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Pricing Economic Dispatch With AC Power Flow
via Local Multipliers and Conic Relaxation
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Abstract—We analyze two locational marginal pricing
schemes in electricity markets derived from an economic
dispatch (ED) problem with ac power flow equations that
define a nonconvex feasible set. The first among these
prices called ac locational marginal prices (AC-LMPs) is de-
rived from Lagrange multipliers that satisfy Karush–Kuhn–
Tucker conditions for stationarity/local optimality of the
nonconvex ED problem. The second, called SDP-LMPs,
is derived from optimal dual multipliers of the semidefi-
nite programming (SDP)-based convex relaxation of the ED
problem. We establish that AC-LMPs and SDP-LMPs are
derived from Lagrange dual-equivalent problems. Hence,
they coincide under a zero duality gap but may not be
equal when the gap is nonzero or when the AC-LMPs are
associated with a stationary/locally optimal, but not glob-
ally optimal, dispatch. SDP-LMPs share interesting paral-
lels with convex hull prices (CHPs), being derived from
the Lagrangian dual of the nonconvex ED problem. How-
ever, there are important differences. For example, the
epigraphs of the SDP relaxation of the ED problem and
the latter, parameterized by the nodal power demands, may
not enjoy the relationship that CHPs satisfy and derive
their name from. Also, while CHPs minimize a form of
side-payments, SDP-LMPsmay not. We prove that AC-LMPs
(and SDP-LMPs under zero duality gap) guarantee revenue
adequacy under a condition that is sufficient but not nec-
essary. Finally, the SDP-LMPs are shown to be equal to
SOCP-DLMPs, which are distribution locational marginal
prices derived with second-order cone programming-based
relaxations of power flow equations over radial distribution
networks. We illustrate our theoretical findings through nu-
merical experiments.

Index Terms—Conic programming, electricity markets,
locational marginal pricing.

I. INTRODUCTION

E LECTRICITY markets rely on a bid-based security-
constrained economic dispatch (ED) problem to compute

dispatch and pricing decisions. Prices are derived as optimal dual
multipliers of system constraints in the ED problem. These loca-
tional marginal prices (LMPs), proposed in [1], reflect marginal
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system costs to meet local incremental demand. LMPs enjoy
strong theoretical guarantees when the market clearing problem
is convex, e.g., when derived with lossless linearized power flow
models and convex generation costs. In this article, we analyze
price formation that accounts for nonconvexity in the market
clearing problem. Nonconvexity can arise from two sources:
1) unit commitment considerations with startup/no-load costs
and 2) the alternating current (ac) power flow equations. Pricing
with binary commitment decisions has been extensively studied,
e.g., see [2], [3], [4], [5], [6], [7]. In this article, we focus on
price formation with nonconvexities that arise from an ac power
flow model, which has received much less attention (see [8]
for recent work). This nonconvexity is not a consequence of
the cost structures of assets but rather stems from the nature
of Kirchhoff’s laws that govern the underlying power network.
There is an increasing interest to efficiently and optimally solve
the nonconvexmarket clearing problemwith ac power flow, e.g.,
the ongoing ARPA-EGO competition.We believe that ac power
flow equations will grow in importance for market clearing as
the integration of renewable and distributed energy resources
(DERs) forces the grid to accommodate a broad set of operating
conditions. Linear power flow models may then fail to capture
grid behavior outside a narrow operating band. Markets cleared
with such models will not accurately reflect grid characteristics.
To circumvent that problem, we analyze prices to accompany a
dispatch with ac power flow.
We consider two candidate pricing mechanisms that we ana-

lyze and compare in this article. The first pricing scheme utilizes
Lagrange multipliers obtained from a nonconvex dispatch prob-
lem that satisfies Karush–Kuhn–Tucker (KKT) conditions that
are necessary for locally optimal dispatch solutions, much along
the lines of Garcia et al. [8]. We call these prices ac locational
marginal prices (AC-LMPs). The second pricingmechanismuti-
lizes optimal Lagrangemultipliers from a semidefinite program-
ming (SDP)-based convex relaxation of the economic dispatch
problem as prices. We call these prices SDP-LMPs. The second
pricing scheme is motivated by recent work on distribution
LMPs derived from a second-order cone programming (SOCP)-
based convex relaxation of power flow equations in radial dis-
tribution networks (see [9], [10], [11]). We call the latter SOCP-
DLMPs in the sequel. In short, our work seeks to understand
and compare economically relevant properties of AC-LMPs and
SDP-LMPs, where the latter can be viewed as a generalization of
SOCP-DLMPs.
The ED problem with ac power flow equations is nonconvex.

We show that when this problem has zero duality gap, AC-LMPs
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associated with global optimal solutions and SDP-LMPs coin-
cide. With a nonzero duality gap, however, these prices can be
different. Moreover, AC-LMPs associated with stationary/local
minima—but not global minima—can be different from SDP-
LMPs as well. Our derivation of this result exploits the fact that
the nonconvex ED problem and its SDP relaxation share the
same Lagrangian dual program. When the duality gap vanishes,
the SDP relaxation essentially provides a globally optimal so-
lution to the ED problem. Not surprisingly, the prices coincide
as well. Such a relationship does not exist between the optimal
solutions of the SDP relaxation and stationary/local optima or
that with global optima with a nonzero duality gap. As a result,
these prices can be different.
The nonconvex ED problem and the SDP relaxation are dual

equivalent optimization problems. Consequently, SDP-LMPs
can be derived as dual optimizers of the ED problem. Note
that convex hull prices (CHPs) in [7] and [12] are also derived
via the Lagrangian dual program of a market clearing problem
with nonconvex cost structures. Even though SDP-LMPs and
CHPs have similar roots and their properties appear similar
on the surface, there are interesting differences. For example,
Gribik et al. [7] study the variation of the optimal cost of the
nonconvex market clearing problem to nodal power demands.
They show that the convex hull of the epigraph of this op-
timal cost is, in fact, the epigraph of the optimal cost of its
Lagrangian dual problem from which the CHPs are derived.
One might surmise that an identical relationship holds between
the optimal cost variation of the ED problem with ac power
flow equations and its SDP relaxation with nodal demands.
We show, however, that the argument in [7] breaks in our
setting!
A pricing mechanism is revenue adequate when the revenue

collected by the system operator (SO) from consumers is enough
to cover the rents payable to suppliers. We derive a sufficient
condition for revenue adequacywithAC-LMPs (andSDP-LMPs
under zero duality gap). We illustrate through an example that
the condition we identify is sufficient, but not necessary, for
revenue adequacy.
We demonstrate that AC-LMPs always support a market

equilibrium, i.e., they adequately incentivize all market partici-
pants to follow the SO-prescribed dispatch. This assertion holds
even at a local optimal solution of the nonconvex ED problem.
SDP-LMPs, on the other hand, only support market equilibrium
when the duality gap of the ED problem is zero. With a nonzero
duality gap, pricing via SDP-LMPs may require side-payments
from the SO to incentivize them to follow the SO-prescribed
dispatch. We characterize the duality gap of the ED problem
as the minimization of two terms, the first among which is the
aggregate side-payments, very much along the lines of Schiro
et al. [12] for CHPs. However, we argue why such a formula
for the duality gap does not make SDP-LMPs a minimizer of
side-payments. If minimization of said payments is the ultimate
goal, AC-LMPs suffice. Again, this result highlights the subtle
differences between SDP-LMPs and CHPs, even though both
these pricing mechanisms are derived from the Lagrangian
dual of the nonconvex market clearing formulations with two
different types of nonconvexities.

Finally, we prove that SDP-LMPs reduce to SOCP-DLMPs
in [9] over radial distribution networks. This observation
leverages known results in [13] and [14] that the SDP relaxation
of the ED problem over radial networks can be solved as an
SOCP. Our analysis of SDP-LMPs, therefore, directly provides
insights into revenue adequacy, market equilibrium, sensitivity
of prices to demand and necessary side-payments for market
participantswith SOCP-DLMPs. Such an analysis is particularly
timely, given recent interests in the design of retail markets with
DLMPs (e.g., see [9], [11], [15]) to harness the flexibility of
DERs at the grid edge.
Perhaps the closest in spirit to our work are those in [8]

and [16].While Lipka et al. [16] consider real and reactive power
pricing based on successive linearization-based approximations
of the market clearing problem with ac power flow equations,
those in [8] only consider real power pricing but combined with
an uplift payment minimization with nonconvex cost structures.
In contrast, our key contributions are the derivations of rela-
tionships between real and reactive power pricing via local
multipliers and convex relaxations, parallels/differences with
CHPs, conditions for revenue adequacy, and connections with
prior works on DLMPs.
This article is organized as follows. In Section II, we define

the ED problem with ac power flow. Then, in Section III, we
introduce the two pricing mechanisms (AC-LMPs and SDP-
LMPs) and establish the relationship between them. We study
revenue adequacy of the pricing schemes in Section IV and
market equilibrium properties in Section V. We study these
prices on a three-bus power network example in Section VI. In
Section VII, we establish the connection between SDP-LMPs
and SOCP-based DLMPs. Section VIII concludes this article.

II. ED WITH AC POWER FLOW

Consider an electric power network on n buses and m trans-
mission lines. Let V ∈ Cn denote the vector of nodal voltage
phasors, whereC is the set of complex numbers. Denote by yk�,
the admittance of the line joining buses k and �. The apparent
power flow from bus k to bus � is

pk� + iqk� = V HΦk�V + iV HΨk�V (1)

where Φk�,Ψk� ∈ Hn that comprises all zeros except

[Φk�]kk :=
1

2
(yk� + yH

k�), [Φk�]k� = [Φk�]
H
�k := −1

2
yk�

[Ψk�]kk :=
1

2i
(yH

k� − yk�), [Ψk�]k� := [Ψk�]
H
�k :=

1

2i
yk�.

(2)

Here, AH calculates the conjugate transpose of an arbitrary
matrixA, and i :=

√−1 andHn ⊂ Cn×n is the set ofHermitian
matrices. The two summands on the right-hand side of (1)
define the real and reactive power flows from bus k to bus �,
respectively. Assume that the real power flows on the lines are
constrained as pkl ≤ fk� for a flow limit fk� > 0. Such limits
typically arise from thermal considerations but may also serve
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as proxies for stability constraints.1 Assume that ykk is the shunt
admittance at bus k. Then, the apparent power injection at bus
k becomes

pk + iqk = V HΦkV + iV HΨkV (3)

where

Φk :=
1

2

(
ykk + yH

kk

)
1k1

H
k +

∑
�∼k

Φk�

Ψk :=
1

2i

(
yH
kk − ykk

)
1k1

H
k +

∑
�∼k

Ψk� (4)

and 1k ∈ Rn is the vector of all zeros, except the kth entry that
is unity. The notation � ∼ k indicates that a transmission line
connects buses � and k in the power network. Here, R is the set
of all real numbers. Voltage magnitudes across the network are
deemed to remain close to rated voltage levels as vk ≤ |Vk| ≤ vk
at bus k, which is equivalently written as v2k ≤ V H1k1

H
kV ≤

v2k.
Consider two assets connected at each bus—anuncontrollable

asset whose apparent power draw is fixed and known, and a
controllable asset, whose power injection can varywithin known
capacity limits. Let pDk and qDk , respectively, denote the nominal
real and reactive power draws at bus k from the uncontrollable
asset. Similarly, let pGk and qGk denote the real and reactive
power generation at bus k, respectively, that vary within known
capacity limits. Collecting these limits across all buses, we write
(pG, qG) ∈ G, where

G :=
{(

pG, qG
) | p ≤ pG ≤ p, q ≤ qG ≤ q

}
. (5)

Associated with that generation is a dispatch cost ck(pGk , q
G
k ).

Assume that ck is jointly convex in its arguments. Such costs in
wholesale markets are inferred from supply offers and demand
bids; see [16] and [17] for the mechanics of running an ac-
complete market. Uncontrollable assets represent the collective
inelastic power demands at a bus while generators and respon-
sive demand comprise controllable assets.
The SO seeks to compute a dispatch that minimizes the

aggregate dispatch costs from the collection of grid-connected
controllable assets and meets the power requirements of the
uncontrollable ones, abiding by the engineering constraints of
the power network, as follows:

PAC : minimize
n∑

k=1

ck(p
G
k , q

G
k )

subject to
(
pG, qG

) ∈ G (6a)

pGk − pDk = V HΦkV (6b)

qGk − qDk = V HΨkV (6c)

V HΦk�V ≤ fk� (6d)

v2k ≤ V H1k1
H
kV ≤ v2k (6e)

1Line flowconstraints are often formulated over apparent power flowasp2k� +
q2k� ≤ f2

k�. We consider limits on real power flow for simplicity but believe that
our conclusions will hold with this alternate formulation.

for k = 1, . . . , n, � ∼ k

over pG, qG, and V . The boldfaced symbols collect the corre-
sponding variables across the network.PAC is nonconvex, owing
to quadratic equalities. In what follows, we consider prices to
support such a dispatch.

III. PRICING MECHANISMS

We consider two candidate pricing mechanisms. The first set
of prices is derived from Lagrange multipliers that satisfy the
KKToptimality conditions forPAC at oneof its stationarypoints.
For an optimum, such multipliers exist under certain regularity
conditions such as those in [18, Prop. 4.3.13]. The other set of
prices is derived from an SDP-based convex relaxation of PAC.
We call these prices SDP-LMPs. AC-LMPs and SDP-LMPs are
not always equal. In this section,we characterize the relationship
between these two pricing mechanisms. All results in this article
are derived under the assumption that PAC admits a strictly
feasible point.

A. LMPs From Nonconvex PAC

Associate Lagrange multipliers μp
k, μ

p
k
, μq

k, μ
q
k
to the upper

and lower, real and reactive capacity limits in (6a), Λp
k, Λ

q
k with

(6b), (6c), μk� with (6d), and μv
k, μ

v
k
with the upper and lower

voltage limits in (6e), respectively. The KKT conditions forPAC
are given in Fig. 1.

Definition 1 (AC-LMPs): The Lagrange multipliersΛp,� and
Λq,� that satisfy the KKT conditions for PAC for a locally
optimal dispatch pG,�, qG,�,V � define the AC-LMPs for real
and reactive powers, respectively, for that dispatch, assuming
these multipliers exist.
By definition, these prices are associated with a specific

stationary point (local minimum/saddle point/local maximum)
of PAC. We call them local minima throughout, given that
most solvers typically converge to such points. Denote by
J�

AC(p
D, qD), the cost of (6) at a global minimum of PAC,

parameterized by the nodal real and reactive power demands.
The feasible set of PAC is compact. Assuming that this set
varies continuously in nodal demands, J�

AC(p
D, qD) must then

vary continuously with pD, qD, per [19, Ch. 5]. Since PAC
is nonconvex, the parametric optimal function J�

AC can be
nonconvex. In general, it is also nonsmooth. Under regularity
conditions (see [18, Prop. 3.3.3]), AC-LMPs associated with a
global minimum are the marginal sensitivities of this optimal
cost to nodal power demands, i.e., Λp,� = ∇pDJ�

AC(p
D, qD)

andΛq,� = ∇qDJ�
AC(p

D, qD), if J�
AC is differentiable. Here,∇

computes the gradient of its argument.

B. SDP Relaxation-Based LMPs

We now define nodal prices for real and reactive powers from
an SDP-based convex relaxationPSDP ofPAC in (9). To arrive at
the relaxation,writeV HMV asTr(MV V H) = Tr(MW ) for
anyM ∈ Cn×n andW = V V H, where Tr computes the trace
of a matrix. The above representation reduces quadratic forms
in V to linear forms in W ∈ Hn that are positive semidefinite
(henceforth denoted as W � 0) and rank-1. Thus, PAC can be
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Fig. 1. KKT conditions for PAC.

reformulated as a rank-constrained SDP in W . Dropping the
rank constraint gives

PSDP : minimize
n∑

k=1

ck(p
G
k , q

G
k )

subject to
(
pG, qG

) ∈ G (9a)

pGk − pDk = Tr(ΦkW ) (9b)

qGk − qDk = Tr(ΨkW ) (9c)

Tr(Φk�W ) ≤ fk� (9d)

v2k ≤ Tr(1k1
H
kW ) ≤ v2k (9e)

W � 0 (9f)

for k = 1, . . . , n, � ∼ k

over W ,pG, qG. In contrast to PAC, the optimization problem
PSDP is convex. Associate the same Lagrange multipliers as for
PAC but use λp,λq instead of Λp,Λq for the real and reactive
power balance constraints (9b) and (9c) in PSDP. In addition,
associate U ∈ Hn as the matrix multiplier for the constraint
W � 0. TheKKToptimality conditions forPSDP are then given
by that for PAC in Fig. 1 but with the following changes:

1) λ’s replace Λ’s;
2) (7a) changes to

n∑
k=1

λ
p,�
k Φk +

n∑
k=1

λ
q,�
k Ψk +

m∑
k�=1

μ�
k�Φk�

+

n∑
k=1

μv,�
k 1k1

T
k −

n∑
k=1

μv,�
k

1k1
T
k −U� = 0 (10)

Tr(U�W �) = 0;
3) Tr(MW �) replaces V H,�MV � in (8a) for each

quadratic form in V ;
4) the dual feasibility constraint U � 0 is added to the list.
Definition 2 (SDP-LMPs): The Lagrangemultipliers λp,� and

λq,� that satisfy the KKT conditions for PSDP define the SDP-
LMPs for real and reactive powers, respectively.

Unlike AC-LMPs, the SDP-LMPs are not associated with a
local minimum of PAC. As a result, these prices do not change
with the local optimal dispatch that a nonlinear optimization
solvermayfind. Instead, they are purely functions of the problem
parameters and are robust to convergence properties of the solver
for PAC.

Let J�
SDP(p

D, qD) denote the optimal cost of PSDP. The
nature of the constraints of PSDP guarantees that J�

SDP is
jointly convex in its arguments. It can, however, be nonsmooth.
SDP-LMPs are the marginal sensitivities of the optimal cost
of the SDP relaxation to nodal real and reactive powers as a
result of the envelope theorem (see [19, Ch. 7]), i.e., λp,� =
∇pDJ�

SDP(p
D, qD) and λq,� = ∇qDJ�

SDP(p
D, qD), if J�

SDP is
differentiable at (pD, qD).

In what follows, we analyze the relationship between AC-
LMPs and SDP-LMPs. Note that we study pricing schemes in
this article that associate prices for both real and reactive powers.
In part, our choice is motivated to analyze a generalization of
SOCP-based DLMPs in [9] that does the same. We refer the
reader to celebrated debates on reactive power pricing in [16],
[20], and [21]. Here, we sidestep such debates and focus on the
mathematical properties of these prices

Remark 1 (On Computation of AC-LMPs and SDP-LMPs):
Interior-point methods are available to solve PAC that seek a
KKT point and, as a result, produce AC-LMPs as byproducts.
For example, see the algorithm in [22, Sec. 3.3] behind Mat-
power in [23]. See [24] for a survey of running interior point
optimizer (IPOPT) onPAC.PSDP is also solved via interior-point
methods that produceSDP-LMPs. Sparsity of the power network
graph can be exploited to solve PSDP fast. See [13], [25], and
[26] for details.

C. Relationship Between AC-LMPs and SDP-LMPs

Define the partial Lagrangian functions for PAC and PSDP in
(11) and (12), respectively. Using LV , PAC admits the standard
min-max reformulation as

PAC : inf
V ∈Cn,

(pG,qG)∈G

sup
μ,μv,μv≥0

Λp,Λq

LV . (13)

Authorized licensed use limited to: University of Illinois. Downloaded on March 06,2025 at 23:44:50 UTC from IEEE Xplore.  Restrictions apply. 



1708 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 11, NO. 3, SEPTEMBER 2024

LV (p
G, qG,V ,Λp,Λq,μ,μv,μv) :=

n∑
k=1

ck(p
G
k , q

G
k )−

n∑
k=1

Λp
k

(
pGk − pDk − V HΦkV

)
−

n∑
k=1

Λq
k

(
qGk − qDk − V HΨkV

)

+

m∑
k�=1

μk�

(
V HΦk�V −fk�

)
+

n∑
k=1

μv
k

(
V H1k1

H
kV −v2k

)
−

n∑
k=1

μv
k

(
V H1k1

H
kV −v2k

)
.

(11)

LW (pG, qG,W ,λp,λq,μ,μv,μv,U) :=

n∑
k=1

ck(p
G
k , q

G
k )−

n∑
k=1

λ
p
k

(
pGk − pDk − Tr(ΦkW )

)− n∑
k=1

λ
q
k

(
qGk − qDk − Tr(ΨkW )

)
+

n∑
k=1

μk�(Tr(Φk�W )−fk�)+

n∑
k=1

μv
k

(
Tr(1k1

H
kW )−v2k

)
−

n∑
k=1

μv
k

(
Tr(1k1

H
kW )− v2k

)− Tr(UW ). (12)

Then, the dual program of PAC is

DPAC : sup
μ,μv,μv≥0

Λp,Λq

inf
V ∈Cn,

(pG,qG)∈G

LV . (14)

Similarly, PSDP and its dual are given by

PSDP : inf
W∈Hn,

(pG,qG)∈G

sup
μ,μv,μv≥0

U�0,λp,λq

LW (15)

DPSDP : sup
μ,μv,μv≥0

U�0,λp,λq

inf
W∈Hn,

(pG,qG)∈G

LW . (16)

Having defined these primal and dual problems, we now es-
tablish relationships between AC-LMPs and SDP-LMPs. Our
exposition makes use of the following notations. For an arbi-
trary extended real-valued function h : Rr → R ∪ {±∞}, its
epigraph is given by

epi h := {(x, t)|x ∈ dom h ⊆ Rr, h(x) ≤ t} . (17)

Here, dom h is the domain of h, over which h assumes finite
values. Also, for an arbitrary setM, let conv M denote its convex
hull—the smallest convex set that contains M.

Theorem 1: The following assertions hold.
a) DPAC andDPSDP are equivalent optimization problems.
b) conv epi J�

AC(p
D, qD) ⊆ epi J�

SDP(p
D, qD).

c) When PAC has zero duality gap, i.e., PSDP admits a
solution with rankW � = 1, then SDP-LMPs are also
AC-LMPs associated with a global optimum of PAC.

Proof: For part (a), we write LV as V HÛV + ζ, where

Û :=

n∑
k=1

[
Λp
kΦk+Λq

kΨk+
(
μv
k−μv

k

)
1k1

H
k

]
+

m∑
k�=1

μk�Φk�

(18)

ζ(pG, qG,Λp,Λq,μ,μv,μv)

:=

n∑
k=1

[
ck(p

G
k , q

G
k )− Λp

k

(
pGk − pDk

)− Λq
k

(
qGk − qDk

)]

−
n∑

k=1

(
μv
kv

2
k − μv

k
v2k

)
−

m∑
k�=1

μk�fk�. (19)

Then, we have

inf
V ∈Cn

LV =

{
ζ, if Û � 0

−∞, otherwise.
(20)

and DPAC becomes

sup
μ,μv,μv≥0

̂U ,Λp,Λq

{
inf

(pG,qG)∈G
ζ

}
, subject to (18), Û � 0. (21)

To show the equivalence of the above problemwithDPSDP, note
that LW is linear in W and thus, unconstrained minimization
of LW overW ∈ Hn yields −∞, unless∇WLW = 0. Setting
that derivative to zero, we recover (18) withU instead of Û and
Λ’s replaced by λ’s. Incorporating this as a constraint inDPSDP
yields (21) with U instead of Û and Λ’s replaced by λ’s. This
completes the proof of the dual equivalence of PAC and PSDP.
For part (b), we appeal to weak duality and conclude that

J�
AC, the optimal value of PAC, dominates the optimal value

of DPAC. From part (a), the latter equals the optimal value of
DPSDP, which equals J�

SDP, because strong duality holds for
PSDP. Strong duality follows from Slater’s condition (see [27,
Th. 2.165]) that applies under our hypothesis that PAC admits a
strictly feasible point. Thus, we have

J�
SDP(p

D, qD) ≤ J�
AC(p

D, qD). (22)

Since J�
SDP is convex in its arguments, its epigraph is a convex

set. Thus, (22) implies epi J�
AC ⊆ epi J�

SDP. The rest follows
from the fact that if a convex set contains a nonconvex set, then
the former contains the convex hull of the latter.
For part (c), rank W � = 1yieldsW � = V �V H,� via spectral

decomposition. Thanks to Tr(U�W �) = 0 and U� � 0, V �

then lies in the null-space of U�. With this observation, V �,
pG, qG,λ�,μ�,μv,� andμv,� satisfy theKKTsystem forPAC.�
We now contextualize Theorem 1 within existing literature.

The dual equivalence in part (a) between PAC and PSDP has
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been reported before, e.g., see [28] and [29]. We include it for
completeness and now contrast its implications with a similar
result known for convex hull pricing (CHP). In [7] and [12],
CHP tackles the nonconvexity introduced by integral unit com-
mitment decisions with linearized power flow equations. CHPs
are derived from the convex Lagrangian dual problem of the
unit commitment problem—a property that part (a) suggests
for our context, where SDP-LMPs are derived from a problem
equivalent to the Lagrangian dual problem of PAC. In this
respect, SDP-LMPs and CHPs are indeed similar.
The aforementioned similarity between SDP-LMPs and

CHPsmight suggest that SDP-LMPswill inherit other properties
of CHP. For example, the analysis in [7] might indicate that
the convex hull of the epigraph of J�

AC(p
D, qD) would equal

the epigraph of J�
SDP(p

D, qD). In fact, CHP derives its name
from the relation between the convex hull of the epigraph of the
non-convex problem and the epigraph of its convex Lagrangian
dual. However, part (b) only proves inclusion instead of equality.
We now argue why the analysis in [7] does not carry over to our
setting.
For an extended real-valued function h : Rr → R ∪ {±∞},

define its Fenchel conjugate as

hc(ξ) := sup
x∈dom h

{ξᵀx− h(x)} ∈ R ∪ {±∞}. (23)

Extending the definition, one can also define the Fenchel bicon-
jugateofh ashcc. Per theFenchel–Moreau–Rockafellar theorem
in [27, Th. 2.113], we have

conv epi h = epi hcc (24)

for a continuous function h. This characterization of the convex
hull of the epigraph of a function proves useful to analyze the
epigraphs of J�

AC and J�
SDP. Specifically, consider the global op-

timal cost of PAC, parameterized as J�
AC(p

D, qD,f ,−v2,v2).
Define the same for J�

SDP.
Proposition 1: The parametric optimal costs satisfy

J�,cc
AC (pD, qD,f ,−v2,v2) = J�,cc

SDP(p
D, qD,f ,−v2,v2). (25)

Proof: Define the support function of set A as

δA(a) :=

{
0, if a ∈ A

+∞, otherwise.
(26)

Using this notation, PAC becomes

J�
AC(p

D, qD,f ,−v2,v2)

= inf
(pG,qG)∈G

V ∈Cn

{
n∑

k=1

ck(p
G
k , q

G
k )

+

n∑
k=1

δ{0}
(
pDk − pGk + V HΦkV

)

+

n∑
k=1

δ{0}
(
qDk − qGk + V HΨkV

)

+

m∑
k�=1

δR+

(
fk� − V HΦk�V

)

+

n∑
k=1

δR+

(
v2k − V H1k1

H
kV

)

+

n∑
k=1

δR+

(
V H1k1

H
kV − v2k

)}
. (27)

Applying Lemma 1 in the appendix, together with the relations
δc{0}(a) = 0 and δcR+

(a) = δR+
(−a), we get

J�,c
AC (Λ

p,Λq,−μ,−μv,−μv)

= δR+
(μk�) + δR+

(μv
k) + δR+

(μv
k
)

− inf
(pG,qG)∈G

V ∈Cn

{
n∑

k=1

ck(p
G
k , q

G
k )+

n∑
k=1

Λp
k

(
−pGk +V HΦkV

)

+

n∑
k=1

Λq
k

(
−qGk + V HΨkV

)
+

m∑
k�=1

μk�

(
V HΦk�V

)

+

n∑
k=1

(
μv
k − μv

k

)
V H1k1

H
kV

}
. (28)

Using the definition of LV in (11), the above equation yields

J�,c
AC (Λ

p,Λq,−μ,−μv,−μv)

= δR+
(μk�) + δR+

(μv
k) + δR+

(μv
k
)

+

n∑
k=1

[
Λp
kp

D
k + Λq

kq
D
k − μv

kv
2
k + μv

k
v2k

]
−

m∑
k�=1

μk�fk�

− inf
(pG,qG)∈G

V ∈Cn

LV (p
G, qG,V ,Λp,Λq,μ,μv,μv). (29)

Thus, its biconjugate is given by

J�,cc
AC (pD, qD,f ,−v2,v2) = sup

μ,μv,μv≥0

Λp,Λq

inf
V ∈Cn,

(pG,qG)∈G

LV .

(30)

The RHS of the above equation is the optimal cost of DPAC
in (14). By virtue of Theorem 1(a), this cost coincides with the
optimal cost of DPSDP. Strong duality of PSDP then gives

J�,cc
AC (pD, qD,f ,−v2,v2) = J�

SDP(p
D, qD,f ,−v2,v2). (31)

Recall that J�
SDP is convex and continuous. Hence, J�

SDP =
J�,cc

SDP, per [27, Th. 2.113]. �
The parametric optimal dual cost is known to provide the

tightest convex lower bound on the parametric optimal primal
cost of a nonconvex program that is linearly parameterized on the
right-hand side. Thus, Proposition 1 is not surprising in light of
Theorem 1(a) that establishes the equivalence between the dual
problems ofPAC andPSDP. Combining this result with (24), the
convex hull of the epigraph of J�

AC indeed equals the epigraph
of J�

SDP but only when viewed as a function of all parameters
listed in Proposition 1, i.e.,

conv epi J�
AC(p

D, qD,f ,−v2,v2)

= epi J�
SDP(p

D, qD,f ,−v2,v2). (32)
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Fig. 2. Figure illustrating that slices may not preserve the relation
between a nonconvex set and its convex hull.

Fixing a subset of these parameters amounts to taking a slice of
these sets. Convex hull of the slice of a nonconvex set may not
always equal the slice of its convex hull (see Fig. 2)—a relation
required to claim equality between conv epi J�

AC(p
D, qD) and

epi J�
SDP(p

D, qD).

IV. REVENUE ADEQUACY OF THE PRICING MECHANISMS

In this section and the next, we study properties of these prices
that are relevant to electricitymarket operations.We say amarket
mechanism is revenue adequate if the rents collected frompower
sales to uncontrollable assets are enough to cover the rents
payable to those that are controllable. Revenue adequacy ensures
that the SO never runs cash negative after settling the payments
of market participants. To present our results on revenue ad-
equacy, we first define the settlements of market participants
with AC-LMPs and SDP-LMPs.
Consider a local optimal dispatch of PAC, given by

(pG,�
k , qG,�

k ,V �). With AC-LMPs Λp,�, Λq,� associated with
that dispatch, the controllable asset at bus k is paid

πG
k := Λp,�

k pG,�
k + Λq,�

k qG,�
k (33)

by the SO. Similarly, uncontrollable asset with its demand pDk
and qDk pays to the SO

πD
k := Λp,�

k pDk + Λq,�
k qDk . (34)

For payments based on SDP-LMPs, replace Λp,�
k ,Λq,�

k in (33)–
(34) with λ

p,�
k , λq,�

k , respectively. Note that with SDP-LMPs, we
consider payments defined using prices obtained from the SDP
relaxation but use these prices together with a locally optimal
dispatch of PAC to calculate payments. With these payments,
a pricing mechanism is revenue adequate if the merchandising
surplus (MS) is nonnegative, i.e., if

MS :=

n∑
k=1

(
πG
k − πD

k

) ≥ 0. (35)

Theorem 2: If voltage lower limits are non-binding at all
buses at a local optimal solution of PAC, i.e., |V �

k | > vk for
k = 1, . . . , n, then AC-LMPs define a revenue adequate pricing
mechanism.

Proof: Expanding MS in (35), we get

MS =

n∑
k=1

Λp,�
k

(
pDk − pG,�

k

)
+

n∑
k=1

Λq,�
k

(
qDk − qG,�

k

)

= −
n∑

k=1

Λp,�
k V H,�ΦkV

� − Λq,�
k V H,�ΨkV

� (36a)

=

m∑
k�=1

μ�
k�V

H,�Φk�V
� +

n∑
k=1

μv,�
k V H,�1k1

T
kV

�

−
n∑

k=1

μv,�
k

V H,�1k1
T
kV

� (36b)

=

m∑
k�=1

μ�
k�fk� +

n∑
k=1

μv,�
k v2k −

n∑
k=1

μv,�
k

v2k. (36c)

Here, (36a) follows from primal feasibility condition for PAC,
(36b) from (7a), and (36c) from (8a). If the lower voltage limits
are nonbinding at all buses at an optimal solution, then (8b)
further yields μv,�

k
= 0 for each k. Then, (36c) implies

MS =

m∑
k�=1

μ�
k�fk� +

n∑
k=1

μv,�
k v2k ≥ 0. (37)

The inequality follows from the nonnegativity of each term in
each summand.
Theorem 2 asserts that payments from uncontrollable assets

cover the rents payable to controllable assets, provided lower
bounds for voltage constraints do not bind at any bus. This
requirement is only sufficient for revenue adequacy. MS can
be nonnegative with binding voltage lower limits, as long as the
collective contributions of the congestion rent and the binding
voltage upper limits in the first two terms of (36c) dominate the
third term from the binding voltage lower limits. In Section VI,
we provide an example where MS> 0, even when the sufficient
condition is violated, proving that it is not necessary.

Corollary 1: If the voltage lower limits are nonbinding at a
global optimumofPAC with a zero duality gap, then SDP-LMPs,
together with that global optimum of PAC, define a revenue
adequate mechanism.
The proof is immediate from Theorems 1(c) and 2. Note that

MS can be strictly positive. Analysis of the dissemination of
said positive MS through suitable financial instruments such as
financial transmission rights and flow-gate rights (see [30]) with
AC-LMPs andSDP-LMPs is left for futurework.When there is a
duality gap, the payment scheme outlined here with SDP-LMPs
may not provide adequate dispatch-following incentives—a
property we study in detail in the next section.

V. MARKET EQUILIBRIUM PROPERTIES OF THE PRICES

Ideally, a pricing scheme should be such that it is in the best
interest of the market participants to follow the SO’s dispatch
signals. We now study if our candidate pricing mechanisms
satisfy such properties. Call a pricing mechanism individually
rational if the SO-prescribed dispatch maximizes the profit
of a controllable asset, given the prices. That is, a dispatch
(pG,�

k , qG,�
k ) is individually rational if it solves

maximize
pG
k ,qGk

γp
kp

G
k + γq

kq
G
k − ck(p

G
k , q

G
k )

subject to p
k
≤ pGk ≤ pk, q

k
≤ qGk ≤ qk (38)
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given nodal real and reactive power prices γp
k and γq

k, respec-
tively. In such an event, a controllable asset has no incentive to
deviate from its prescribed dispatch.
Consider a local optimum (pG,�, qG,�,V �) of PAC. This

dispatch is individually rational with AC-LMPs, if (pG,�
k , qG,�

k )
solves (38) for all k with γp = Λp,�,γq = Λq,�. With SDP-
LMPs, the same dispatch is individually rational if the same
condition holds for (38) with γp = λp,�,γq = λq,� for all k.

A dispatch is said to be efficient and clears the market, if it
optimally solves PAC. We say a market mechanism supports
a market equilibrium if the dispatch clears the market and is
individually rational, given the vectors of nodal prices.
As our next result will demonstrate, AC-LMPs associated

with a locally optimal dispatch of PAC always provide adequate
dispatch following incentives. However, SDP-LMPs coupled
with that dispatch may not adequately incentivize all assets to
follow the SO instructions. With even a global optimum ofPAC,
SDP-LMPs may fail to provide such incentives with a nonzero
duality gap. In these cases, pricing via SDP-LMPs requires
the provision of side-payments to controllable assets to deter
possible deviations. Despite this critical drawback of SDP-based
pricing, we show in the sequel that SDP-LMPs seek to minimize
a sum of two nonnegative terms, one of which is the aggregate
side-payments.
For a local optimal solution (pG,�, qG,�,V �) of PAC, define

J�
AC,local as the objective of PAC at that local optimum. Also,

define the lost opportunity cost associated with SDP-LMPs and
that dispatch as

LOC(λp,λq) :=

n∑
k=1

[
πopt
k (λp

k, λ
q
k)− πSO

k (λp
k, λ

q
q)
]

(39)

where πopt
k is the optimal cost of (38) with γp = λp,�,γq = λq,�

and

πSO
k (λp

k, λ
q
q) := λ

p
kp

G,�
k + λ

q
kq

G,�
k − ck(p

G,�
k , qG,�

k ). (40)

That is, given the electricity prices, πSO
k denotes the profit of

the controllable asset at bus k from following the SO-prescribed
dispatch while πopt

k is the maximum profit that asset can garner.
Finally, with the same local optimum ofPAC, define the product
revenue shortfall as

PRS(μ,μv,μv,U)

:= V H,�UV � +

m∑
k�=1

μk�

(
fk� − V H,�Φk�V

�
)

+
n∑

k=1

μv
k

(
v2k − |V �

k |2
)
+

n∑
k=1

μv
k

(|V �
k |2 − v2k

)
(41)

for μ ≥ 0,μv ≥ 0,μv ≥ 0,U � 0.
Theorem 3: The following assertions hold.
a) A local optimum of PAC and its associated AC-LMPs

support amarket equilibrium.That equilibrium is efficient
if the optimum is global.

b) A local optimal solution of PAC, together with SDP-
LMPs, may not always support a market equilibrium and

J�
AC,local − J�

SDP

= minimum
λp,λq,μ
Uμv,μv

LOC (λp,λq) + PRS(μ,μv,μv,U)

subject to U =
n∑

k=1

(λp
kΦk + λ

q
kΨk)

+

m∑
k�=1

μk�Φk�

+

n∑
k=1

(
μv
k − μv

k

)
1k1

H
k

μ ≥ 0, μv ≥ 0, μv ≥ 0, U � 0.

With a global optimal solution of PAC, the above differ-
ence equals the duality gap of PAC.

c) WhenPAC has zero duality gap, a global optimal solution
of PAC with SDP-LMPs supports a market equilibrium.

Proof: We prove each part separately.
Proof of part (a): The optimization problem in (38) is convex

with linear inequality constraints, for which KKT optimality
conditions are sufficient. Assign Lagrange multipliersM

p
k,M

p
k,

M
q
k, and Mq

k to the upper and lower, real and reactive power
limits in (38). Then, the KKT conditions of (38) comprise its
feasibility constraints, the dual feasibility constraintsM

p
k,M

p
k,

M
q
k,M

q
k ≥ 0, the stationarity conditions

∇pG
k

[
ck(p

G,�
k , qG,�

k )
]
− γp

k +M
p,�
k −Mp,�

k = 0

∇qGk

[
ck(p

G,�
k , qG,�

k )
]
− γq

k +M
q,�
k −Mq,�

k = 0 (42)

and the complementary slackness conditions

Mq,�
k

(
qG,�
k − qG

k

)
= M

q,�
k

(
qG,�
k − qGk

)
= Mp,�

k

(
pG,�
k − pG

k

)
= M

p,�
k

(
pG,�
k − pGk

)
= 0. (43)

These KKT conditions being a subset of the KKT conditions of
PAC with γk’s as Λk’s and Mk’s as μk’s, proves the result.
Proof of part (b): For a local optimum of PAC, we have

pDk = pG,�
k − V H,�ΦkV

�, qDk = qG,�
k − V H,�ΨkV

�

J�
AC,local =

n∑
k=1

ck(p
G,�
k , qG,�

k ).
(44)

Utilizing these relations in the definition of ζ in (19), we get

ζ(pG, qG,λp,λq,μ,μv,μv)

= J�
AC,local +

n∑
k=1

[
ck(p

G
k , q

G
k )− λ

p
kp

G
k − λ

q
kq

G
k

]
+

n∑
k=1

[
λ
p
kp

G,�
k + λ

q
kq

G,�
k − ck(p

G,�
k , qG,�

k )
]
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−
m∑

k�=1

μk�fk� +

n∑
k=1

(
μv
k
v2k − μv

kv
2
k

)

−
n∑

k=1

[
λ
p
kV

H,�ΦkV
� + λ

q
kV

H,�ΨkV
�
]
. (45)

Recall that DPAC = DPSDP defines the common dual pro-
gram of PAC and PSDP. Strong duality holds for PSDP, and
hence, J�

SDP is the optimal cost of (21). Utilizing (45) in (21),
we get

J�
AC,local − J�

SDP

= −maximum
μ,μv,μv≥0

U ,Λp,Λq

n∑
k=1

[
−πopt

k (λp
k, λ

q
k) + πSO

k (λp
k, λ

q
k)
]

︸ ︷︷ ︸
:=−LOC(λp,λq)

−
m∑

k�=1

μk�fk� +
n∑

k=1

(
μv
k
v2k − μv

kv
2
k

)

−
n∑

k=1

[
λ
p
kV

H,�ΦkV
� + λ

q
kV

H,�ΨkV
�
]

subject to U =
n∑

k=1

(λp
kΦk + λ

q
kΨk) +

m∑
k�=1

μk�Φk�

+

n∑
k=1

(
μv
k − μv

k

)
1k1

H
k

μ ≥ 0, μv ≥ 0, μv ≥ 0, U � 0. (46)

Write the objective function of the above optimization problem
asη − LOC(λp,λq). Then, the expression forU in the constraint
can be used to simplify η as

−η =

m∑
k�=1

μk�fk� −
n∑

k=1

(
μv
k
v2k − μv

kv
2
k

)
+ V H,�UV �

−
m∑

k�=1

μk�V
H,�Φk�V

�−
n∑

k=1

(
μv
k−μv

k

)
V H,�1k1

H
kV

�︸ ︷︷ ︸
:=|V �

k |2

= PRS
(
μ,μv,μv,U

)
. (47)

Part (c) follows from part (a) and Theorem 1(c). �
We discuss the implications of Theorem 3 and contrast it with

similar results known for CHPs. Note that our characterization
of the cost gap between a locally optimal solution ofPAC and its
dual in Theorem 3(b) bears a striking resemblance with the dual-
ity gap involved in the characterization of CHPs in [12]. Indeed,
the analysis in [12] shows that CHPs seek tominimize the sumof
LOC and PRS defined within the context of a unit commitment
problem. This parallel between CHPs and SDP-LMPs is not
surprising, given that both advocate pricing based on the dual
(or the double dual) of the non-convex market clearing problem,
albeit to tackle two different kinds of nonconvexities. However,
we point out that Theorem 3(b) does not enjoy the same interpre-
tation as the duality gap result for CHPs. Since CHPs minimize

LOC + PRS, which are individually nonnegative, its attempt
to reduce LOC can be viewed as a means to mitigate the net
out-of-market settlements that the SO must provide the market
participants for them to follow the SO-intended dispatch. In
unit commitment problems, nodally uniform equilibrium prices
may not exist. Consequently, even though the PRS term skews
the objective of CHPs from pure LOC reduction, CHPs offer
a principled mechanism to approach said reduction. Our result
reveals that SDP-LMPs also minimize LOC + PRS. However,
if minimization of LOC is the only goal, AC-LMPs achieve that
goal, per Theorem 3(a). SDP-LMPs, on the other hand, may fail
to eliminate the need for out-of-market settlements, even though
it tries to shrink it as Theorem 3(b) reveals. When duality gap of
PAC vanishes, Theorem 3(c) shows that SDP-LMPs obviate the
need for such settlements but only when the dispatch is a global
optimum of PAC. In such a case, LOC is provably zero, from
Theorem 3(b).

VI. THREE-BUS NETWORK EXAMPLE

We illustrate our theoretical results through a three-bus power
network with generators and demands at each bus, which are
connected via three lines with identical parameters f , r, x.
Assume quadratic generator costs of the form ck(p

G
k , q

G
k ) :=

C2
k(p

G
k )

2 + C1
kp

G
k at each bus k. Set pG = qG = 0 through-

out. PSDP is solved using CVX 2.2, a package for specifying
and solving convex programs (see [31], [32]), in MATLAB
R2020b with Mosek 9.1.9 as the solver while PAC is solved
using Matpower 7.1 (see [23]). We present results from four
experiments on this network. Parameter choices and outputs are
listed in Tables I and II, respectively. The code is available at
https://github.com/Mariola-Nd/RLMP.git.

A. Experiments With Zero Duality Gap

In the first three experiments, we obtain rank W � = 1 from
PSDP. Thus, the duality gap is zero. Also, Matpower discovers a
certifiably global optimal solution with the same cost as PSDP.
Not surprisingly, AC-LMPs and SDP-LMPs coincide, i.e., we
obtain Λp,� = λp,� and Λq,� = λq,� as Theorem 1(c) dictates.
In the first experiment, the voltage lower limit at bus 3 binds.
This is an example where the sufficient condition in Theorem 2
for revenue adequacy is violated and we do obtain MS < 0. In
the second experiment, voltage lower limits do not bind at any
bus. Indeed, we obtain a nonnegativeMS, as Theorem 2 dictates.
For the third case, the lower limit on voltage magnitude binds
at bus 1. Yet, we obtain MS > 0, indicating that our criterion
identified in Theorem 2 for revenue adequacy is sufficient but
not necessary.
Both prices support an efficient market equilibrium. Specifi-

cally, the dispatch of each generator maximizes its profits, given
the prices. To explicitly illustrate this, consider the dispatch of
generator at bus 1 in the second experiment. We verified using
CVX that indeed (pG,�

1 , qG,�
1 ) = (0.92, 0.10) yields the maxi-

mum profit attainable by generator 1 within [0, 2.00]× [0, 0.90],
given the prices λ

p,�
1 = Λp,�

1 = 11.85 and λ
q,�
1 = Λq,�

1 = 0.
Similar conclusions hold for all generators.
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TABLE I
PARAMETER CHOICES FOR THE EXPERIMENTS ON THE THREE-BUS POWER NETWORK

TABLE II
OUTPUTS OF THE EXPERIMENTS ON THE THREE-BUS POWER NETWORK

B. Experiment With Possibly Nonzero Duality Gap

With the parameters chosen for experiment 4, Matpower
converges to a solution of PAC with cost $12.51/MWh while
PSDP finds a solution with a lower cost of $6.86/MWh. The
solution of PAC is a stationary point, most likely a locally
optimal solution; global optimality is difficult to certify. PSDP
returns a solution with rankW � = 2. Thus, PAC has a possibly
nonzero duality gap. From Table II, it is evident that the dispatch
and the prices fromPAC andPSDP are different.WithAC-LMPs,
the locally optimal dispatch ofPAC gives a positiveMS of 17.55,
where the lower limits on the voltage magnitudes do not bind at
any bus, as we expect fromTheorem 2. If market participants are
compensated via the AC-LMPs (Λp,�,Λq,�) for producing the
optimal solution (pG,�, qG,�) from PAC, no side-payments are
necessary. To illustrate this fact further, consider the dispatch
of generator at bus 2. Indeed, (pG,�

2 , qG,�
2 ) = (2.20, 1.20)

yields the maximum profit attainable by generator 2 within
[0, 3.00]× [0, 2.00], given the pricesΛp,�

2 = 1.44 andΛq,�
2 = 0.

On the other hand, pricing via SDP-LMPs (λp,�,λq,�) would
not adequately incentivize participants to follow the dispatch
solution of PAC. Specifically, given λ

p,�
2 = 1.58, λq,�

2 = 0, that
generator’s profit becomes πSO

2 (λp,�
2 , λq,�

2 ) = 0.79 with the
dispatch from PAC. The maximum attainable profit of that

generator with these prices, however, is πopt
2 (λp,�

2 , λq,�
2 ) = 0.84

with a production of (pG2 , q
G
2 ) = (2.90, 0). A side-payment is

necessary for the generator to follow SOs dispatch signal.

VII. SDP-LMPS FOR DISTRIBUTION NETWORKS

The aim to harness flexibility offered byDERs at the grid-edge
has motivated research in defining appropriate price signals for
compensating energy transactions in distribution networks, e.g.,
see [9], [11], and [15]. Suggested distribution LMPs (DLMPs)
aim to reflect the locational value of DERs, per [33] and [34].We
argue that SDP-LMPs become the SOCP-based DLMPs in [9]
and [10] over acyclic distribution grids.
Represent an acyclic distribution network as a directed graph

over n buses with directed edges. The directions can be ar-
bitrarily chosen. Ignore shunt admittances for simplicity. De-
note by k → �, a directed edge from bus k to bus �. Define
1/yk� := rk� + ixk� as the impedance of line k → �. Using this
notation, consider the following optimization program:

PSOCP :

minimize
n∑

k=1

ck(p
G
k , q

G
k )
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subject to

pGk − pDk =
∑

�′:k→�′
Pk�′ −

∑
�′:�′→k

(P�′k − r�′kJ�′k) (48a)

qGk − qDk =
∑

�′:k→�′
Qk�′ −

∑
�′:�′→k

(Q�′k − xk�′J�′k) (48b)

Pk� ≤ fk�, rk�Jk� − Pk� ≤ fk� (48c)

p
k
≤ pGk ≤ pk, qk ≤ qGk ≤ qk (48d)

v2k ≤ wk ≤ v2k (48e)

w� = wk − 2(Pk�rk� +Qk�xk�) + (r2k� + x2
k�)Jk� (48f)

P 2
k� +Q2

k� ≤ Jk�wk (48g)

for k = 1, . . . , n, k → �

over the variables pG, qG,w,P ,Q,J . All constraints in the
above problem are linear except (48g) that is a second-order
cone constraint. In fact, the inequality in (48g) replaced by
equality amounts to a reformulation of PAC. The inequality
potentially expands the feasible set of PAC, making PSOCP a
convex relaxation of PAC. When solved with equality in (48g),
the variables Pk� and Qk� denote the sending-end real and
reactive powers from bus k toward bus �, respectively. Then,
Jk� becomes the squared current magnitude on that line, andwk

equals the squared voltagemagnitude at bus k. The SOCP-based
relaxation presented above utilizes the “branch flow model”
of Kirchhoff’s laws over a distribution network and has been
extensively analyzed in [35] and [36]. Constraints (48a) and
(48b) encodenodal real and reactive power balance, respectively.
Inequalities in (48c) enforce limits on distribution line flows. The
capacities of controllable assets are given by (48d) and voltage
limits are encoded in (48e). The equality in (48f) relates the
power flows on lines with squared voltage magnitudes across
the lines.
Associate Lagrange multipliers ρpk and ρqk with the power

balance constraints (48a) and 48b), respectively. Call their re-
spective collections across the network as ρp and ρq .

Definition 3 (SOCP-DLMPs): The optimal Lagrange multi-
pliers ρp,� and ρq,� for PSOCP define the SOCP distribution
LMPs (SOCP-DLMPs) for real and reactive powers, respec-
tively.
One can correspondingly consider PSDP for the same radial

network and derive SDP-LMPs (λp,�,λq,�) as optimal dual
multipliers for PSDP. We now establish a relationship between
SOCP-DLMPs and SDP-LMPs.

Theorem 4: For a radial power network, SDP-LMPs are
SOCP-DLMPs and vice-versa.

Proof: PSDP can be written as

minimize
n∑

k=1

ck(p
G
k , q

G
k )

subject to pGk − pDk =
∑

�′:k→�′
pk�′ +

∑
�′:�′→k

pk�′

qGk − qDk =
∑

�′:k→�′
qk�′ +

∑
�′:k→�′

qk�′

pk� ≤ fk�, p�k ≤ fk�, (50d), (50e)

k = 1, . . . , n, k → �, (pe,pe′ , qe, qe′ ,w) ∈ W.
(49)

Thevectorspe andpe′ collectpk� andp�k across all edgesk → �,
respectively. Similarly, define qe and qe′ . The setW is defined in
(50). From [13, Th. 6], we haveX = W, whereX is as defined
in (51).

W := {(pe,pe′ , qe, qe′ ,w) |pk� = Tr(Φk�W ), p�k

= Tr(Φ�kW ), qk� = Tr(Ψk�W ), q�k = Tr(Ψ�kW )

wk=Tr(1k1
T
kW ) for someW � 0 for k=1, . . . , n, k →�}.

(50)

X := {(pe,pe′ , qe, qe′ ,w) | pk� = Pk�, p�k

= rk�Jk� − Pk�, qk� = Qk�, q�k = xk�Jk� −Qk�

w� = wk − 2(Pk�rk� +Qk�xk�) + (r2k� + x2
k�)Jk�, P

2
k�

+Q2
k� ≤ Jk�wk, wk ≥ 0

for some P ,Q,J for k = 1, . . . , n, k → �}. (51)

Replacing W by X, (49) becomes PSOCP. Thus, the set of
optimal dual multipliers of the power balance constraints in (49)
and PSOCP coincide. �

SDP-LMPs restricted to radial networks coincidewith SOCP-
DLMPs proposed in [9] and [10], according to Theorem 4.
Results in this article on SDP-LMPs then characterize properties
of SOCP-DLMPs and provide the economic rationale behind
using theseDLMPs to compensateDERs. In particular, when the
SOCP relaxation is exact, these prices areAC-LMPs that support
an efficient market equilibrium and ensure revenue adequacy
(with nonbinding voltage lower limits). By “exact,” we mean
that (48g) is met with equality at an optimum of PSOCP. When
the relaxation is not exact, these prices seek to minimize a
form of side-payments for DERs to follow a prescribed dispatch
signal.
We computed SOCP-DLMPs on a 15-bus radial network

from [9] with the modifications pD11 = 0.250 and qD11 = 0.073.
The SOCP-DLMPs are portrayed as heat-maps in Fig. 3(a) and
(b). Fig. 3(c) and (d) draws the prices upon increasing power
demands at bus 11. Compared to Fig. 3(a) and (b), the results in
Fig. 3(c) and (d) reveal that real power demands substantially
affect the real power prices. In Fig. 3(e) and (f), we plot the
prices upon altering the voltage limits at various buses. These
outcomes, when compared to Fig. 3(a) and (b), show that volt-
age limits significantly impact the reactive power prices. One
expects such behavior, given the nature of the coupling between
reactive power injections and voltage magnitudes in the power
flow equations. In all these experiments, the relaxation was
found to be exact. Thus, the dispatch from PSOCP solves PAC
and the SOCP-DLMPs are also AC-LMPs. The plots illustrate
the locational nature of these prices. For all experiments, we
obtained MS≥ 0.
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Fig. 3. Plots (a) and (b) show heat-maps of SOCP-DLMPs (that equal
AC-LMPs) on the 15-bus radial network adopted from [9]. Plots (c)
and (d) are derived with pD11 = 0.350, and (e) and (f) with v2i = 1.05,

i = 0, . . . , 10, v21 = 1. Arrows indicate the edge directions we considered
in PSOCP. These figures are adapted from our early work in [37]. (a)
ρp,�. (b) ρq,�. (c) ρp,�. (d) ρq,�. (e) ρp,�. (f) ρq,�.

VIII. CONCLUSION

In this article, we analyzed two candidate pricingmechanisms
for market clearing with ac power flow. One set of prices was
derived from multipliers that constitute a KKT system with
locally optimal dispatch solutions. The other set of prices was
derived from the SDP relaxation of the ED problems. We estab-
lished several results that compared these two prices. With zero
duality gap, the prices behave similarly as long as the dispatch
solution obtained is indeed globally optimal. Otherwise, they
can behave differently. SDP-based prices are defined from the
Lagrangian dual of the nonconvex market clearing problem
and in that respect, bear similarities to CHPs defined to tackle
nonconvexities in cost structures. Our work shows that while
their origins are indeed similar, there are important differences
between the two. We also analyzed electricity market-relevant
properties such as revenue adequacy and market equilibrium for
the two pricing mechanisms. For transmission networks, these
results complement the properties of LMPs derived frommarket
clearing with a linearized power flow model. When applied to
distribution networks, they provide new insights into properties
of proposed DLMPs.
We are interested in two directions for future research. First,

wewant to study price formationwhenwe consider commitment
decisions and startup costs togetherwith ac powerflowequations
in market clearing. Second, we want to pursue extensions of
our analysis to the stochastic setting that explicitly accounts
for uncertainties in renewable supply. These two challenging
directions will allow us to better understand pricing in electricity
market environments without having to rely on the theory of

LMPs that are typically derived fromadeterministicEDproblem
with linearized power flow equations.

APPENDIX

Lemma 1: For f, g : X → R, a ∈ R and A ⊆ R, define

J�(a) := inf
x∈X

f(x), subject to a− g(x) ∈ A. (52)

Then, for any ξ ∈ R, we have

J�,c(ξ) = δcA(ξ)− inf
x∈X

{f(x)− ξg(x)} . (53)

Proof: Using the definition of δA in (26), we have

J�,c(ξ) = sup
a

{
ξa− inf

x∈X
{f(x) + δA(a− g(x))}

}
= sup

x∈X

{
−f(x) + sup

a
{ξa− δA(a− g(x))}

}
= sup

x∈X
{−f(x) + ξg(x)

+ sup
a

{ξ(a− g(x))− δA(a− g(x))}
}

= sup
x∈X

{−f(x) + ξg(x) + δcA(ξ)} . (54)

Since δcA(ξ) does not depend on x, the result follows.
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