
Interactive Robot-Environment Self-Calibration
via Compliant Exploratory Actions

Podshara Chanrungmaneekul1
∗
, Kejia Ren1

∗
, Joshua T. Grace2, Aaron M. Dollar2, Kaiyu Hang1

Abstract— Calibrating robots into their workspaces is crucial
for manipulation tasks. Existing calibration techniques often
rely on sensors external to the robot (cameras, laser scanners,
etc.) or specialized tools. This reliance complicates the calibra-
tion process and increases the costs and time requirements.
Furthermore, the associated setup and measurement proce-
dures require significant human intervention, which makes
them more challenging to operate. Using the built-in force-
torque sensors, which are nowadays a default component
in collaborative robots, this work proposes a self-calibration
framework where robot-environmental spatial relations are
automatically estimated through compliant exploratory actions
by the robot itself. The self-calibration approach converges,
verifies its own accuracy, and terminates upon completion,
autonomously purely through interactive exploration of the
environment’s geometries. Extensive experiments validate the
effectiveness of our self-calibration approach in accurately
establishing the robot-environment spatial relationships without
the need for additional sensing equipment or any human
intervention.

I. INTRODUCTION

Robots are becoming increasingly prevalent in various
industrial and household applications, undertaking tasks
ranging from pick-and-place to tool manipulation within
defined environments. Often, such robot applications require
an accurate pose of the robot frame relative to a frame of the
workspace to be provided by a calibration procedure before
task execution. Robot calibration involves identifying the true
geometrical parameters in the robot’s kinematic structure and
enhances absolute pose accuracy through software adjust-
ments, avoiding alterations to the robot’s mechanical struc-
ture [1]. While certain calibration types, such as hand-eye
calibration [2]–[4] or object localization [5], [6], have been
previously studied, research on automatic robot-environment
calibration for manipulators, a critical aspect of overall robot
performance, has been relatively limited.

Traditional robot-environment calibration approaches rely
on external measurement devices, which are time-consuming
and require significant human intervention in the loop. To
automate and streamline this process, various calibration
methods have explored sensor modalities like vision, 1D
laser sensors, touch-based techniques, tactile sensors, and
probes [3], [4], [7]–[11], complicating the calibration and
limiting accessibility for users without these resources. When
robot physical interactions are needed for calibration, such as

∗Equal contribution.
1Department of Computer Science, Rice University, Houston, TX 77005,

USA. 2Department of Mechanical Engineering and Material Science, Yale
University, New Haven, CT 06511, USA. This work was supported by the
US National Science Foundation grant FRR-2133110 and FRR-2132823.

1st iteration 4th iteration

8th iteration 16th iteration

Fig. 1: Our self-calibration framework estimates the robot-
environment spatial relationship via compliant exploratory actions.
Visualized in green is the environment’s pose as currently estimated
by the robot, and in blue is the ground truth.

probing points in the environment, manual operations are still
often required since existing simulation-based interaction and
outcome prediction [11]–[13] have not shown to generalize
to arbitrary robot-environment setups.

To this end, we propose a framework for robot-
environment self-calibration, defined as a fully autonomous
process for identifying the robot-environment spatial param-
eters only using the robot’s exploratory actions without any
human interventions. We work with setups, as exemplified in
Fig. 1, without external sensors or specialized end-effectors,
e.g., point contact-based probes. The robot-environment spa-
tial relationship is modeled using a Particle Filter with a
distribution of hypothesized poses. Our framework uses the
robot’s end-effector to actively interact with the environment
through touching and sliding actions to gather informative
observations of contacts, refining an inaccurate initial belief
iteratively and finally converging the hypotheses towards
the true value. The exploratory actions are strategically
optimized to collect information that maximally contributes
to the self-calibration. Experiments conducted in both sim-
ulation and the real world confirm the effectiveness and
accuracy of our self-calibration framework. The results show
that the proposed framework is able to precisely estimate the
robot’s pose relative to the environment, operating in a fully
autonomous manner.

ar
X

iv
:2

40
3.

13
14

4v
1

 [c
s.R

O
]

19
 M

ar
 2

02
4

II. RELATED WORK

Traditional calibration: Traditionally, robot-environment
calibration involves sensing the actual pose of the robot’s
end-effector and comparing this information with the poses
predicted by the robot-environment kinematic models to
acquire calibration data. This process falls into two pri-
mary categories: robot calibration utilizing external mea-
surement devices [14]–[16] and robot calibration through
the imposition of physical constraints [2]–[4], [17]. Exter-
nal measurement-based robot calibration methods are time-
consuming, challenging to operate, and rely on human ex-
perts to operate. Many of such calibration approaches [3], [4]
possess particular complexities, including the prerequisite of
performing hand-eye calibration and robot exterior calibra-
tion in advance, with the added requirement for an external
chessboard. In this work, we propose a robot-environment
self-calibration process to eliminate the need for human
intervention, external tools, and complex prerequisites.

Autonomous calibration: Previous works in autonomous
calibration have explored multiple sensor modalities, in-
cluding visions for end-effector tracking [3], [4], [10], 1D
laser sensors to gauge distances to the environment [7],
and the integration of touch-based techniques using a probe
[8], [11] or a poker [9] to establish point contacts. Tactile
sensors have been employed to model contact dynamics [13],
[18]–[21], and tactile images have been leveraged for richer
contact information [5], [6]. A common feature among these
approaches is the reliance on specific additional sensors or
probes to facilitate calibration. In contrast, our work proposes
an approach that allows the robot to self-calibrate as is
without extra sensors or tools.

Next best action: During an autonomous calibration pro-
cess, the measurement process iteratively refines the robot’s
calibration using dynamic interactions between the robot and
the environment. Various approaches have been employed to
optimize this interaction. While some methods choose ac-
tions for calibration exploration by incorporating information
gain [11]–[13], others use entropy functions based on particle
rejection principles to enhance the decision-making process
during calibration [11]. However, these approaches select the
next actions by calculating the potential information gain
across all hypothesis states, thus limiting the number of
samples for the robot’s state representation. As an effective
alternative, we develop a heuristic algorithm to select the
most promising exploratory actions based on an analysis of
the environment.

III. PROBLEM FORMULATION

This work addresses a self-calibration problem for esti-
mating the pose of a robot manipulator in an uncalibrated
environment without the requirements of any external sensors
such as cameras. Specifically, we denote the fixed world
frame of the static environment as Xs ∈ SE(3), the base
frame of the robot as Xb ∈ SE(3), and the body frame of
the robot as Xe ∈ SE(3) rigidly attached on the robot’s end-
effector. Given the geometric model of the static environment
expressed in the fixed world frame, the estimation goal is to

obtain the pose of the robot, X ∈ SE(3), relative to the
environment (i.e., the transformation from Xs to Xb).

We approach the self-calibration stated above through
Particle Filter-based probabilistic estimation. It requires the
robot manipulator to actively interact with the environment
by touching and sliding to obtain informative observations of
contacts between the robot and the environment. By updating
the particle beliefs based on the information obtained from
observations and sequential importance resampling (SIR),
the Particle Filter can approximate the distribution of the
system’s hidden state (i.e., the robot’s pose X) and iteratively
refine it based on new observations.

A. Particle Filter-based Self-Calibration

At each time step t of the iterative process of Particle
Filtering, we denote the set of M importance samples as
Xt = {X1

t , · · · , Xm
t , · · · , XM

t }, called particles for simplic-
ity. The value of each particle is a hypothesized pose of the
robot, i.e., Xm

t ∈ SE(3). Based on the observational data
and the actions taken by the robot, the likelihood of having
a given particle Xm

t ∈ Xt is given by the posterior:

Xm
t ∼ p(Xt | Z1:t, U1:t) (1)

where Xt ∈ SE(3) is the robot’s pose to be estimated at
time t; Z1:t and U1:t are the observations and robot controls
until time t respectively.

However, explicitly deriving the true posterior distribution
above in real-world scenarios is often impractical. As such,
Particle Filters rely on a proposal distribution π to iteratively
approximate the real distribution:

π(Xt) ∼ p(Xt | Xt−1, Ut−1)π(Xt−1) (2)

With a set of particles Xt sampled from π, the estimated
value of the robot’s pose, given by the expected value of
Xt, can be approximated through importance sampling:

E[Xt] =

∫
p(Xt)XtdXt ≈

M∑
m=1

Xm
t wm

t (3)

where wm
t ∝ p(Xm

t)/π(Xm
t) is the normalized weight

associated with each particle.
Assuming the system is Markovian, the weight wm

t can
be recursively computed using Bayes’ Theorem:

wm
t =

p(Zt | Xm
t)p(Xm

t | Xm
t−1, Ut)

π(Xm
t | Xm

t−1, Ut, Zt)
(4)

where p(Zt | Xm
t) is the observation model, and p(Xm

t |
Xm

t−1, Ut) is the motion model, which describes how the
system transitions under the control input Ut.

B. Motion Model and Observation Representation

In this work, we use the robot’s touching and sliding
actions to interact with the uncalibrated environment. Since
the environment is static and the robot manipulator is fixed
in the environment, the robot’s sliding action Ut will have
no impact on the robot’s pose relative to the environment.

Algorithm 1 Self-Calibration using Particle Filter

Input: Initial guess of the robot’s pose X0 ∈ SE(3).
Output: Estimated pose of the robot Xt ∈ SE(3).

1: t← 0
2: while not terminated do ▷ Sec. VI-A
3: t← t+ 1
4: Xt ← ∅ ▷ Set of Particles Initialized as Empty
5: Ut ← ACTIONSELECTION(U1:t−1) ▷ Sec. V-B
6: Zt ← EXECUTE(Ut) ▷ Observation from FT Sensor
7: for m = 1, · · · ,M do
8: Xm

t ∼ N (Xm
t−1, σtI) ▷ Motion Model, Eq. (5)

9: wm
t ← Eq. (7) ▷ Weight Update in Sec. IV-B

10: end for
11: NORMALIZE(

{
w1

t , · · ·wm
t

}
)

12: for m = 1, · · · ,M do
13: Sample i with probability ∝ wi

t ▷ Resampling
14: Xt.append(Xi

t) ▷ New Particles
15: end for
16: end while
17: return Xt ←

∑M
m=1 X

m
t wm

t ▷ Eq. (3)

As such, we model the motion model with a multivariate
Gaussian distribution independent of the robot action Ut:

p(Xm
t | Xm

t−1, Ut) ∼ N (Xm
t−1, σtI) (5)

where σt scales the covariance of the Gaussian to simulate
system uncertainties. This motion model is equivalent to
perturbing each particle in the previous time step with
random Gaussian noise.

After the robot executes the action Ut at time t, it
will observe Zt with the readings of its internal joint
encoders and force-torque (FT) sensor. We represent this
observation as a set of Jt discrete contact events while
the robot is executing the sliding action Ut, that is, Zt =
{(q1t , c1t), · · · , (q

j
t , c

j
t), · · · , (q

Jt
t , cJt

t)}. Each contact event
(qjt , c

j
t) ∈ Zt consists of a robot configuration (e.g., joint

angles) qjt ∈ RN where N is the number of DoFs of the
robot, and a binary value cjt ∈ {0, 1} indicating whether the
robot is in collision with the environment.

The implementation of Particle Filters for robot self-
calibration is detailed in Alg. 1. Given an initial guess of
the robot’s pose X0 ∈ SE(3), the robot needs to actively
determine the sliding action Ut that it will perform to
collect observations, as will be detailed in Sec. V. The
observations will then be used to evaluate and update the
weights of particles for resampling, as described in Sec. IV.
By repeating this procedure, the robot will iteratively refine
the approximated distribution of the robot’s pose Xt until
the estimated robot’s pose converges close to its ground
truth, based on sets of particles and observations that will
be introduced in Sec. VI.

IV. UPDATE RULE OF PARTICLE WEIGHTS

A critical factor for the success of Particle Filtering is
the particle weight assignment based on the observations. A
robust weight evaluation can greatly facilitate the efficient
resampling of particles. As discussed in Sec. III-B, we
observe binary contact events detected by the internal FT
sensor of the robot. Hence, the observation model p(Zt |

Pe

(p)<-O P

Pe

Fig. 2: The geometry of the robot’s end-effector is approximated
as a point cloud Pe. The grid represents a voxelized cache SDF
ΦO where each voxel’s color corresponds to the distance to the
surface boundary ∂O of the environment. The left figure shows a
non-contact scenario where the signed distance dm,j

t between the
end-effector and the environment surface is positive; the right figure
shows a penetration scenario where the signed distance is less than
a threshold, dm,j

t < −δP .

Xm
t) is the probability of contact modeled with the hy-

pothesized distance between the robot’s end-effector and the
environment.

In Sec. IV-A, we implement an efficient evaluation of the
hypothesized distance between the robot’s end-effector and
the environment by using a Signed Distance Field (SDF).
Then, based on this hypothesized distance, the rule for
updating the particle weights wm

t is detailed in Sec. IV-B.

A. Geometric Representations of Robot and Environment

We consider the scenario where the robot manipulator
operates in a static environment. We denote the geometric
model of the environment by O ⊂ R3 and its surface
boundary by ∂O ⊂ O, both expressed in the fixed world
frame Xs. The computation of the distance between two
exact geometric models in the 3D space can be expensive,
especially for complex object shapes. In Particle Filtering,
such computation needs to be performed for each particle,
which limits the algorithm’s speed. To this end, the geometric
model of the environment is approximated by a volumetric
grid. We represent the geometry of the robot’s end-effector
by a finite point cloud Pe, containing a set of L pre-
sampled points on the surface of the end-effector denoted
by Pe = {p1, · · · , pl, · · · , pL}. The position of each point
pl ∈ R3 is given in the body frame of the robot Xe attached
to the end-effector. Then, the distance between the end-
effector and the environment can be approximated by the
distance between the nearest point in Pe to the volumetric
model of the environment. To further speed up the distance
computation, we generate a discrete Signed Distance Field
(SDF) [22] with a resolution of ∆sdf for the environment,
as illustrated in Fig. 2. The SDF of the environment O is
mathematically represented by a function ΦO : R3 → R,
which returns the signed distance to the surface boundary
∂O of the environment given a query point in the world
frame Xs.

With the approximate geometric representations, distance
computations can be efficiently performed. Given a hy-
pothesized robot’s pose (i.e., a particle value) Xm

t and an
observed joint configuration of the robot qjt ∈ RN , the

hypothesized distance between the robot’s end-effector and
the environment dm,j

t can be quickly obtained by querying
the discrete SDF:

dm,j
t = min

pl∈Pe
ΦO

(
Xm

t · Γ(qjt) · pl
)

(6)

where Γ : RN → SE(3) is the forward kinematics of the
robot that computes the transformation from the base frame
Xb to the end-effector’s body frame Xe of the robot given a
joint configuration; Xm

t ·Γ(qjt)·pl is the transformation chain
that transforms the coordinates of a point pl ∈ Pe (on the
surface of the end-effector) in the end-effector’s body frame
Xe to the fixed world frame Xs, where Xm

t , Γ(qjt) and pl
are all given by their homogeneous representations.

B. Particle Weight Evaluation

At each time step t of Particle Filters, the particle weight
wm

t is updated based on the received observation Zt con-
sisting of Jt pairs of joint configuration and detected contact
(qjt , c

j
t). When a contact is detected, i.e., cjt = 1, we use a

Gaussian with a preset variance σ2
P to model the likelihood

of observing this contact. Specifically, if the hypothesized
distance between the end-effector and the environment dm,j

t

for particle Xm
t is close to zero based on the calculation in

Eq. (6), the likelihood of observing a contact for this particle
is large, and we assign a large weight to this particle. In
contrast, if dm,j

t is large, which conflicts with the observed
contact, we will assign a small value to the particle weight.

When no contact is observed, cjt = 0, we introduce a
rejection mechanism for particles significantly inconsistent
with the observation. If the hypothesized distance dm,j

t

associated with a particle is less than a penetration distance
threshold −δP , as shown in Fig. 2 (right), it indicates the
robot is predicted to greatly penetrate the environment. Then,
the weight of this particle will be multiplied by an arbitrarily
small value ϵ. The weight of each particle wm

t is then
aggregated as the product of all observed contact events in
Zt stemming from a sliding action Ut. The updated rule for
particle weights assignment under different cases discussed
above is given by:

wm
t =

Jt∏
j=1


1√
2πσ2

P

exp− |dm.j
t |2
2σP

cjt = 1

ϵ cjt = 0 ∧ dm,j
t < −δP

1 otherwise
(7)

After the particle weights are updated, they are normalized
by wm

t = wm
t /

∑M
m=1 w

m
t (Line 11 of Alg. 1). As such, we

can use the weights as the sampling probabilities to resample
particles.

V. ROBOT COMPLIANT ACTION SELECTION

Each robot action entails a time cost; hence, it is imper-
ative to reduce the number of actions needed for accurate
self-calibration and to ensure that every action captures
a maximal amount of information. To this end, we use
sliding actions of the robot to gather as much observation

(rt,nt)

(a) (b)

(c)

^

Fig. 3: (a) An illustrative plot of a sliding action Ut. The blue dot is
the reference contact location rt on the environment surface, and the
black arrow represents the normal vector n̂t at the contact location.
The recorded observations for contact and non-contact are shown
by the red and green dots, respectively. (b) Examples of convex
segmentation for objects in Fig. 5. (c) Examples of a real robot
executing two different sliding actions.

information as possible, as described in Sec. V-A. In Sec. V-
B, we develop a strategy to select the most promising sliding
action from multiple candidates heuristically.

A. Compliant Sliding Action

The robot will inevitably have unexpected collisions with
the environment while interacting with it through sliding
actions due to the inaccuracy of the self-calibration and
real-world uncertainties, such as control errors. In response
to such uncertainties, enabling robot compliance becomes
imperative to facilitate safe interactions and maintain con-
tinuous contact with the uncalibrated environment.

Specifically, a sliding action Ut is associated with a
reference contact (rt, n̂t) on the environment surface, which
includes a contact location rt ∈ R3 and its corresponding
normal vector n̂t ∈ R3, both expressed in the fixed world
frame Xs. To execute the sliding action Ut, the robot moves
close to and above the reference location rt. Following
this, to ensure safe interactions, the robot utilizes Cartesian
impedance control to guide its end-effector to gently touch
the environment surface and detect contact.

Upon contact detection by the FT sensors of the robot,
the robot transitions into a sliding motion along the surface,
maintaining contact in a direction perpendicular to the sur-
face normal vector n̂t, as shown in Fig. 3 (a). The sliding
continues until the robot loses contact with the environ-
ment or exceeds a pre-defined maximum sliding distance.
Throughout the sliding action, the robot collects contact
events (qjt , c

j
t) ∈ Zt at fixed distance intervals, regardless of

the contact status. Fig. 3 (c) showcases two different sliding
actions executed by a real robot.

B. Action Optimization

To further maximize the information gained from a single
robot action, we propose a strategic approach to optimize
the action selection to enhance estimation efficiency. The
objects in the environment are divided into convex segments
using CoACD [23], as shown in Fig. 3 (b). Each segment

captures the local geometric information of the environment
and serves as a focal point guiding the estimation process to
concentrate on different parts of the environment. For each
segment, we pre-sample a set of D possible contact can-
didates D = {(r1, n̂1), · · · , (rd, n̂d), · · · , (rD, n̂D)}. Each
contact candidate (rd, n̂d) consists of a contact location
rd ∈ R3 on the surface of the segment and a normal
vector n̂d ∈ R̂3 at the contact location. As discussed in
Sec. V-A, each robot sliding action Ut is associated with
a reference contact (rt, n̂t), selected from the pre-sampled
contact candidates D of all segments.

When the robot selects a sliding action Ut at time t to
optimize the information gathering, it will retrieve all the
previous actions U1:t−1 that the robot has executed. The
robot will strategically select an action that explores different
geometric features of the environment unsampled in the
previous steps. Specifically, the robot first randomly picks
a segment of the environment. For each contact candidate
(rd, n̂d) ∈ D in this segment, we define a local sparsity
ρD(d), quantified as the angular difference between its
normal vector n̂d and the normal vectors of the reference
contacts associated with all previous actions, i.e., n̂1:t−1:

ρD(d) = min
τ=1,··· ,t−1

cos−1 n̂d · n̂τ (8)

The strategy is to select the contact candidate with the
maximum local sparsity as the reference contact for Ut, i.e.,
(rt, n̂t) = (rd∗ , n̂d∗) ∈ D where d∗ is calculated by

d∗ = argmax
d=1,··· ,D

ρD(d) (9)

The robot then moves its end-effector to the selected
location rd∗ , uses Cartesian impedance control to touch the
environment surface, and slides its end-effector in a direction
perpendicular to n̂d∗ to execute Ut, as described in Sec. V-
A. In cases where the selected contact candidate results in
an infeasible action due to the reachability of the robot, it
will attempt the next best candidate until a feasible one is
found. Alternatively, there is a small probability of switching
to another segment to explore alternate contact options and
select a reference contact from the candidates on the new
segment. This adaptive strategy ensures the viability of the
selected contact and the sliding action associated with this
contact.

VI. CONVERGENCE CRITERIA AND VERIFICATION OF
THE ESTIMATION

We assume the ground truth of the robot’s pose is not
obtainable, and no other external sensors are available to
verify the quality of the estimation during the self-calibration.
Thus, we need an automatic mechanism to self-measure the
estimation convergence and end the self-calibration when
needed. In Sec. VI-A, we define criteria to measure the
confidence of the estimation based on the statistical state of
the particles and implement an adaptive strategy to control
the spreading of the particles under different conditions to
avoid overconfidence in a potentially false estimation.

A. Confidence and Convergence Criteria
We define three binary criteria to measure the confidence

of the estimation, based on the set of particles Xt at the
current step or all particles in the previous steps X1:t:

1) Particle Confidence: C(Xt) ∈ {0, 1} is determined by
examining the variance of the particles’ values:

C(Xt) =

{
1 σ(Xt) < θV

0 otherwise
(10)

where the dimension-wise variance σ(Xt) ∈ R6 indepen-
dently evaluates the variance of all six dimensions of Xt,
after converting the representation of each Xm

t ∈ SE(3) in
the set Xt to a six-dimensional vector (i.e., x, y, z, roll, pitch,
and yaw). When the variance is below a threshold θV ∈ R6,
indicating all particles tend to converge to the same estimate,
the Particle Filter estimator is confident about the estimation.

2) Particle Stability: S(X1:t) ∈ {0, 1} is evaluated based
on the particle values of all previous steps X1:t:

S(X1:t) =

{
1 ranM < ϵM ∧ ranV < ϵV

0 otherwise
(11)

where ranM ∈ R6 is the dimension-wise range of Xt−h:t,
the estimates (i.e., the weighted average of particle values)
over the past h iterations, and ranV ∈ R6 is the range of
{σ(Xt−h), · · · , σ(Xt)}, the dimension-wise variances of the
particle values in the past h iterations.

In other words, this ensures both the weighted average and
the variance of the particle values do not change much during
the past h steps. If their ranges ranM and ranV are smaller
than their respective thresholds ϵV , ϵM ∈ R6, the estimation
is considered consistent over the time window, meaning the
particles are stable.

3) Particle Consistency: V(Xt, Zt) ∈ {0, 1} is used to
evaluate whether the estimation is consistent with the most
recent observation Zt. Assuming the estimated robot pose
determined by the weighted average of particle values Xt is
correct, for each observed joint configuration qjt , we calculate
an estimated distance dE,j

t between the robot’s end-effector
and the environment using Eq. (6) with Xt instead of Xm

t .
For all observed events in Zt, if the estimated distance dE,j

t

is not consistent with the detected contact cjt , thresholded
by a distance δE , then the Particle Consistency criterion will
be considered unsatisfied. This criterion is met only when
the estimated distance dE,j

t is consistent with the detected
contact for all observed events (qjt , c

j
t) ∈ Zt:

V(Xt, Zt) =


0 ∃(qjt , c

j
t) ∈ Zt,

s.t. (cjt = 1 ∧ dE,j
t > δE)

or (cjt = 0 ∧ dE,j
t ≤ −δE)

1 otherwise

dE,j
t = min

pl∈Pe
ΦO

(
Xt · Γ(qjt) · pl

) (12)

When all three criteria are met for five consecutive it-
erations, the Particle Filter will terminate and return the
weighted average of the current particle values as the final
estimation for the robot’s pose.

B. Adaptive Particle Spreading

As the robot’s pose is time-invariant in the motion model
of the system, as introduced in Sec. III-B, the motion model
is a random Gaussian perturbation scaled by σt. When σt is
large, the particles will disperse between iterations, whereas
when σt is small, the particles will become more stable and
more easily trapped at a local minimum. Therefore, to better
deal with scenarios where the particles distribute differently,
we adaptively adjust the scale of the variance in the motion
model, i.e., the value of σt:

σt =


ασt−1 C(Xt) ∧ ¬V(Xt, Zt)

βσt−1 S(X1:t) ∧ V(Xt, Zt)

σt−1 otherwise
(13)

where these criteria was defined in Sec. VI-A;α > 1 and
β < 1 are scaling factors.

For scenarios where the particles have confidence in their
estimation, yet the estimation conflicts with the recent obser-
vation data, i.e., C(Xt)∧¬V(Xt, Zt), the particles are likely
trapped at a local minimum. To address this, we introduce
larger divergence to the particle distribution by increasing σt,
allowing for broader exploration and preventing confinement
of the estimation to local minima.

On the contrary, if particles remain stable and the cur-
rent estimation aligns with the observation (i.e., S(X1:t) ∧
V(Xt, Zt)), it indicates that σt should be decreased to densify
the particles, to enhance estimation confidence by reducing
the size of the hypothesized distribution. This scaling ap-
proach ensures adaptability in scenarios where the estimation
conflicts with the observations and fine-tunes the particle
distribution for improved estimation accuracy and robustness.

VII. EXPERIMENTAL EVALUATION

In this study, we thoroughly evaluate the proposed frame-
work for robot self-calibration and investigate its perfor-
mance in both simulated and real-world scenarios. The ex-
periments are conducted in the Gazebo simulator [24] and on
a real Franka Emika Panda robot arm. In the real world, the
system monitors the robot joints forces and torques, which
trigger collision detection when the values surpass a certain
threshold. Throughout the experiments, the robot is equipped
with a 3D-printed end-effector cover that mirrors the shape
of a typical Franka gripper and serves as a protective measure
to prevent damage to the robot.

A. Experiments in Simulation

As defined in Sec. III, we task our framework to self-
calibrate the robot’s pose with touching and sliding actions.
We simulate an initial transformation error as X − X0 ∼
U(−e, e) where U is a uniform distribution and e indicates
the interval size of the distribution. The initial translational
error is simulated to be within ± 15 cm, while the initial
rotational error is simulated to be within ± 0.15 rad (8.6◦).
The number of sampled particles is fixed at M = 100, 000.
We conduct five experiments with different initial X0 values
to self-calibrate the robot against each of the environmental

objects, including a table, a shelf, a rigid object with the
shape of a beanbag, a nightstand, and a winerack, as illus-
trated in Fig. 5. For each object, we sample a total of 1, 000
contact candidates.

There are two major features to be highlighted in the
experiments: 1) Without any tactile sensors for determin-
ing the contact location, our framework relies on accurate
distance calculations between the hypothesized end-effector
and the environment, which is crucial for achieving precise
self-calibration. 2) After each measurement, an efficient
method is required to filter out incorrect particles based
on observations. Our framework effectively addresses these
challenges, as demonstrated in the experiments detailed be-
low. The self-calibration accuracy is evaluated by comparing
the final translational and rotational errors, calculated as
the difference between the expected value of Xt from Eq.
(3) and the ground truth X . Due to the similarity between
translational and rotational errors, here we focus on the
experimental results of translational errors. Fig. 4 presents
average translational errors for each experimental setup, with
error bars indicating the standard deviation.

1) Geometric Representation Analysis: This experiment
investigates the influence of geometric representation res-
olution on self-calibration accuracy reflected by the final
translation error. We show that self-calibration improves its
accuracy with more accurate representations of the environ-
ment and the robot’s end-effector.

We evaluate the voxel grid size of the signed distance
field (i.e., ∆sdf in Sec. V-B) at 0.2, 0.3, 0.5, 1, and 2 cm,
all with an end-effector point cloud size L = 600. The voxel
size affects the precision of distance calculations between
the end-effector and the surrounding environment, directly
affecting the particle updates during self-calibration. The
results in Fig. 4(a) show a direct correlation between voxel
size and calibration accuracy. Specifically, smaller voxel
sizes consistently lead to improved calibration outcomes. For
the voxel grid size of 0.2 cm, the average final translational
error is 0.53 ± 0.22 cm across all objects, highlighting the
importance of finer voxel resolutions in self-calibration.

Different end-effector’s point cloud sizes (i.e., L in Sec.
V-A), including 60, 100, 600, 1000, and 2000, are tested
for end-effector representation with a fixed SDF Resolution
of 0.2 cm. Objects with diverse contact characteristics show
varying impacts on calibration accuracy, as demonstrated in
Fig. 4(b). For example, objects like the winerack and the
shelf, which often make point contacts, are more sensitive
to changes in the size of the point cloud. In contrast,
objects with more flat and larger surfaces, like tables and
nightstands, demonstrate similar accuracies when different
L values are set. Increasing the point cloud size generally
leads to not only increased calibration accuracy but also a
rise in average computational time for particle evaluation. As
reported in Tab. I, the average computational time increases
from 2.7s to 12s as L increases from 60 to 2000. This
indicates a noticeable trade-off between computation time
and calibration accuracy.

2 1 0.5 0.3 0.2
0

2

4

(a) SDF Resolution ∆sdf (cm)

Tr
an

sl
at

io
na

l
E

rr
or

(c
m

)

60 100 600 1000 2000

0

1

2

3

4

(b) The Size of Point Cloud (L)

Tr
an

sl
at

io
na

l
E

rr
or

(c
m

)

0.001 0.002 0.005 0.01 0.02

0

1

2

(c) Sigma (σP)

Tr
an

sl
at

io
na

l
E

rr
or

(c
m

)

table
shelf
beanbag
nightstand
winerack

Fig. 4: Self-calibration performance is evaluated in simulation with 100,000 particles. The reported data illustrate the effects of: (a)
SDF resolution, (b) end-effector point cloud size L, and (c) σP (a particle weight evaluation parameter). The results, averaged over 5
experimental runs for each environmental object, showcase the final translational error (cm), with error bars representing the standard
deviation.

Fig. 5: Environmental objects used in experiments: Baxter (real), table (sim/real), shelf (sim/real), beanbag (sim), nightstand (sim), winerack
(sim). The green overlays are the objects’ mesh models, displayed relative to the robot’s base frame based on the robot’s self-calibrated
pose.

L 60 100 600 1000 2000
Time(s) 2.7± 0.3 2.9± 0.1 5.5± 0.2 7.8± 0.8 12.4± 0.9

TABLE I: Average Computation Time (s) for particle evaluation
with different sizes of the point cloud (L).

2) Particle Evaluation Analysis: This experiment focuses
on particle weight assignment, governed by variance σP

detailed in Sec. IV-B. Different values of σP (0.001, 0.002,
0.005, 0.01, and 0.02) are investigated, as reported in Fig.
4(c). A smaller σP imposes a stricter criterion for particle
rejection and makes the filter more similar to using binary
contact representation, leading to suboptimal calibration and
particle starvation. On the other hand, a larger σP relaxes
rejection criteria, keeping particles with a more erroneous
hypothesis state and decreasing calibration accuracy. We
observe a U-shaped graph with the lowest average final
translational error of 0.53 cm at σP = 0.005.

B. Real Robot Experiments

In real-world deployments, calibration accuracy may vary
both due to errors in the environment CAD models and
measurement inaccuracies. Here, we validate the feasibility
of the simulation-tested parameters in the real world.

We use the optimal parameters obtained from simulation
experiments, where ∆sdf = 0.2 cm, L = 600, and σP

= 0.005. The task involves self-calibrating the robot w.r.t.
a table and a shelf in simulation and the real world, as
depicted in Fig. 5. Each experiment is repeated 10 times.
An example run is presented in Fig. 6, where we show the
translational and rotational errors compared to the ground
truth, the progression of the robot base’s particle set Xt, and
the estimation overlays during the calibration process. The
complete results are summarized in Tab. II.

The quality of actions, particularly the average number
of contacts Jt across all actions, significantly influences

calibration accuracy. Calibrating a real-world shelf, disturbed
by physically noisy touches against bolts, ridges, and narrow
surfaces, results in fewer contacts per action (just under 4)
compared to simulation (above 5). As a result, the final
translational error in the real-world experiments is 0.72
cm, compared to 0.53 cm in the simulation. In contrast,
calibrating a table without these variations in both simulation
and the real world yields similar contact numbers, leading to
comparable final translation and rotational errors.

We further see that self-calibration demonstrates adaptabil-
ity to different geometric situations. Calibrating the robot
with respect to the table requires fewer actions for the
particles to gain confidence and stability due to its relatively
simple geometry. The required number of actions is reduced
from 30 in the real world to 20 in simulation, while the
translational error remains around 0.5 cm. Conversely, when
calibrating a shelf, the translational error decreases from
0.7cm (real-world) to 0.53cm (simulation), while the average
number of actions remains at 30.

Furthermore, we conduct the evaluation in a real-world
application by applying the self-calibration framework w.r.t.
a Baxter robot, as shown in Fig. 5. Given the absence of
ground-truth information, a visual assessment is conducted.
The results demonstrate a high self-calibration accuracy,
underscoring the potential of the proposed framework in real-
world robotic applications.

Translational
Error(cm)

Rotational
Error(10−2rad) # Actions # Contact

Table(Sim) 0.51± 0.17 0.75± 0.69 21.8± 5.8 6.0± 3.0
Table(Real) 0.53± 0.14 1.10± 0.41 17.2± 6.5 6.1± 3.0
Shelf(Sim) 0.53± 0.23 0.50± 0.20 30.5± 8.3 5.3± 2.9
Shelf(Real) 0.72± 0.30 1.49± 0.70 29.8± 9.4 3.9± 1.0

TABLE II: Experimental results for self-calibration using Table and
Shelf from Fig. 5 both in simulation and real environment.

0 2 4 6 8 10 12

2

4

6

(a) # Actions

Tr
an

sl
at

io
na

l
E

rr
or

(c
m

)

0 2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.1

(a) # Actions

A
ng

ul
ar

E
rr

or
(r

ad
)

(b) (c) (d)

(e) (f)

Fig. 6: (a) Translational (red) and rotational (blue) errors during the
self-calibration. (b) initial hypothesis set X1, (c) hypothesis set Xτ

updated based on the observation from touching and sliding action,
(d) final hypothesis set Xt. The green models overlay the initial
guess (e) and the final estimation (f).

VIII. CONCLUSION

This work proposes an exploratory action-based proba-
bilistic estimation framework for self-calibrating the spatial
relationship between the robot and its environment. Our
approach gathers contact information and iteratively up-
dates particle beliefs using exploratory touching and slid-
ing actions. These actions are strategically chosen to en-
hance observation informativeness. An automatic verification
mechanism is developed to ensure estimation quality and
allows prompt termination when appropriate. With extensive
simulation and real-world experiments, we demonstrate the
accuracy and effectiveness of our self-calibration frame-
work in multiple different environments. Our particle update
mechanism effectively converges hypothesized distribution
towards the ground truth and consistently provides accurate
calibration. In future work, we will extend our approach to
self-calibrating more sensors, e.g., cameras, purely using the
robot’s exploratory actions without any human intervention
or extra sensors.

REFERENCES

[1] Z. Roth, B. Mooring, and B. Ravani, “An overview of robot calibra-
tion,” IEEE Journal on Robotics and Automation, vol. 3, no. 5, pp.
377–385, 1987.

[2] M. Qiu, “A practical and robust method for hand-eye calibration,”
IFAC Proceedings Volumes, vol. 28, no. 16, pp. 275–280, 1995.

[3] Y. Meng and H. Zhuang, “Autonomous robot calibration using vi-
sion technology,” Robotics and Computer-Integrated Manufacturing,
vol. 23, no. 4, pp. 436–446, 2007.

[4] G. Du and P. Zhang, “Online robot calibration based on vision mea-
surement,” Robotics and Computer-Integrated Manufacturing, vol. 29,
no. 6, pp. 484–492, 2013.

[5] M. B. Villalonga, A. Rodriguez, B. Lim, E. Valls, and T. Sechopoulos,
“Tactile object pose estimation from the first touch with geometric
contact rendering,” in Conference on Robot Learning. PMLR, 2021,
pp. 1015–1029.

[6] M. Bauza, A. Bronars, and A. Rodriguez, “Tac2pose: Tactile object
pose estimation from the first touch,” The International Journal of
Robotics Research, vol. 42, no. 13, pp. 1185–1209, 2023.

[7] Y. Jiang, L. Yu, H. Jia, H. Zhao, and H. Xia, “Absolute positioning
accuracy improvement in an industrial robot,” Sensors, vol. 20, no. 16,
2020.

[8] A. Petrovskaya and O. Khatib, “Global localization of objects via
touch,” IEEE Transactions on Robotics, vol. 27, no. 3, pp. 569–585,
2011.

[9] A. Sipos and N. Fazeli, “Simultaneous contact location and object
pose estimation using proprioception and tactile feedback,” in IEEE
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 3233–3240.

[10] K. Stepanova, J. Rozlivek, F. Puciow, P. Krsek, T. Pajdla, and
M. Hoffmann, “Automatic self-contained calibration of an industrial
dual-arm robot with cameras using self-contact, planar constraints, and
self-observation,” Robotics and Computer-Integrated Manufacturing,
vol. 73, p. 102250, 2022.

[11] B. Saund, S. Chen, and R. Simmons, “Touch based localization of parts
for high precision manufacturing,” in IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp. 378–385.

[12] P. K. Murali, A. Dutta, M. Gentner, E. Burdet, R. Dahiya, and
M. Kaboli, “Active visuo-tactile interactive robotic perception for
accurate object pose estimation in dense clutter,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 4686–4693, 2022.

[13] P. Hebert, T. Howard, N. Hudson, J. Ma, and J. W. Burdick, “The
next best touch for model-based localization,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013, pp. 99–106.

[14] M. R. Driels, W. Swayze, and S. Potter, “Full-pose calibration of
a robot manipulator using a coordinate-measuring machine,” The
International Journal of Advanced Manufacturing Technology, vol. 8,
pp. 34–41, 1993.

[15] M. To and P. Webb, “An improved kinematic model for calibration
of serial robots having closed-chain mechanisms,” Robotica, vol. 30,
no. 6, pp. 963–971, 2012.

[16] H. Wang, S. Shen, and X. Lu, “A screw axis identification method for
serial robot calibration based on the poe model,” Industrial Robot: An
International Journal, vol. 39, no. 2, pp. 146–153, 2012.

[17] C. Gong, J. Yuan, and J. Ni, “A self-calibration method for robotic
measurement system,” Journal of Manufacturing Science and Engi-
neering, vol. 122, no. 1, pp. 174–181, 2000.

[18] M. C. Koval, M. Klingensmith, S. S. Srinivasa, N. S. Pollard, and
M. Kaess, “The manifold particle filter for state estimation on high-
dimensional implicit manifolds,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 4673–4680.

[19] M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pre-and post-
contact policy decomposition for planar contact manipulation under
uncertainty,” The International Journal of Robotics Research, vol. 35,
no. 1-3, pp. 244–264, 2016.

[20] S. Javdani, M. Klingensmith, J. A. Bagnell, N. S. Pollard, and S. S.
Srinivasa, “Efficient touch based localization through submodularity,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2013, pp. 1828–1835.

[21] M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pose estimation
for planar contact manipulation with manifold particle filters,” The
International Journal of Robotics Research, vol. 34, no. 7, pp. 922–
945, 2015.

[22] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory of Computing, vol. 8, no. 19, pp. 415–
428, 2012.

[23] X. Wei, M. Liu, Z. Ling, and H. Su, “Approximate convex decompo-
sition for 3d meshes with collision-aware concavity and tree search,”
ACM Transactions on Graphics (TOG), vol. 41, no. 4, pp. 1–18, 2022.

[24] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE International Conference
on Intelligent Robots and Systems (IROS), vol. 3. IEEE, 2004, pp.
2149–2154.

	Introduction
	Related work
	Problem formulation
	Particle Filter-based Self-Calibration
	Motion Model and Observation Representation

	Update Rule of Particle Weights
	Geometric Representations of Robot and Environment
	Particle Weight Evaluation

	Robot Compliant Action Selection
	Compliant Sliding Action
	Action Optimization

	Convergence Criteria and Verification of the Estimation
	Confidence and Convergence Criteria
	Adaptive Particle Spreading

	Experimental Evaluation
	Experiments in Simulation
	Geometric Representation Analysis
	Particle Evaluation Analysis

	Real Robot Experiments

	Conclusion
	References

