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ABSTRACT 

Electrical impedance tomography (EIT) is a non-destructive and non-radioactive imaging technique used to detect 

anomalies in a material of interest. Applications of EIT range from medical imaging and early tumor detection to 

identifying structural damage. Within the past decade, deep learning (DL)-based EIT reconstruction has been an emerging 

field of study as it shows promise in addressing many of the challenges associated with the non-linear, ill-conditioned 

nature of EIT inverse problems. The DL-based approach allows for the conductivity of materials to be reconstructed 

directly through neural networks (NNs) as opposed to iteratively with conventional inverse reconstruction algorithms. So 

far, the reported DL-based NNs for EIT have mostly been trained by minimizing the mean squared error (MSE) between 

the predicted and “true” outputs (i.e., conductivity distributions). The performance of these current NNs heavily relies on 

both the quality and quantity of training data. The NNs trained with simulated data may perform poorly with experimental 

data. On the other hand, generating sufficient experimental data NN training can be extremely expensive and time-

consuming, if feasible at all. To advance the DL-based reconstruction for EIT, this study develops a novel NN architecture, 

trained with a custom loss function, that serves as a surrogate model for the compressed sensing-based EIT reconstruction 

algorithm. In other words, the NN is trained to mimic a compressed sensing algorithm that performs the EIT conductivity 

reconstruction. This approach enables the NN to accurately capture the electrical properties and characteristics of the 

sensing domain when trained with limited data of varying quality. The performance of the proposed NN was compared to 

other DL models trained with the traditional MSE loss function by evaluating their reconstruction resolution, accuracy, 

and other training metrics. 

Keywords: Artificial intelligence, compressed sensing, data acquisition system, deep learning, electrical impedance 

tomography, inverse problem, neural network 

 

1. INTRODUCTION 

Electrical impedance tomography (EIT) has garnered increasing attention in recent years as an effective imaging technique 

for structural health monitoring (SHM) and medical imaging since it is nondestructive, noninvasive, and radiation free. By 

injecting small electrical currents across an area of interest, its internal conductivity distribution can be characterized. Such 

information is useful for identifying propagating cracks in concrete, monitoring lung ventilation, and even early diagnosis 

of tumors [1-3]. Traditional methods for EIT conductivity reconstruction often utilize computationally intensive iterative 

algorithms. This is mainly due to the ill-posed nature of the EIT inverse problem. With recent advances in computational 

hardware, deep learning (DL) has been an increasingly attractive approach for EIT reconstruction as it shows potential to 

enhance reconstruction resolution and quality compared to traditional iterative algorithms, especially for solving non-

linear ill-posed problems [4]. However, one major drawback to DL is the reliance on large amounts of data to successfully 

generalize the problem at hand. Gathering large amounts of data is often extremely impractical, especially for EIT, given 

the number of variables involved (e.g., shape of sensing domain, number of electrodes, measurement scheme, etc.). This 



study aims to leverage a compressed sensing technique to train a neural network (NN) that performs the EIT inverse 

problem using only simulated training data. 

2. TECHANICAL BACKGROUND 

2.1. Electrical Impedance Tomography 

EIT consists of the forward problem and the inverse problem [5, 6]. The forward problem attempts to solve for the 

boundary voltage distribution for an assumed conductivity distribution, and the inverse problem solves for the internal 

conductivity distribution for the given boundary voltage distribution. In practice, the boundary voltage is measured by a 

data acquisition (DAQ) system and used as input for an EIT reconstruction algorithm to estimate the internal conductivity 

distribution. Since different internal conductivity distributions can correspond to the same boundary voltage distribution, 

the EIT inverse problem is severely ill-posed and requires additional optimization techniques to aid reconstruction. One 

of the optimization algorithms that has been demonstrated effective is based on the compressed sensing (CS) technique [5, 

6], which leverages the sparsity of EIT problems to enhance the reconstruction resolution and accuracy. A common CS 

algorithm used is the iterative shrinkage/thresholding (IST) algorithm, which attempts to solve the following objective 

function: 

 𝛿𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
‖𝐽𝛿𝜎 − 𝛿𝑉‖2 +  𝜆‖𝛿𝜎‖1 

(1) 

where 𝛿𝜎 is the change in conductivity, 𝐽 is the Jacobian for the sensing domain, 𝛿𝑉 is the change in boundary voltage 

distribution between the homogeneous and inhomogeneous state, 𝜆 is the regularization parameter, and ‖𝛿𝜎‖1 is the L1-

norm of 𝛿𝜎 [5]. This objective function attempts to find a set of 𝛿𝜎 that matches closely with the given 𝛿𝑉 when 

transformed by Jacobian, 𝐽. The L1-norm term is included to promote sparsity and tackle the ill-posed nature of the inverse 

problem. 𝜆 controls how much influence the L1-norm has which can help with noisy reconstructions. This objective 

function could be leveraged by deep learning to train a neural network. 

2.2. Deep Learning 

Deep learning is a subset of machine learning and artificial intelligence that utilizes an artificial neural network (NN) 

comprised of multiple nodes that mimic neurons in a thinking brain. These nodes are organized into layers which are 

connected to other layers by a set of weights. Essentially, each layer in a NN is represented by a tensor, and a set of tensor 

operations are performed to go from one layer to another. 

Deep learning fundamentally requires three components: input data, expected output data, and a loss function (i.e., a metric 

to evaluate how well the neural network performs) [7]. During training, the NN output is compared to the expected output 

and evaluated using a loss function. A common loss function used for deep learning regression models is mean squared 

error (MSE) which can be calculated by:  

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 
(2) 

where 𝑦𝑖 is expected output value from the training dataset and 𝑦̂𝑖 is the NN output value [4, 8]. During training, the 

calculated loss is fed into an optimizer that adjusts the weights in each layer of the NN to minimize loss [7]. 

Since the goal of the optimizer is to minimize a computed numerical value, Equation (1) can be modified to serve as a loss 

function for NN training. In the loss function: 

 𝑙𝑜𝑠𝑠 =
1

2
‖𝐽𝛿𝜎̂ − 𝛿𝑉‖

2
+ 𝜆‖𝛿𝜎̂‖

1
  

(3) 

where the NN output, 𝛿𝜎̂, is transformed with 𝐽 and compared with the NN input, 𝛿𝑉. Note that the expected output (i.e., 

conductivity) is not included in Equation 3, which will render the training independent of the output. Rather than relying 

on the NN to extract features from the training dataset, features are learned using the custom loss function instead. As a 

consequence, this approach is expected to make training more resilient to lower quality data, since the expected output in 

the training dataset has no effect on the calculated loss. 

 



3. METHOD 

3.1. Compressed Sensing-Based Neural Network 

The proposed CS-based NN incorporates important features from the traditional IST algorithm, namely the architecture 

and the soft thresholding functions. 

3.1.1. Architecture 

The IST architecture for EIT can be visually represented by Figure 1. 

 

Figure 1. Visual representation of the IST algorithm. 

In Figure 1, the input data is mapped using the transformation matrix and it iteratively passes through shrinkage and 

thresholding functions until the ending criteria is met [9]. Examples of the ending criteria can be a max number of iterations 

or a converging loss derived from Equation (2). Inspired by the IST architecture, the novel NN developed in this study 

“unfolds” the iterative portion and represents each individual iteration as a separate series of layers in the NN. 

 

Figure 2. Visual representation of the time-unfolded IST inspired neural network. 

Figure 2 shows the proposed CS-based NN architecture. Voltage data is first passed through a mapping layer (i.e., a dense 

layer that serves as a learned Jacobian) and then branched off to compute the residual and gradient before merging back 

with the mapped layer. This series of operations represent one iteration of the IST algorithm. Thresholding was 

implemented through a custom activation function. Although Figure 2 only shows two iterations, the number of iterations 

could be further increased by continuing the pattern. Incorporating additional iterations has a negligible effect on the 

overall NN size, since it reuses the same sets of layers with the same weights. The model used in this study was structured 

to have four iterations. 

3.1.2. Soft thresholding activation function 

In addition to the L1-norm, the soft thresholding function used in IST also helps to promote sparsity in the output. It does 

so by setting values to zero if they fall within a certain threshold. The soft thresholding function can be represented as 



 𝑆𝑇(𝑥) = {
𝑥 − 𝜏          if 𝑥 > 𝜏             

 0                  if − 𝜏 ≤ 𝑥 ≤ 𝜏  
𝑥 + 𝜏          if 𝑥 < −𝜏          

 
(4) 

where 𝜏 is the specified threshold hyperparameter. This function yields a graph that resembles a linear profile with a dead-

zone centered at zero. As mentioned previously, this thresholding function was implemented through a custom activation 

function. A parametric analysis was conducted using custom metrics (i.e., comparing pixel error differences in centroid 

position) to determine the ideal threshold. 

3.1.3. Jacobian hyperparameter 

The training method proposed in this study suggests that the artificial NN can extract information about the EIT spatial 

sensing domain through the Jacobian in a custom loss function. There are several factors that can affect the Jacobian, such 

as number of electrodes, element mesh size, and injection current. The number of electrodes and elements determine the 

dimensions of the Jacobian, and the stimulation injection current is directly proportional to the magnitude of each value in 

the Jacobian. A Jacobian was obtained from Electrical Impedance Tomography and Diffuse Optical Tomography 

Reconstruction Software (EIDORS), an open-source software package used for EIT modeling, using a stimulation 

amperage of 0.10 Amps. An additional hyperparameter controlled the magnitude of the Jacobian during training [10]. 

3.1.4. Hyperparameter tuning 

Due to the nature of compressed sensing algorithms, the “loss” from each reconstruction is not a consistent metric to 

evaluate reconstruction quality. For example, a higher loss reconstruction may resemble the ground truth better due to 

increased sparsity in the output. To properly tune the hyperparameters, two custom metrics were employed that evaluate 

the position, size, and relative intensity of the reconstructed anomalies. The first metric is with pixel error which can be 

represented as: 

 𝑃𝐸 = ∑ 𝑝̂𝑘⨁

𝑘

𝑖=1

𝑡̂𝑘 
(5) 

where 𝑝̂𝑘 and 𝑡̂𝑘 are Booleans that represent the pixel’s significance for the predicted pixel and the ground truth pixel, 

respectively. Pixels/elements are considered significant if they are a part of the anomaly. For the predicted pixel, 

significance is determined by: 

 𝑝̂𝑘 = {
 1     𝑖𝑓 𝑝𝑘 ≥

1

2
max (𝛿𝜎̂)

 0     𝑖𝑓 𝑝𝑘 <
1

2
max (𝛿𝜎̂)

 
(6) 

where 𝑝𝑘 is the predicted value at the corresponding pixel/element of the mesh. The ground truth pixel significance is 

determined by: 

 𝑡̂𝑘 = {
 1     𝑖𝑓 𝑡𝑘 ≠ 𝐵𝑎𝑠𝑒 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 0     𝑖𝑓 𝑡𝑘 = 𝐵𝑎𝑠𝑒 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

 
(7) 

where 𝑡𝑘 is the ground truth conductivity of the corresponding pixel/element in the mesh. Essentially, pixels/elements in 

the reconstruction and ground truth are binarized by significance (i.e., the element is either part of the anomaly or not) and 

the XOR operator was used to determine how many elements mismatch. This metric provides information regarding the 

reconstructed anomaly’s size and position. 

The second metric is evaluating the differences in centroid position between anomalies in the ground truth and 

reconstruction. The horizontal and vertical centroids are calculated using: 

 𝑥̅ =
∑(𝑝𝑘 × 𝑥)

∑ 𝑝𝑘

 
(8) 

 𝑦̅ =
∑(𝑝𝑘 × 𝑦)

∑ 𝑝𝑘

 
(9) 

where 𝑥 and 𝑦 are the horizontal and vertical positions of the pixels, respectively. The difference in centroid position was 

then calculated with: 



 ∆𝐶 = √(𝑥̅𝑡 − 𝑥̅𝑝)2 + (𝑦̅𝑡 − 𝑦̅𝑝)2 
(10) 

where 𝑥̅𝑡 and 𝑥̅𝑝 are the horizontal centroids of the ground truth and predictions, respectively. 𝑦̅𝑡, and 𝑦̅𝑝 are the vertical 

centroids of the ground truth and predictions, respectively. When calculating the centroids using Equations (8) and (9), it 

is important to subtract all elements by the base conductivity such that only anomalous regions have non-zero elements. 

This metric provides information regarding the reconstructed anomaly’s position and relative intensity.  

3.2. Traditional Deep Neural Network Model 

Countless NN architectures have been proposed by researchers that utilize different types of layers. For comparison, two 

neural networks were trained using the traditional approach, including a simple fully-connected feed forward NN and a 

more complicated long short-term memory (LSTM) convolutional neural network (LSTMConvNet) model.  

3.2.1. Fully-connected feed forward neural network 

The simple model consists of two hidden dense layers: one with 305 nodes and one with 576. The last layer had 576 nodes 

to match the 24×24 output and the number of nodes in the first layer was chosen such that the total number of trainable 

parameters was comparable to the CS-based NN (~ 240,000 trainable parameters). This way, the efficiency of training 

methods can be evaluated (i.e., how much information the NN can extract for the same number of trainable parameters). 

3.2.2. Encoder-decoder neural network model 

The LSTMConvNet model utilized a combination of popular architectures that complement each other for EIT 

reconstructions [11]. The model was structured in an encoder-decoder style, where an LSTM layer of four units was used 

to extract important features from the input data. The purpose of the LSTM was to extract positional information since the 

boundary voltage inputs follow a certain order [11]. Such information is often lost when using regular dense layers [12]. 

The outputs of the LSTM were then flattened and passed into a dense layer of 144 units. The 144 values from the dense 

layer were reshaped into a 12×12 matrix and upscaled to the final size (i.e., a 24×24 matrix) via convolution and up-

sampling layers. Convolutions were utilized to give the network spatial awareness when generating the reconstructions 

[13]. The architecture diagram of the ED model can be seen in Figure 3. 

  

Figure 3. Visual representation of the LSTMConvNet model. 

 

3.3. Training, Validation, and Testing Dataset 

All datasets were generated using EIDORS where the sensing domain was modeled using a 24 × 24 element mesh in a 16-

electrode configuration. Each datapoint consisted of 1-3 random anomalies which included circular, square, and 

rectangular anomalies of different sizes, positions, and conductivities. Examples of each anomaly are shown in Figure 4, 

where blues and reds represent regions of decreased and increased conductivity, respectively, as demonstrated by the 

colorbar.  



 

Figure 4. (a) Circular anomaly. (b) Square anomaly. (c) Rectangular anomaly. (d) Combination of all anomaly types, 

each with their respective conductivities. 

For each anomalous scenario, the forward problem was solved to obtain the corresponding boundary voltage distribution. 

The relative changes in boundary voltage distribution were then determined by subtracting the baseline voltages and 

normalized to the largest value in the baseline measurements to establish the training data input. The actual conductivities 

of the anomalous models (in units of Siemens) were saved as the expected output for the traditionally trained neural 

networks. A total of 10,000 data points were generated and randomly portioned into a 70/20/10 split for training, validation, 

and testing. White gaussian noise was also added to all datapoints such that the signal-to-noise ratio of the input data was 

~45 dB.  

Two sets of validation data were generated: one set with only one anomaly present and the other with 1-3 anomalies, 

similar to the training dataset. The single anomaly dataset was used for hyperparameter tuning and the multiple anomaly 

dataset was used to monitor/track training losses. Two validation datasets were needed because the custom metrics 

mentioned previously can only be used to evaluate both types of NNs if one anomaly is present. For example, if a 

reconstruction contained two anomalies with different conductivities, one of 15 Siemens and the other 50 Siemens, it is 

possible for the 15 Siemens anomaly to be deemed as insignificant since the threshold is set with the larger 50 Siemens 

anomaly. In addition, both types of NNs, traditionally trained and CS-based, have different outputs. The traditionally 

trained NNs output actual conductivity whereas the CS-based NN outputs changes in conductivities. These discrepancies 

can be accounted for only if one anomaly is present in the reconstructions. 

There were also two sets of testing data for the same reason mentioned previously. After NN training, the testing dataset 

were used to evaluate differences in loss, blur radius, and centroid position, which would provide insight into the actual 

performance of each NN. 

4. RESULTS AND DISCUSSION 

4.1. Compressed Sensing-Based Neural Network Training 

The compressed sensing-based NN was trained with a 1E-4 learning rate and the Adams optimizer. With the single 

anomaly validation dataset, multiple training sessions were carried out to determine the optimal set of hyperparameters. 

For each trial, the NN was set to train for an excessive number of epochs until all metrics stabilized which helped to 

determine when to end the training. After identifying the optimal set of hyperparameters, training was repeated with the 

multiple anomaly dataset and the losses were tracked to identify potential signs of overfitting. 

4.1.1. Hyperparameter tuning 

Using the single anomaly validation dataset, the metrics were tracked and plotted for all training epochs. Figures 5 and 6 

show how pixel error and ∆ centroid changed over epochs, respectively.  

First, one can observe from Figure 5 that reconstructions had the smallest pixel error when λ = 0.0010. Slightly increasing 

or decreasing λ by 0.0002 resulted in higher pixel error. Figure 6 shows that for all λ’s, there is a bit of instability with the 

∆ centroid metric for the first 1250 epochs. It should be noted that other λ values ranging from 0.0001–0.0100 were also 

tested, but the differences in anomaly centroids were noticeably higher and more unstable (excluded from graph for 

clarity). To achieve a good balance between pixel error and ∆ centroid, a λ of 0.0010 was determined to be the optimal 

hyperparameter. The same process was repeated for other hyperparameters in the NN, such as 𝜏 from the soft thresholding 



activation layer. Based on the results shown in Figures 5 and 6, all metrics appear to remain stabilize after ~1400 epochs 

which indicated a good stopping point to end the training. 

4.1.2. Training losses 

Figure 7 is a plot that tracks how the average batch loss changes over epochs for both training and validation. It was 

observed from Figure 7a that the validation loss (red line) nearly matched the training loss (blue line) for all epochs during 

 

Figure 5. Average pixel error plotted over epochs with varying lambda hyperparameters. 

 

Figure 6. Average ∆Centroid plotted over epochs with varying lambda hyperparameters. 

 

 

Figure 7. (a) Training and validation loss plotted over epochs for the compressed sensing-based neural network. (b) 

Percentage differences between training and validation losses corresponding to (a). 

 



training. This suggested that the NN would exhibit similar performance and behaviors when presented with new data it 

has not seen before. Typically, with traditionally trained NNs, a diverging line is present between training and validation 

loss which signifies overfitting since newly extracted features only apply to the training set. Since the NN is trained to 

minimize an objective function, as opposed to directly matching the output to a finite set of data, this trend of matching 

losses was expected.  

4.2. Traditional Neural Network Training 

For both the simple dense model and the LSTMConvNet model, training was carried out with the Means Squared Error 

(MSE) loss function along with a 1E-3 learning rate and the Adams optimizer. The dense layer in the LSTMConvNet used 

an L2 regularization with a factor of 0.005 to minimize overfitting. Note that other factors were also tested, but 0.005 

appeared to work best. The L2 regularization penalized larger weights and thus encouraged a simpler model that 

generalized and created clearer reconstructions [14]. Furthermore, the decoder part of the LSTMConvNet utilized Batch 

Normalization after each convolution, which standardized the inputs to a layer for each mini batch [13]. This helps the 

neural network learn more efficiently, often needing fewer epochs. It also helps to prevent the model from relying too 

much on specific features, which can reduce the necessity for implementing other techniques to prevent overfitting (e.g., 

dropout). 

 

Figure 8. (a) Training and validation loss plotted over epochs for the LSTMConvNet. (b) Percentage differences between 

training and validation losses corresponding to (a). 

As seen in Figure 8, the training and validation losses begin to diverge after ~170 epochs. The validation loss plateaued 

and remained mostly stationary while training loss continued to decrease steadily. This makes intuitive sense, since the 

model depends on the MSE loss function which fits to the training data. Training was terminated after 1200 epochs because 

there was no more improvement with either the training or validation loss. 

4.3. Loss and Metrics 

The training losses and metrics are summarized in Table 1. For the traditionally trained neural networks (i.e., trained with 

MSE), validation and testing losses are noticeable greater than the training loss. As mentioned previously, this indicated 

overfitting, since the NN is extracting information and patterns only present in the training dataset. However, with the CS-

based NN, this is not the case. In fact, the loss computed from the testing dataset shows even lower losses compared to 

training loss. This is likely the case because patterns are extracted from the custom loss function, not the data.  

From the results tabulated in Table 1, it is predicted that reconstructions from the CS-based NN will accurately position 

the anomaly with good relative intensity, as indicated by the low ΔCentroid. However, there will likely be discrepancies 

in the sizes of the reconstructed anomalies as indicated by the larger pixel error. With the ED model, it is predicted to 

accurately match the sizes of anomalies, indicated by low MSE loss and pixel error, but there may be discrepancies 

regarding the relative intensity of reconstructed anomalies. In other words, the overall size of the anomalies will likely 



match, but pixels/elements of great intensity may appear scattered or concentrated in specific regions inconsistent with the 

ground truth. 

Table 1. Performance metrics for all neural networks after training. 

 

4.4. Reconstruction Results 

4.4.1. Simulated data 

To evaluate the performance of all reconstruction algorithms, a representative dataset was generated, and noise was added 

to achieve a more reasonable signal-to-noise (SNR) ratio of ~ 86 dB. The reconstruction results from all algorithms are 

shown in Figure 9.  

 

Figure 9. Comparison between reconstruction algorithms for a representative set of data. 

 Metric 

 Losses Pixel Error [px] ΔCentroid [px] 

 
Training Validation Testing Validation Testing Validation Testing 

Compressed 

Sensing-Based 

Neural 

Network 

221.76* 225.85* 202.75* 27.5 27.7 0.0207 0.0219 

Simple Dense 

Layered Neural 

Network 

48.06** 53.89** 55.12** 28.07 29.42 0.1885 0.2655 

LSTMConvNet 

5.14** 19.36** 41.03** 25.3 28.82 0.2277 .1506 

* - Evaluated w/ custom loss function 

** - Evaluated w/ Mean Squared Error loss function 

 



4.4.1.1. Traditional IST 

The traditional IST algorithm was set for 5000 iterations with a λ of 0.001 (i.e., the same λ used in the CS-based NN). 

Minor artifacts were present and scattered throughout the reconstruction, which were primarily due to the noise added. 

Using noise free voltage measurements from the same set of ground truth scenarios showed little to no artifacts (results 

are not shown here to better justify the comparison).  

4.4.1.2. Simple dense neural network 

The simple, fully-connected, feed-forward NN did a decent job generalizing the patterns for EIT reconstructions, but the 

outputs lacked sparsity. In other words, one may still be able to identify the anomalies, but the reconstruction resolution 

was quite low. Outputs from this NN resembled traditional IST reconstructions with 𝜏 set too low. Significantly more 

artifacts were present compared to traditional IST.  

4.4.1.3. Encoder-decoder neural network 

The LSTM’s and convolution layers in the LSTMConvNet model were able to extract more patterns in the voltage 

measurements, leading to clearer reconstructions. It should be noted that it was able to do so while having nearly half of 

the trainable parameters (~125k). This suggested that LSTM’s and convolution layers are much more effective and 

efficient at identifying features/patterns crucial for EIT reconstruction compared to dense layers. As indicated by the low 

MSE error, this NN did an effective job matching the output to the supposed ground truth.  

4.4.1.4. Compressed sensing-based neural network 

Compared to traditional IST, the CS-based NN showed arguably better denoising performance, as less artifacts were 

present in the reconstructions. Given that this was never exposed to the expected outputs in the dataset, these results show 

that it is possible to train a NN for EIT reconstructions using the CS objective function as a loss function. An additional 

benefit to using a CS-based NN over the traditional IST algorithm is reconstruction speed. Traditional IST took ~ 0.57 s 

for each reconstruction (using MATLAB), whereas the CS-based NN took ~ 0.053 s (using Python). Considering 

differences in programming languages, the stated times are not a perfect comparison, but the NN was still an order of 

magnitude faster.  

4.4.2. Experimentally data 

Previously, the performances of all NNs have been evaluated with simulated data from EIDORS. The performances shown 

in Figure 9 are not necessarily representative of how they would perform with experimental data collected by a data 

acquisition (DAQ) system. All reconstruction algorithms were evaluated using experimental data previously gathered with 

a wireless, portable DAQ system developed by the authors. Electrically conductive ultra-high molecular weight 

polyethylene (UHMWPE) was used as the sensing material and holes were cut to introduce regions of high impedance. 

The reconstructed results are shown in Figure 10. 

There are significantly more factors at play that make reconstructing experimental data challenging. For example, there 

could be slight discrepancies in electrode spacing and imperfections within the sensing domain that leads to data exhibiting 

patterns not representable by white Gaussian noise. Based on Case 1 in Figure 10, both the traditional IST and CS-based 

NN were able to reconstruct the four anomalies in the corners of the UHMWPE. The simple dense network struggled to 

capture the bottom right anomaly. The LSTMConvNet was able to slightly identify regions of decreased conductivity in 

the corners, but the overall reconstruction was dominated by a supposed anomaly in the left-center of the sensing domain. 

However, Case 2 was challenging for all NNs. There was still some resemblance between the traditional IST and CS-based 

NN. All NNs performed reasonably well for Case 3. The simple dense and CS-based NNs had comparable results to 

traditional IST and the ground truth. The LSTMConvNet was also able to capture the three anomalies, but there were some 

discrepancies with the anomalies’ relative intensity. Results from Figure 10 show that good performance with simulated 

data does not necessarily translate into good performance with experimental data, which is especially true for traditional 

NNs that heavily rely on the training data.  



 

 

Figure 10. Reconstruction results from all algorithms using experimentally collected data. 

4.5. Implications 

The results from Figures 7-10 seem to suggest that the unconventionally trained CS-based NN was successful in extracting 

information from the sensing domain through the Jacobian in the custom loss function. The CS-based NN was able to 

achieve similar performances compared to the traditional IST while being an order of magnitude faster. It was also more 

robust compared to traditionally trained NNs as evident by the reconstructions with experimental data. There are, of course, 

drawbacks to this unconventional training methodology. The sizes of reconstructed anomalies often appear larger than the 

ground truth which is where the LSTMConvNet tends to perform well. An interesting NN architecture to test would be a 

combination of the CS-based NN with the LSTMConvNet. For example, the CS-based NN would be used to generalize 

the sensing domain convolutional/upscaling layers could be used to further refine the reconstruction. The loss function 

would be the weighted sum from Equations (2) and (3). This way, the resulting NN has the advantage of extracting patterns 

from the Jacobian, and the reconstruction resolution and quality can be improved via MSE loss. 

5. CONCLUSION 

This study proposed that aspects from the compressed sensing technique can be leveraged by deep learning to strategically 

train a neural network for EIT reconstructions. The CS-based NN shares features from compressed sensing, most notably 

the activation functions, objective/loss function, and the architecture. Two traditionally trained NNs (i.e., trained with the 

commonly used MSE loss function) of varying complexity served as baselines for comparison. Sets of training, validation, 

and training data were generated via EIDORS. The hyperparameters in the CS-based NN were tuned using two custom 

metrics that evaluated the size, position, and relative intensity of reconstructed anomalies. Results show that the CS-based 

NN could successfully extract patterns from the custom loss function rather than the training data. When trained with the 

custom loss function, the resulting NN exhibited similar performance with new data (i.e., achieved similar metrics with 

the testing dataset). This is usually not the case with traditionally trained NN as indicated by the differences in loss between 

training, validation, and testing data. The LSTMConvNet showed that LSTMs and convolutional layers were much more 

efficient in extracting patterns for EIT. Future research should consider combining the CS-based NN architecture with 

upscaling convolutional layers. The resulting NN could then extract patterns and information regarding the sensing domain 

through the Jacobian and the reconstruction resolution could be refined by means of convolutional layers and MSE loss. 
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