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ABSTRACT

Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that,
in snow-dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non-
karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large frac-
tures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly
fractured bedrock, or porous media bedrock grains. A well-connected karst aquifer will discharge a large portion of its accu-
mulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged
response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydro-
logic records of gaged watersheds with exposed or near-surface carbonate layers accounting for >30% of their drainage area. In
western snow-dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and
flow time series shows low-flow volume is strongly related to karst aquifer conditions and winter precipitation when compared
to low-flow volumes present in non-karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of
normalised streamflow and cumulative precipitation in karst watersheds show that low-flow conditions are highly dependent on
the preceding winter precipitation and streamflow in both wet and dry periods. In non-karst watersheds, increased precipitation
primarily impacts high-flow, spring runoff volumes with no clear relationship to low-flow periods. When comparing cumulative
streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential
filling and draining of large amounts of karst storage, whereas non-karst watersheds demonstrate a more stable storage regime.
Communities in many western US watersheds are dependent on snow-dominated karst watersheds for their water supply. This
analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these water-
sheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help
manage water supplies.

© 2024 John Wiley & Sons Ltd.
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1 | Introduction

The Intermountain West region in the U.S. is characterised by
a semi-arid climate with hydrological regimes driven by winter
snowfall and dry summers. These areas are highly dependent on
surface water sources (rivers, and reservoirs) for their water sup-
ply. The US Geological Survey estimates that approximately 65%
of water withdrawals in Intermountain West states are sourced
from surface water. In Utah, Nevada, Idaho, and Arizona, 73%,
51%, 70%, and 54% of total withdrawals are sourced from surface
water, respectively (Dieter et al. 2018). Many watersheds in this
region contain karst aquifers characterised by heterogeneous
distributions of sinkholes, conduits, and caves, offering the po-
tential for substantial groundwater storage (Bakalowicz 2005;
Ford and Williams 2013; Pulido-Bosch 2021; Sloto, Cecil, and
Senior 1991). Some of the primary groundwater flow paths con-
necting karst aquifers to surface water can have significantly
shorter residence times compared to those in non-karst water-
sheds (Freeze and Cherry 1979; Worthington, Schindel, and
Alexander Jr 2002). Longer residence time flow paths, includ-
ing flow through soils, fractured bedrock, or porous media bed-
rock grains, will be defined as matrix flow paths herein (Brooks
et al. 2015; Godsey, Kirchner, and Tague 2014; Liu, Williams,
and Caine 2004; Liu et al. 2008; Somers and McKenzie 2020;
Winter 1995). The additional groundwater contributions to
rivers and streams via karst flow paths can significantly influ-
ence surface water hydrologic regimes where karst geology un-
derlies a significant proportion of the watershed (Kresic 2012;
Winter 1995). In karst watersheds where surface water is a crit-
ical component of the local water supply, understanding the ef-
fects of karst flow paths on the streamflow regimes can lead to
more effective water resource management.

Streamflow regimes in western US watersheds are framed
by the rapid melt of winter snowpack producing spring run-
off (Bales et al. 2006; Barnhart et al. 2016; Dettinger, Udall,
and Georgakakos 2015; Knowles, Dettinger, and Cayan 2006;
Rumsey, Miller, and Sexstone 2020). Spring runoff results
in multiple orders of magnitude increase in streamflow fol-
lowed by a recession back to baseflow (Dettinger, Udall, and
Georgakakos 2015; Hammond, Saavedra, and Kampf 2018;
Knowles, Dettinger, and Cayan 2006; Rumsey, Miller, and
Sexstone 2020). Baseflow in snowmelt-dominated mountain
watersheds is typically defined as being sourced from ground-
water flow paths due to the lack of precipitation and minimal
snowmelt post-spring runoff (Miller et al. 2014; Rimmer and
Salingar 2006; Winter 1995). The large storage volume in karst
aquifers allows them to capture a significant fraction of snow-
melt during spring runoff (Land and Timmons 2016; Meeks and
Hunkeler 2015; Spellman et al. 2022) and attenuate runoff pat-
terns non-linearly across a range of timescales (Atkinson 1977;
Labat, Mangin, and Ababou 2002). This phenomenon is re-
ferred to as the “memory effect” and results from the currently
observed baseflow condition being a combined signal from re-
cent precipitation and the prior baseflow condition (Iliopoulou
et al. 2019; Mangin 1984; Nippgen et al. 2016).

Climate change is shifting precipitation regimes away from
snowmelt-dominated towards more rainfall-dominated in the
Intermountain West (Dettinger, Udall, and Georgakakos 2015;
Ficklin, Robeson, and Knouft 2016; Knowles, Dettinger, and

Cayan 2006). It is unknown how changes in precipitation and
snowmelt patterns will affect recharge, karst/matrix contribu-
tions, and storage in karst watersheds, particularly given the
potential for the continuation of the millennial-scale drought
(Segura 2021; Sexstone et al. 2018). Therefore, there is a clear
need to understand controlling hydrologic variables and the role
of karst geology in modulating the effects of varied precipitation
on western watershed streamflow.

In water resources management, planning decisions are often
made on a water year scale utilising predictive models. These
models typically employ multi-linear regression (MLR) equa-
tions using various hydrological variables to generate stream-
flow forecasts (Garen 1992; Vogel, Wilson, and Daly 1999; Wolf
et al. 2023). These hydrological variables represent climate and/
or watershed processes in streamflow generation (Fleming and
Goodbody 2019; Vogel, Wilson, and Daly 1999). These models
do not explicitly measure or incorporate variables represent-
ing groundwater storage and its contribution to streamflow,
nor do they account for the impact of karst geology (Donovan
et al. 2022; Jones et al. 2019; Land and Timmons 2016; Tennant,
Crosby, and Godsey 2015). The anticipated continued shift in
precipitation phase and patterns in the Intermountain West
(Ficklin, Robeson, and Knouft 2016; Rumsey, Miller, and
Sexstone 2020; Tennant, Crosby, and Godsey 2015) and the lim-
ited work on understanding the impacts of karst geology in these
watersheds has led to significant limitations in our ability to pre-
dict shifts in streamflow regime.

To anticipate changes in streamflow regimes, we need to iden-
tify the significant hydrological variables for understanding
karst watersheds and contrast them with our foundational un-
derstanding of non-karst watersheds. To address this need, we
focus on identifying the key hydrologic factors that control run-
off and baseflow generation in snowmelt-dominant karst and
non-karst watersheds using MLR methods (Garen 1992; Vogel,
Wilson, and Daly 1999). We use variables derived from classical
hydrologic metrics over characteristic periods to establish which
variables exhibit the best relationship with high-flow volumes
during spring runoff and low-flow volumes during baseflow
conditions. These hydrologic metrics do not include any direct
measures of groundwater conditions. By comparing the vari-
ables correlated with high-flow and low-flow volumes in these
different watershed classifications, we can identify fundamen-
tal differences in the factors that control karst versus non-karst
hydrologic regimes. Furthermore, we develop simple predictive
regression models specific to each watershed based on hydro-
logic conditions prior to high and low flow periods to anticipate
volumes during critical times.

2 | Methods

We compared hydrologic metrics among seven watersheds in
northern Utah and southeastern Idaho to determine if trends
in streamflow metrics exist between karst and non-karst wa-
tersheds. Additionally, characteristic hydrologic variables were
analysed using MLR to determine the hydrologic metrics and pe-
riods with the strongest relationships to low-flow and high-flow
volumes. Further, simple MLR equations for predicting high-
flow and low-flow volumes were established using variables
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measured over a period prior to the high-flow or low-flow period
to facilitate planning.

2.1 | Study Area

To minimise variability due to differing climate and hydrologic
responses and timing, we examined seven snow-dominant wa-
tersheds in northern Utah and southeastern Idaho (Figure 1)
that all have paired SNOTEL and United States Geological
Survey (USGS) stream gaging stations. SNOTEL stations are au-
tomated snowpack and climate sensors operated in the western
U.S. by the Natural Resources Conservation Service (NRCS),
an agency of the United States Department of Agriculture, that
provides publicly available data. The USGS operates and pro-
vides publicly available data for stream gages across the United
States. In this analysis, SNOTEL station and USGS stream gage
datasets were required to have at least 20years of daily data and

report data year-round. To avoid human storage influences, all
selected watersheds have a reservoir design capacity that is less
than 10% of the median total streamflow volume in a water year
to ensure limited influence on streamflow regimes. Further,
they have karst coverage ranging from 0% to 71% as defined
by the presence of surface-exposed carbonate rock calculated
from the national karst map (Doctor et al. 2020). Two water-
sheds, the Logan River and Blacksmith Fork River are in the
Idaho-Utah Bear River Range characterised by limestone and
dolomite with some siltstone and quartzite intervals. Two water-
sheds, Red Butte Creek and American Fork are composed pri-
marily of limestone formations and quartz sandstone units, in
Utah's Wasatch Range. Three watersheds, Bear River-Stillwater
Fork (quartz sandstone with boulder till), Weber River (predom-
inantly quartz sandstone interspersed with limestone forma-
tions), and Lake Fork (quartzite and quartz sandstone), are in
Utah's Uintah Range (Figure 1). Table S1 includes information
on the SNOTEL stations and USGS gaging stations used in each
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FIGURE1 | USGS stream gages and SNOTEL stations in selected watersheds for analysis. Surface exposed carbonate rock, shown in orange, is

given as a percentage of watershed area.
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watershed, while Table S2 provides details on the reservoir stor-
age upstream of each gage (U.S. Army Corps of Engineers 2024).

2.2 | Data

The watershed area for each stream gage was delineated in
ArcGIS Pro using USGS 10-m DEMs (Gesch et al. 2018). The
surface carbonate rock area for each watershed was determined
using a nationwide layer provided by Doctor et al. (2020). Daily
SNOTEL data, USGS streamflow data, and site metadata were
acquired for each site from the National Water Information
System (U.S. Geological Survey 2016). The publicly available
4-km gridded PRISM data (The PRISM Climate Group 2024)
was used to derive watershed area-weighted values for precip-
itation (Precip.) and air temperature (Air Temp.). Streamflow
data include daily averaged flow (m3s~!). Daily streamflow in
cm (q) was determined by dividing the daily flow volume by the
watershed area to aid in comparisons between different-sized
watersheds. SNOTEL data included daily snow-adjusted pre-
cipitation (PRCPSA) and daily snow water equivalent (SWE)
(Table 1). Using PRCPSA and SWE, daily snowmelt (Snowmelt),
daily rainfall (Rain), and daily snowfall (Snow) were calculated
for each SNOTEL station.

The Logan River has two gaged diversions upstream of the
USGS gage, the Highline Canal (U.S. Geological Survey 2024)
and Dewitt Springs (Utah Division of Water Rights 2024). The
reported daily average flow from these diversions was added to
the streamflow reported at the USGS gage to represent the total
streamflow of the Logan River.

2.3 | Characteristic Metrics and Periods

Past work in the Intermountain West has shown that certain
hydrologic characteristic metrics measured over hydrologic pe-
riods are good predictors of streamflow (Brooks et al. 2021; Wolf
et al. 2023). A pool of variables for evaluation using MLR was
derived by parsing characteristic hydrologic metrics across sig-
nificant hydrologic periods (Table 1; Figure 2).

The period between October 1st and the start of spring runoff ex-
hibits relatively consistent streamflow because the streamflow is
predominantly composed of baseflow over this period (Ficklin,
Robeson, and Knouft 2016; Miller et al. 2014; Rumsey, Miller,
and Sexstone 2020). Streamflow recorded during this low-flow
period is assumed to be representative of the aquifer(s) stor-
age condition (Neilson et al. 2018; Rimmer and Salingar 2006;
Rumsey, Miller, and Sexstone 2020; Wolf et al. 2023).

The high-flow period, between the start of spring runoff and
October 1st, captures a majority of the peak in streamflow due
to spring snowmelt in the western U.S. (Barnhart et al. 2016;
Hammond, Saavedra, and Kampf 2018; Harrison et al. 2021;
Miller et al. 2014; Neilson et al. 2018; Rumsey, Miller, and
Sexstone 2020). The correlation between winter precipitation and
streamflow during the high-flow period is typically quite strong
in watersheds in the Intermountain West (Dettinger, Udall, and
Georgakakos 2015; Rumsey, Miller, and Sexstone 2020; Stewart,

TABLE1 | Hydrologic characteristic metrics and hydrologic periods

(Figure 2).
Metric Description Units
Daily streamflow Cumulative Daily cmday™!
in cm (q) streamflow volume divided
by watershed area.
Daily snow and Daily precipitation measured  cmday™
rain measured by a precipitation bucket
as depth of water adjusted for snow under-
(PRCPSA) catch at SNOTEL station.
Daily Average daily precipitation cmday!
precipitation across the watershed
(Precip.) from PRISM.
Snow water Depth of water contained in cm
equivalent (SWE) snow measured by a snow
pillow at a SNOTEL station.

Daily rainfall Daily rainfall measured cmday!
(Rain) by a precipitation bucket

at a SNOTEL station.
Daily snowfall Daily snowfall measured cmday™!
(Snow) by a snow pillow measured

as depth of water at a

SNOTEL station.

Daily snowmelt Melting snow measured as cmday!
(Snowmelt) a negative change in SWE

at a SNOTEL station.
Daily Air Average daily air °C

Temperature (Air
Temp.)

temperature across the
watershed from PRISM.

Period

Description

Water year Water Year, October 1st through September
30th, period used in the U.S. to reflect water

management practices (Pagano et al. 2009).

Low-flow October 1st to start of spring runoff represents
period during which streamflow is primarily

composed of baseflow (Miller et al. 2014).

High-flow Start of spring runoff to October 1st, represents
period during which streamflow is composed of
flow from spring runoff and the corresponding

recession (Rumsey, Miller, and Sexstone 2020).

Melt Peak SWE to melt out, period over which
most snowfall melts in a water year
(Hammond, Saavedra, and Kampf 2018).

Runoff

Start of spring runoff to date of highest peak flow,
period over which streamflow increases due to
snowmelt (Rumsey, Miller, and Sexstone 2020).

Recession Date of highest peak flow to October 1st, period
over which streamflow generally declines to lack

of significant precipitation (Barnhart et al. 2016).

Winter October 1st through date of peak SWE,
period over which most of the watershed's

precipitation falls as snow (Wolf et al. 2023).
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Cayan, and Dettinger 2004). Rain is a larger fraction of total
precipitation at lower elevations in the West (Ficklin, Robeson,
and Knouft 2016; Hammond et al. 2019; Knowles, Dettinger,
and Cayan 2006). As climate change has caused warmer win-
ter temperatures, the amount of snowmelt occurring during
winter has increased and could affect streamflow (Harpold
and Brooks 2018; Marshall et al. 2020; Sexstone et al. 2018). In
some cases, snowmelt rate is a better predictor of streamflow
in the western US compared to snowfall or rainfall (Barnhart
et al. 2016; Rumsey, Miller, and Sexstone 2020; Wolf et al. 2023).

The precipitation input to watersheds following spring snowmelt
is predominantly rainfall in the western US (Bales et al. 2006;
Dettinger, Udall, and Georgakakos 2015; Ficklin, Robeson, and
Knouft 2016; Hammond et al. 2019). Significant amounts of sum-
mer and fall rain could cause changes in baseflow contributions
during the low-flow period (Hammond et al. 2019; Knowles,
Dettinger, and Cayan 2006). The rate of streamflow increase
during the runoff period potentially represents both the storage
condition of the aquifer(s) in the watershed and the snowmelt
rate (Bales et al. 2006; Barnhart, Tague, and Molotch 2020;
Brooks et al. 2015, 2021; Godsey, Kirchner, and Tague 2014). The
recession rate captures the storage condition of the aquifer(s) in
the watershed post-spring runoff and the impact of any signifi-
cant precipitation events on the aquifer(s) storage condition post-
snowmelt (Brooks et al. 2021; Godsey, Kirchner, and Tague 2014;
Liu, Williams, and Caine 2004; Liu et al. 2008).

To represent all the potential relationships described above,
and provide a robust variable pool of all variables potentially
predictive of streamflow regimes, the minimum (MIN), maxi-
mum (MAX), average (AVG), cumulative-total (TOTAL), and
average daily change (4AVG) in each hydrological character-
istic metric was calculated for each hydrologic period (Table 1)
(Addor et al. 2018; McMillan 2021). In this paper, variables are
denoted by the metric (g, PRCPSA, SWE, Rain, etc.), a subscript
representing the measured hydrologic period (low-flow, high-
flow, runaoff, etc.), a subscript representing the sampling statistic
(AVG, MIN, etc.), and final subscript of WY or WY-1 denoting
whether the variable measurement period occurs in the same
water year as the response variable in the MLR equations or the
prior water year, respectively. A generic variable would be writ-
ten as Metrichydrologic period, sampling statistic, WY or WY-1* A complete list
of variables used in the MLR analysis of q,,, 45, 1014z, wy and

Dhigh-flow, TOTAL, WY AT€ provided (Tables S3 and S4).

2.4 | Watershed Hydrologic Regime
Characteristics

We compared distributions across water years of certain key
metrics and characteristic ratios to discern any clear differences
or similarities among the hydrologic patterns of the examined
watersheds. Additionally, the hydrograph time series were ex-
amined for trends in streamflow during high-flow and low-flow
in response to water year precipitation changes using a simple
linear regression.

The dlStI‘lbuthIlS Of Preapwa[eryear, TOTAL, WY’ qwateryear, TOTAL, WY’

Qigh-fiow, TotaL, wy 304 the G g0, 1orar, wy Were com-
pared between watersheds. The snow fraction, runoff ratio,

qlow-ﬂow, TOTAL, WYtO qwateryear, TOTAL, WYrath’ and qlow-flow, TOTAL, WY
tO Qpigh-fiow, ToTAL, WY ratio were calculated for each watershed

(Equations 1-4, respectively).

. Snowwater year, TOTAL, WY
snow fraction =

@®

PRCPSAwater year, TOTAL, WY

. qwater year, TOTAL, WY
runoff ratio =

@

Precipyager year, TOTAL, WY

. Giow—flow, TOTAL, WY
low — flow ratio = ——MMM——— ©)]

qwater year, TOTAL, WY

low — flow to high — flow ratio= Jiow-flow, TOTAL WY @

Qhigh—flow, TOTAL, WY
2.5 | Multi-Linear Regression (MLR) Analysis

MLR models using different hydrological variables are often
used to produce streamflow forecasts and determine variable
correlations with streamflow. These hydrological variables rep-
resent different watershed processes in streamflow generation
(Fleming and Goodbody 2019; Vogel, Wilson, and Daly 1999).
One of the most used MLR modelling frameworks is the monthly
water supply forecast produced by the NRCS using SNOTEL
snowpack and climate data and USGS streamflow data. Using
MLR, significant variables are selected from a wide range of
measured and calculated metrics across different periods for a
stream gage. Identified variables are used in an MLR equation to
predict streamflow at a monthly time scale (Garen 1992).

In this study, we use a methodology similar to that outlined
in Garen (1992) to select variables from the variable pools
(Tables S3 and S4) most related to and predictive of the total
streamflow volume during the low-flow period of a water year
(qlow_ﬂm’ TOTAL, wy) and the total streamflow volume during
the high-flow period of a water year (qy,y, 1w, o741, Wy)- FOT
each variable in the variable pool, a linear regression was
completed and a f-test (p-value <0.05) was used to determine
if the variable was significantly associated with the response

variable, Qiow-fiow, ToTAL, WY OF Dnigh-flow, TOTAL, WY

For each possible variable pair combination in the respective
variable pools, an MLR equation was established with the fol-
lowing form:

Gx—flow, TotaL, wy = C1V1 + GV, +b ©)

where the subscript x refers to low or high flow, C and C, are re-
gression coefficients, V; and V, are variables in every possible pair
in Tables S3 and S4, and b is the regression intercept. If the regres-
sion coefficients of each variable passed a t-test (p-value <0.05), the
MLR equation using the variable pair was considered potentially
viable. If the sign of the coefficients in the linear regression of both
variables in the variable pair matched the sign of the coefficient of
each respective variable in the MLR equation, then the MLR equa-
tion using the variable pair was then considered viable. Once a list

of viable equations of q,,, 0., rorar, wy a9 Qpign-fiow, TorAL, Wy Were
created, the r? values for each equation were calculated by com-

paring predicted values of q,,,, 40, rorar, wy 309 Qpigh-fiow, ToTar, wy
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to observed values during the respective periods. The r? values
were then used to rank the equations. The top 10% of equations
were selected and trends in the metrics and periods of variables
used in MLR equations explaining the highest r* and propor-
tional variance were then examined for this subset of equations.
While the best-fit equation was identified for g, ow-flow, TOTAL, WY and
Dhigh-flow, ToTAL Wy D each watershed, the best predictive equations
were also determined by restricting variables used in the regres-
sions to those occurring in hydrological periods prior to the mea-
surement period of the response variable (Tables S3 and S4).

3 | Results

Examination and comparison of the relationship of the differ-
ent hydrologic characteristic metrics with g, ow-flow, TOTAL, WY
and Qpigh-flow, TOTAL, WY indicates some consistencies and differ-
ences between the karst and non-karst watersheds in this study.
Analysis of the MLR equations further reveals differences be-
tween karst and non-karst watersheds in the characteristic met-
rics related to and predictive of Diow-flow, TOTAL, WY

3.1 | Watershed Hydrologic Regime
Characteristics

We examine the distribution of important variables to
understand the variability in our key hydrologic met-
rics of interest (g and Precip.). The Precip,,,,, year, TOTAL’

Qateryear, ToTAL high-flow, ToTAL 30 Ajory 100, oA distributions for
each watershed are used to calculate snow fraction, runoff ratio,

qlow-flow, TOTAL/qwateryear, TOTAL’ and qlaw-flow, TOTAL/qhigh-flow, TOTAL
distributions across the period of record (Figure 3). The differ-
ences between karst and non-karst watersheds are apparent.
The Precip,,,,,, year, TOTAL is relatively consistent between water-
sheds while the mean PRCPSA, . year, TOTAL differs across wa-
tersheds (Figure 3 and Table S5). This can be attributed to the
SNOTEL stations only representing a point in each watershed
and elevation differences between the SNOTEL stations.

Based on similar Precip., we expect the watersheds to have a simi-
larq,,, eryear, TOTAL magnitude, however, that is not always the case.
The distributions of q,,,,,,, year, TOTAL AT€ similar in the Logan River,
American Fork, Weber River, Bear River-Stillwater Fork, and Lake
Fork (Figure 3 and Table S5). Red Butte Creek and the Blacksmith
Fork have narrow distributions with a lower range compared to
the other watersheds (Figure 3 and Table S5). The q,,,,, year, TOTAL
distribution in all watersheds is skewed towards larger values.

The Dhigh-flow, TOTAL distributions across all seven watersheds ex-
hibit a similar pattern to the Qyater year, TOTAL distributions (Figure 3
and Table S5). This is likely due to most of the q,,.,, year ToTAL
being concentrated during the high-flow period. This is expected
behaviour in snow-dominated watersheds. The pattern in com-
paring the Diow-flow, TOTAL distributions across watersheds is also
similar to the Gy, yeq, Torar distribution with the significant
difference being the q;,,, 4., ror4; distribution ranges are signifi-
cantly smaller (Figure 3 and Table S5). The snow fraction distribu-
tions have a median value above 0.5 with overlapping distribution
ranges, confirming that all the watersheds in the study experience
snow-dominated precipitation regimes (Figure 3 and Table S5).

The median runoff ratios in the karst watersheds (Logan River,
Red Butte Creek, American Fork, and Blacksmith Fork) are all
lower than those in the non-karst watersheds (Weber River,
Bear River, and Lake Fork). The Logan River and American
Fork median runoff ratios are slightly higher at approxi-
mately 0.35, whereas Red Butte Creek and Blacksmith Fork
have medians of approximately 0.2. The median runoff ratios
in the non-karst watersheds are all around 0.5 (Figure 3 and
Table S5). The runoff ratios would indicate that a larger frac-
tion of precipitation is lost (to deeper groundwater systems
or ET) or stored in the karst watershed aquifers compared to
the non-karst watersheds. Additionally, inter-basin movement
of groundwater through karst aquifers that cross watershed
topographic boundaries has been documented to some extent
by Spangler (2001) in the Logan River watershed; however,
inter-basin transfer has not been explored in these watersheds
despite it being a common feature of karst watersheds (Pulido-
Bosch 2021; Winter 1995).

The Diow-flow, rorar/Dwater year, TOTAL distributions show that the
ratio in karst watersheds is on average higher than that in non-
karst watersheds, with notably high median values of approx-
imately 0.3 in the Logan River and Blacksmith Fork (Figure 3
and Table S5). The Diow-flow, TOTAL/qmghﬂow’ roray, distributions
again show higher medians for the karst watersheds when com-
pared to the non-karst watersheds (Figure 3 and Table S5). With
the karst watersheds showing both significantly higher medians
and wider ranges in their distributions, this suggests the pres-
ence of large aquifers with significant storage capacity as dis-
cussed in Iliopoulou et al. (2019).

Collectively, these ratios indicate that there are differences be-
tween the karst and non-karst watersheds, especially concern-
ing the significant fraction of q,,,, 4, 7074, that is observed
during the low-flow period in karst watersheds (Figure 3). This
suggests that baseflow periods differ between karst and non-
karst watersheds.

3.2 | Time Series Trends

The difference in streamflow observed during the low-flow
period in the karst watersheds compared to the non-karst
watersheds is further demonstrated by comparing the hy-
drograph of a karst (Logan River) to a non-karst (Bear River-
Stillwater Fork) watershed (Figure 4). First, we observed that
the precipitation patterns, measured as Snowmelt plus Rain
at the SNOTEL stations within the respective watersheds,
showed similar trends over the period of record, while magni-
tudes differed between the two watersheds (Figure 4a,b). Here
we use SNOTEL Snowmelt and Rain instead of PRISM Precip.
because we can differentiate between Snowmelt and Rain.
Comparison of the SNOTEL PRCPSA and PRISM Precip. data
show good agreement with respect to the time-series trends
and the distributions are similar across watersheds (Figure 3,
Table S5). Second, the streamflow in both watersheds is re-
sponsive to precipitation, with the minimum low-flow and
maximum high-flow streamflow increasing and decreasing
relative to cumulative Snowmelt plus Rain on a water year
basis (Figure 4a,b). Next, we see that the karst-dominated
Logan River minimum and maximum average streamflow
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FIGURE2 |

for the low-flow period occupies a wider and higher range
(0.03-0.09cmday~!) when compared to the non-karst Bear
River-Stillwater Fork (0.02-0.05cmday!) (Figure 4a,b). The
Logan River streamflow during low-flow exhibits a lagged

Hydrological periods denoted by the labelled arrows defined for hydrologic metrics described in Table 1.

response to changes in precipitation as exhibited in the
2017-2021 water years. In contrast, the Bear River-Stillwater
Fork shows a return to a consistent streamflow during low-
flow with some variability due to fall precipitation events.
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FIGURE 3 | Watershed characteristic comparisons. The boxplot distribution is overlaid by a violin plot of the distribution of values for each wa-

tershed. Watersheds are ordered from left to right based on percentage of carbonate rock area.

Notably, we observe a significant spike in streamflow late
in the 2021 water year due to above-average rain in the Bear
River-Stillwater Fork, while no apparent spike appears in the
Logan River streamflow resulting from these same events
(Figure 4c,d). The streamflow during high-flow appears to be
bolstered in below median Snowmelt plus Rain years by the
long recession of flows occurring in karst systems following
above median Snowmelt plus Rain years as observed in the
2017-2018 water years in Figure 4c. This pattern appears in
hydrographs of all the karst watersheds (Figures S1-S3).

Similar hydrograph trends and differences are observed when
comparing the karst and non-karst hydrographs of the other wa-
tersheds in this study (Figures S1-S5). A lack of response to rain
events in the karst watersheds is likely due to the interception of
any overland flow by fractures, caves and sinkholes. In contrast,
the fast response in non-karst watersheds can be attributed to
overland flow or shorter subsurface storm flow paths.

Simple regression of the Precip,,,,, year, TOTAL, Wy against

Qwater year, TOTAL, WY Dnigh-fiow, ToTAL, Wy A0 Qioyy 10w, TOTAL, WY1
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supports what we observed in the hydrograph time series
(Figure 5). Both karst and non-karst watersheds show a strong
Correlationbetweenqwateryear, TOTAL, WYandPreCipwateryear, TOTAL,WY
(Figure 5) as demonstrated in watersheds across the West (Dier-
auer, Whitfield, and Allen 2018; Knowles, Dettinger, and
Cayan 2006). Notably, across all watersheds the r? is higher be-
tween qhigh-flow, TOTAL, WY and PreCipwateryear, TOTAL, WY (Figure 5)
This is not surprising given that streamflow during the high-
flow period is driven by snowmelt, which in these snow-
dominated watersheds represents a majority of the accumulated
Precip. in a water year. When comparing the Diow-flow, TOTAL, WY+1
to Precip . er year, rorarL, wy in the karst watersheds the r° values
are higher compared to the non-karst watersheds (Figure 5).
This indicates a stronger correlation between snowpack and
low-flow volumes in karst watersheds than in the non-karst wa-
tersheds. This would be indicative of the responsive nature of
karst aquifers to annual snowpack and the karst aquifer con-
nection to streamflow during the low-flow period.

3.3 | Low-Flow Relationships

In both the karst and non-karst watersheds, MLR equations
using variables containing streamflow, q, sampled within the
winter or high-flow periods had a relatively good fit to the data
with r? values ranging from 0.57 to 0.97 (Figures 6 and 7 and
Table S6). In the Logan River, Red Butte Creek, American Fork,
and Blacksmith Fork, the equation with the highest r? contains
the variable q (Figure 6 and Table S6). Qrecession, MINWY-1° the low-
est streamflow value during the recession period prior to the start
of the low-flow period, alone is a good predictor as measured by
r?in the karst watersheds, but is a relatively poor predictor on its
own in the non-karst watersheds. The best MLR equations for
the non-karst watersheds overall have weaker r? values when
compared to the best MLR equations for the karst watersheds
(Figures 6 and 7 and Table S6).

In the non-karst watersheds, metrics measuring q, Snowmelt
and Air Temp., appeared in equations highly correlated with
Qiow-flow, TOTAL, WY While the q variable appears in the equations
most correlated with Qiow-flow, TOTAL, WY in every watershed, in
the karst watersheds nearly all the proportional variance is ex-
plained by the streamflow, g, variable (Figure 8 and S6-S8). In
contrast, in the non-karst watersheds, the proportional variance
explained by any given variable is balanced across metrics in-
cluding q, Precip., Snowmelt, and Air Temp., indicating complex
processes driving Diow-flow, TOTAL, WY in non-karst watersheds
(Figures S9-S11).

3.4 | Low-Flow Predictive Equations

The list of viable MLR equations was restricted to those based on
variable pairs containing variables sampled over periods prior
to the low-flow period, resulting in a list of predictive equations
useful in a management or planning context. The best predic-
tive equations in the karst watersheds have r? values ranging
from 0.77 to 0.92 with qy;,,., being the most common regression
variable explaining a majority of the variance in the predicted
results of Qiow-flow, TOTAL, WY (Table 2 and Figure S12). These re-
sults, in combination with the highest ranked MLR regression

results, indicate that in the karst watersheds, past streamflow is
a good indicator of future streamflow.

In the Weber River and Bear River, Qiow-flow, TOTAL, WY-1 and
Quinter, TOTAL, Wy-; €XPlain a significant amount of the proportional
variance in predicted results; however, the r? values produced by
the equations, 0.66 and 0.65, respectively, show that the equa-
tions are not useful for predicting Diow-flow, TOTAL, WY (Table 2,
Figure S13). In the prediction equations for Diow-flow, TOTAL, Wy 1L
Lake Fork, Snowmelt produces the best predictive MLR equa-
tion with an r? value of 0.34. In general, the lack of predictive
power of the equations in the non-karst watersheds indicates
that the low-flow regimes are less dependent on prior hydrologic
conditions characterised by individual metrics and instead re-
quire models that capture more complex hydrologic processes
(Table 2).

3.5 | High-Flow Relationships

Using all variable pair combinations, MLR analysis allows for
the determination of the strength of variable relationships with
Dhigh-flow, TOTAL, WY The variable pairs and the results for the top
10% of the viable MLR equations highlight the importance of
precipitation via the strong relationship between Precip., Snow,
Rain, SWE, and Snowmelt, and Dhigh-flow, ToTAL Wy~ 1t is not sur-
prising that r? values range from 0.90 to 0.94 (Figures 9 and 10),
given the well-documented relationship between snowpack
and peak streamflow in western snowmelt-dominated water-
sheds (Barnhart, Tague, and Molotch 2020; Brooks et al. 2021;
Rumsey, Miller, and Sexstone 2020).

In all of the watersheds, the metrics best related to
Qhigh-flow, TOTAL, Wy AT€ measures of precipitation (Precip., SWE,
and Snowmelt) during the Winter or low-flow periods (Figures 11
and S14-S19). In all watersheds, SWEhigh-ﬂow, AvGwy 1S @ reason-
ably good predictor because snow is the dominant precipitation
source.

3.6 | High-Flow Predictive Equations

The metrics appearing in the best Dhigh-flow, TOTAL, WY predic-
tion equations are similar to those metrics in the MLR equa-
tions with the strongest relationship with Dhigh-flow, TOTAL, WY
Precip. and SWE are the most common metrics explaining a
significant portion of the variance in prediction results with
r? values ranging from 0.77 to 0.84 (Table 3). The best pre-
dictive variables are metrics representing different forms of
precipitation measured during the low-flow period (Figures 10
and S14-S19). This is consistent with our understanding of the
influence of the snowpack on the high-flow regime in west-
ern snowmelt-dominated watersheds. Generally, the predic-
tive equations provide acceptable results in all watersheds
(Figures S20 and S21).

4 | Discussion

Streamflow volumes are closely related to storage condi-
tions in a watershed (Brooks et al. 2021; Godsey, Kirchner,
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and Tague 2014). While most streamflow in snow-dominated et al. 2019; Land and Timmons 2016; Rumsey, Miller, and
watersheds is produced during spring runoff, the dominant Sexstone 2020). Variations in post-runoff streamflow within dif-
source during fall and winter is groundwater storage (Cochand  ferent non-karst watersheds have been attributed to variations
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FIGURE 7 | Qo 10w, rorar, wy Feg8ression results for the non-karst watersheds. The blue dashed line shows the results for the highest rank MLR

equation and the associated variable pair. The grey dotted line shows the regression results for q,,,,.on v wy.- The observed q low-flow, TOTAL, WY val-

ues are shown by the black dots.
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WY-1 % 085 - - - - - 1A -
0.80 - - - - - -
T T T T T T T T T T T T T T
0.90 - - - - - - -
high—flow,
WYy -1 ~ 0.85 1 -1 -1 -1 -1 -1 -1
0.80 - - - - - -
T T T T T T T T T T T T T T
¥+
0.90 - - - - - - -
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WYy -1 ~ 0.85 - - - - - -
0.80 - - - - - - -
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0.90 - - - - - -
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0.80 - - - - - -
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0.90 - - - - - -
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wYy-1 % 085 - A - - - - .
0.80 - - - - - -
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0.90 - - - - - - -
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wWY-1 % 085 - - - - - - -
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T T T T T T T T T T T T T T
0.90 - - - - - -
wateryear, _
WYy -1 ~ 0.85 -1 -1 -1 -1 -1 -1
0.80 - - - - - -
T T T T T T T T T T T T T T
0 1 0 1 0 1 0 1 0 1 0 1 0 1
Explained Var. Explained Var. Explained Var. Explained Var. Explained Var. Explained Var. Explained Var.
q Precip. SWE Snow Snowmelt Rain AirTemp.
== Qrecession, min, wy — 1, RaiNjow—fiow, nave, wy A Qmeit, TOTAL, Wy — 1, R@iNjow—flow, nave, wy - 1

FIGURE 8 | Logan River, MLR equation variables' relationship strength to Qiow-flow, TOTAL, WY Each column of plots represents a different metric,
and each row represents a different hydrologic period used in the MLR analysis. Corresponding variables in the top 10% of viable MLR equations are
represented in each plot. A plot's y-axis represents the r? value of an equation while the x-axis denotes the fraction of explained proportional variance
by a given equation variable. The variable pair from the highest ranked equation is represented by “+” s (Figure 6) and variables from the best pre-
diction equation are shown by triangles (Table 2). Variables in all other MLR equations are represented as grey dots.

in storage, however, contributions are often variable due to  factor in understanding streamflow regimes due to the com-
changes in rainfall (Kirchner 2016; McNamara et al. 2011). The plex and heterogeneous distribution of storage and flow paths in
larger storage volume of karst watersheds is a complicating these watersheds (Pulido-Bosch 2021; Spangler 2001; Thurber
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TABLE2 | Bestlow-flow prediction equations for the study watersheds of the form q, flow, TOTAL, Wy = C, XV, +C,xV,+b.

RMSE

r?

Variable 1 (V)) Coefficient 2 (C,) Variable 2 (V)) Intercept (b)

Coefficient 1 (C))

Watershed

1.02

0.86

Qperr, TOTAL, WY-1 —244.70 Rain,,, qow, 2ave, wy-1 5.278

0.303

Logan River (karst)

0.45

0.77

Qrunoff, AVG, Wy-1 0.463 Snowmelt ;.. vrax wy-1 1.417

12.70

Red Butte Creek (karst)

0.88

0.84

1.142

Qrunoff, MIN, wy-1 0.227 Qnelr, TOTAL, WY1

91.10

American Fork (karst)

0. 0.52

1.373

30.10

21.27

Blacksmith Fork (karst)

Qpinter, AVG, WY-1

qmelt, AVG, WY-1

1.00

0.66

0.0746 PreciplOWﬂOW’ TOTAL, WY-1 —0.4170

Qiow-flow, TOTAL, WY-1

0.446

Headwaters Weber River (non-karst)

0.87

0.65

2.094

Snowmeltwinter, MAX, WY-1

qwinter, TOTAL, WY-1 0.526

0.457

Bear River-Stillwater Fork (non-karst)

1.43

0.34

Snowmeltmnofﬁ TOTAL, WY-1 5.365

0.0594

Snowmelt ;... 1ave, wy-1

—614.6

Lake Fork (non-karst)

et al. 2024). Karst watersheds are particularly vulnerable to
changes in storage as a large fraction of year-round streamflow is
derived from groundwater (Liu, Wagener, and Hartmann 2021;
Neilson et al. 2018). This is of particular concern since karst sys-
tems supply water to 20%-25% of the world's population (Ford
and Williams 2013; Hartmann et al. 2014). The connection be-
tween karst aquifers and streamflow regimes is a growing con-
cern globally and in the western US as climate change shifts
precipitation regimes and karst water resources are threatened
(Dieter et al. 2018; Donovan et al. 2022; Segura et al. 2019; Tobin
et al. 2018).

The presence of karst storage shifts the streamflow dis-
tribution between the high-flow and low-flow periods as
indicated by the qy,, 0w, rorar/Qnignfiow, Torar and the
qlow-flow, TOTAL/qwater year, TOTAL of the analySEd watersheds
(Figure 3). This shift in distribution manifests as a longer re-
cession tail and reduced peak flow when comparing karst to
non-karst watersheds, respectively (Figures 4 and S1-S5). The
hydrographs of the karst watersheds highlight the presence of a
“memory effect” (Fiorillo 2009, 2014; Hosseini, Ataie-Ashtiani,
and Simmons 2017; Mangin 1984) where streamflow in water
years experiencing below median precipitation was bolstered
by flows from karst storage banked during previous years of
high precipitation. This memory effect was investigated using
time series lag analysis to see if a persistent lag-period could
be determined, however, no constant period was significantly
predictive of future streamflow volume. The tangible conse-
quence of this memory effect for water managers and users
in karst watersheds is higher low flows during short drought
periods, but the longevity of elevated baseflow is highly depen-
dent on the annual recharge quantities. Regardless, within a
water year, the stable recession curves can result in a predict-
able amount of water available during critical, low-flow peri-
ods. In contrast, in the non-karst watersheds prior streamflow
was a weak predictor of g, 4., rorar, wy (Figures S9-S11).
The metrics explaining the most variance in the prediction of
Qiow-flow, TOTAL, Wy 3T€ varied and still result in poor predictions,
indicating complex hydrologic processes in the non-karst wa-
tersheds (Figures S9-S11).

Low-flow volume, Qiow-flow, TOTAL WY CAD accurately be an-
ticipated by the predictive equations in karst watersheds
(Table 2). Low-flow volumes are most strongly related to re-
cession streamflow volumes, q,,.,cion v, wy-; (Figures 8 and
S6-S8). Various measures of precipitation are strongly related
to high-flow volumes (Figures 11 and S14-S19, and Tables 3
and S7), as expected due to the high snow fraction in these
watersheds (Figure 3). Taken together, this indicates the stor-
age condition is significantly affected by yearly snowpack.
Examination of the karst watershed hydrographs (Figures 4
and S1-S3) and distribution of the Diow-flow, TOTAL/qhigh_ﬂow, TOTAL
(Figure 3) once again illustrates that the karst watersheds ex-
perience the memory effect to different degrees. As discussed
by Thurber et al. (2024), karst aquifers can exhibit varying
levels of connectivity to rivers. The Logan River and Red Butte
Creek appear well-connected to their karst aquifers. A signif-
icant fraction of well-connected karst aquifer storage will be
drained by large conduits with short residence times, draining
alarge portion of the storage every water year. The Blacksmith
Fork and American Fork appear to be poorly connected to
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FIGURE9 | Gy fion, ToTar, wy FE8TESSION TESUlLS for the karst watersheds. The blue line shows the prediction results for the variable pair used in

the highest rank MLR equation. The grey dotted line shows the regression results for SWE,
shown by the black dots.

igh-flow, AvG, wy L D€ ODSEIVed Gy o, rorar, wy Values are

their karst aquifers. The storage volume connected to the river
is reduced, and the karst flow paths are more complex with
longer residence times. The predictability of the streamflow

regimes in these karst aquifers and clear signals indicating
various storage conditions under current climate regimes are
of significant benefit to water managers and users.
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FIGURE 10 | g0 10y, ro741, Wy FEETESSION TESUltS for the non-karst watersheds. The blue line shows the prediction results for the variable pair

used in the highest rank MLR equation. The grey dotted line shows the regression results for SWE,,,.; 4., ave, wy The observed gy, 10, rorar, wy

values are shown by the black dots.

The non-karst watersheds in this study had high-flow volumes, Again, this is not surprising given the watersheds' high snow
Dhigh-flow, ToTAL, Wy that are also strongly related to and predicted  fraction (Figure 3). However, in these non-karst watersheds the
by precipitation metrics (Figures S17-S19, and Table 3 and S7). low-flow volumes, Diow-flow, TOTAL, wy» WeTe related to awide range
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=+ Qiow-fiow, max, wy, Precip. winter, ave, wy A Precip. jow-flow, AvG, wy, SNOW oy~ flow, bAVG, Wy

FIGURE11 | Logan River, MLR equation variables' relationship strength to Qhigh-flow, TOTAL, WY Each column of plots represents a different metric,
and each row represents a different hydrologic period used in the MLR analysis. Corresponding variables in the top 10% of viable MLR equations are
represented in each plot. A plot's y-axis represents the r? value of an equation while the x-axis denotes the fraction of explained proportional variance
by a given equation variable. The variable pair from the highest ranked equation is represented by “+” s (Figure 9) and variables from the best predic-
tion equation are shown by triangles (Table 3). Variables in all other MLR equations are represented by grey dots.

of metrics, none of which produced good predictive or strong  hydrologic processes and groundwater storage regimes that
regression equations (Table 2 and S6 and Figures S9-S11). The could not be represented by the simple and readily available me-
wide range of weakly related variables indicates complicated teorological and hydrologic metrics used in this analysis. Under
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Best high-flow prediction equations of the form Dhigh-fiow, TOTAL, WY= C,*V,+C,*V,+b.

TABLE 3

RMSE

r2

Variable 1 (V)) Coefficient 2 (C,) Variable 2 (V) Intercept (b)

Coefficient 1 (C))

Watershed

Preciplow_ﬂm’ AVG, WY 553.0 Snowlow-ﬂow, AAVG, WY -14.3 0.83 5.79

132.1

Logan River (karst)

4.01

0.81

-13.2

SWEwateryear, AAVG, WY-1

—7240

Precip ., iow, ave, wy

105.7

Red Butte Creek (karst)

Qiows-fiow, AVG, WY 145.0 Precip,,, fow, ave, wy —34.2 0.84 7.56

453.3

American Fork (karst)

qlow-ﬂow, MIN, WY 87.8 PVeCiplow_ﬂow’ AVG, WY -18.3 0.80 3.21

339.3

Blacksmith Fork (karst)

6.34

0.82

67.3 Rainrecessian, AVG, WY-1 —25.3

Preaplow-ﬂow, AVG, WY

180.5

Headwaters Weber River

(non-karst)

Qiow-flow, TOTAL, WY 189.5 Precipyy,, qow, ave, wy —28.2 0.83 5.19

2.11

Bear River-Stillwater Fork

(non-karst)

8.10

0.77

220.1 Precip,,, qow, ave, wy —4.61 SROW, flow, MAX, WY-1 -0.97

Lake Fork (non-karst)

current precipitation patterns, the fraction of streamflow vol-
ume in the low-flow period is a smaller fraction (Figure 3). In
contrast, karst aquifers can mimic man-made reservoirs under
current precipitation regimes.

Atkinson (1977) showed recharge to karst aquifers was limited
during precipitation events by the infiltration rates of the thin
soil lenses covering karst flow paths. Infiltration rates in the
western karst watersheds will likely be more dynamic under a
future rainfall-dominant precipitation regime, as spring run-
off currently produces a consistent pattern of saturated soils
for an extended period. The streamflow attributable to karst
flow paths would likely become more variable across the water
year. The karst aquifers would no longer drain in a predictable
fashion following spring runoff and the karst contribution to
streamflow would become more dependent on soil saturation,
evapotranspiration, and amount of rainfall as observed by
Iliopoulou et al. (2019). This would produce streamflow regimes
in the karst watersheds where the variability would more closely
resemble that observed in the low-flow periods of the non-karst
watersheds and could increase the difficulty of planning and
management in karst watersheds.

To facilitate planning under current hydrologic regimes,
the predictive equations (Table 3) provide estimates of
Qpigh-fiow, ToTAL, Wy fOT the karst and non-karst watershed
studied. These simple equations provide planning insights
about potential spring runoff flooding and reservoir filling.
In the non-karst watersheds, we are unable to provide reli-
able predictive equations for Qiow-flow, TOTAL, WY" This failure
is mitigated by the fact that the rivers studied here flow into
large reservoirs immediately downstream and provide a man-
made means of moderating low flows. In contrast, the karst
watershed low-flow periods are being bolstered naturally
by the karst aquifer storage. Under current precipitation re-
gimes, q low-flow, TOTAL, WY is predictable in the karst watersheds
(Table 2). This can assist in anticipating how low flows may
get during late summer when demand is high. Under antic-
ipated future climate regimes, streamflow volumes in the
karst watersheds will likely become more temporally erratic
and require higher temporal resolution precipitation data to
be predictable. For watershed managers this would necessi-
tate the development of complex models and/or manageable
man-made storage such as reservoirs. Given the extent of karst
geology in the western United States and the population’s de-
pendence on karst aquifers for water supply, additional efforts
should be made to understand the current role karst aqui-
fers are playing in streamflow regimes across the West and
how those streamflow regimes might change in response to a
changing precipitation regime.

5 | Conclusions

The presence of karst storage in watersheds affects streamflow
distribution, resulting in longer recession tails and reduced peak
flow compared to non-karst watersheds. Karst watersheds ex-
hibit a “memory effect,” where streamflow during dry periods
is augmented by water stored in karst aquifers from previous
wet periods. This has implications for water management, as
it leads to higher flows during droughts and predictable water
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availability during critical periods over multiple years. Some
sign of a “memory effect” was present in non-karst watersheds,
but the predictive power of past flow on low-flow volumes was
poor and no combination of metrics provided strong predictions,
indicating the need for more complicated predictive models.

Future rainfall-dominated precipitation regimes are expected
to impact karst aquifers, making streamflow more variable
throughout the water year and likely reflecting non-karst wa-
tershed streamflow during low-flow periods. In both karst and
non-karst watersheds, winter precipitation is predictive of high-
flow streamflow volumes. While non-karst watersheds require
more complex models to predict low-flow volumes, current karst
watershed low-flow volume is predicted by post peak runoff
streamflow. Shifting towards a rainfall-dominated precipitation
regime will complicate karst watershed storage and streamflow
regimes as aquifer recharge becomes more dependent on the
temporal and spatial variability of other hydrologic processes,
potentially raising challenges for planning and management in
these watersheds.
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