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We propose a theory for how the weak phonon-mediated interaction (JA ¼ 1–4 meV) wins over the

prohibitive Coulomb repulsion (U ¼ 30–60 meV) and leads to a superconductor in magic-angle twisted

bilayer graphene (MATBG). We find the pairing mechanism akin to that in the A3C60 family of molecular

superconductors: Each AA stacking region of MATBG resembles a C60 molecule, in that optical phonons

can dynamically lift the degeneracy of the moiré orbitals, in analogy to the dynamical Jahn-Teller effect.

Such induced JA has the form of an intervalley anti-Hund’s coupling and is less suppressed than U by the

Kondo screening near a Mott insulator. Additionally, we also considered an intraorbital Hund’s coupling JH
that originates from the on-site repulsion of a carbon atom. Under a reasonable approximation of the

realistic model, we prove that the renormalized local interaction between quasiparticles has a pairing

(negative) channel in a doped correlated insulator at ν ¼ �ð2þ δνÞ, albeit the bare interaction is positive

definite. The proof is nonperturbative and based on exact asymptotic behaviors of the vertex function

imposed by Ward identities. Existence of an optimal U for superconductivity is predicted. In a large area of

the parameter space of JA, JH, the ground state is found to have a nematic d-wave singlet pairing, which,

however, can lead to a p-wave-like nodal structure due to the Berry’s phase on Fermi surfaces (or Euler

obstruction).

DOI: 10.1103/PhysRevLett.133.146001

Introduction—A striking feature of magic-angle twisted
bilayer graphene (MATBG) [1] is that superconductivity
(SC) emerges at small doping upon the correlated insulator
(CI) [2–5]. The SC exhibits unconventional properties,
such as a small coherence length [2,4], V-shaped tunneling
spectrum [6], nematicity [7], and T-linear resistance
[8–10]. Despite extensive research on various pairing
mechanisms [11–20], understanding the coexistence of
CI [21–41] and SC, and their unconventional behaviors,
remains challenging. Nevertheless, experimental studies
have provided some constraints on the pairing. Suppressing
the CI gap by screening the Coulomb interaction may
enhance SC [42–44]. Proximity-induced spin-orbit cou-
pling enhances SC, while spontaneous ferromagnetism
suppresses it, implying pairing of time-reversal partners
[45,46]. These observations are consistent with a phonon-
based singlet pairing mechanism, but weak coupling BCS
theory cannot explain the unconventional behaviors or how
the strong Coulomb repulsion [47,48] is overcome by a
small attractive interaction [11–13].
Inspired by the recent experimental evidence of signifi-

cant coupling between flat band electrons and A1, B1

phonons at ωph ¼ 150 meV [49], we examine the possibil-

ity of a pairing mechanism based on A1, B1 phonons. The
mediated attractive interaction JA is merely a few meV
[11,13,50,51]. However, we find JA can overcome the
much stronger U if the system is close to a Mott insulator
where the quenching of charge fluctuation significantly
suppresses U. A prototype of this pairing mechanism is the
A3C60 family of molecular superconductors [52–55]. For
both systems, electron orbitals are local on the scale of a
superlattice—giving rise to strong correlations—but are
spread on the microscopic lattice and are coupled to atomic
distortions. As the A1, B1 phonons lead to a dynamical
valley-Jahn-Teller effect [56,57], JA plays a role similar to
the anti-Hund’s coupling [17] induced by the Jahn-Teller-
distortion in fullerene, which is also previously suggested
in Ref. [58].
Approximations and methodology—We use the topo-

logical heavy fermion (THF) model [59,60], which has
recently been applied to investigate the Kondo physics in
MATBG [61–71]. It consists of effective local orbitals
(fαηs) in AA stacking regions [Fig. 1(a)], which dominate
the flat bands, and itinerant Dirac c electrons, which
hybridize with f orbitals to generate topology [Fig. 1(b)]
[72–77]. Here αð¼ 1; 2Þ, ηð¼ �Þ, sð¼ ↑↓Þ are the orbital,
valley, and spin indices, respectively.
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Before detailed derivations, let us outline the chain of
approximations and methodology employed in this Letter.

After integrating out the fast A1, B1 phonons [51], we
obtain a multiorbital Anderson lattice model where each
impurity has eight flavors (fαηs), subject to a complex local

interaction consisting of a Hubbard U term (58 meV), an
anti-Hund’s coupling JA (∼1 meV), and a Hund’s coupling

JH (∼1 meV) [Fig. 3(a)]. To analyze this unsolvable model,
we assume the locality of correlation, treating each AA site
as an Anderson impurity coupled to a bath that describes its

environment. The locality of correlation is supported by the
quantum-dot-like behavior [47,48] and evident local pair-
ing gap (1–3 meV) [6,78] observed in experiments. It is

also widely assumed in recent slave-particle [61,67],
dynamical mean-field theory (DMFT) [62,63,65,66], and
Gutzwiller [71] calculations that have reproduced key

features of the experimental spectrum and compressibility
[71]. Kondo temperature TK and f occupation νf have been

determined as functions of the total filling ν [62,63,65–67],

as sketched in Fig. 1(e) and 1(d). Both ν and νf range from

−4 to 4, with νf ¼ ν ¼ 0 corresponding to the charge

neutrality point. At ν ¼ −2 − δν, where the highest SC Tc

is observed, the ground state without JA;H can be a heavy

Fermi liquid characterized by TK ∼ 1–10 K, νf ≈ −2, and a

quasiparticle weight z ∼ 0.1–0.3.
We devote this Letter to investigating the pairing

instability of the Fermi liquid at ν ¼ −2 − δν in the
presence of JA;H. An immediate difficulty arises: since

U ≫ JA;H, the bare interaction is positive definite and does

not support any pairings [79,80] in naive mean-field
theories. In fact, this difficulty will appear in any attempt

to explain the SC in MATBG through a weak attractive
interaction, regardless of its origin. (The Luttinger mecha-
nism may give rise to an attractive channel but will predict a
much lower SC energy scale compared to the observed
local pairing gap.) A crucial step in our analysis is that,
under the so-called flattened interaction limit (explained
later), which is justified for the Anderson impurity in the
Fermi liquid phase with TK ≪ JA, we can obtain exact
asymptotic behaviors of the fully renormalized local
interaction. We further prove the existence of a pairing
channel. This is particularly notable given that the bare
interaction is positive definite.
A powerful theoretical tool that enables our analysis is

the Ward identity [81–83], which relates the local one-
particle irreducible (1PI) vertex, representing the renor-
malized local interaction, to susceptibilities (χ) of local
conserved charges. The local 1PI vertex is given by
skeleton diagrams (Fig. 2) of bare vertices at the same
site and fully dressed local Green’s functions. The
behavior of χ can be known once the local ground state
manifold is determined. We then derive the asymptotic
behaviors of the local 1PI vertex through the Ward identity
and identify a pairing channel. This approach reproduces
the Bethe ansatz result for the one-orbital Anderson
impurity [84], confirming its validity.
With the pairing channel identified, we next study the

SC on the moiré lattice. Consider the RPA pairing
susceptibility χp ¼ χp0=ð1þ χp0Γ

pÞ, where χp0 is the non-
interacting susceptibility (bubble diagram) from the heavy
quasiparticle excitations on the lattice, and Γ

p is the
effective local interaction. Technically, Γ

p is given by
the local 2PI vertex, connected to the local 1PI vertex via
Fig. 2(b), to avoid double counting in the ladder diagrams
of χp, as is standard in many approaches [88,89]. Γ

p

replaces the bare interaction in weak-coupling RPA.
Instead of examining the divergence of χp, we perform

a straightforward mean-field calculation using the effective
interaction Γ

p and a renormalized quasiparticle spectrum
[Fig. 1(c)]. Quantitative results, including pairing sym-
metry, will be discussed later.
Because of the particle-hole symmetry of the model

[59,75,77,90], the physics at ν ¼ 2þ δν is similar. In
experiments, particle-hole asymmetry arises from various
effects [91,92] including nonlocal interlayer tunneling [93].
Effective model—We write the free action for an

Anderson impurity as
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FIG. 1. Model. (a) Illustration for the effective f and c
electrons. f orbitals are located at AA stacking regions and
dominate the flat bands. They are coupled to microscopic phonon
modes via the dynamical valley Jahn-Teller effect. (b) Energy
bands (black) as a result of hybridization between f bands
(orange) and itinerant Dirac c bands (blue). (c) Heavy Fermi
liquid bands at ν ¼ −2.5 with the quasiparticle weight z ¼ 0.3.
Orange and blue colors represent contributions from f and c
electrons, respectively. (d) and (e) sketch the f occupation, jνfj,
and Kondo temperature, TK, as functions of the total flat band
filling jνj in DMFT calculations in the absence of JA;H,

respectively.
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FIG. 2. Skeleton diagrams for 2PI (a) and 1PI (b) vertices. Γ0

represents the antisymmetrized bare vertex and lines represent
fully addressed Green’s functions. For local 2PI and 1PI vertices,
all bare vertices in the skeleton diagrams are at the same site.
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S0 ¼ −

X

ω

X

αηs

f†αηsðωÞ½−iωþ ϵf − iΔðωÞ�fαηsðωÞ: ð1Þ

Hereω is the fermion Matsubara frequency, ϵf is the on-site

energy, and ΔðωÞ is the hybridization function. In a Fermi
liquid phase, ΔðωÞ can be well approximated by Δ0sgnðωÞ
for low energy physics. Δ0 should be understood as a
phenomenological bare parameter that reproduces the
correct TK [94]. Our analysis in this Letter does not directly
depend on Δ0, but only on TK. The eight flavors have
identical on-site terms because they are related by time-
reversal (η → η̄), spin (s → s̄), and a D6 point group
(α → ᾱ) symmetries [59,73]. Here indices with a bar
represent the opposite indices of the same degree of
freedom.
We consider three interaction terms: an on-site Hubbard

U term (58 meV) contributed by Coulomb repulsion of 2D
electron gas [59], an anti-Hund’s coupling JA ≈ λRG ×
1.3 meV contributed by electron-phonon coupling to A1,

B1 phonons, and a Hund’s coupling JH ≈ 0.33 × 10−3U0

contributed by Hubbard repulsion U0 (3–9 eV) at each
carbon atom [95–98]. The JA term on THF basis was
recently obtained in Refs. [50,51]. λRG ≈ 3.2 is an enhance-
ment factor due to the renormalization effect [99]. We also
derive an analytical form of the JH term [84]. We tabulate
all the two-electron eigenstates and eigenenergies in
Fig. 3(a), which completely define the four-fermion inter-
action Hamiltonian. As the name suggests, JA lowers the
energies of intervalley intraorbital s-wave singlet (A1

representation) and intervalley interorbital d-wave singlets
(E2 representation) by 2JA and JA, respectively. Since U0

disfavors double occupation on a carbon atom, and the
α ¼ 1, 2 f orbitals are mainly distributed on the A and B
graphene sublattices [59], respectively, JH disfavors double
occupation on each α orbital alike. Consequently, the
interorbital d-wave singlets are energetically less penalized

(2
3
JH) than the intraorbital s-wave singlets (8

3
JH).

Varying JA and JH over a realistic range, we thus find a
large region where the lowest two-electron states are d-
wave singlets [Fig. 3(d)]. In the absence of U, our single-
site result fully aligns with the mean-field SC phase
diagram of s-wave and d-wave pairings [11,13], where
the full k-dependent interaction is employed. However,
presence of the dominatingU blocks all pairing channels in
the bare interaction. We thus aim to examine pairings in the
renormalized interaction. As will be shown, the d-wave
pairing matches several unconventional features of the SC.
Flattened interaction—To study the pairing instability of

the Fermi liquid phase at ν ¼ −2 − δν, we argue that the
complex interaction Hamiltonian defined by Fig. 3(a) can
be replaced by a simpler one if TK is finite but sufficiently
low. When the level splittings in Fig. 3(a) far exceed the
Kondo energy scale, i.e., JA;H ≫ TK, only the two-electron

ground states participate in Kondo screening [81].
Correspondingly, high-energy states turn to virtual

processes, whose splittings do not qualitatively change

low energy physics. Motivated by this observation, we

introduce a flattened interaction [Fig. 3(c)], where all

pairing channels are set to energy U, except for the d-

wave ground state that has the energy U − 2J , with

J ∼ JA ≪ U. The flattened interaction enjoys a Uð1Þ×4 ×

SUð2Þ×2 symmetry generated by charge Ã0Ä0ς0, valley Äz,

orbital Ãz, angular momentum ÃzÄz, and two independent

spin ½ðÃ0Ä0 � ÃzÄzÞ=2�ςx;y;z rotations [84]. Here Ãx;y;z, Äx;y;z,
and ςx;y;z are Pauli matrices for the orbital, valley, and spin

degrees of freedom, respectively. The higher symmetry

gives rise to Ward identities that help determine the

renormalized interaction. Notably, the flattened interaction

is still positive definite and does not support pairings in

naive mean-field theories.
Reference [84] provides a more quantitative justification

for the flattened interaction by a phenomenological sus-
ceptibility analysis. It shows that, if the original interaction
is adopted, the breaking of Uð1Þ×4 × SUð2Þ×2 symmetry in
the renormalized theory is finite but weak. The flattened
interaction also applies to the TK ≫ JA;H limit where any

multiplet splitting becomes irrelevant at the Kondo
energy scale.
Constrained by the Uð1Þ×4 × SUð2Þ×2 symmetry, a

general parametrization of SI reads

(a) (b)

(c)

(e)(d)

FIG. 3. Bare and renormalized interactions. (a) Two-particle
eigenstates, labeled by ½ρ; j�. ρ denotes theD6 representation, and
j denotes the total spin j. Pairing channels of the bare interaction
coincide. (b) Occupations of graphene sublattices (A, B) and
valleys (K, K0) of the lowest E2 and A1 states. (c) The flattened
interaction. (d) Two-electron ground states in the parameter space
of JA and JH. As pairing channels of the bare interaction, the
energies are repulsive due to U, hence they cannot form Cooper

pairs. (e) The renormalized interaction Ũ1 − J̃ for d-wave

pairings as a function of the Kondo energy scale Δ̃0 ∼ TK, which
is assumed to be much smaller than the bare repulsion U. With

other parameters fixed, U exponentially suppresses Δ̃0, hence a

smaller Δ̃0 also implies a larger U.
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SI ¼
1

2

Z

dÄ
X

αη

��

U1 þ
J

2

�

NαηNᾱ η̄ þ U2NαηNαη̄

þ U3NαηNᾱη þU4N
2
αη þ 2J · Sαη · Sᾱ η̄

�

; ð2Þ

where Ä is the imaginary time,Nαη and Sαη are, respectively,

the charge and spin operators in the valley η and orbital α.
The bare flattened interaction is given by U1 ¼ U − J ,
U2;3;4 ¼ U, but under renormalization, the values ofU1;2;3;4

and J flow. The intervalley d-wave singlet (triplet) has the
energy U1 − ðþÞJ .
Quasiparticles in heavy Fermi liquid—In the Fermi

liquid phase, the local Green’s function has a quasiparticle
part z=½iω − ϵ̃f þ iΔ̃0sgnðωÞ� and a featureless incoherent
part. Here z ¼ ½1 − ∂iωΣðωÞ�

−1jω¼0 is the quasiparticle
weight with ΣðωÞ denoting the self-energy, ϵ̃f ¼ z½ϵf þ

Σð0Þ� is the renormalized on-site energy, and Δ̃0 ¼ zΔ0 ∼

TK is the renormalized hybridization. A typical TK is

given by Dð32Δ0=UÞ
1
8 exp½−ðU=32Δ0Þ� if JA;H ¼ 0 [102],

where D is the bandwidth, and TK will be further sup-
pressed by finite JA;H. In this Letter, we regard
TK ∼ 1–10 K, νf ≈ −2, and z ∼ 0.1–0.3 [62,66] as given

quantities. The ratio ϵ̃f=Δ̃0 ¼ cot δf is fixed by the occu-

pation of f electrons via the Friedel sum rule [103],
with δf ¼ πðνf þ 4Þ=8 ≈ ðπ=4Þ.
It is convenient to define the quasiparticle operator f̃ ¼

z−
1
2f [104,105], the interactions among which are given by

Γ̃ ¼ z2Γ, with Γ being the local 1PI vertex [Fig. 2(b)].

Because of the Uð1Þ×4 × SUð2Þ×2 symmetry, Γ̃ is para-
metrized in the same form as Eq. (2), and we denote the
corresponding parameters (renormalized interactions) as

Ũ1;2;3;4 and J̃ .

Renormalized interaction in the Δ̃0 ≪ J ≪ U limit—In
this limit the Kondo temperature TK ∼ Δ̃0 defines the single
energy scale of the local Fermi liquid [81–83]. Thus, the

renormalized interactions Ũ1;2;3;4, J̃ can be expressed in

terms of Δ̃0.
To derive Ũ1;2;3;4, J̃ , we make use of the Ward identities

[106–108] given by the Uð1Þ×4 × SUð2Þ×2 symmetry. They

bridge the static susceptibilities χO of conserved charges O

to the renormalized interaction Γ̃ [84]

χO ¼
sin2δf

πΔ̃0

�

X

I

O2
I −

sin2δf

πΔ̃0

X

I;I0

Γ̃I;I0;I0;IOIOI0

�

; ð3Þ

whereO ¼
P

I OIf
†
IfI is chosen diagonal. SettingOI to be

the electric charge Ã0Ä0ς0 (l ¼ c), spin ςz (s), valley Äz (v),
and orbital Ãz (o) operators and exploiting δf ¼ π=4, we

obtain χl ¼ ð4=πΔ̃0Þ½1 − ð1=2πΔ̃0ÞÃ
l�, with Ãc ¼ 2Ũ1þ

2Ũ2 þ 2Ũ3 þ Ũ4 þ J̃ , Ãs¼−Ũ4þJ̃ , Ãv¼−2Ũ1−2Ũ2þ

2Ũ3þŨ4−J̃ , Ão ¼ −2Ũ1 þ 2Ũ2 − 2Ũ3 þ Ũ4 − J̃ , res-
pectively. For the d-wave ground states [Fig. 3(a)], since

the electric charge, spin, valley, and orbital degrees of
freedom are frozen, i.e., they are constants in the twofold
ground state manifold, the corresponding susceptibilities
are not contributed by the low-energy quasiparticles
[83,104,109]. Therefore, χc;s;v;o will not diverge as the

quasiparticle density of states (∼Δ̃−1
0 ) in the Δ̃0 → 0 limit,

which implies constraints Ãc;s;v;o ¼ 2πΔ̃0. Consequently,

only one unknown parameter is left, which we choose as J̃ ,
and others are solved as

Ũ1¼−2πΔ̃0; Ũ2;3¼2πΔ̃0−
J̃

2
; Ũ4¼−2πΔ̃0þJ̃ : ð4Þ

Ũ1 has been determined to be negative, hence at least one of

the renormalized pairing channels with energies, Ũ1 ∓ J̃

[given after Eq. (2)], must be negative. Therefore, we have
proven that the renormalized interaction must possess

an attractive channel at νf ≈ −2 in the Δ̃0 ≪ J limit.

Susceptibilities of other quantities suggest J̃ ¼ kΔ̃0 with k
being a constant that ranges from 4.6 to 10.3 [84]. In this
region, the intervalley d-wave singlet pairing is attractive
and more favored than other channels.
Renormalized interaction in the J ≪ Δ̃0 ≪ U limit—In

this limit, J plays a minor role in the local Fermi liquid,
and all two-electron states equally participate in the Kondo
screening [81]. With an approximate U(8) symmetry,

Ũ1;2;3;4 remain equal under the renormalization, whereas

J̃ remains negligible. The U(8) Ward identity leads to

Ũ1;2;3;4 ¼ ð2π=7ÞΔ̃0 [109].

The universality is lost in the intermediate regime

(Δ̃0 ∼ J ) where various two-electron states participate in

the Kondo screening with unequal weights. However, the

behavior of d-wave pairing strength Ũ1 − J̃ can be infer-

red by an interpolating sketch between the two limits

[Fig. 3(e)]. With a decreasing Δ̃0, Ũ1 − J̃ should turn

negative when Δ̃0 reaches the order of J ; when Δ̃0 is

further lowered, Ũ1 − J̃ must evolve nonmonotonically to

achieve the Δ̃0 ≪ J limit where Ũ1 − J̃ vanishes linearly

in Δ̃0. This suggests the existence of an optimal Δ̃0 for

pairing. With the filling factor νf and the other bare

parameters fixed, an increasing U typically suppresses

the f-charge fluctuation and hence reduces Δ̃0 [102].

Therefore, Fig. 3(e) also suggests the existence of an

optimal U for pairing, as observed in A3C60 [52].
Quasiparticle mean-field theory—We now investigate

SC on the moiré lattice (THF model) using a mean-field
theory with the effective interaction z2Γp (local 2PI vertex)
and the renormalized quasiparticle spectrum [Fig. 1(c)].
Through the ladder summation [Fig. 2(b)], we find that

z2Γp has the same pairing channel as the local 1PI z2Γ but

with a weaker potential U
p
1 − J

p ¼ −(ð2π þ kÞ=f1þ

½ð2π þ kÞ=4�g)Δ̃0 in the Δ̃0 ≪ J limit [84].
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We carry out the calculation at ν ¼ −2.5 using z ¼ 0.3

and J p
− U

p
1 in the range from 0.5 to 2 meV (Fig. 4).

Including the (much weaker) nonlocal interactions does not
affect the results [84]. Since the d-wave pairings form the
two-dimensional representation E2, we find two possi-
ble phases. One is a gapped chiral d-wave pairing

f̃†
kαþ↑f̃

†

−kα−↓ − ð↑ ↔ ↓Þ (for either α ¼ 1 or 2). The

other is a nematic d-wave pairing [11,13,17,18]

e−iφf̃†
k1þ↑f̃

†

−k2−↓þeiφf̃†
k2þ↑f̃

†

−k1−↓−ð↑↔↓Þ that breaks

the C3z symmetry. Here φ sets the orientation of the

nematic order. When J p
− U

p
1 < 0.7 meV, the chiral state

has a slightly lower energy than the nematic state. When

J p
− U

p
1 > 0.7 meV, the nematic state has a significantly

lower energy than the chiral state.
p-wave-like nodal SC—An intermediate pairing strength

leads to a p-wave-like nodal structure, as shown in
Fig. 4(b). We now prove that the 2 (mod 4) nodes on
each Fermi surface (FS) are guaranteed by the π Berry’s
phase protected by C2zT symmetry. Suppose ψkþs is the
annihilation operator for Bloch states on a given FS in the

η ¼ þ valley, and ðC2zTÞψ
†

kþsðC2zTÞ
−1 ¼ ψ

†

kþse
iϕk .

Because of ðC2zTÞf̃
†

kαηsðC2zTÞ
−1 ¼ f̃†

kᾱηs [59,84], there

must be ψ
†

kþs ∼ f̃†
k1þs þ e−iϕk f̃†

k2þs. Bloch states in the

η ¼ − valley can be obtained by applying the time re-

versal: ψ†

−k−s ∼ f̃†
−k1−s þ eiϕk f̃†

−k2−s. Projecting the
nematic d-wave pairing onto the FS, we obtain

cosðϕk þ φÞ · ψ†

kþ↑ψ
†

−k−↓ − ð↑ ↔ ↓Þ. As the FS encloses

an odd number of Dirac points [Fig. 1(c)], ϕk must wind an
odd (2nþ 1) multiple of 2π along the FS [Fig. 4(b)] [76],
leaving 4nþ 2 nodes at ϕk þ φ ¼ �ðπ=2Þ. As detailed in
Ref. [84], an alternative understanding of the pairing nodes
is the Euler obstruction [14].

As the pairing becomes stronger, nodes on the two FSs
will merge, leading to a gapped phase [Fig. 4(c)]. The
spectrum of the gapped nematic SC remains highly
anisotropic if the direct gap is significantly smaller than
the pairing. Therefore, both the nodal and the gapped
nematic d-wave SC can have a V-shaped density of states at
an energy scale larger than the direct gap (0 in the nodal
case). This is consistent with theV-shaped spectrum [6] and
nematicity [7] seen in experiments.
Discussion—Our theory provides insights into the strong

coupling features of SC in MATBG. The pairing potential

J p
− U

p
1 is a few times larger than TK, and the Fermi

energy EF ∼ TK [Fig. 1(c)]. Therefore, J p
− U

p
1 ≳ EF,

suggesting the SC is closer to a BEC state than a BCS
state [2,4]. Pairings are localized around “moiré molecules”
in AA-stacking regions, leading to a smaller phase stiffness
—only contributed by hybridization with Dirac electrons in
AB regions—compared to BCS pairings of delocalized
states [110]. This may explain the large ratio between the
pairing gap and Tc [6].
In the intermediate regime where TK ∼ JA, multiplet

splittings breaking the Uð1Þ×4 × SUð2Þ×2 symmetry should
be considered. The remaining Ward identities cannot fully
constrain the renormalized interaction. However, the con-
tinuity [Fig. 3(e)] suggests pairing is still possible. We leave
this for future studies.
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