucket 

at a SNOTEL station.

cm day−1

Daily snowfall 
(Snow)

Daily snowfall measured 
by a snow pillow measured 

as depth of water at a 
SNOTEL station.

cm day−1

Daily snowmelt 
(Snowmelt)

Melting snow measured as 
a negative change in SWE 

at a SNOTEL station.

cm day−1

Daily Air 
Temperature (Air 
Temp.)

Average daily air 
temperature across the 

watershed from PRISM.

°C

Period Description

Water year Water Year, October 1st through September 
30th, period used in the U.S. to reflect water 
management practices (Pagano et al. 2009).

Low-flow October 1st to start of spring runoff represents 
period during which streamflow is primarily 

composed of baseflow (Miller et al. 2014).

High-flow Start of spring runoff to October 1st, represents 
period during which streamflow is composed of 
flow from spring runoff and the corresponding 
recession (Rumsey, Miller, and Sexstone 2020).

Melt Peak SWE to melt out, period over which 
most snowfall melts in a water year 

(Hammond, Saavedra, and Kampf 2018).

Runoff Start of spring runoff to date of highest peak flow, 
period over which streamflow increases due to 
snowmelt (Rumsey, Miller, and Sexstone 2020).

Recession Date of highest peak flow to October 1st, period 
over which streamflow generally declines to lack 
of significant precipitation (Barnhart et al. 2016).

Winter October 1st through date of peak SWE, 
period over which most of the watershed's 

precipitation falls as snow (Wolf et al. 2023).
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Cayan, and Dettinger  2004). Rain is a larger fraction of total 
precipitation at lower elevations in the West (Ficklin, Robeson, 
and Knouft  2016; Hammond et  al.  2019; Knowles, Dettinger, 
and Cayan 2006). As climate change has caused warmer win-
ter temperatures, the amount of snowmelt occurring during 
winter has increased and could affect streamflow (Harpold 
and Brooks 2018; Marshall et al. 2020; Sexstone et al. 2018). In 
some cases, snowmelt rate is a better predictor of streamflow 
in the western US compared to snowfall or rainfall (Barnhart 
et al. 2016; Rumsey, Miller, and Sexstone 2020; Wolf et al. 2023).

The precipitation input to watersheds following spring snowmelt 
is predominantly rainfall in the western US (Bales et al. 2006; 
Dettinger, Udall, and Georgakakos 2015; Ficklin, Robeson, and 
Knouft 2016; Hammond et al. 2019). Significant amounts of sum-
mer and fall rain could cause changes in baseflow contributions 
during the low-flow period (Hammond et  al.  2019; Knowles, 
Dettinger, and Cayan  2006). The rate of streamflow increase 
during the runoff period potentially represents both the storage 
condition of the aquifer(s) in the watershed and the snowmelt 
rate (Bales et  al.  2006; Barnhart, Tague, and Molotch  2020; 
Brooks et al. 2015, 2021; Godsey, Kirchner, and Tague 2014). The 
recession rate captures the storage condition of the aquifer(s) in 
the watershed post-spring runoff and the impact of any signifi-
cant precipitation events on the aquifer(s) storage condition post-
snowmelt (Brooks et al. 2021; Godsey, Kirchner, and Tague 2014; 
Liu, Williams, and Caine 2004; Liu et al. 2008).

To represent all the potential relationships described above, 
and provide a robust variable pool of all variables potentially 
predictive of streamflow regimes, the minimum (MIN), maxi-
mum (MAX), average (AVG), cumulative-total (TOTAL), and 
average daily change (ΔAVG) in each hydrological character-
istic metric was calculated for each hydrologic period (Table 1) 
(Addor et al. 2018; McMillan 2021). In this paper, variables are 
denoted by the metric (q, PRCPSA, SWE, Rain, etc.), a subscript 
representing the measured hydrologic period (low-flow, high-
flow, runoff, etc.), a subscript representing the sampling statistic 
(AVG, MIN, etc.), and final subscript of WY or WY-1 denoting 
whether the variable measurement period occurs in the same 
water year as the response variable in the MLR equations or the 
prior water year, respectively. A generic variable would be writ-
ten as Metrichydrologic period, sampling statistic, WY or WY-1. A complete list 
of variables used in the MLR analysis of qlow-flow, TOTAL, WY and 
qhigh-flow, TOTAL, WY are provided (Tables S3 and S4).

2.4   |   Watershed Hydrologic Regime 
Characteristics

We compared distributions across water years of certain key 
metrics and characteristic ratios to discern any clear differences 
or similarities among the hydrologic patterns of the examined 
watersheds. Additionally, the hydrograph time series were ex-
amined for trends in streamflow during high-flow and low-flow 
in response to water year precipitation changes using a simple 
linear regression.

The distributions of Precipwater year, TOTAL, WY, qwater year, TOTAL, WY,   
qhigh-flow, TOTAL, WY, and the qlow-flow, TOTAL, WY, were com-
pared between watersheds. The snow fraction, runoff ratio, 

qlow-flow, TOTAL, WY to qwater year, TOTAL, WY ratio, and qlow-flow, TOTAL, WY 
to qhigh-flow, TOTAL, WY ratio were calculated for each watershed 
(Equations 1–4, respectively).

2.5   |   Multi-Linear Regression (MLR) Analysis

MLR models using different hydrological variables are often 
used to produce streamflow forecasts and determine variable 
correlations with streamflow. These hydrological variables rep-
resent different watershed processes in streamflow generation 
(Fleming and Goodbody 2019; Vogel, Wilson, and Daly 1999). 
One of the most used MLR modelling frameworks is the monthly 
water supply forecast produced by the NRCS using SNOTEL 
snowpack and climate data and USGS streamflow data. Using 
MLR, significant variables are selected from a wide range of 
measured and calculated metrics across different periods for a 
stream gage. Identified variables are used in an MLR equation to 
predict streamflow at a monthly time scale (Garen 1992).

In this study, we use a methodology similar to that outlined 
in Garen  (1992) to select variables from the variable pools 
(Tables S3 and S4) most related to and predictive of the total 
streamflow volume during the low-flow period of a water year 
(qlow-f low, TOTAL, WY) and the total streamflow volume during 
the high-flow period of a water year (qhigh-f low, TOTAL, WY). For 
each variable in the variable pool, a linear regression was 
completed and a t-test (p-value ≤ 0.05) was used to determine 
if the variable was significantly associated with the response 
variable, qlow-f low, TOTAL, WY or qhigh-f low, TOTAL, WY.

For each possible variable pair combination in the respective 
variable pools, an MLR equation was established with the fol-
lowing form:

where the subscript x refers to low or high flow, C1 and C2 are re-
gression coefficients, V1 and V2 are variables in every possible pair 
in Tables S3 and S4, and b is the regression intercept. If the regres-
sion coefficients of each variable passed a t-test (p-value ≤ 0.05), the 
MLR equation using the variable pair was considered potentially 
viable. If the sign of the coefficients in the linear regression of both 
variables in the variable pair matched the sign of the coefficient of 
each respective variable in the MLR equation, then the MLR equa-
tion using the variable pair was then considered viable. Once a list 
of viable equations of qlow-flow, TOTAL, WY and qhigh-flow, TOTAL, WY were 
created, the r2 values for each equation were calculated by com-
paring predicted values of qlow-flow, TOTAL, WY and qhigh-flow, TOTAL, WY 

(1)snow fraction=
Snowwater year, TOTAL, WY

PRCPSAwater year, TOTAL, WY

(2)runoff ratio =

qwater year, TOTAL, WY

Precipwater year, TOTAL, WY

(3)low − flow ratio =

qlow−flow, TOTAL, WY

qwater year, TOTAL, WY

(4)low− flow to high− flow ratio=
qlow−flow, TOTAL, WY

qhigh−flow, TOTAL, WY

(5)qx−flow, TOTAL, WY = C1V1 + C2V2 + b
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to observed values during the respective periods. The r2 values 
were then used to rank the equations. The top 10% of equations 
were selected and trends in the metrics and periods of variables 
used in MLR equations explaining the highest r2 and propor-
tional variance were then examined for this subset of equations. 
While the best-fit equation was identified for qlow-flow, TOTAL, WY and 
qhigh-flow, TOTAL, WY in each watershed, the best predictive equations 
were also determined by restricting variables used in the regres-
sions to those occurring in hydrological periods prior to the mea-
surement period of the response variable (Tables S3 and S4).

3   |   Results

Examination and comparison of the relationship of the differ-
ent hydrologic characteristic metrics with qlow-flow, TOTAL, WY 
and qhigh-flow, TOTAL, WY indicates some consistencies and differ-
ences between the karst and non-karst watersheds in this study. 
Analysis of the MLR equations further reveals differences be-
tween karst and non-karst watersheds in the characteristic met-
rics related to and predictive of qlow-flow, TOTAL, WY.

3.1   |   Watershed Hydrologic Regime 
Characteristics

We examine the distribution of important variables to 
understand the variability in our key hydrologic met-
rics of interest (q and Precip.). The Precipwater year, TOTAL, 
qwater year, TOTAL, qhigh-flow, TOTAL, and qlow-flow, TOTAL distributions for 
each watershed are used to calculate snow fraction, runoff ratio, 
qlow-flow, TOTAL/qwater year, TOTAL, and qlow-flow, TOTAL/qhigh-flow, TOTAL 
distributions across the period of record (Figure 3). The differ-
ences between karst and non-karst watersheds are apparent. 
The Precipwater year, TOTAL is relatively consistent between water-
sheds while the mean PRCPSAwater year, TOTAL differs across wa-
tersheds (Figure 3 and Table S5). This can be attributed to the 
SNOTEL stations only representing a point in each watershed 
and elevation differences between the SNOTEL stations.

Based on similar Precip., we expect the watersheds to have a simi-
lar qwater year, TOTAL magnitude, however, that is not always the case. 
The distributions of qwater year, TOTAL are similar in the Logan River, 
American Fork, Weber River, Bear River-Stillwater Fork, and Lake 
Fork (Figure 3 and Table S5). Red Butte Creek and the Blacksmith 
Fork have narrow distributions with a lower range compared to 
the other watersheds (Figure 3 and Table S5). The qwater year, TOTAL 
distribution in all watersheds is skewed towards larger values.

The qhigh-flow, TOTAL distributions across all seven watersheds ex-
hibit a similar pattern to the qwater year, TOTAL distributions (Figure 3 
and Table  S5). This is likely due to most of the qwater year, TOTAL 
being concentrated during the high-flow period. This is expected 
behaviour in snow-dominated watersheds. The pattern in com-
paring the qlow-flow, TOTAL distributions across watersheds is also 
similar to the qwater year, TOTAL distribution with the significant 
difference being the qlow-flow, TOTAL distribution ranges are signifi-
cantly smaller (Figure 3 and Table S5). The snow fraction distribu-
tions have a median value above 0.5 with overlapping distribution 
ranges, confirming that all the watersheds in the study experience 
snow-dominated precipitation regimes (Figure 3 and Table S5).

The median runoff ratios in the karst watersheds (Logan River, 
Red Butte Creek, American Fork, and Blacksmith Fork) are all 
lower than those in the non-karst watersheds (Weber River, 
Bear River, and Lake Fork). The Logan River and American 
Fork median runoff ratios are slightly higher at approxi-
mately 0.35, whereas Red Butte Creek and Blacksmith Fork 
have medians of approximately 0.2. The median runoff ratios 
in the non-karst watersheds are all around 0.5 (Figure  3 and 
Table S5). The runoff ratios would indicate that a larger frac-
tion of precipitation is lost (to deeper groundwater systems 
or ET) or stored in the karst watershed aquifers compared to 
the non-karst watersheds. Additionally, inter-basin movement 
of groundwater through karst aquifers that cross watershed 
topographic boundaries has been documented to some extent 
by Spangler  (2001) in the Logan River watershed; however, 
inter-basin transfer has not been explored in these watersheds 
despite it being a common feature of karst watersheds (Pulido-
Bosch 2021; Winter 1995).

The qlow-flow, TOTAL/qwater year, TOTAL distributions show that the 
ratio in karst watersheds is on average higher than that in non-
karst watersheds, with notably high median values of approx-
imately 0.3 in the Logan River and Blacksmith Fork (Figure 3 
and Table  S5). The qlow-flow, TOTAL/qhigh-flow, TOTAL distributions 
again show higher medians for the karst watersheds when com-
pared to the non-karst watersheds (Figure 3 and Table S5). With 
the karst watersheds showing both significantly higher medians 
and wider ranges in their distributions, this suggests the pres-
ence of large aquifers with significant storage capacity as dis-
cussed in Iliopoulou et al. (2019).

Collectively, these ratios indicate that there are differences be-
tween the karst and non-karst watersheds, especially concern-
ing the significant fraction of qwater year, TOTAL that is observed 
during the low-flow period in karst watersheds (Figure 3). This 
suggests that baseflow periods differ between karst and non-
karst watersheds.

3.2   |   Time Series Trends

The difference in streamflow observed during the low-flow 
period in the karst watersheds compared to the non-karst 
watersheds is further demonstrated by comparing the hy-
drograph of a karst (Logan River) to a non-karst (Bear River-
Stillwater Fork) watershed (Figure 4). First, we observed that 
the precipitation patterns, measured as Snowmelt  plus  Rain 
at the SNOTEL stations within the respective watersheds, 
showed similar trends over the period of record, while magni-
tudes differed between the two watersheds (Figure 4a,b). Here 
we use SNOTEL Snowmelt and Rain instead of PRISM Precip. 
because we can differentiate between Snowmelt and Rain. 
Comparison of the SNOTEL PRCPSA and PRISM Precip. data 
show good agreement with respect to the time-series trends 
and the distributions are similar across watersheds (Figure 3, 
Table  S5). Second, the streamflow in both watersheds is re-
sponsive to precipitation, with the minimum low-flow and 
maximum high-flow streamflow increasing and decreasing 
relative to cumulative Snowmelt plus Rain on a water year 
basis (Figure  4a,b). Next, we see that the karst-dominated 
Logan River minimum and maximum average streamflow 
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7 of 22

for the low-flow period occupies a wider and higher range 
(0.03–0.09 cm day−1) when compared to the non-karst Bear 
River-Stillwater Fork (0.02–0.05 cm day−1) (Figure  4a,b). The 
Logan River streamflow during low-flow exhibits a lagged 

response to changes in precipitation as exhibited in the 
2017–2021 water years. In contrast, the Bear River-Stillwater 
Fork shows a return to a consistent streamflow during low-
flow with some variability due to fall precipitation events. 

FIGURE 2    |    Hydrological periods denoted by the labelled arrows defined for hydrologic metrics described in Table 1.
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8 of 22 Hydrological Processes, 2024

Notably, we observe a significant spike in streamflow late 
in the 2021 water year due to above-average rain in the Bear 
River-Stillwater Fork, while no apparent spike appears in the 
Logan River streamflow resulting from these same events 
(Figure 4c,d). The streamflow during high-flow appears to be 
bolstered in below median Snowmelt plus Rain years by the 
long recession of flows occurring in karst systems following 
above median Snowmelt  plus Rain years as observed in the 
2017–2018 water years in Figure 4c. This pattern appears in 
hydrographs of all the karst watersheds (Figures S1–S3).

Similar hydrograph trends and differences are observed when 
comparing the karst and non-karst hydrographs of the other wa-
tersheds in this study (Figures S1–S5). A lack of response to rain 
events in the karst watersheds is likely due to the interception of 
any overland flow by fractures, caves and sinkholes. In contrast, 
the fast response in non-karst watersheds can be attributed to 
overland flow or shorter subsurface storm flow paths.

Simple regression of the Precipwater year, TOTAL, WY against 
qwater year, TOTAL, WY, qhigh-flow, TOTAL, WY, and qlow-flow, TOTAL, WY+1 

FIGURE 3    |    Watershed characteristic comparisons. The boxplot distribution is overlaid by a violin plot of the distribution of values for each wa-
tershed. Watersheds are ordered from left to right based on percentage of carbonate rock area.
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supports what we observed in the hydrograph time series 
(Figure 5). Both karst and non-karst watersheds show a strong 
correlation between qwater year, TOTAL, WY and Precipwater year, TOTAL, WY 
(Figure 5) as demonstrated in watersheds across the West (Dier
auer, Whitfield, and Allen  2018; Knowles, Dettinger, and 
Cayan 2006). Notably, across all watersheds the r2 is higher be-
tween qhigh-flow, TOTAL, WY and Precipwater year, TOTAL, WY (Figure 5). 
This is not surprising given that streamflow during the high-
flow period is driven by snowmelt, which in these snow-
dominated watersheds represents a majority of the accumulated 
Precip. in a water year. When comparing the qlow-flow, TOTAL, WY+1 
to Precipwater year, TOTAL, WY, in the karst watersheds the r2 values 
are higher compared to the non-karst watersheds (Figure  5). 
This indicates a stronger correlation between snowpack and 
low-flow volumes in karst watersheds than in the non-karst wa-
tersheds. This would be indicative of the responsive nature of 
karst aquifers to annual snowpack and the karst aquifer con-
nection to streamflow during the low-flow period.

3.3   |   Low-Flow Relationships

In both the karst and non-karst watersheds, MLR equations 
using variables containing streamflow, q, sampled within the 
winter or high-flow periods had a relatively good fit to the data 
with r2 values ranging from 0.57 to 0.97 (Figures 6 and 7 and 
Table S6). In the Logan River, Red Butte Creek, American Fork, 
and Blacksmith Fork, the equation with the highest r2 contains 
the variable q (Figure 6 and Table S6). qrecession,MIN,WY-1, the low-
est streamflow value during the recession period prior to the start 
of the low-flow period, alone is a good predictor as measured by 
r2 in the karst watersheds, but is a relatively poor predictor on its 
own in the non-karst watersheds. The best MLR equations for 
the non-karst watersheds overall have weaker r2 values when 
compared to the best MLR equations for the karst watersheds 
(Figures 6 and 7 and Table S6).

In the non-karst watersheds, metrics measuring q, Snowmelt 
and Air Temp., appeared in equations highly correlated with 
qlow-flow, TOTAL, WY. While the q variable appears in the equations 
most correlated with qlow-flow, TOTAL, WY in every watershed, in 
the karst watersheds nearly all the proportional variance is ex-
plained by the streamflow, q, variable (Figure 8 and S6–S8). In 
contrast, in the non-karst watersheds, the proportional variance 
explained by any given variable is balanced across metrics in-
cluding q, Precip., Snowmelt, and Air Temp., indicating complex 
processes driving qlow-flow, TOTAL, WY in non-karst watersheds 
(Figures S9–S11).

3.4   |   Low-Flow Predictive Equations

The list of viable MLR equations was restricted to those based on 
variable pairs containing variables sampled over periods prior 
to the low-flow period, resulting in a list of predictive equations 
useful in a management or planning context. The best predic-
tive equations in the karst watersheds have r2 values ranging 
from 0.77 to 0.92 with qWY-1 being the most common regression 
variable explaining a majority of the variance in the predicted 
results of qlow-flow, TOTAL, WY (Table 2 and Figure S12). These re-
sults, in combination with the highest ranked MLR regression 

results, indicate that in the karst watersheds, past streamflow is 
a good indicator of future streamflow.

In the Weber River and Bear River, qlow-flow, TOTAL, WY-1 and 
qwinter, TOTAL, WY-1 explain a significant amount of the proportional 
variance in predicted results; however, the r2 values produced by 
the equations, 0.66 and 0.65, respectively, show that the equa-
tions are not useful for predicting qlow-flow, TOTAL, WY (Table  2, 
Figure S13). In the prediction equations for qlow-flow, TOTAL, WY in 
Lake Fork, Snowmelt produces the best predictive MLR equa-
tion with an r2 value of 0.34. In general, the lack of predictive 
power of the equations in the non-karst watersheds indicates 
that the low-flow regimes are less dependent on prior hydrologic 
conditions characterised by individual metrics and instead re-
quire models that capture more complex hydrologic processes 
(Table 2).

3.5   |   High-Flow Relationships

Using all variable pair combinations, MLR analysis allows for 
the determination of the strength of variable relationships with 
qhigh-flow, TOTAL, WY. The variable pairs and the results for the top 
10% of the viable MLR equations highlight the importance of 
precipitation via the strong relationship between Precip., Snow, 
Rain, SWE, and Snowmelt, and qhigh-flow, TOTAL, WY. It is not sur-
prising that r2 values range from 0.90 to 0.94 (Figures 9 and 10), 
given the well-documented relationship between snowpack 
and peak streamflow in western snowmelt-dominated water-
sheds (Barnhart, Tague, and Molotch 2020; Brooks et al. 2021; 
Rumsey, Miller, and Sexstone 2020).

In all of the watersheds, the metrics best related to 
qhigh-flow, TOTAL, WY are measures of precipitation (Precip., SWE, 
and Snowmelt) during the Winter or low-flow periods (Figures 11 
and S14–S19). In all watersheds, SWEhigh-flow,AVG,WY is a reason-
ably good predictor because snow is the dominant precipitation 
source.

3.6   |   High-Flow Predictive Equations

The metrics appearing in the best qhigh-f low, TOTAL, WY predic-
tion equations are similar to those metrics in the MLR equa-
tions with the strongest relationship with qhigh-f low, TOTAL, WY. 
Precip. and SWE are the most common metrics explaining a 
significant portion of the variance in prediction results with 
r2 values ranging from 0.77 to 0.84 (Table  3). The best pre-
dictive variables are metrics representing different forms of 
precipitation measured during the low-flow period (Figures 10 
and S14–S19). This is consistent with our understanding of the 
influence of the snowpack on the high-flow regime in west-
ern snowmelt-dominated watersheds. Generally, the predic-
tive equations provide acceptable results in all watersheds 
(Figures S20 and S21).

4   |   Discussion

Streamflow volumes are closely related to storage condi-
tions in a watershed (Brooks et  al.  2021; Godsey, Kirchner, 
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10 of 22 Hydrological Processes, 2024

FIGURE 4    |    Cumulative Snowmelt + Rain and daily q for the period of record (a, b) for the Logan River and Bear River-Stillwater Fork, respective-
ly. Cumulative Snowmelt + Rain and daily streamflow, q, for the 2017 through the 2023 water year (c, d) for the Logan River and Bear River-Stillwater 
Fork, respectively. Horizontal dashed lines in the Snowmelt + Rain plots show the median Snowmelt + Rain for the period of record for the respective 
watershed, while horizontal dashed lines in the streamflow plots show the minimum and maximum qlow-flow, AVG, WY, values.
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and Tague  2014). While most streamflow in snow-dominated 
watersheds is produced during spring runoff, the dominant 
source during fall and winter is groundwater storage (Cochand 

et  al.  2019; Land and Timmons  2016; Rumsey, Miller, and 
Sexstone 2020). Variations in post-runoff streamflow within dif-
ferent non-karst watersheds have been attributed to variations 

FIGURE 5    |    Area normalised streamflow totaled for the water year (first column), the high-flow period (second column), and the low-flow period 
(third column) plotted against total water year precipitation for each watershed (rows).
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12 of 22 Hydrological Processes, 2024

FIGURE 6    |    qlow-flow, TOTAL, WY regression results for the karst watersheds. The blue dashed line shows the results for the highest rank MLR equa-
tion and the associated variable pair. The grey dotted line shows the regression results for qrecession, MIN, WY-1. The observed qlow-flow, TOTAL, WY values 
are shown by the black dots.
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13 of 22

FIGURE 7    |    qlow-flow, TOTAL, WY regression results for the non-karst watersheds. The blue dashed line shows the results for the highest rank MLR 
equation and the associated variable pair. The grey dotted line shows the regression results for qrecession, MIN, WY-1. The observed qlow-flow, TOTAL, WY val-
ues are shown by the black dots.
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14 of 22 Hydrological Processes, 2024

in storage, however, contributions are often variable due to 
changes in rainfall (Kirchner 2016; McNamara et al. 2011). The 
larger storage volume of karst watersheds is a complicating 

factor in understanding streamflow regimes due to the com-
plex and heterogeneous distribution of storage and flow paths in 
these watersheds (Pulido-Bosch  2021; Spangler  2001; Thurber 

FIGURE 8    |    Logan River, MLR equation variables' relationship strength to qlow-flow, TOTAL, WY. Each column of plots represents a different metric, 
and each row represents a different hydrologic period used in the MLR analysis. Corresponding variables in the top 10% of viable MLR equations are 
represented in each plot. A plot's y-axis represents the r2 value of an equation while the x-axis denotes the fraction of explained proportional variance 
by a given equation variable. The variable pair from the highest ranked equation is represented by “+” s (Figure 6) and variables from the best pre-
diction equation are shown by triangles (Table 2). Variables in all other MLR equations are represented as grey dots.
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et  al.  2024). Karst watersheds are particularly vulnerable to 
changes in storage as a large fraction of year-round streamflow is 
derived from groundwater (Liu, Wagener, and Hartmann 2021; 
Neilson et al. 2018). This is of particular concern since karst sys-
tems supply water to 20%–25% of the world's population (Ford 
and Williams 2013; Hartmann et al. 2014). The connection be-
tween karst aquifers and streamflow regimes is a growing con-
cern globally and in the western US as climate change shifts 
precipitation regimes and karst water resources are threatened 
(Dieter et al. 2018; Donovan et al. 2022; Segura et al. 2019; Tobin 
et al. 2018).

The presence of karst storage shifts the streamflow dis-
tribution between the high-flow and low-flow periods as 
indicated by the qlow-flow, TOTAL/qhigh-flow, TOTAL and the 
qlow-flow, TOTAL/qwater year, TOTAL of the analysed watersheds 
(Figure 3). This shift in distribution manifests as a longer re-
cession tail and reduced peak flow when comparing karst to 
non-karst watersheds, respectively (Figures 4 and S1–S5). The 
hydrographs of the karst watersheds highlight the presence of a 
“memory effect” (Fiorillo 2009, 2014; Hosseini, Ataie-Ashtiani, 
and Simmons 2017; Mangin 1984) where streamflow in water 
years experiencing below median precipitation was bolstered 
by flows from karst storage banked during previous years of 
high precipitation. This memory effect was investigated using 
time series lag analysis to see if a persistent lag-period could 
be determined, however, no constant period was significantly 
predictive of future streamflow volume. The tangible conse-
quence of this memory effect for water managers and users 
in karst watersheds is higher low flows during short drought 
periods, but the longevity of elevated baseflow is highly depen-
dent on the annual recharge quantities. Regardless, within a 
water year, the stable recession curves can result in a predict-
able amount of water available during critical, low-flow peri-
ods. In contrast, in the non-karst watersheds prior streamflow 
was a weak predictor of qlow-flow, TOTAL, WY (Figures  S9–S11). 
The metrics explaining the most variance in the prediction of 
qlow-flow, TOTAL, WY are varied and still result in poor predictions, 
indicating complex hydrologic processes in the non-karst wa-
tersheds (Figures S9–S11).

Low-flow volume, qlow-f low, TOTAL,WY can accurately be an-
ticipated by the predictive equations in karst watersheds 
(Table  2). Low-flow volumes are most strongly related to re-
cession streamflow volumes, qrecession, MIN, WY-1 (Figures 8 and 
S6–S8). Various measures of precipitation are strongly related 
to high-flow volumes (Figures  11 and S14–S19, and Tables  3 
and S7), as expected due to the high snow fraction in these 
watersheds (Figure 3). Taken together, this indicates the stor-
age condition is significantly affected by yearly snowpack. 
Examination of the karst watershed hydrographs (Figures  4 
and S1–S3) and distribution of the qlow-f low, TOTAL/qhigh-f low, TOTAL 
(Figure 3) once again illustrates that the karst watersheds ex-
perience the memory effect to different degrees. As discussed 
by Thurber et  al.  (2024), karst aquifers can exhibit varying 
levels of connectivity to rivers. The Logan River and Red Butte 
Creek appear well-connected to their karst aquifers. A signif-
icant fraction of well-connected karst aquifer storage will be 
drained by large conduits with short residence times, draining 
a large portion of the storage every water year. The Blacksmith 
Fork and American Fork appear to be poorly connected to T
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their karst aquifers. The storage volume connected to the river 
is reduced, and the karst flow paths are more complex with 
longer residence times. The predictability of the streamflow 

regimes in these karst aquifers and clear signals indicating 
various storage conditions under current climate regimes are 
of significant benefit to water managers and users.

FIGURE 9    |    qhigh-flow, TOTAL, WY regression results for the karst watersheds. The blue line shows the prediction results for the variable pair used in 
the highest rank MLR equation. The grey dotted line shows the regression results for SWEhigh-flow, AVG, WY. The observed qhigh-flow, TOTAL, WY values are 
shown by the black dots.
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The non-karst watersheds in this study had high-flow volumes, 
qhigh-flow, TOTAL, WY, that are also strongly related to and predicted 
by precipitation metrics (Figures S17–S19, and Table 3 and S7). 

Again, this is not surprising given the watersheds' high snow 
fraction (Figure 3). However, in these non-karst watersheds the 
low-flow volumes, qlow-flow, TOTAL, WY, were related to a wide range 

FIGURE 10    |    qhigh-flow, TOTAL, WY regression results for the non-karst watersheds. The blue line shows the prediction results for the variable pair 
used in the highest rank MLR equation. The grey dotted line shows the regression results for SWEhigh-flow, AVG, WY. The observed qhigh-flow, TOTAL, WY 
values are shown by the black dots.
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of metrics, none of which produced good predictive or strong 
regression equations (Table 2 and S6 and Figures S9–S11). The 
wide range of weakly related variables indicates complicated 

hydrologic processes and groundwater storage regimes that 
could not be represented by the simple and readily available me-
teorological and hydrologic metrics used in this analysis. Under 

FIGURE 11    |    Logan River, MLR equation variables' relationship strength to qhigh-flow, TOTAL, WY. Each column of plots represents a different metric, 
and each row represents a different hydrologic period used in the MLR analysis. Corresponding variables in the top 10% of viable MLR equations are 
represented in each plot. A plot's y-axis represents the r2 value of an equation while the x-axis denotes the fraction of explained proportional variance 
by a given equation variable. The variable pair from the highest ranked equation is represented by “+” s (Figure 9) and variables from the best predic-
tion equation are shown by triangles (Table 3). Variables in all other MLR equations are represented by grey dots.
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current precipitation patterns, the fraction of streamflow vol-
ume in the low-flow period is a smaller fraction (Figure 3). In 
contrast, karst aquifers can mimic man-made reservoirs under 
current precipitation regimes.

Atkinson (1977) showed recharge to karst aquifers was limited 
during precipitation events by the infiltration rates of the thin 
soil lenses covering karst flow paths. Infiltration rates in the 
western karst watersheds will likely be more dynamic under a 
future rainfall-dominant precipitation regime, as spring run-
off currently produces a consistent pattern of saturated soils 
for an extended period. The streamflow attributable to karst 
flow paths would likely become more variable across the water 
year. The karst aquifers would no longer drain in a predictable 
fashion following spring runoff and the karst contribution to 
streamflow would become more dependent on soil saturation, 
evapotranspiration, and amount of rainfall as observed by 
Iliopoulou et al. (2019). This would produce streamflow regimes 
in the karst watersheds where the variability would more closely 
resemble that observed in the low-flow periods of the non-karst 
watersheds and could increase the difficulty of planning and 
management in karst watersheds.

To facilitate planning under current hydrologic regimes, 
the predictive equations (Table  3) provide estimates of 
qhigh-f low, TOTAL, WY for the karst and non-karst watershed 
studied. These simple equations provide planning insights 
about potential spring runoff flooding and reservoir filling. 
In the non-karst watersheds, we are unable to provide reli-
able predictive equations for qlow-f low, TOTAL, WY. This failure 
is mitigated by the fact that the rivers studied here flow into 
large reservoirs immediately downstream and provide a man-
made means of moderating low flows. In contrast, the karst 
watershed low-flow periods are being bolstered naturally 
by the karst aquifer storage. Under current precipitation re-
gimes, qlow-f low, TOTAL, WY is predictable in the karst watersheds 
(Table 2). This can assist in anticipating how low flows may 
get during late summer when demand is high. Under antic-
ipated future climate regimes, streamflow volumes in the 
karst watersheds will likely become more temporally erratic 
and require higher temporal resolution precipitation data to 
be predictable. For watershed managers this would necessi-
tate the development of complex models and/or manageable 
man-made storage such as reservoirs. Given the extent of karst 
geology in the western United States and the population's de-
pendence on karst aquifers for water supply, additional efforts 
should be made to understand the current role karst aqui-
fers are playing in streamflow regimes across the West and 
how those streamflow regimes might change in response to a 
changing precipitation regime.

5   |   Conclusions

The presence of karst storage in watersheds affects streamflow 
distribution, resulting in longer recession tails and reduced peak 
flow compared to non-karst watersheds. Karst watersheds ex-
hibit a “memory effect,” where streamflow during dry periods 
is augmented by water stored in karst aquifers from previous 
wet periods. This has implications for water management, as 
it leads to higher flows during droughts and predictable water T
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availability during critical periods over multiple years. Some 
sign of a “memory effect” was present in non-karst watersheds, 
but the predictive power of past flow on low-flow volumes was 
poor and no combination of metrics provided strong predictions, 
indicating the need for more complicated predictive models.

Future rainfall-dominated precipitation regimes are expected 
to impact karst aquifers, making streamflow more variable 
throughout the water year and likely reflecting non-karst wa-
tershed streamflow during low-flow periods. In both karst and 
non-karst watersheds, winter precipitation is predictive of high-
flow streamflow volumes. While non-karst watersheds require 
more complex models to predict low-flow volumes, current karst 
watershed low-flow volume is predicted by post peak runoff 
streamflow. Shifting towards a rainfall-dominated precipitation 
regime will complicate karst watershed storage and streamflow 
regimes as aquifer recharge becomes more dependent on the 
temporal and spatial variability of other hydrologic processes, 
potentially raising challenges for planning and management in 
these watersheds.
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