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The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulat-
ing the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases
including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quan-
tum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify

a large number of local conserved charges in the model. We then reveal a mapping between the minimal quan-

tum breakdown model in certain charge sectors and a quantum link model which simulates the U(1) lattice gauge
theory and show that the local conserved charges map to the gauge symmetry generators. A special charge sector

of the model further maps to the PXP model, which shows quantum many-body scars. This mapping unveils the rich
dynamics in different Krylov subspaces characterized by different gauge configurations in the quantum breakdown

1 Introduction

The study of nonequilibrium quantum dynamics in
many-body systems has been a longstanding pursuit
in contemporary condensed matter physics. The uni-
tary time evolution of a generic nonintegrable quantum
many-body system would approach the thermal equilib-
rium, a phenomenon closely associated with the eigen-
state thermalization hypothesis (ETH) [1-4]. In recent
years, extensive studies have been exploring quantum
systems that violate the ETH. Notably, the many-body
localization provides an interesting possibility of ETH
violation by introducing disorders [5-11]. More recently,
the ETH violation due to quantum many-body scar
states and Hilbert space fragmentation has also greatly
attracted both theoretical and experimental investiga-
tions [12-21].
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Lattice gauge theory provides an alternative approach
to ETH violation systems, leading to a wide class of
dynamical phenomena associated with the configurations
of gauge fields. In particular, the gauge degrees of free-
dom may induce disorder-free localization in quantum
systems [22-30]. Besides, the lattice gauge theory can
also hold quantum many-body scar states embedded in
thermal eigenstates [31-37].

Recently, an intriguing quantum many-body system,
called the quantum breakdown model, was proposed to
describe the dielectric breakdown process from a micro-
scopic perspective [38—41]. The one-dimensional (1D)
fermionic quantum breakdown model features a spatially
asymmetric breakdown interaction that annihilates a
fermion at one site and simultaneously creates more fer-
mions at the neighboring site on the right [38]. With an
increasing number of fermion orbitals (flavors) at each
site, the quantum breakdown model undergoes a crosso-
ver from the many-body localization phase to the quan-
tum chaotic phase with scar states.

In this paper, we investigate the minimal quantum
breakdown model, which necessitates the smallest
number of fermion orbitals that are compatible with
the spatially asymmetric breakdown interactions.
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Under this circumstance, we can identify an extensive
number of local conserved quantities that contribute
to the fragmentation of the total Hilbert space. Nota-
bly, we find that such a minimal quantum breakdown
model in certain charge sectors can be mapped to a
model of lattice gauge theory, known as the quantum
link model [42-45]. The latter can be experimen-
tally simulated in various quantum devices [46-59].
Through this mapping, the local conserved quantities
in the quantum breakdown model play the role of the
gauge symmetry generators in the lattice gauge theory.
As a result, Krylov subspaces with distinct gauge con-
figurations give rise to various subspace dynamics,
ranging from free fermions on hypercubic lattices with
boundary defects to strongly interacting sectors with
quantum many-body scars. Our results reveal that
the lattice gauge theory not only offers a theoretical
perspective to understand the dynamics in the quan-
tum breakdown model but also provides a practical
approach to simulating this model in advanced quan-
tum experiments.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the Hamiltonian of the quantum break-
down model and identify its symmetry and conserved
quantities. Then in Sect. 3, we map the minimal quantum
breakdown model to U(1) lattice gauge theory. Based
on this mapping, we discuss various quantum dynami-
cal behaviors in certain representative gauge sectors in
Sect. 4. Our work is then concluded in Sect. 5.

2 Quantum breakdown model
2.1 Model Hamiltonian
The breakdown process of a dielectric gas subjected to
a sufficiently strong electric field can be phenomeno-
logically described as follows. Because of the strong
electric field, the neutral atom can be ionized into one
electron and one ion. Then, the free electron is imme-
diately accelerated by the strong electric field. On the
contrary, the produced ion is accelerated in the oppo-
site direction, but experiences much slower dynamics
because of its much heavier mass. Therefore, we ignore
the ion dynamics and focus only on the fast motions of
electrons. Subsequently, the fast electrons collide with
other atoms, triggering the progressive generation of
additional electrons and ions. As a result, more and
more electrons are generated and accelerated by the
electric field, leading to a Townsend particle avalanche
of electrons [60]

By ignoring the ions, this breakdown process can be
effectively described by a microscopic Hamiltonian called
the quantum breakdown model [38]. We consider a 1D
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system with M sites, each site having N fermion orbitals
(flavors). The generic Hamiltonian is given by

H=FH +H,. (1)

With 62;1,1’ and ¢, being the creation and annihilation
operators of the ith fermionic mode at the mth site, the
interacting part Hy represents the spatially asymmetric
breakdown interaction

-1

M N N L 2g+1
~ 111917 A A
Hy = E E ]y;’lz 2+ H CIn+l,ik Cmy + hec |

m=1 I=1 iy < <iygt1 k=1
(2)

Here, h.c. is the Hermitian conjugate, and ¢ is a
nonnegative integer. The values of the interaction
strength ]Z’?mlzqﬂ are complex numbers that are
arranged antisymmetrically with respect to the indices
i1, ,izq+1. This asymmetric interaction indicates that
the annihilation of one fermion leads to the creation of
2q + 1 fermions at the adjacent site. Therefore, Eq. (2)
defines a class of quantum breakdown models with dif-
ferent g values. The asymmetrical interaction is defined
to maintain the fermion parity. For the nontrivial i 7 to be
valid, the number of fermion orbitals per site must satisfy

N>2q+1. (3)

The second part ]:Iu is the on-site potential, which is
given by

M N

ol A A /\1‘ A

H, = § Mmhms Ay = g Con,iCmic (4)
m=1 i=1

Here, w,, represents the potential at the mth site.
Also, 71, is the fermion number operator at the mth site.

The quantum breakdown model displays a wide vari-
ety of dynamical phases, including many-body locali-
zation, Hilbert space fragmentation, and quantum
chaos [38—41]. As shown in Ref. [38], the g = 1 quan-
tum breakdown model has almost all eigenstates solv-
able when N = 3, while it exhibits quantum chaos with
many-body scar states when N is large. Interestingly,
a dynamical breakdown transition is controlled by the
ratio between the interaction strength and the on-site
potential. A considerably large interaction is required
to overcome the energy barrier induced by the on-site
potential, leading to the proliferation of electrons.

In this paper, we study the minimal quantum break-
down models which are defined by the requirement

In contrast to the quantum chaotic phase established
in the large N regime, we will show that the N =2g +1
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case has a large number of conserved quantities that
make this model almost exactly solvable.

2.2 Symmetry and conserved quantity
To obtain the conserved quantities of the minimal
quantum breakdown model, we need to analyze its
symmetry. In this section, we focus on the global sym-
metries of this model. We first consider the following
spatially dependent unitary transformation:
Vmém,iV,L = ei‘pM8m,i, \A/m = e_i(p’"ﬁm. (6)

Then, the invariance of the breakdown Hamiltonian

requires that

om = 29 + D¢yr1 mod 27, (7)

Moreover, as we will show below, the boundary con-
ditions have a significant effect on this equation, as the
periodic boundary condition (PBC) necessitates an extra
restriction between the first site and the last site, which is
not present under the open boundary condition (OBC).

We first discuss the symmetry of the PBC. In this case,
the phase relations of V,, that keep the Hamiltonian
invariant are given by Eq. (7) form=1,2,...,(M — 1).
Assuming ¢ = ¢ where ¢ is a site-independent con-
stant angle, these relations immediately lead to a close
solution ¢,, = (29 + )¢, Furthermore, the PBC
further imposes a constraint p; = (2g + 1)¢1 mod 27,
which requires ¢ to satisfy the following condition:
¢ = (29 + 1)y mod 27. This condition implies that
the angle ¢ can only take discrete values

2
_ m, p=01,...,2¢+ DM -2
(8)

Therefore, the quantum breakdown model under the
PBC has a discrete Zy,, 1yu_; symmetry, a global sym-
metry depending on the system size [61-63].

For the OBC, the phase relations in Eq. (7) give rise
to a solution ¢, = (2q + )M "¢ with ¢ € [0,27) tak-
ing continuous values. Therefore, the quantum break-
down model with OBC has a spatially modulated global
U(1) symmetry called the exponential symmetry [38,
40, 61-66]. This exponential symmetry is generated by
an exponential U(1) charge

2

M
Q=Y Qg+ 1M "y, )

m=1

The conserved charge Q implies that the fermions at
the mth site have an effective charge q,, = (2g + DM~
Intuitively, the asymmetric breakdown interactions
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annihilate one fermion at the mth site and create 2q + 1
fermions at the adjoint site, splitting the effective
charge into 2q + 1 pieces. This conserved charge makes
it possible to use exact diagonalization to study the
energy spectrum and quantum dynamics within each
charge sector [38].

2.3 Extensive conserved quantities in the minimal
quantum breakdown model

While the symmetry analysis in Sect. 2.2 applies to
the quantum breakdown model with N > 2 + 1, the
minimal quantum breakdown model with N =29 +1
(Eq. (5)) has a richer and more interesting structure
which we will focus on in the rest of the paper. As we
shall show below, an extensive number of local con-
served quantities exist in the N =241 quantum
breakdown model. These conserved quantities result in
exponentially many disconnected Krylov subspaces, a
hallmark of Hilbert space fragmentation. For simplicity,
we impose OBC here, for which case we do not need to
worry about the relation between the first site and the
last site. The analysis for symmetries under PBC and
the corresponding dynamical properties are however
similar.

To extract the conserved quantities, we express the
minimal quantum breakdown model in a simpler form.
Specifically, we employ a local U (2g + 1) unitary trans-
formation among the 2q + 1 fermion flavors on the mth
site as

(10)

where /" is an element in the U(2g + 1) group. On
the one hand, the uniform on-site potential H, in
Eq. (4) is invariant under this transformation, since
My = ZLZZ-IH 6Lq’iﬁm,i = ZZZZTIfVLfML On the other hand,
since there are only 2 + 1 fermion modes per site, we
have 6m,lam,2 T em,2q+1 = det[u(m)]]?m,]fm,Z o 'fm,Zqul and
EL,léL,z : "6In,2q+1 = det[U (m)]*A;LJAnE,z " ‘fyL,2q+1v namely,
Cm18m,2 - - - Cm2q+1 and its Hermitian conjugate transform
as a singlet in the on-site flavor space. Then, the breakdown
interaction A T transforms as

1

M—
ﬁ[[ = Z
m=1

2q+1 2q+1

12--(2g+1 * z z
> T et U | T] Fa Jfons + e
LI'=1

k=1
(11)
Since the coefficients ]y1nzl-.-(2q+1) is a vector with com-
ponent [ under the U(2g + 1) rotation, we can always

choose the unitary transformation &/ such that [38]
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Fig. 1 aThe g = 2 quantum breakdown model. b The quantum breakdown model after the basis rotation. A solid circle (s) denotes an occupied

orbital, while a hollow circle (o) indicates an unoccupied orbital

2q+1

12---(2g+1

The real number J, is the norm of the vector

12--(2q+1) 12--(2g+1 12--(2g+1
g (2q )] {2q+1) (2g+1)

m1 v Smag )T, which is given by

(13)

12 2g+1
T = Z‘ 2q+1)|?

Then, the minimal quantum breakdown model takes a
much simpler form:

=i+,
M—1 29+1 A
H; = nyf,+1,,’ fm,l + h.c. ’
m=1 i=1 (14)
M
H[L = Z MmPm
m=1

After the basis transformation, only fermions on the
first orbital can move between different sites. A fermion
moving in the right direction generates additional 24 fer-
mions at the right adjacent site (Fig. 1b). Once these 2¢g
fermions are created, they become immobile, incapable
of further moving rightward. The only possible dynamics
for these 2q fermions is their simultaneous annihilation
when a fermion on the first orbital moves to the left site,
namely, the Hermitian conjugate of their creation pro-
cess. We note that such a simplification of Hamiltonian
similar to Eq. (14) via local unitary transformations is not
applicable to generic quantum breakdown models with
N>2g+1

The simplified form of the minimal quantum break-
down model in Eq. (14) allows us to reveal many more
hidden conserved charges. To see this, we attach an effec-
tive charge, denoted as gy,,;, to the ith orbital f~fermion
on the mth site. Consequently, it is straightforward to see

that the following modAulated charge Q({qm,i}) commutes
with the Hamiltonian H in Eq. (14) provided that g, ; sat-
isfy the following condition:

M 2q+1 2q+1

QUam) =D_ 3 amifyyfnis ami =Y dmrri- (15)

m=1 i=1 i=1

The above charge Q({qm,,-}) in Eq. (15) reduces to
the conserved charge é for c-fermions in Eq. (9) if one
chooses q,; = (2q + DM~ Clearly, the arbitrariness
of gm,; in Eq. (15) gives rise to many more conserved
quantities.

To further extract the conserved quantities encoded
in Eq. (15), we can reformulate the charge constraint
as ZIZTI Gm+1,i/9m,1 = 1. In particular, we choose the
ratios g,u+1,i/qm,1 to be given by the following parameters:

qm+1,1/qm,1 =Y,
Gm+12/qm1 = (1 —y)/(2q) + B2,
qm+13/9m1 = (L —v)/2q) + B3 — P2,

(16)

Am+1,i/qm1 = 1 —y)/2q) + Bi — Bi-1,

Gm+1,2q/Gm1 = (1 = ¥)/(2q) + P2g — B2g—1,
Ami12q+1/qGm1 = (1 =)/ (2q) — Bag.

Here, y and B; with i = 2,3,...,2q represent the spe-
cific 2q free parameters (which can be any complex num-
bers). Consequently, the conserved quantity in Eq. (15)
transforms into:

2g+1
Q qm,i )— qulflLflt'FQIIZym lmlml
i=2 m=1

2q+1

+qllzym 21 nyf‘fmz

+q1127m ZZﬂl(fT‘fmz_

m=2 i=2

m, ,+1fm t+1)

(17)
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q,i for i=1,---,2q + 1 represent the effective charges
for fermions at the first site. The conservation of the total
charge is independent of the choices of the free param-
eters y and f; thus, the coefficient of each power of these
free parameters can be identified as an independent con-
served quantity. All of these coefficients give a large num-
ber of local conserved quantities. Notably, these local
conserved quantities can be categorized into three dis-
tinct sets as follows.

The first set of conserved quantities is localized on the
first site and is denoted as:

Qa,i =J‘1tiﬁ,¢, i=2,---,2qg+1. (18)

This set signifies that the fermions on 2g orbitals of
the first site are entirely decoupled from the rest of the
system. These 2g conserved quantities at the first site
directly stem from taking the OBC.

The second set comprises on-site conserved quantities as:

R P PR

Qb,m,i =fm,fm,i _fm,,‘+1fm,i+lx (19)
where the site index m =2,...,M and orbital index
i=2,...,2q. These on-site conserved quantities indi-

cate that the fm,i>1 fermions at the mth site are subject
to simultaneous annihilation and creation, revealing the
conservation of the population imbalance between f-fer-
mion orbitals with orbital indices i > 1. This behavior
aligns directly with the breakdown interaction in Eq. (14).

The third set of conserved quantities is also local, but
intriguingly not on-site, which is given by:

20+1

Qc,m :J}rzt,lJ}myl + i Z (nme1+1,fM+l,i - ﬁmfr;jm’)’ (20)
i=2

where m=1,...,M. These conserved quantities

describe the interactions between the first fermion f,;,1

at each site and the other fermions. We impose the coef-

ficients 9, = 1 — 8;u,m and 1, = 1 — 8,1 such that these

conserved quantities are compatible with the OBC.

As a result, we obtain an extensive number of local con-
served operators for the minimal quantum breakdown
Hamiltonian in Eq. (14). These operators in Egs. (18) to
(20) can further add or multiply to generate additional
conserved quantities, serving as generators of the underly-
ing commutant algebra [21]. For example, the total fermion
number N7 = Z],\n/[:l ,Il,l fm,1 on the first orbital of all sites
is conserved, which is equivalent to A} = an/[:l Qe

As implied by the conserved quantities Q, ;, the fermions

created by fAfl with i > 1 remain frozen in their dynamics.
However, the remaining two groups of conserved quan-
tities, Qb,m,i and @C,m, play a crucial role in shaping the
connected Hilbert subspaces (i.e., Krylov subspaces) and,

Page 5 of 14

thereby, constraining the quantum dynamics of the mini-
mal quantum breakdown model with N = 2¢g + 1.

The breakdown interactions in Eq. (14) simultane-
ously annihilate or create all fermions with orbital index
i > 1. Consequently, the subspace that exhibits non-
trivial dynamics at the mth site must exclusively com-
prise states with an identical number of fermions with
orbital index i > 1. Conversely, a site with an uneven
distribution of these fermion modes becomes dynami-
cally frozen. These two distinct types of states can be
distinguished by the eigenvalues of the second set of
conserved charges Qb,m,i~ In a subspace where any Qb,m,,'
has a nonzero eigenvalue, the fermions at the mth site
with orbital index i > 1 will remain static. As a result,
this site serves as a blocking site [38], effectively dividing
the system into two dynamically isolated regions. This
dynamical constraint precisely exemplifies the Hilbert
space fragmentation in the N = 2 + 1 quantum break-
down model.

Assume that there are two blocking sites at m; and
my and no other blocking site in between. The non-
trivial dynamics then exist in the region m; < m < my,
in which any Qb,m,l' with m14+1<m <my—1 and
2 <i<2g+1 would have a zero eigenvalue for the
states in this subspace. Within such a subspace, the
quantum dynamics is further influenced by the con-
served charges Qc,m. In the subsequent section, we will
demonstrate that the minimal quantum breakdown
model in certain subspaces is equivalent to a U(1) lattice
gauge model. In the language of lattice gauge theory, the
conserved quantities Qc,m play the role of gauge symme-
try generators.

3 Mapping to the lattice gauge theory

Without loss of generality, we make a slight change of nota-
tion in the following discussion. Here, we assume m; = 1
and my = M + 1are two blocking sites, between which the
region is connected without any other blocking sites. As
explained in the above section, the states|y) in this dynam-
ical subspace are restricted by

Qomil¥) =0, 2<m<M,i=2,---,2q+1.

(21)
To further simplify the minimal quantum breakdown
model in Eq. (14), we define a set of operators as

ottt ot ot
Fy, _fm,zfm,S T m,2qu,2q+1’

Fy, =fm,2q+Lfm,2q o 'fm,afm,Z:
2q+1

~ 1 AL A
N, = 2 > A Fnie
=2
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Fig. 2 aThe correspondence between fermions and link spins established in Eq. (25). b The sketch of interactions in the minimal quantum
breakdown model in Eq. (26). ¢ A typical configuration in the minimal quantum breakdown model in Eq. (26)

F,, and 1:”:,, are the operators for collectively annihilating
and creating 2¢q fermions at the mth site. Then, the quan-
tum breakdown model in Eq.(14) can be re-expressed as

ME

m=1

m+11 m+1fm1+ hC)‘f’Zﬂm mlfm1+2qu)

We emphasize that such an identification between
fermionic operators and spin operators is exclusively

M
(23)

m=1

Since the breakdown interaction preserves the fer-
mion parity, the two operators, I:"m and ﬁ:n, behave like
bosonic operators. They satisfy the following commuta-
tion relations:

[ﬁmjn 1} [F:n’ nl} =0,
i

2q+1

LT A fmi =
=2

2q+1

[ AT
i=2

(24)

Upon imposing the constraint in Eq. (21) on the Hil-
bert space, only two configurations for the 2g immobile
f-fermion modes (with orbital indices 2 <i <2g+1)
at each site are accessible: the vacuum state || ),, = |0)
and the fully occupied state [1),, Eﬁ:n|0) (Fig. 2a).
Consequently, it is stralghtfqrward to show that
(B} EnllV)m = —14)m and [}, Enllt)m = [1)m. There-
fore, the commutator [F;rn,Fm] can be expressed as
[ﬁ:n,ﬁm]c = 2Nm — 1, where the subscript ¢ denotes
the subspace spanned by |1),, and ||);,. Furthermore,
[Fp, 2Ny — 1] = 2F,, and [F},2N,,, — 1], = —2F],. As a
result, the operators ﬁm, l:";rn, and ZNm — 1 constrained
in this subspace follow the same algebra as the Pauli

Atz .
matrices 6, . ,, with the correspondence

Fys1 — 6, F*_H—)a

+
mm+1’ *m mm+1 7 2Nm+1_1_)0-

mm+1 *

(25)

applicable within the constrained Hilbert space where
Eq. (21) is satisfied.

After mapping to spin operators, we can express the
minimal quantum breakdown model in the subspace of
Eq. (21) into the following form:

M—1

- o .

H= Z Unfrns1,10 1 Jm1 + hec)
m=1

M-1

+Zumf A1 + unm G i1

Here, we ignore the decoupled fermions on the first
site with orbital indices 2 < i < 2g + 1 and omit some
constant terms. The Hamiltonian, as shown in Fig. 2,
resembles the quantum link model, which characterizes
the motion of fermions along the lattice sites while simul-
taneously interacting with the spins on the lattice links
[42—-45]. This is a lattice version of 1+1D quantum elec-
trodynamics. Correspondingly, the local conserved quan-
tities (AQC'W, in Eq. (20) are transformed into

G = ff fonn + %[nmwz,mﬂ +1) = i@, + DI (27)

The quantum link model bridges the minimal quantum
breakdown model with the 1D lattice gauge theory. To
see this, we introduce the Hamiltonian of the /(1) lattice
gauge theory [45, 46]. Here, we focus on the open bound-
ary conditions, and the quantum link formulation of the
U(1) lattice gauge theory is
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M—-1
Higr=—t» (U Unmi1¥m1 +he)
m=1
Ml (28)
+n Z( D"V g Y
m=1 m=1

In this context, U,, and ! denote the fermionic
annihilation and creation operators on the lattice sites.
Meanwhile, E,,,,+1 represents the electric field opera-
tor on the lattice links, and L[m mtl = e“‘mm+1 corre-
sponds to a parallel transport operator induced by the

U(1) link gauge field Am e They adhere to the rela-
tion [Em M1 I,[m m+1] = L[m m+1. This relatlonshlp arises
from the fact that the electric field operator Em,m+1 on
the link is the canonical momentum of the link gauge
field Ay i1

The first term in Eq. (28) signifies the couplings
between the fermions (matter fields) at the lattice sites
and the gauge fields at the lattice links. The second term
represents the fermion mass, while the final term char-
acterizes the energy of electric fields. Notably, the U(1)
gauge symmetry of this lattice model under open bound-
ary conditions is generated by [45, 46]:
NmEmm+1- (29)

gm—\lfr m+77m m—1,m —

These gauge generators satisfy [ﬁLGT,Qm] =0. In
the lattice gauge theory for staggered fermions, the
physical states in the gauge-invariant subspace satisfy
(gm &)Wf) = 0, which is a lattice manifestation
of Gauss law V - E = p [45-47].

The infinite local Hilbert space dimension associated
with the gauge fields on the links poses a challenge in
simulating the U(1) lattice gauge theory in experlments
A truncated local Hilbert space with small Em 1 €igen-
values is often adopted, which is more experimentally
accessible and is justified for large coupling strength
g in ﬁLGT This truncation leads to the quantum link
model, achieved by the substitutions: i,,,,.; — S+
LI:n il = Sm mav a0d Ey i1 — 82, where Sm 1
are spin-S operators on the link. Now, the gauge fields on
the links are effectively substituted by a spin S. Conse-
quently, the spin-S quantum link model can be expressed
as [45, 46] :

mm+1’

M—-1
]:IS = _t/ Z(®L§;,m+l‘ijm+l + hC)
m=1
M-1
+MZ( D" U+ Y (i)
m=1 m=1

(30)
The precise form of the renormalized constants ¢’ and
g’ is irrelevant in our discussion. In the case of the spin
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S= % quantum link model, the energy term of elec-
tric fields is a constant energy offset that can hence be
dropped. When we map the W-fermions to the f-fer-
mions, the model in Eq. (30) shares the same interac-
tion terms as in Eq. (26) by the following substitutions:
S; il = Op e and 287, a1l = —05 . It is worth
noting that we have chosen a different basis for the link
spins in Eq. (26) to establish a connection between the
spin-up state in the quantum link model and the occu-
pied state 1:";4|0) in the minimal quantum breakdown
model.

By employing the above substitutions and setting the
parameters J,, = —t' and pu;; = (—1)™u, the minimal
quantum breakdown model in Eq. (26) can be mapped
into the § = % version of the quantum link model in
Eq. (30). However, this mapping is not exact. The dis-
tinction arises from the staggered chemical potential in
the minimal quantum breakdown model, which results
in a staggered magnetic field for link spins in Eq. (26).
The staggered magnetic field for link spins is different
from the energy term of electric fields g (Sm m+1)2 pre-
sented in Eq.(30). An interesting future direction is to
investigate the effect of this effective magnetic field on
the quantum dynamics of the underlying many-body
system. Nevertheless, we emphasize that the minimal
quantum breakdown model shares the same gauge sym-
metry structure as the U(1) lattice gauge theory, which
can be seen in Egs. (20), (27), and (29).

In general, quantum simulations of the lattice gauge
theory make great efforts to enforce the gauge condi-
tion (Qm — #)h//) =0 in experiments. However,
the connection between lattice gauge theory and the
quantum breakdown model we revealed here suggests
that the other gauge sectors may also unveil intriguing
physical phenomena. In the next section, we focus on
the Hamiltonian Eq. (26) and delve into several typi-
cal gauge sectors, to illustrate the rich dynamical phe-
nomena exhibited by the minimal quantum breakdown
model.

4 Dynamically connected subspaces

In the N = 2¢g + 1 minimal quantum breakdown model,
the existence of local conserved quantities effectively
partitions the entire Hilbert space into an exponential
number of disconnected Krylov subspaces. Even after
resolving the conserved quantities Qa,,' and Qb,m,i, it is
still possible to make further fragmentations within
the Hilbert subspace constrained by (}b,m,ihp) =0.Asa
result, the conserved quantities Qc,m play an indispen-
sable role in determining the dynamically connected
subspaces. To make it clear, we employ the minimal
quantum breakdown model in the form of Eq. (26) to
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Fig. 3 Different blocking configurations in the minimal quantum breakdown model in Eq. (26)

illustrate the dynamical structures in the original quan-
tum breakdown model.

4.1 Blocking gauge configuration
In addition to the aforementioned blocking sites with at
least one Qb,m,,» satisfying Qb,m,,'hp) # 0, there also exist
two types of blocking configurations in the subspaces
with all éb,m,iwf) = 0. For simplicity, we take the form
of the minimal quantum breakdown model shown in
Eq. (26). Such blocking configurations are determined
by the local gauge generators Gom (i.e., QC m) in Eq. (27),
which can have eigenvalues —1,0,1,2 (if m # 1 or M). As
shown in Fig. 3, when the eigenvalue of G at the mth
site equals 2, the mth fermionic site and two surrounding
spin sites admit the following configuration | e 1; simi-
larly, when the eigenvalue of G,, at the mth site equals
—1, we obtain a configuration 1 o 1.} These two configu-
rations are dynamically frozen. Other fermions cannot
jump into this site and change the spin configuration
on the nearby links. Therefore, the gauge configurations
with the eigenvalue of bulk Gm being 2 or —1 further sub-
divide the lattice into spatially disconnected parts.

Furthermore, these two blocking configurations can
generate more complicated blocking structures. As
shown in Fig. 3c and d, the blocking configurations
J e tand 4 o | can be further extended by adding more
parallel spins on the two sides. These extended block-
ing configurations form a domain-wall structure of the
link spins, while the fermionic sites within the blocking
region are either fully occupied or empty.

The existence of many blocking configurations further
reduces the dimension of connected Hilbert subspaces.

! Here we use @ and o to represent the occupied and unoccupied fermionic
sites; 1 and | show the direction of link spins.

In the following, we only need to focus on the situ-
ations where the eigenvalues of all the bulk G are 0
or 1. In other words, we are free to remove the block-
ing region because of their frozen dynamics. Then, the
dynamically connected region consists of the following
configurations?:

(Gm) =0
(Gu) =1

lol,tot, tel;
lel, tet, [or.

Here, (Gy) represents the expectation value of Gom
over a product state, which is also an eigenstate due to
the diagonal structure of G,,. Moreover, the combined
conserved quantity G =Y., G, corresponds to the
total number of fermions in the quantum link model.
This quantity equals to the number of fermions N7 on
the first orbitals in the quantum breakdown model.
Consequently, we can investigate the dynamically con-
nected Krylov subspaces labeled with different fermion
numbers, or fermion filling factors, on the first orbitals.
In the following discussion about the subspace dynam-
ics, we restrict ourselves into the Krylov subspaces
below the half-filling, since the Krylov subspaces above
half-filling can be readily generated via a particle-hole
transformation.

(31)

4.2 Free-fermion sector

The simplest situation is the case with only one fer-
mion, namely, the eigenvalue of G = Zm Gm is equal to
1. Under this circumstance, the connected Krylov sub-
space is generated by a reference state like Fig. 4a. If we
label the state by the position of the fermion as |m), such

2 A slight modification is necessary for the available eigenvalues of G at the
boundary sites because of the absence of link spins outside of the system.
For m =1, the available configurations are o 1 and e | with (éw) = 1. For
m = M, the available configurations are |, o and 1 e with (@M) =0.



Hu and Lian AAPPS Bulletin (2024) 34:24

1 0 0 0 0

Page 9 of 14

0 0 0 0 0 0

@ @10+ 04+04+O0IO0IOITOITOIOHO0

® OTO0OTe1I010I0IO0IOTOTOTO

OO nOn nOh nOn RO ROn n =208 208 2O 2@

@ OTOoTo1To0o1To01TOo0O1TO0O1TO0OTOTO1T@

Fig. 4 Typical configurations in a Krylov subspace with one fermion. The integers above show the eigenvalues of local conserved Gm

a state in the original quantum breakdown model can be
expressed as

m [2q+1

m
lmy=£i [T TLAS [0 =A [T E 0. 32)
j=2 \ i=2 j=2

The reduced Hamiltonian in this Krylov subspace admits
the following form:

M-1 M
Hiee = Y ulm + 1)(m| +hc) + > Viglm) (ml,
m=1 m=1

(33)

where the onsite potential is given by Vi, = i + Y iy 2q L.

This is thus effectively a single-particle tight-binding model [38].

Notably, by tuning the parameters J,;, and 1, this model

can exhibit different behaviors. For example, if we take a

uniform J,, = J and set u,, = 0, this subspace describes a
tight-binding model whose eigenstates are Bloch waves:

2 M kmm
73] :1/M+1m2::15m <M+1>|m), k=1,...,M.

Consequently, the eigenvalues are given by £, — 2/ cos(£;).

(34)

1 0 0 0 0

Another interesting setup is to take a constant on-site
potential w,, = u. In this case, V;,, = 2q(m — 1) + DHu
becomes a linear potential, resulting in the Wannier-
Stark localization of the free fermion. Furthermore, if J,;,
and V,,, are taken from some random distributions, the
system will display the Anderson localization. The locali-
zation phenomenon in this subspace indicates that the
original quantum breakdown model displays many-body
localization in certain charge sectors.

4.3 Boundary interaction

We now analyze Krylov subspaces that involve more
than one fermion. In the subspaces with two fermions,
two sites are specified with their eigenvalue of Gm being
1. A representative configuration is shown in Fig. 5. In
this scenario, both particles move freely within their indi-
vidual dynamical zones, with the exception of a contact
interaction occurring near the boundary that separates
them.

For example, the dynamical region of the first fermion
in Fig. 5a contains the leftmost six sites, while that of the
second fermion comprises the rightmost six sites. Start-
ing from the reference state in Fig. 5a, if the second parti-
cle moves to the right, the first particle can migrate to the

1 0 0 0 0 0

@ @1O010101 01610101+ 01T010

® OTO1TOo01+O01e1+1el1o0Io0+HOodOod0
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Fig. 5 Typical configurations in a Krylov subspace with two fermions. The integers above show the eigenvalues of local conserved Gm
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initial site of the second particle (Fig. 5¢) . However, due
to the constraint imposed by the spin configurations, the
first particle cannot move further in the right direction.
On the other hand, if the second particle remains at its
initial location, the first particle cannot occupy the same
site due to the Pauli principle. Consequently, these two
particles exhibit an effective interaction near the bound-
ary between their dynamical regions [38]. This boundary
interaction results in challenges for analytical solutions in
this Krylov subspace.

The connectivity graph of this Krylov subspace is
shown in Fig. 6. This graph takes the form of a square
lattice, with the absence of a corner site. In the case of
Jw =7 and u,, = 0, if the distance between two fermi-
ons in the reference state (Fig. 5a) is sufficiently large, we
can ignore the boundary defect and treat the dynamics of
this Krylov subspace as a free particle on a 2D square lat-
tice. This is reasonable because the probability of finding
a particle at the boundary decreases as the length of its
dynamical zone increases.

The picture based on the subspace connectivity can be
generalized to situations involving generically # fermi-
ons. A representative connectivity graph for the subspace
with # = 3 fermions is shown in Fig. 7. When the fermion
density in the system is sufficiently small, the average
distance between two adjacent particles in the reference
state like Fig. 5a becomes significantly large. As a result,
the particles have a neglected probability of simultane-
ously appearing at the boundary between their dynamical
regions. In this context, such a boundary interaction may
be considered weak and, therefore, can be neglected. Con-
sequently, the effective dynamics can be viewed as a free
particle moving on a n-dimensional hypercubic lattice.

e (c)

(d)e—eo—0 o —o

(a)e—eo o o o (b)

Fig. 6 The connectivity of the Krylov subspace shown in Fig. 5. The
nodes are product states in the Krylov subspace and the edges are
the nontrivial interactions induced by the Hamiltonian. The locations
of configurations in Fig. 5 are labeled by the corresponding letters
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Fig. 7 The connectivity of the Krylov subspace with three fermions.
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4.4 The intermediate cases

Consider increasing the fermion density in the refer-
ence state. While ensuring that the density remains
below half-filling, an increase in fermion density leads
to a decrease in the average distance between two adja-
cent particles. Roughly speaking, the decrease in particle
separation leads to strong contact interactions between
neighboring particles. Consequently, the Krylov subspace
becomes strongly interacting, and the dynamics dramati-
cally deviate from those of a nearly free particle moving
on a hypercubic lattice.

It is very difficult to develop an analytical description
for Krylov subspaces with high densities. Therefore, we
perform numerical investigations on these Krylov sub-
spaces here. For simplicity, we focus on the situations
where J,, =] =1 and u,, = 0. Figure 8 shows the sub-
system entanglement entropy of the eigenstates. With
an eigenstate [v/), we define pq = Trj[|¥)(¥]] as the
reduced density matrix of the subsystem A, where A is
the complementary set of A. Then, the subsystem entan-
glement entropy is obtained by S4 = —Tr[p4 In p4]. The
numerical findings indicate that Krylov subspaces with
many fermions exhibit a nonchaotic feature, as evidenced
by many low-entangled eigenstates located in the cen-
tral region of the spectrum. This property is linked to the
boundary interactions between adjacent fermions in this
kinetically constrained model.

4.5 PXP model and quantum many-body scar

An interesting Krylov subspace with a high density of
fermions is illustrated in Fig. 9. This corresponds to the
half-filling case, where the reference state has fermions at
odd sites. Within the Krylov subspace generated by this
reference state, we can introduce a new gauge generator:



Hu and Lian AAPPS Bulletin (2024) 34:24 Page 11 of 14

-10 0 10 -10 0 10
E E

Fig. 8 The subsystem entanglement entropy of eigenstates with many fermions. With the Hamiltonian in Eq.(26), we set J,, = J = Tand u, = 0.
In each plot,v = N; /M denotes the filling factor of fermions, where Ny is the fermion number and M is the number of fermion sites.aN; = 5
and M = 25.The gauge configuration for Gmin Eqg. (27) is set to 1000010000100001000010000. The entanglement entropy is evaluated
for subsystem A which includes the leftmost 13 fermion sites and 12 link spins. b Ny = 6 and M = 24. The gauge configuration for G is set
to 100010001000100010001000. The entanglement entropy is evaluated for subsystem A containing the leftmost 12 fermion sites and 12 link
spins. ¢ N7 = 8and M = 24.The gauge configuration for G s set to 100100100100100100100100. The entanglement entropy is evaluated
for subsystem A which includes the leftmost 12 fermion sites and 12 link spins.d N1 = 11and M = 22. The gauge configuration for Gpmis set
to 1010101010101010101010, similar to Fig. 9. The entanglement entropy is evaluated for subsystem A that includes the leftmost 11 fermion sites
and 11 link spins
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Fig. 9 Typical configurations of the minimal quantum breakdown model in Eq. (26) in the half-filling Krylov subspace given by Eq. (36), which maps
to the PXP model. The integers above show the eigenvalues of local conserved G,
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~ N 1— (=™
Gm=Gm— (2 ) (35)
Then, all the states in this subspace satisfy
Gl ) = 0. (36)

This precisely corresponds to the physical gauge sector dis-
cussed in lattice gauge theory for staggered fermions [45—47].

Remarkably, despite the strong interactions within this sub-
space, the dynamics starting from the reference state reveal
persistent revivals, a distinctive feature of quantum many-
body scars [34—37, 56]. Notably, the Hamiltonian in this sub-
space of the quantum link model can be precisely mapped
to the PXP model [56, 67], a system simulated with Rydberg
atoms [12-14]. As shown in Fig. 9, if we map our spins on
the links in Eq. (26) into Pauli matrices 7;,”" through [56]

~z maz
m < (=1 Oym+17

ax P At 7 2 oa— 7
Tm <> m+1.1”m,m+1fm'1 +fm,1(7m,m+lfm+1'1'

Ay . MooAt+ 7 Moa— B
T < —i(=D" (110 mmitfm1 = 1 Cmmirfmr1,0)-

37)
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With J,, =] and u,, = 0, the model Eq. (26) in the
gauge sector of Eq. (36) maps to the PXP Hamiltonian for
Rydberg atoms:

" J A A A
Hpxp = 7 DI EE AN AAC LSNP (38)
m
This mapping can be understood intuitively.
With the identification &7, ., < (=1)"%;, the

bulk gauge symmetry generators Eq. (35) become
Gm = fpifm1 + 3[(=D™(@ + 25+ 1) — 1],  where
1 <m < L. With |¢) in the constrained Hilbert space
being a basis vector, the gauge constraint Eq. (36) leads to
(WIEZ + 254 19) = (=D)L = 21} i W) — 1 < 2,
which corresponds to the Rydberg blockade that two
neighboring atoms cannot be excited simultaneously to
Rydberg states. Consequently, we anticipate observing
many-body scar dynamics when evolving a Z; configu-
ration in Fig. 9a.

In Fig. 10a, we show the overlap between the Z; config-
uration and the energy eigenstates in the subspace under
the OBC. Our numerical findings distinctly reveal the

() 10—
107°¢

107t

| (YElYz) [

1072

-15

0 ) 10 15

N

10 15 20
Jt

Fig. 10 Quantum many-body scars in the half-filling Krylov subspace. a Overlap of the Z, configuration [z, ) like Fig. 9a with the energy
eigenstates in this subspace. b The fidelity dynamics starting from [z, ). The parameters are Jy,, = J = 1, um = 0, and the number of fermionic sites
is L = 22.We take the open boundary condition in the numerical simulation
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presence of scar tower structures. Additionally, the
fidelity F(t) = |(¥z,le " |yz,)|* during the time evolu-
tion exhibits clear and notable revivals, as shown in Fig. 10b.
These outcomes collectively support the existence of quan-
tum many-body scar states within the quantum link model,
i.e., the minimal quantum breakdown model.

5 Discussions

In this paper, we study the minimal quantum break-
down model with N = 2g + 1 and investigate its under-
standing from the perspective of lattice gauge theory.
An extensive number (proportional to the system size)
of locally conserved quantities in the model leads to
the emergence of Hilbert space fragmentation, which
is closely tied to numerous dynamically blocking sites.
The mapping between the minimal quantum breakdown
model and the U(1) lattice gauge theory offers a pow-
erful framework for employing gauge configurations
to describe the various dynamics within the connected
Krylov subspaces of the original quantum breakdown
model. These intrinsic connections among the minimal
quantum breakdown model, quantum link model, and
lattice gauge theory may motivate proposals for experi-
mentally implementing the generic quantum break-
down model and more quantum models with generic
modulated symmetries.
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