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Abstract— Electrical impedance tomography (EIT) is a non-
invasive imaging technique that can inspect the internal
conductivity distribution of a material of interest. Currently, to
perform continuous anomaly monitoring tasks, EIT
measurement data needs to be constantly streamed to an external
device (e.g., a computer) for analysis. This can be highly energy-
inefficient, especially for a deployable, battery-powered EIT data
acquisition (DAQ) system. To transform the conventional
workflow and advance the EIT technique, this study developed
an edge intelligence functionality for a novel, portable, low-cost,
and wireless EIT DAQ system, enabling the DAQ hardware to
detect the existence of anomalies. This study also demonstrated
that future research could focus on addressing hardware
limitations to further improve EIT reconstruction resolution on
edge devices. Overall, this study laid the foundation for
advancing EIT DAQ systems to include edge intelligent
functionality so that they can operate independently from any
external devices for continuous monitoring applications.

Index Terms— Compressed sensing, data acquisition system,
edge intelligence, electrical impedance tomography, spatial
damage detection

. INTRODUCTION

LECTRICAL impedance tomography (EIT) is an

imaging technique that aims to characterize the spatial

conductivity distribution in a medium using electrical
voltage measurements performed along the boundary [1, 2]. In
recent decades, the EIT technique has attracted extensive
attention due to its unique capability in non-destructive, non-
radioactive, and distributed detection of anomalies in the
materials of interest, making it ideal for various applications in
medical imaging and structural health monitoring (SHM). For
instance, the EIT technique has been used in early diagnosis of
tumors [3-5], wearable/implantable technologies [6-9],
monitoring of lung ventilation [10-12], monitoring of brain
activity [13-15], and identifying human body positions [9],
[16], [17]. In addition, in the context of SHM, the EIT
technique has been demonstrated promising for identifying
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impact damage and delamination in carbon fiber-reinforced
composites [18-21], and monitoring crack development in
concrete [22-25].

A. Existing Portable EIT Data Acquisition Systems

Multiple large-scale and expensive instruments are often
required to perform high-quality EIT measurements, which
has significantly hindered broader applications of EIT. Many
research endeavors have been reported to develop low-cost
EIT data acquisition (DAQ) systems that are more portable
with smaller spatial footprints, such as the Tomo [9] and the
Spectra EIT [26]. The Tomo is an 8-electrode wearable EIT
DAQ system that supports 2-pole measurements designed for
detecting various hand gestures. The Tomo system was later
advanced to support 32 electrodes with both 2-pole and 4-pole
measurements [27]. Both Tomo systems are low-cost ($40 for
[9] and $80 for [27]) and have small spatial footprints of ~ 7 x
4 x 3 cm®. Another device, Spectra EIT, is a portable 32-
electrode EIT DAQ system that also supports 2- and 4-pole
measurements with a spatial footprint of ~ 5 x 5 x 3 cm?.
Additional features of Spectra EIT include external battery
support and Bluetooth Low Energy wireless communication.
While all of these systems have demonstrated excellent EIT
measurement performance, they share a common limitation
that is the reliance on external computation to process their
measurements (i.e., hand gesture classification, conductivity
reconstruction, etc.), which constrains broader applications of
the EIT technique. Therefore, this study aims to address this
by implementing a form of edge intelligence onto the EIT
DAQ hardware.

B. Edge Intelligence/Computation

Recently, there have been increasingly more endeavors to
decentralize and shift computation closer towards the “edge”.
This became possible due to hardware advancements that
render edge devices more powerful and capable of such
computation. Benefits of edge computation include reduced
latency, reduced computation demands from the central
processing device, and improved reliability [28]. For example,
it may be preferable for an autonomous vehicle to make
inferences at the edge (i.e., on-board the vehicle) rather than
relying on some form of external computation, such as a
centralized data processing center. If the connection to the
processing center were unstable, it could be a serious safety
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Fig. 1. (a) Workflow diagram of the conventional method applying EIT for SHM. (b) Workflow diagram proposed in this study
by implementing a novel EIT DAQ system with edge intelligence for SHM.

hazard. By the same token, latency can be improved for time-
sensitive applications since the data does not have to travel far
to be processes. Thus, the goal of this study is to advance the
EIT DAQ systems through developing a novel edge
intelligence capacity for the EIT DAQ hardware, which will
fundamentally avoid the reliance on centralized external
computation. This study lays the foundation for implementing
the EIT technique for structural health monitoring applications
(e.g., onboard damage sensing for acrospace structures), where
centralized computation is inaccessible or limited.

C. Transforming EIT Workflow for Applications

Fig. 1(a) outlines a conventional workflow of applying the
EIT technique for detecting structural damage by monitoring
the spatial conductivity of structural materials. To be specific,
the workflow generally consists of setting up the DAQ system,
performing an EIT measurement scheme, transmitting
measurements to an external device for data analysis, and
inspecting for anomalies which is performed by the operator.
In this workflow, data must be continuously transmitted to an
external device for data processing and conductivity
reconstruction. From the SHM standpoint, structural damage,
especially crucial damage, may develop in an unpredictable
manner, making large amounts of the data transmitted
redundant (i.e., not containing any significant anomalies). For
a deployable, battery-powered, and wireless DAQ system,
transmitting redundant data can be highly energy-consuming,
which can fundamentally limit the long-term operation of the
DAQ system. Alternatively, if the DAQ system itself can
identify anomalies in the material of interest, measurement
data can then be selectively transmitted to the external device
for further analysis, which can be a promising approach to
save energy and prolong battery life.

To transform the traditional workflow of EIT-based damage
monitoring, this study aims to establish a novel workflow that
shifts the resource-intensive tasks outside of the continuous
monitoring stage, as shown in Fig. 1(b). In this study, a novel,
portable, and low-cost EIT DAQ system has been developed,
which incorporated edge intelligence function to enable the
DAQ system to replace the external device and perform on-
board reconstruction of spatial conductivity. In addition to the

edge intelligence functionality, this system supports 32
electrodes, 2- and 4-pole measurements, external lithium-
polymer batteries, and Bluetooth Low Energy for wireless
communication. With data analysis performed on the DAQ
hardware, it has the ability to selectively transmit only the
dataset that contains potential anomalies for further analysis
and/or alert the users. While the concept of implementing edge
intelligence onto EIT DAQ systems was also mentioned in
[29], their work still relied on external computation, rather
than the DAQ itself, to process the measured data. To our
knowledge, our work represents the first successful attempt in
achieving edge intelligence capacity for EIT DAQ systems
and directly performing onboard EIT reconstructions using the
DAQ hardware itself.

It is envisioned that the DAQ system developed in this
study can significantly advance the applications of the EIT
technique in the SHM of civil and aerospace structures as well
as wearable technologies (e.g., for sensing prosthetics and
human-machine interfaces).

D. Outline of the Paper

This paper first outlines the theoretical background of the
EIT algorithms, followed by a detailed description of the
design for a wireless, portable, battery-powered, and low-cost
EIT DAQ hardware as well as the encoded EIT measurement
scheme. Then, the paper demonstrates a set of benchmark tests
conducted to evaluate the DAQ hardware performance. The
paper also discusses the coupling of the DAQ system and EIT
inverse algorithms for detecting and spatially locating
damages (i.e., anomalies) in a conductive material. Finally, the
edge computing capacity of the DAQ system is evaluated,
followed by a discussion of its advantages and limitations as
well as an outlook for future research.

I1. EIT BACKGROUND
EIT algorithms typically include two parts, namely forward
problem and inverse problem [2], [30], [31].
A. Forward Problem

The EIT forward problem attempts to solve for the
boundary voltages of a medium (v) based on an assumed
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conductivity (o) distribution [32]. Assuming no current
sources or sinks are present in the medium of interest (£2), the
forward problem can be formulated as

V-(aVv) =0 inQ )
which is also known as the simplified 2D Laplace equation
[30, 32]. Solving the forward problem typically involves
combining (1) with a finite element model of the conductive

body into a set of linear equations [30] expressed in the form
of

A(O)b =1 )

where A(o) is an invertible square matrix, representing a
discretized expression of the complete electrode model, and [
is the injected current. b is a coefficient vector that is to be
solved for, which contains the elemental nodal potentials and
the boundary electrode voltages.

B. Inverse Problem

On the other hand, the EIT inverse problem attempts to
reconstruct the spatial conductivity distribution using the
measured boundary voltages. Solving the inverse problem
generally involves minimizing the difference between the
estimated boundary voltages and the actual measurements:

2

moin”(gvar?leasured _ 5Va(7(; (3)
where ¢* is the estimated conductivity, 6Va"'ﬂ* is the estimated
voltages at the boundary corresponding to ¢*, and SV peesured
is the actual boundary voltage measurements [31].

As the EIT inverse problem is ill-posed [2], [30], [33],
different optimization algorithms have been implemented to
stably reconstruct the conductivity distribution. For instance,
one of the most common methods is an iterative Gauss-
Newton algorithm that uses the L,-norm as the regularization
term, as expressed in (4):

1 a
8o = argminilljda — oV, + §||L5U||z “)

where | is the Jacobian matrix, do is the change in spatial
conductivity within the medium, and 8V is the measured
change in boundary voltages. « is the regularization parameter
and L is the regularization matrix, often formulated as an
identity matrix I [30]. Equation (4) solves for 8o by
minimizing the difference between 8V and /6o (i.e., mapped
changes in the boundary voltages). The solution to the
linearized regularization problem can then be obtained as

do =] +al) YTV (5)

C. Compressed Sensing Technique

To improve the reconstruction resolution and accuracy,
another approach is based on the compressed sensing
technique, which leverages the spatial sparsity of typical EIT
problems [30], [31], [34]. In the context of compressed

sensing-based reconstruction, the objective function of the
inverse problem becomes:

1
8o = argminz [IJ6o — 6V, + All6ally (6)

where 4 is the regularization parameter, and ||6a]|; is the L;-
norm of o [30]. This study focused on implementing the
compressed sensing technique for the EIT inverse problem
and adopted a two-step iterative shrinkage thresholding
(TwlIST) algorithm [30], [31], [35] to robustly solve (6). The
main equations in the modified TwIST algorithm takes the
form of:

01 = 93(800 +J"(8V — J600)) (7

8041 = (1 —a)do,_1 + (@ — B)6o, + By (80, (8)
+J7(8V —Jbay))

where a and 8 are weight hyperparameters, and ¢, is the soft
thresholding function [30]. Note that §o;,, is dependent on
previous iterations §o; and da;_;, which is why the algorithm
contains two steps. The soft thresholding function, ¢;, takes
the form of:

pa(60, ) = sign(§o,)max (|60, — 4,0) )

More details about the TwIST algorithm and its EIT
implementation can be found in [35] and [30], respectively.
Both the Gauss-Newton algorithm and the compressed sensing
TwIST algorithm were coupled with the designed DAQ
hardware to compare their reconstruction performance.

III. EXPERIMENTAL DETAILS

A. Data Acquisition Hardware Development

The EIT DAQ system consisted of four main components,
namely, a constant current source, an array of
switches/multiplexers, an analog-to-digital (ADC) converter to
measure the voltages, and a controller to switch the
multiplexer channels. Fig. 2 shows a schematic diagram that
outlines the major components of the DAQ system and their
interactions.
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Fig. 2. Schematic diagram of major components in the DAQ
hardware.

As shown in the schematics, the microcontroller was
powered by an external battery and the regulated 3.3 V was
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boosted up to 10 V to power the current mirror (i.c., the
constant current source). All the channel-select signals from
the multiplexers were controlled by the microcontroller. The
output channels from each multiplexer were connected to the
sensing material. Voltages were buffered and scaled before
connecting to the ADC on the microcontroller. Fig. 3 exhibits
the physical layout of the assembled DAQ hardware, and the
design of its components are described in detail. Overall, the
cost of the entire DAQ hardware was estimated to be ~ 80 US
Dollars.
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Fig. 3. Physical layout of an assembled DAQ system with
each major component labeled.

1) Microcontroller: An Adafruit Feather nRF52840 Express
was chosen to serve as both the controller and the ADC. The
nRF52840 Feather board has a small physical footprint (5.08 x
2.29 x 0.71 c¢cm®), a built-in 2-pin Japan Solderless Terminal
(JST) PH series connector that supports any 3.7V LiPo
batteries, and Bluetooth Low Energy (BLE) 5.0 for wireless
communication [36]. There are also 21 general purpose
input/output (GPIO) pins on the nRF52840 Feather, which
were enough to support the three 32-channel multiplexers used
in this study. The nRF52840 also features one of the largest
memory capacities for a microcontroller (1024 kB of flash
memory) which was deemed crucial for our application. Other
microcontroller development boards either lacked desired
features (i.e., Bluetooth support, sufficient GPIO pins, JST
connector, etc.) or were known for having non-linear analog-
to-digital converters which would negatively hinder voltage
measurements.

2) Multiplexers (MUX): The ADG732 MUX is commonly
used for battery-powered systems, data acquisition systems, as
well as medical instrumentation [37]. A total of three MUXs
were utilized to perform the adjacent EIT measurement
scheme. In particular, two MUXs formed the adjacent current
injection pair, and the third MUX measured the voltages
relative to the ground. The voltages measured relative to
ground were then processed via customized code to attain the
adjacent voltage measurements.

3) Constant Current Source: To obtain accurate boundary
voltage measurements, it is important for the EIT DAQ system
to inject a controllable and constant electrical current to the
medium of interest. The current source was a current mirror
made of two 2N3906 bipolar PNP transistors. A 10 kQ
trimmer potentiometer was used to control the reference
current that was then mirrored across to the conductive

material of interest. The regulated 3.3 V output from the
nRF52840 was passed through an MT3608 boost converter up
to 10 V to power the current source.

4) Analog-to-digital Converter: The built-in ADC in the
nRF52840 was utilized to measure the voltages at each
electrode. With 10 V powering the current source coupled by
the fact the voltages were measured relative to the ground, it
was inevitable that the measured voltages exceeded the
allowable 3.3 V input into the ADC. To address this challenge,
a voltage divider, implemented with a 10 kQ potentiometer,
scaled the measured voltages down to a maximum of 3.3 V.
To ensure minimal current draw when connecting each
electrode to the ADC, an OPAS810 rail-to-rail op-amp,
configured as a voltage follower, was placed before the
voltage divider to act as a voltage buffer.

5)  Bluetooth-based  Wireless ~Communication: The
nRF52840 Feather board supported the BLE module, which
enabled wireless connectivity between the microcontroller and
another Bluetooth transceiver (e.g., smartphone). The
Bluefruit Connect app from Adafruit Industries was used to
connect to and operate the DAQ system via the BLE Universal
Asynchronous Receiver/Transmitter (UART) protocol. The
UART protocol was chosen over the BLE Generic Access
Profile (GAP) and the Generic Attribute Profile (GATT)
protocols for compatibility with the interactive controller in
the Bluefruit Connect smartphone app [38], [39]. It should be
noted that the DAQ hardware was operated wirelessly using a
smartphone to perform all the experimental measurements in
this study.

B. EIT Measurement Scheme

The current injection method used in this study was the
adjacent current driving mode. To be specific, two adjacent
electrodes were selected to be the driving electrodes, where
one was used to inject the current into the conductive material
of interest and the other was grounded for current to flow out.
The voltages across all adjacent electrodes were measured and
recorded with the measurements involving the driving
electrodes omitted [40]. This process was repeated for all
adjacent pairs of electrodes. The total number of
measurements for this driving mode can be calculated by

M=N(N-3) (10)
where M represents the number of measurements in each set
and N represents the number of electrodes. For instance, a 16-
electrode setup will yield a total of 208 measurements.

To further illustrate the measurement scheme, Fig. 4 shows
an 8-electrode configuration as an example. The labels EO-E7
refer to electrodes 0-7, and PO-P7 refer to electrode pairs 0-7.
EO is the upper-leftmost electrode, and each electrode is
positively indexed clockwise. If the sample is circular rather
than quadrilateral, EO corresponds to the topmost electrode
with the rest of the electrodes indexed clockwise. The first
electrode pair PO is between EO and E1 which also positively
indexes clockwise.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

P7 ——> | <— P0 —> | «<— P1

Fig. 4. Schematic diagram of the adjacent current driving
mode measurement scheme used in this study.

During the measurement, current flows from E1 to EO for
the first injection pattern, E2 to E1 for the second, and so on.
In this study, for each injection pattern, measurements were
always taken starting with PO (i.e., measuring the voltage drop
from EO to E1) through to P7. This measurement protocol also
applied to other electrode configurations (e.g., 16- and 32-
electrode setups).

C. Benchmark Testing of the DAQ System

1) Comparison with Circuitry Simulation: To evaluate the
measurement accuracy of the designed DAQ hardware, a
network of known resistors was fabricated and simulated
using the LTSpice software. Fig. 5(a) and 5(b) show a diagram
of the resistor network and its physical model, respectively.
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Fig. 5. (a) Schematic diagram of the resistor network for
benchmark testing. (b) Optical image of the fabricated resistor
network corresponding to (a).

To implement the DAQ hardware for measuring the resistor
network, one electrode was connected to the current source,
another electrode was connected to ground, and voltage
measurements were taken across all electrodes. As the
injection and ground electrodes altered, the equivalent
resistance across the current source would also wvary.
Therefore, the performance of the current source could be
tested by observing how the voltage measurements change
under different loads. In addition, the DAQ accuracy would be
evaluated by comparing the voltage measurement at each

electrode with the simulated values obtained from the LTSpice
software.

2) Characterization of Measurement Noise and Signal
Processing: Another aspect of the DAQ system performance
evaluated was the level of noise in the measurements that may
be induced by the ADC or current source. First, in a similar
configuration described in Section III.C.1, the voltage at an
electrode was repeatedly measured and recorded at a fixed
sampling rate of about 500 samples per second. The recorded
values were then used to calculate the covariance and the
signal-to-noise ratio. A scalar Kalman filter was tuned with
the calculated signal covariance to further improve
measurement quality [41-43].

D. Application of the DAQ System for EIT Experiments

1) Materials: In this study, the designed DAQ system,
coupled with the EIT algorithms, was implemented to detect
damage on electrically conductive materials. Here, conductive
carbon-filled ultra-high molecular weight polyethylene
(UHMWPE) purchased from McMaster-Carr (thickness: 0.127
mm; surface resistivity: 10° €/sq.) was used as the material of
interest for the EIT experiments. To establish boundary
electrodes on the conductive UHMWPE, fast-drying
conductive silver paint and two-ply conductive threads were
acquired from Ted Pella and Adafruit, respectively.

2) Sample Fabrication: The UHMWPE sheets were first cut
into 15 x 15 cm? squares for the 16-electrode samples. Fig. 6
shows the schematic diagram of a representative edge with
boundary electrodes for the 16-electrode samples.
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Fig. 6. Schematic diagram of a representative edge on a 16-
electrode sample with four electrodes on each side for
illustrating the spacings of boundary electrodes.

In particular, electrodes were positioned ~3.75 cm apart as
close to the edge as possible. The outermost electrodes were
positioned ~1.88 cm away from the adjacent edges. The
boundary electrodes were established by air-drying silver paint
on conductive threads for at least 30 min before testing. The
contact region between each electrode and the UHMWPE
sheets was ~5 mm in diameter. Furthermore, in this study, 8-
electrode samples were also fabricated following similar
procedures and were utilized to characterize the edge
computing performance of the DAQ system. It should be
noted that for the 8-electrode configuration, the UHMWPE
sheets were cut into 7.5 x 7.5 ¢cm? squares maintaining the
same electrode spacing shown in Fig. 6.

3) EIT-based Damage Detection Experiments: To conduct
the tests, the DAQ hardware was first connected to the
electrodes on the UHMWPE samples using alligator clips.
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Then, the DAQ system was commanded wirelessly via
Bluetooth to perform the EIT measurement scheme on the
undamaged samples, which established baselines for the initial
conductivity distribution. These baselines were compared to
their theoretical values obtained from the EIT forward
problem solved with the Electrical Impedance Tomography
and Diffuse Optical Tomography Reconstruction Software
(EIDORS), an open-source software package written in
MATLAB primarily for EIT [44]. The forward problem model
was set up as a l6-electrode system with a uniform
conductivity distribution and was discretized into a 96 x 96
finite element mesh. By solving the forward problem on the
model using the adjacent current driving mode, theoretical
boundary voltage distributions were obtained to compare with
the experimental measurements. Anomalies (i.e., damages)
were then introduced in the form of holes (~ 6.4 mm in
diameter) cut out of the UHMWPE sheets. The holes
represented regions of high impedance as no current could
flow through those areas. The EIT measurement scheme was
then performed again on the damaged samples to obtain a new
set of boundary voltage measurements. The relative change in
boundary voltage distribution, calculated by subtracting the
baseline measurements, was used as input for EIT inverse
algorithms for reconstructing conductivity distribution. Here,
to evaluate the compatibility of the DAQ hardware with
different EIT inverse algorithms, the MATLAB-based
iterative Gauss-Newton algorithm (i.e., (4)) and the
compressed sensing TwIST algorithm (i.e., (6)) were both
implemented for conductivity reconstruction using the DAQ
measurements. Their reconstruction resolution was quantified
and compared.

E. Edge Intelligence

To transform the traditional EIT data collection and post-
processing workflow, this study further developed an edge
computing functionality for the DAQ system. One of the
major challenges in deploying the reconstruction algorithm
was accessing the Jacobian matrix on the microcontroller,
which is the largest set of data needed in the compressed
sensing TwIST algorithm. The nRF52840 Feather contains
1024 kB of flash memory and 256 kB of random-access
memory (RAM) [45]. Theoretically, the largest Jacobian that
the 1024 kB of flash memory could fit, for a 16-electrode
setup with 208 voltage measurements, would be a 208 x 1024
matrix corresponding to a 32 x 32 finite element mesh.
However, a portion of memory was required to store the main
program to operate the DAQ system. For this reason, the size
of the Jacobian that could be used for edge computation had to
be reduced. Furthermore, rather than storing the Jacobian
matrix with on-board memory, it was stored in a comma-
separated value (CSV) file on a Secure Digital (SD) card and
accessed with an external SD card reader.

To convert the reconstruction algorithm into a
microcontroller-compatible library/function, the MATLAB-
based compressed sensing TwIST algorithm was first
simplified into its essential components relevant to EIT
reconstructions (i.e., removing code supporting optional

arguments, removing unnecessary blocks of code, etc.). The
simplified algorithm was then converted into a C/C++
function via MATLAB Coder. The converted function
required additional modification and optimization since it
introduced many redundant loops and utilized standard C/C++
functions that were incompatible with the Arduino library. For
example, the optimization process included removing
unnecessary arrays that kept track of data as it progressed
through the function. These arrays made the code more
readable and easier to follow along, but they occupied
enormous amounts of contiguous memory that was not
available on the microcontroller. Also, as mentioned
previously, the Jacobian was stored on an SD card; thus,
matrix multiplication with the Jacobian had to be modified to
facilitate this. This was achieved by parsing through the
Jacobian CSV file, storing individual values in a RAM buffer,
and multiplying these values with their respective matrix
index.

In addition to the limitation of on-board memory, the lack
of computational power could be another challenge. Each
iteration of the TWIST algorithm involved multiple instances
of performing matrix multiplication with the Jacobian matrix.
This could be extremely demanding for a single-core
microcontroller, such as the nRF52840 [45]. It should also be
noted that using microcontrollers with multiple processing
cores could lead to increased power consumption and reduced
battery life.

Due to the hardware limitations regarding the lack of
memory and computational power, the EIT sensing
experiments for evaluating edge intelligence performance
were simplified by reducing the number of electrodes on the
UHMWPE specimens to an 8-electrode configuration. The
finite element mesh was also reduced from the original 96 x
96 element mesh to an 8 x 8 element mesh, resulting in a 40 x
64 Jacobian matrix.

Following the similar test procedures described in Section
II1.D.3, damages were introduced to the 8-electrode
UHMWPE samples, and the corresponding relative change in
boundary voltage distribution was used to perform the
conductivity reconstruction on the DAQ system. The same
reconstruction was also performed on a personal computer
(PC) with the original TWIST algorithm as a comparison.

IV. RESULTS AND DISCUSSION

A. Benchmark Testing of the Resistor Network

The resistor network designed for benchmark testing can be
simplified into an equivalent resistor between any two nodes
based on the concept of series and parallel resistances. The
equivalent resistance value could vary, depending on which
two electrodes were chosen for measurements. Based on this,
the performance of the current source in the DAQ system
could be evaluated by characterizing its behavior when
subjected to various resistive loads. In addition, by applying
the Kirchhoff Voltage Law to the resistor network, it was
expected that the voltages at each node would be different.
The voltages at each node were measured using the DAQ
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system and compared to their theoretical values obtained from
LTSpice-based simulations.

Fig. 7(a) shows a configuration where current was injected
into A20 and out of A32. The experimental measurements,
indicated by the red line in Fig. 7(b), matched closely with
those from the simulation, indicated by the blue line.
Additional tests were performed with various -electrode
injection pairs, and the results were consistent across all tested
configurations. It should also be noted that there was about a
2.36% error between the theoretical and experimental voltage
measurements. This was likely attributed to imperfections in
circuitry and/or Joule heating. Overall, the performance of the
current source was deemed sufficiently accurate and reliable.
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Fig. 7. (a) Resistor network schematic showing current

flowing into A20 and out of A32. (b) Experimental voltage

distribution measured across all electrodes compared to

theoretical values corresponding to (a).

B. Measurement Noise and Kalman Filter-Based Signal
Processing

In this study, the noise level in DAQ measurements was
quantified using the same resistor network. Fig. 8 shows an
example of unfiltered and filtered signals within a one-second
time window, represented by the orange and blue lines,
respectively. The orange and blue shaded regions highlight the
unfiltered and filtered signals’ range within two standard
deviations, respectively. Here, the vertical axis represents
unitless digital values ranging from 0 to 4095, corresponding
to a 12-bit resolution ADC. With an analog reference voltage
of 3.3 V, each unit of the ADC value corresponds to ~ 0.8 mV.
Upon converting to millivolts, the standard deviations for the
unfiltered and filtered signals were 5.32 mV and 0.51 mV,

respectively. In addition, it was found that the signal-to-noise
ratio was increased from 66.23 dB to 86.76 dB by applying the
Kalman filter, which indicated that the noise in the measured
signals was effectively reduced.
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Fig. 8. Signal comparison between unfiltered and Kalman-

filtered ADC measurements within a one-second time
window.

C. Comparison Between DAQ Measurements and EIT
Forward Problem Simulations

The goal of this comparison is to verify whether the
experimental setup using the developed DAQ system along
with the conductive UHMWPE as the damage sensing
material yields comparable measurements to the EIT forward
problem solved with EIDORS. In Fig. 9, the red line
represents the voltage measurements from the EIT DAQ
system performed on a UHMWPE sample, and the blue line
represents the theoretical values calculated from the EIDORS-
based forward problem on an assumed homogenous medium.
It was found that the experimental measurements obtained
using the DAQ system were highly similar to the simulated
voltage response, which further confirmed the measurement
accuracy and reliability of the DAQ hardware. The minor
discrepancies were hypothesized to be due to potential
deviations in electrode positioning and electrode contact
impedance on the experimental specimens. In addition, the
conductivity distribution of pristine UHMWPE samples may
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Fig. 9. Experimentally measured boundary voltage
distribution of a 16-electrode UHMWPE sample overlapped
with the theoretical values simulated from the EIT forward
problem on a uniform homogenous material.
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not be perfectly uniform as assumed in the EIT forward
simulations.

D. Conductivity Distribution Reconstruction of the 16-
Electrode Configuration

The first set of EIT damage sensing experiments was
conducted on the 16-electrode UHMWPE samples. Here,
damages (i.e., holes) were cut out of the material to introduce
an area of high impedance at different locations (i.e., four
corners) on the samples. The changes in boundary voltage
distribution between the damaged and undamaged samples
were used as inputs for the EIT reconstruction algorithms,
including the iterative Gauss-Newton algorithm and the
TwIST algorithm. First, the hyperparameters in the inverse
algorithms were selected based on the samples with the most
anomalies in each test to achieve the optimal reconstruction of
those cases. Then, the selected hyperparameters were used for
the remaining reconstructions in each corresponding test.
More details on the hyperparameters in the EIT inverse
algorithms can be found in [31]. Fig. 10(a) - 10(d) and 10(e) -
10(1) show the images of damaged samples and their
correspondingly reconstructed conductivity distributions using
the two inverse algorithms, respectively. According to the
color bars, blue regions in Fig. 10(e) - 10(]) indicate areas of
decreased conductivity compared to the baseline conductivity,
whereas the red and yellow regions indicate areas of increased
conductivity. It was clear that the voltage measurements from
the DAQ system could be utilized for both inverse algorithms
to detect damages at different locations on the specimens. The
locations of reconstructed anomalies also matched well with
those of actual damages. To quantify and compare the
performance of the two inverse algorithms, the conductivity
distributions reconstructed from both were evaluated based on
their pixel values. To be more specific, the blur radius was
used to rigorously quantify the reconstruction quality and
resolution [46], [30], [47]. Here, the blur radius (BR) was
defined as

Ag
Ao

where A is the total sensing area of the domain and A is the
area with significant changes in reconstructed conductivity. Az
can be quantified by the following expression:

N
AR = Z Ai
i=1

for allithat §0; =

BR = (1)

(12)

max (6o;)

N| =

where N is the total number of elements whose conductivity
values are above the threshold. Equations (11) and (12) show
that higher resolution reconstructions will lead to a smaller BR
value. In other words, reconstructed anomalies with blurred
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Fig. 10. (a-d) Optical images of a 16-electrode UHMWPE
sample with introduced corner damages. Conductivity
distributions reconstructed using the (e-h) Gauss-Newton
algorithm and (i-1) compressed sensing TwIST algorithm
corresponding to the damage scenarios in (a-d), respectively.

features would occupy more area in the sensing domain and
vice versa. The calculated blur radii of the two inverse
algorithms are shown in Fig. 11.

It can be observed that for all four configurations with
anomalies introduced, the images reconstructed with the
TwIST algorithm exhibited lower blur radii compared to those
reconstructed with the Gauss-Newton algorithm. This was
consistent with visual inspection of the reconstruction results
(i.e., Fig. 10(e) - 10(h) compared to Fig. 10(i) - 10(1)). In other
words, the compressed sensing technique could effectively
improve the accuracy and resolution of EIT reconstruction.
Therefore, the remaining reconstructions performed in the EIT
damage sensing experiments focused on using the compressed
sensing TwIST algorithm.

Two additional sets of experiments were also conducted to
further evaluate the DAQ system’s performance in detecting
damage-induced conductivity changes elsewhere on the
UHMWPE samples. Fig. 12 and 13 show the reconstructed
conductivity maps corresponding to damage scenarios where
multiple damages were introduced along the edges and near
the central regions, respectively.
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Fig. 11. Comparison between the Gauss-Newton and TwIST
compressed sensing algorithms evaluated via blur radius.
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While the shapes of the reconstructed anomalies did not
perfectly reflect those of the damages on the UHMWPE
samples, the locations of the reconstructed anomalies were
found to match well. The discrepancies in the reconstructed
anomaly shape were hypothesized as artifacts introduced by
the reconstruction algorithms when solving the ill-posed EIT
inverse problem. Other factors such as measurement noise and
imperfections in electrode spacing can also potentially
exacerbate the shape discrepancies. Regardless, based on Fig.
10 - 13, one can clearly observe that the data collected from
the designed DAQ system, coupled with the compressed
sensing TwWIST algorithm, could effectively detect damage-
induced anomalous conductivity changes at various spatial
locations across the sensing domain.

E. Edge Intelligence

In this study, the edge computing functionality was
incorporated with the DAQ system to transform the traditional
workflow of EIT-based sensing techniques. To address the
hardware limitations in memory and computational power, the
EIT damage sensing experiments were conducted with fewer
number of electrodes (i.e., 8-electrode sample configuration)
and a coarser finite element mesh to simplify the inverse
reconstruction. The damages were introduced in the same
manner as Section IV.D.

Fig. 14(a) - 14(d) and 14(e) - 14(h) show the images of a
damaged UHMWPE sample and their corresponding
reconstructed conductivity distributions performed using the
nRF52840 Feather microcontroller in the DAQ hardware,
respectively. It was found that, despite the low resolution,
damages could still be detected and spatially located via
performing the conductivity reconstruction on an edge device.
Also, the reconstruction resolution was arguably sufficient to
distinguish each anomaly apart from each other.

Several attempts have been made to improve the
reconstruction resolution. Due to the microcontroller’s limited
memory capacity, a finer mesh utilized more on-board
memory for the mutable arrays and repeatedly led to crashes
when performing the reconstruction algorithm. Even if there
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Fig. 12. (a-d) Optical images of a 16-electrode UHMWPE
sample with multiple damages on the edges. (e-h)
Reconstructed conductivity distributions corresponding to the
damage scenarios in (a-d), respectively.
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Fig. 13. (a-c) Optical images of a 16-electrode UHMWPE
sample with multiple damages near the central regions. (d-f)
Reconstructed conductivity distributions corresponding to the
damage scenarios in (a-c), respectively.
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Fig. 14. (a-d) Optical images of an 8-electrode UHMWPE
sample with multiple damages on the corners. Conductivity
distributions reconstructed with (e-h) the nRF52840
microcontroller and (i-1) a PC corresponding to the damage
scenarios in (a-d), respectively.

was sufficient memory, the computational power of the
microcontroller further constrained the performance of EIT
reconstruction algorithm. For the TwIST algorithm used in
this study, it took the microcontroller about seven minutes to
complete each reconstruction. This computational time would
have increased exponentially with refined mesh resolution. It
was found that when performing EIT reconstruction on the
edge devices, the most computationally intensive task was
matrix multiplication with the Jacobian matrix in the inverse
algorithm. The main contributing factor, as previously
mentioned in Section IILLE, was the fact that the Jacobian
needed to be accessed by parsing through a CSV file on an SD
card rather than with on-board RAM or flash memory.
Therefore, the long reconstruction time suggests that directly
adapting traditional, iterative EIT reconstruction algorithms
for low-computational edge devices may not be a viable
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solution for real-time analysis. As a potential future direction
to enhance the EIT edge computing performance, one may
develop more efficient EIT algorithms to better accommodate
the limited computational capacity of edge devices.

To demonstrate that the data collected using the DAQ
system for this 8-electrode sample configuration was still of
high quality, the voltage measurements were further processed
using a PC (i.e,, with sufficient hardware memory and
computational capacity) for comparison. The same mesh size
as Section IV.D was used here for the reconstruction. Fig.
14(i) - 14(1) show the reconstructed conductivity distributions
corresponding to the multiple damages, where the detected
anomalies were highly defined. The position of each anomaly
also matched very well with those in the UHMWPE samples.
This indicated that the data collected from the DAQ system
was reliable and accurate, and the relatively low quality of
reconstruction results shown in Fig. 14(e) - 14(h) indeed
resulted from the edge device’s computational capacity.

V. CONCLUSION

This study aims to transform the traditional workflow for
EIT measurement and data processing with a novel, high-
performance DAQ system. The EIT DAQ system developed in
this study featured compact footprint, high portability,
wireless communication, low cost, interfacing with
smartphone, versatility for various electrode configurations,
and edge intelligence functionality. Benchmark tests were
performed by comparing the DAQ measurements with
circuitry simulation and EIT forward problem simulation. The
DAQ hardware was demonstrated capable of obtaining stable
and accurate voltage measurements. To enhance the signal
quality for ensuring reliable EIT inverse reconstruction, an
optimized Kalman filter was implemented to process the raw
measurements, which effectively reduced the noise level.
Then, the DAQ system was coupled with EIT inverse
algorithms, including the iterative Gauss-Newton and
compressed sensing TwIST algorithms, to perform a series of
spatial damage detection experiments. The DAQ
measurements were compatible with both reconstruction
algorithms, but the compressed sensing algorithm showed
higher reconstruction resolution and accuracy, which was
consistent with the theory. In addition, to achieve the novel
edge computing function, the compressed sensing algorithm
was compiled into a C/C++ library and implemented onto the
microcontroller in the DAQ system. EIT sensing experiments
showed that the conductivity distribution of the material of
interest could be successfully reconstructed on the DAQ
system itself (without using an external PC).

It became apparent that modifying traditional, iterative EIT
reconstruction algorithms for edge deployment may not have
been the most effective solution. Future research will
investigate alternative approaches to perform EIT conductivity
reconstruction more efficiently on the microcontroller to
overcome the current limitations associated with on-board
memory and computing capacity. One possible approach is to
implement machine learning/artificial intelligence-based
reconstruction algorithms onto the EIT edge devices. Also,

other capacities of EIT edge intelligence will be investigated,
such as damage identification and damage severity
classification. In addition, regarding the DAQ hardware itself,
additional efforts will be made to further reduce its spatial
footprint.

Overall, this study represents a crucial step for advancing
the development of high-performance EIT DAQ systems with
edge intelligence for applications in structural health
monitoring and wearable/implantable technologies.
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