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Abstract— Electrical impedance tomography (EIT) is a non-

invasive imaging technique that can inspect the internal 

conductivity distribution of a material of interest. Currently, to 

perform continuous anomaly monitoring tasks, EIT 

measurement data needs to be constantly streamed to an external 

device (e.g., a computer) for analysis. This can be highly energy-

inefficient, especially for a deployable, battery-powered EIT data 

acquisition (DAQ) system. To transform the conventional 

workflow and advance the EIT technique, this study developed 

an edge intelligence functionality for a novel, portable, low-cost, 

and wireless EIT DAQ system, enabling the DAQ hardware to 

detect the existence of anomalies. This study also demonstrated 

that future research could focus on addressing hardware 

limitations to further improve EIT reconstruction resolution on 

edge devices. Overall, this study laid the foundation for 

advancing EIT DAQ systems to include edge intelligent 

functionality so that they can operate independently from any 

external devices for continuous monitoring applications. 

 
Index Terms— Compressed sensing, data acquisition system, 

edge intelligence, electrical impedance tomography, spatial 

damage detection 

I. INTRODUCTION 

LECTRICAL impedance tomography (EIT) is an 

imaging technique that aims to characterize the spatial 

conductivity distribution in a medium using electrical 

voltage measurements performed along the boundary [1, 2]. In 

recent decades, the EIT technique has attracted extensive 

attention due to its unique capability in non-destructive, non-

radioactive, and distributed detection of anomalies in the 

materials of interest, making it ideal for various applications in 

medical imaging and structural health monitoring (SHM). For 

instance, the EIT technique has been used in early diagnosis of 

tumors [3-5], wearable/implantable technologies [6-9], 

monitoring of lung ventilation [10-12], monitoring of brain 

activity [13-15], and identifying human body positions [9], 

[16], [17]. In addition, in the context of SHM, the EIT 

technique has been demonstrated promising for identifying 

impact damage and delamination in carbon fiber-reinforced 

composites [18-21], and monitoring crack development in 

concrete [22-25]. 

A. Existing Portable EIT Data Acquisition Systems 

Multiple large-scale and expensive instruments are often 

required to perform high-quality EIT measurements, which 

has significantly hindered broader applications of EIT. Many 

research endeavors have been reported to develop low-cost 

EIT data acquisition (DAQ) systems that are more portable 

with smaller spatial footprints, such as the Tomo [9] and the 

Spectra EIT [26]. The Tomo is an 8-electrode wearable EIT 

DAQ system that supports 2-pole measurements designed for 

detecting various hand gestures. The Tomo system was later 

advanced to support 32 electrodes with both 2-pole and 4-pole 

measurements [27]. Both Tomo systems are low-cost ($40 for 

[9] and $80 for [27]) and have small spatial footprints of ~ 7 × 

4 × 3 cm3. Another device, Spectra EIT, is a portable 32-

electrode EIT DAQ system that also supports 2- and 4-pole 

measurements with a spatial footprint of ~ 5 × 5 × 3 cm3. 

Additional features of Spectra EIT include external battery 

support and Bluetooth Low Energy wireless communication. 

While all of these systems have demonstrated excellent EIT 

measurement performance, they share a common limitation 

that is the reliance on external computation to process their 

measurements (i.e., hand gesture classification, conductivity 

reconstruction, etc.), which constrains broader applications of 

the EIT technique. Therefore, this study aims to address this 

by implementing a form of edge intelligence onto the EIT 

DAQ hardware. 

B. Edge Intelligence/Computation 

Recently, there have been increasingly more endeavors to 

decentralize and shift computation closer towards the “edge”. 

This became possible due to hardware advancements that 

render edge devices more powerful and capable of such 

computation. Benefits of edge computation include reduced 

latency, reduced computation demands from the central 

processing device, and improved reliability [28]. For example, 

it may be preferable for an autonomous vehicle to make 

inferences at the edge (i.e., on-board the vehicle) rather than 

relying on some form of external computation, such as a 

centralized data processing center. If the connection to the 

processing center were unstable, it could be a serious safety 
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hazard. By the same token, latency can be improved for time-

sensitive applications since the data does not have to travel far 

to be processes. Thus, the goal of this study is to advance the 

EIT DAQ systems through developing a novel edge 

intelligence capacity for the EIT DAQ hardware, which will 

fundamentally avoid the reliance on centralized external 

computation. This study lays the foundation for implementing 

the EIT technique for structural health monitoring applications 

(e.g., onboard damage sensing for aerospace structures), where 

centralized computation is inaccessible or limited. 

C. Transforming EIT Workflow for Applications 

Fig. 1(a) outlines a conventional workflow of applying the 

EIT technique for detecting structural damage by monitoring 

the spatial conductivity of structural materials. To be specific, 

the workflow generally consists of setting up the DAQ system, 

performing an EIT measurement scheme, transmitting 

measurements to an external device for data analysis, and 

inspecting for anomalies which is performed by the operator. 

In this workflow, data must be continuously transmitted to an 

external device for data processing and conductivity 

reconstruction. From the SHM standpoint, structural damage, 

especially crucial damage, may develop in an unpredictable 

manner, making large amounts of the data transmitted 

redundant (i.e., not containing any significant anomalies). For 

a deployable, battery-powered, and wireless DAQ system, 

transmitting redundant data can be highly energy-consuming, 

which can fundamentally limit the long-term operation of the 

DAQ system. Alternatively, if the DAQ system itself can 

identify anomalies in the material of interest, measurement 

data can then be selectively transmitted to the external device 

for further analysis, which can be a promising approach to 

save energy and prolong battery life.  

To transform the traditional workflow of EIT-based damage 

monitoring, this study aims to establish a novel workflow that 

shifts the resource-intensive tasks outside of the continuous 

monitoring stage, as shown in Fig. 1(b). In this study, a novel, 

portable, and low-cost EIT DAQ system has been developed, 

which incorporated edge intelligence function to enable the 

DAQ system to replace the external device and perform on-

board reconstruction of spatial conductivity. In addition to the 

edge intelligence functionality, this system supports 32 

electrodes, 2- and 4-pole measurements, external lithium-

polymer batteries, and Bluetooth Low Energy for wireless 

communication. With data analysis performed on the DAQ 

hardware, it has the ability to selectively transmit only the 

dataset that contains potential anomalies for further analysis 

and/or alert the users. While the concept of implementing edge 

intelligence onto EIT DAQ systems was also mentioned in 

[29], their work still relied on external computation, rather 

than the DAQ itself, to process the measured data. To our 

knowledge, our work represents the first successful attempt in 

achieving edge intelligence capacity for EIT DAQ systems 

and directly performing onboard EIT reconstructions using the 

DAQ hardware itself. 

It is envisioned that the DAQ system developed in this 

study can significantly advance the applications of the EIT 

technique in the SHM of civil and aerospace structures as well 

as wearable technologies (e.g., for sensing prosthetics and 

human-machine interfaces). 

D. Outline of the Paper 

This paper first outlines the theoretical background of the 

EIT algorithms, followed by a detailed description of the 

design for a wireless, portable, battery-powered, and low-cost 

EIT DAQ hardware as well as the encoded EIT measurement 

scheme. Then, the paper demonstrates a set of benchmark tests 

conducted to evaluate the DAQ hardware performance. The 

paper also discusses the coupling of the DAQ system and EIT 

inverse algorithms for detecting and spatially locating 

damages (i.e., anomalies) in a conductive material. Finally, the 

edge computing capacity of the DAQ system is evaluated, 

followed by a discussion of its advantages and limitations as 

well as an outlook for future research.  

II. EIT BACKGROUND 

EIT algorithms typically include two parts, namely forward 

problem and inverse problem [2], [30], [31].  

A. Forward Problem 

The EIT forward problem attempts to solve for the 

boundary voltages of a medium (𝑣) based on an assumed 

Fig. 1. (a) Workflow diagram of the conventional method applying EIT for SHM. (b) Workflow diagram proposed in this study 

by implementing a novel EIT DAQ system with edge intelligence for SHM. 
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conductivity (𝜎) distribution [32]. Assuming no current 

sources or sinks are present in the medium of interest (Ω), the 

forward problem can be formulated as 

 𝛻 ∙ (𝜎𝛻𝑣) = 0    𝑖𝑛 𝛺 (1) 

which is also known as the simplified 2D Laplace equation 

[30, 32]. Solving the forward problem typically involves 

combining (1) with a finite element model of the conductive 

body into a set of linear equations [30] expressed in the form 

of 

 𝐴(𝜎)𝑏 = 𝐼 (2) 

where 𝐴(𝜎) is an invertible square matrix, representing a 

discretized expression of the complete electrode model, and 𝐼 

is the injected current. 𝑏 is a coefficient vector that is to be 

solved for, which contains the elemental nodal potentials and 

the boundary electrode voltages. 

B. Inverse Problem 

On the other hand, the EIT inverse problem attempts to 

reconstruct the spatial conductivity distribution using the 

measured boundary voltages. Solving the inverse problem 

generally involves minimizing the difference between the 

estimated boundary voltages and the actual measurements:  

 min
𝜎

‖𝛿𝑉𝜕Ω
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝛿𝑉𝜕Ω

𝜎∗
‖

2
 (3) 

where 𝜎∗ is the estimated conductivity, 𝛿𝑉𝜕Ω
𝜎∗

 is the estimated 

voltages at the boundary corresponding to 𝜎∗, and 𝛿𝑉𝜕Ω
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  

is the actual boundary voltage measurements [31].  

As the EIT inverse problem is ill-posed [2], [30], [33], 

different optimization algorithms have been implemented to 

stably reconstruct the conductivity distribution. For instance, 

one of the most common methods is an iterative Gauss-

Newton algorithm that uses the L2-norm as the regularization 

term, as expressed in (4): 

 𝛿𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
‖𝐽𝛿𝜎 −  𝛿𝑉‖2 +  

𝛼

2
‖𝐿𝛿𝜎‖2 (4) 

where 𝐽 is the Jacobian matrix, 𝛿𝜎 is the change in spatial 

conductivity within the medium, and 𝛿𝑉 is the measured 

change in boundary voltages. 𝛼 is the regularization parameter 

and 𝐿 is the regularization matrix, often formulated as an 

identity matrix 𝐼 [30]. Equation (4) solves for 𝛿𝜎 by 

minimizing the difference between 𝛿𝑉 and 𝐽𝛿𝜎 (i.e., mapped 

changes in the boundary voltages). The solution to the 

linearized regularization problem can then be obtained as 

 𝛿𝜎 = (𝐽𝑇𝐽 + 𝛼𝐼)−1𝐽𝑇𝛿𝑉 (5) 

C. Compressed Sensing Technique 

To improve the reconstruction resolution and accuracy, 

another approach is based on the compressed sensing 

technique, which leverages the spatial sparsity of typical EIT 

problems [30], [31], [34]. In the context of compressed 

sensing-based reconstruction, the objective function of the 

inverse problem becomes: 

 𝛿𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
‖𝐽𝛿𝜎 − 𝛿𝑉‖2 +  𝜆‖𝛿𝜎‖1 (6) 

where 𝜆 is the regularization parameter, and ‖𝛿𝜎‖1 is the L1-

norm of 𝛿𝜎 [30]. This study focused on implementing the 

compressed sensing technique for the EIT inverse problem 

and adopted a two-step iterative shrinkage thresholding 

(TwIST) algorithm [30], [31], [35] to robustly solve (6). The 

main equations in the modified TwIST algorithm takes the 

form of: 

 𝛿𝜎1 = 𝜑𝜆(𝛿𝜎0 + 𝐽𝑇(𝛿𝑉 − 𝐽𝛿𝜎0)) (7) 

 
𝛿𝜎𝑡+1 = (1 − 𝛼)𝛿𝜎𝑡−1 + (𝛼 − 𝛽)𝛿𝜎𝑡 + 𝛽𝜑𝜆(𝛿𝜎𝑡

+ 𝐽𝑇(𝛿𝑉 − 𝐽𝛿𝜎𝑡)) 
(8) 

where 𝛼 and 𝛽 are weight hyperparameters, and 𝜑𝜆 is the soft 

thresholding function [30]. Note that 𝛿𝜎𝑡+1 is dependent on 

previous iterations 𝛿𝜎𝑡 and 𝛿𝜎𝑡−1, which is why the algorithm 

contains two steps. The soft thresholding function, 𝜑𝜆, takes 

the form of: 

 𝜑𝜆(𝛿𝜎𝑡 , 𝜆)  = 𝑠𝑖𝑔𝑛(𝛿𝜎𝑡)𝑚𝑎𝑥(|𝛿𝜎𝑡| −  𝜆, 0) (9) 

More details about the TwIST algorithm and its EIT 

implementation can be found in [35] and [30], respectively. 

Both the Gauss-Newton algorithm and the compressed sensing 

TwIST algorithm were coupled with the designed DAQ 

hardware to compare their reconstruction performance. 

III. EXPERIMENTAL DETAILS 

A. Data Acquisition Hardware Development 

The EIT DAQ system consisted of four main components, 

namely, a constant current source, an array of 

switches/multiplexers, an analog-to-digital (ADC) converter to 

measure the voltages, and a controller to switch the 

multiplexer channels. Fig. 2 shows a schematic diagram that 

outlines the major components of the DAQ system and their 

interactions. 

 
Fig. 2. Schematic diagram of major components in the DAQ 

hardware. 

As shown in the schematics, the microcontroller was 

powered by an external battery and the regulated 3.3 V was 
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boosted up to 10 V to power the current mirror (i.e., the 

constant current source). All the channel-select signals from 

the multiplexers were controlled by the microcontroller. The 

output channels from each multiplexer were connected to the 

sensing material. Voltages were buffered and scaled before 

connecting to the ADC on the microcontroller. Fig. 3 exhibits 

the physical layout of the assembled DAQ hardware, and the 

design of its components are described in detail. Overall, the 

cost of the entire DAQ hardware was estimated to be ∼ 80 US 

Dollars. 

 
Fig. 3. Physical layout of an assembled DAQ system with 

each major component labeled. 

 

1) Microcontroller: An Adafruit Feather nRF52840 Express 

was chosen to serve as both the controller and the ADC. The 

nRF52840 Feather board has a small physical footprint (5.08 × 

2.29 × 0.71 cm3), a built-in 2-pin Japan Solderless Terminal 

(JST) PH series connector that supports any 3.7V LiPo 

batteries, and Bluetooth Low Energy (BLE) 5.0 for wireless 

communication [36]. There are also 21 general purpose 

input/output (GPIO) pins on the nRF52840 Feather, which 

were enough to support the three 32-channel multiplexers used 

in this study. The nRF52840 also features one of the largest 

memory capacities for a microcontroller (1024 kB of flash 

memory) which was deemed crucial for our application. Other 

microcontroller development boards either lacked desired 

features (i.e., Bluetooth support, sufficient GPIO pins, JST 

connector, etc.) or were known for having non-linear analog-

to-digital converters which would negatively hinder voltage 

measurements. 

2) Multiplexers (MUX): The ADG732 MUX is commonly 

used for battery-powered systems, data acquisition systems, as 

well as medical instrumentation [37]. A total of three MUXs 

were utilized to perform the adjacent EIT measurement 

scheme. In particular, two MUXs formed the adjacent current 

injection pair, and the third MUX measured the voltages 

relative to the ground. The voltages measured relative to 

ground were then processed via customized code to attain the 

adjacent voltage measurements. 

3) Constant Current Source: To obtain accurate boundary 

voltage measurements, it is important for the EIT DAQ system 

to inject a controllable and constant electrical current to the 

medium of interest. The current source was a current mirror 

made of two 2N3906 bipolar PNP transistors. A 10 kΩ 

trimmer potentiometer was used to control the reference 

current that was then mirrored across to the conductive 

material of interest. The regulated 3.3 V output from the 

nRF52840 was passed through an MT3608 boost converter up 

to 10 V to power the current source. 

4) Analog-to-digital Converter: The built-in ADC in the 

nRF52840 was utilized to measure the voltages at each 

electrode. With 10 V powering the current source coupled by 

the fact the voltages were measured relative to the ground, it 

was inevitable that the measured voltages exceeded the 

allowable 3.3 V input into the ADC. To address this challenge, 

a voltage divider, implemented with a 10 kΩ potentiometer, 

scaled the measured voltages down to a maximum of 3.3 V. 

To ensure minimal current draw when connecting each 

electrode to the ADC, an OPA810 rail-to-rail op-amp, 

configured as a voltage follower, was placed before the 

voltage divider to act as a voltage buffer.  

5) Bluetooth-based Wireless Communication: The 

nRF52840 Feather board supported the BLE module, which 

enabled wireless connectivity between the microcontroller and 

another Bluetooth transceiver (e.g., smartphone). The 

Bluefruit Connect app from Adafruit Industries was used to 

connect to and operate the DAQ system via the BLE Universal 

Asynchronous Receiver/Transmitter (UART) protocol. The 

UART protocol was chosen over the BLE Generic Access 

Profile (GAP) and the Generic Attribute Profile (GATT) 

protocols for compatibility with the interactive controller in 

the Bluefruit Connect smartphone app [38], [39]. It should be 

noted that the DAQ hardware was operated wirelessly using a 

smartphone to perform all the experimental measurements in 

this study. 

B. EIT Measurement Scheme 

The current injection method used in this study was the 

adjacent current driving mode. To be specific, two adjacent 

electrodes were selected to be the driving electrodes, where 

one was used to inject the current into the conductive material 

of interest and the other was grounded for current to flow out. 

The voltages across all adjacent electrodes were measured and 

recorded with the measurements involving the driving 

electrodes omitted [40]. This process was repeated for all 

adjacent pairs of electrodes. The total number of 

measurements for this driving mode can be calculated by 

 𝑀 = 𝑁 (𝑁 − 3) (10) 

where M represents the number of measurements in each set 

and N represents the number of electrodes. For instance, a 16-

electrode setup will yield a total of 208 measurements. 

To further illustrate the measurement scheme, Fig. 4 shows 

an 8-electrode configuration as an example. The labels E0-E7 

refer to electrodes 0-7, and P0-P7 refer to electrode pairs 0-7. 

E0 is the upper-leftmost electrode, and each electrode is 

positively indexed clockwise. If the sample is circular rather 

than quadrilateral, E0 corresponds to the topmost electrode 

with the rest of the electrodes indexed clockwise. The first 

electrode pair P0 is between E0 and E1 which also positively 

indexes clockwise.  
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Fig. 4. Schematic diagram of the adjacent current driving 

mode measurement scheme used in this study. 

 

During the measurement, current flows from E1 to E0 for 

the first injection pattern, E2 to E1 for the second, and so on. 

In this study, for each injection pattern, measurements were 

always taken starting with P0 (i.e., measuring the voltage drop 

from E0 to E1) through to P7. This measurement protocol also 

applied to other electrode configurations (e.g., 16- and 32-

electrode setups). 

C. Benchmark Testing of the DAQ System 

1) Comparison with Circuitry Simulation: To evaluate the 

measurement accuracy of the designed DAQ hardware, a 

network of known resistors was fabricated and simulated 

using the LTSpice software. Fig. 5(a) and 5(b) show a diagram 

of the resistor network and its physical model, respectively.  

 

 
Fig. 5. (a) Schematic diagram of the resistor network for 

benchmark testing. (b) Optical image of the fabricated resistor 

network corresponding to (a). 

 

To implement the DAQ hardware for measuring the resistor 

network, one electrode was connected to the current source, 

another electrode was connected to ground, and voltage 

measurements were taken across all electrodes. As the 

injection and ground electrodes altered, the equivalent 

resistance across the current source would also vary. 

Therefore, the performance of the current source could be 

tested by observing how the voltage measurements change 

under different loads. In addition, the DAQ accuracy would be 

evaluated by comparing the voltage measurement at each 

electrode with the simulated values obtained from the LTSpice 

software. 

2) Characterization of Measurement Noise and Signal 

Processing: Another aspect of the DAQ system performance 

evaluated was the level of noise in the measurements that may 

be induced by the ADC or current source. First, in a similar 

configuration described in Section III.C.1, the voltage at an 

electrode was repeatedly measured and recorded at a fixed 

sampling rate of about 500 samples per second. The recorded 

values were then used to calculate the covariance and the 

signal-to-noise ratio. A scalar Kalman filter was tuned with 

the calculated signal covariance to further improve 

measurement quality [41-43]. 

D. Application of the DAQ System for EIT Experiments 

1) Materials: In this study, the designed DAQ system, 

coupled with the EIT algorithms, was implemented to detect 

damage on electrically conductive materials. Here, conductive 

carbon-filled ultra-high molecular weight polyethylene 

(UHMWPE) purchased from McMaster-Carr (thickness: 0.127 

mm; surface resistivity: 103 Ω/sq.) was used as the material of 

interest for the EIT experiments. To establish boundary 

electrodes on the conductive UHMWPE, fast-drying 

conductive silver paint and two-ply conductive threads were 

acquired from Ted Pella and Adafruit, respectively. 

2) Sample Fabrication: The UHMWPE sheets were first cut 

into 15 × 15 cm2 squares for the 16-electrode samples. Fig. 6 

shows the schematic diagram of a representative edge with 

boundary electrodes for the 16-electrode samples.  

 

 
Fig. 6. Schematic diagram of a representative edge on a 16-

electrode sample with four electrodes on each side for 

illustrating the spacings of boundary electrodes. 

In particular, electrodes were positioned ∼3.75 cm apart as 

close to the edge as possible. The outermost electrodes were 

positioned ∼1.88 cm away from the adjacent edges. The 

boundary electrodes were established by air-drying silver paint 

on conductive threads for at least 30 min before testing. The 

contact region between each electrode and the UHMWPE 

sheets was ∼5 mm in diameter. Furthermore, in this study, 8-

electrode samples were also fabricated following similar 

procedures and were utilized to characterize the edge 

computing performance of the DAQ system. It should be 

noted that for the 8-electrode configuration, the UHMWPE 

sheets were cut into 7.5 × 7.5 cm2 squares maintaining the 

same electrode spacing shown in Fig. 6. 

3) EIT-based Damage Detection Experiments: To conduct 

the tests, the DAQ hardware was first connected to the 

electrodes on the UHMWPE samples using alligator clips. 
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Then, the DAQ system was commanded wirelessly via 

Bluetooth to perform the EIT measurement scheme on the 

undamaged samples, which established baselines for the initial 

conductivity distribution. These baselines were compared to 

their theoretical values obtained from the EIT forward 

problem solved with the Electrical Impedance Tomography 

and Diffuse Optical Tomography Reconstruction Software 

(EIDORS), an open-source software package written in 

MATLAB primarily for EIT [44]. The forward problem model 

was set up as a 16-electrode system with a uniform 

conductivity distribution and was discretized into a 96 × 96 

finite element mesh. By solving the forward problem on the 

model using the adjacent current driving mode, theoretical 

boundary voltage distributions were obtained to compare with 

the experimental measurements. Anomalies (i.e., damages) 

were then introduced in the form of holes (~ 6.4 mm in 

diameter) cut out of the UHMWPE sheets. The holes 

represented regions of high impedance as no current could 

flow through those areas. The EIT measurement scheme was 

then performed again on the damaged samples to obtain a new 

set of boundary voltage measurements. The relative change in 

boundary voltage distribution, calculated by subtracting the 

baseline measurements, was used as input for EIT inverse 

algorithms for reconstructing conductivity distribution. Here, 

to evaluate the compatibility of the DAQ hardware with 

different EIT inverse algorithms, the MATLAB-based 

iterative Gauss-Newton algorithm (i.e., (4)) and the 

compressed sensing TwIST algorithm (i.e., (6)) were both 

implemented for conductivity reconstruction using the DAQ 

measurements. Their reconstruction resolution was quantified 

and compared. 

E. Edge Intelligence 

To transform the traditional EIT data collection and post-

processing workflow, this study further developed an edge 

computing functionality for the DAQ system. One of the 

major challenges in deploying the reconstruction algorithm 

was accessing the Jacobian matrix on the microcontroller, 

which is the largest set of data needed in the compressed 

sensing TwIST algorithm. The nRF52840 Feather contains 

1024 kB of flash memory and 256 kB of random-access 

memory (RAM) [45]. Theoretically, the largest Jacobian that 

the 1024 kB of flash memory could fit, for a 16-electrode 

setup with 208 voltage measurements, would be a 208 × 1024 

matrix corresponding to a 32 × 32 finite element mesh. 

However, a portion of memory was required to store the main 

program to operate the DAQ system. For this reason, the size 

of the Jacobian that could be used for edge computation had to 

be reduced. Furthermore, rather than storing the Jacobian 

matrix with on-board memory, it was stored in a comma-

separated value (CSV) file on a Secure Digital (SD) card and 

accessed with an external SD card reader.  

To convert the reconstruction algorithm into a 

microcontroller-compatible library/function, the MATLAB-

based compressed sensing TwIST algorithm was first 

simplified into its essential components relevant to EIT 

reconstructions (i.e., removing code supporting optional 

arguments, removing unnecessary blocks of code, etc.). The 

simplified algorithm was then converted into a C/C++ 

function via MATLAB Coder. The converted function 

required additional modification and optimization since it 

introduced many redundant loops and utilized standard C/C++ 

functions that were incompatible with the Arduino library. For 

example, the optimization process included removing 

unnecessary arrays that kept track of data as it progressed 

through the function. These arrays made the code more 

readable and easier to follow along, but they occupied 

enormous amounts of contiguous memory that was not 

available on the microcontroller. Also, as mentioned 

previously, the Jacobian was stored on an SD card; thus, 

matrix multiplication with the Jacobian had to be modified to 

facilitate this. This was achieved by parsing through the 

Jacobian CSV file, storing individual values in a RAM buffer, 

and multiplying these values with their respective matrix 

index. 

In addition to the limitation of on-board memory, the lack 

of computational power could be another challenge. Each 

iteration of the TwIST algorithm involved multiple instances 

of performing matrix multiplication with the Jacobian matrix. 

This could be extremely demanding for a single-core 

microcontroller, such as the nRF52840 [45]. It should also be 

noted that using microcontrollers with multiple processing 

cores could lead to increased power consumption and reduced 

battery life. 

Due to the hardware limitations regarding the lack of 

memory and computational power, the EIT sensing 

experiments for evaluating edge intelligence performance 

were simplified by reducing the number of electrodes on the 

UHMWPE specimens to an 8-electrode configuration. The 

finite element mesh was also reduced from the original 96 × 

96 element mesh to an 8 × 8 element mesh, resulting in a 40 × 

64 Jacobian matrix.  

Following the similar test procedures described in Section 

III.D.3, damages were introduced to the 8-electrode 

UHMWPE samples, and the corresponding relative change in 

boundary voltage distribution was used to perform the 

conductivity reconstruction on the DAQ system. The same 

reconstruction was also performed on a personal computer 

(PC) with the original TwIST algorithm as a comparison. 

IV. RESULTS AND DISCUSSION 

A. Benchmark Testing of the Resistor Network 

The resistor network designed for benchmark testing can be 

simplified into an equivalent resistor between any two nodes 

based on the concept of series and parallel resistances. The 

equivalent resistance value could vary, depending on which 

two electrodes were chosen for measurements. Based on this, 

the performance of the current source in the DAQ system 

could be evaluated by characterizing its behavior when 

subjected to various resistive loads. In addition, by applying 

the Kirchhoff Voltage Law to the resistor network, it was 

expected that the voltages at each node would be different. 

The voltages at each node were measured using the DAQ 
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system and compared to their theoretical values obtained from 

LTSpice-based simulations. 

Fig. 7(a) shows a configuration where current was injected 

into A20 and out of A32. The experimental measurements, 

indicated by the red line in Fig. 7(b), matched closely with 

those from the simulation, indicated by the blue line. 

Additional tests were performed with various electrode 

injection pairs, and the results were consistent across all tested 

configurations. It should also be noted that there was about a 

2.36% error between the theoretical and experimental voltage 

measurements. This was likely attributed to imperfections in 

circuitry and/or Joule heating. Overall, the performance of the 

current source was deemed sufficiently accurate and reliable. 

B. Measurement Noise and Kalman Filter-Based Signal 

Processing 

In this study, the noise level in DAQ measurements was 

quantified using the same resistor network. Fig. 8 shows an 

example of unfiltered and filtered signals within a one-second 

time window, represented by the orange and blue lines, 

respectively. The orange and blue shaded regions highlight the 

unfiltered and filtered signals’ range within two standard 

deviations, respectively. Here, the vertical axis represents 

unitless digital values ranging from 0 to 4095, corresponding 

to a 12-bit resolution ADC. With an analog reference voltage 

of 3.3 V, each unit of the ADC value corresponds to ~ 0.8 mV. 

Upon converting to millivolts, the standard deviations for the 

unfiltered and filtered signals were 5.32 mV and 0.51 mV, 

respectively. In addition, it was found that the signal-to-noise 

ratio was increased from 66.23 dB to 86.76 dB by applying the 

Kalman filter, which indicated that the noise in the measured 

signals was effectively reduced. 

 

 
Fig. 8. Signal comparison between unfiltered and Kalman-

filtered ADC measurements within a one-second time 

window. 

C. Comparison Between DAQ Measurements and EIT 

Forward Problem Simulations 

The goal of this comparison is to verify whether the 

experimental setup using the developed DAQ system along 

with the conductive UHMWPE as the damage sensing 

material yields comparable measurements to the EIT forward 

problem solved with EIDORS. In Fig. 9, the red line 

represents the voltage measurements from the EIT DAQ 

system performed on a UHMWPE sample, and the blue line 

represents the theoretical values calculated from the EIDORS-

based forward problem on an assumed homogenous medium. 

It was found that the experimental measurements obtained 

using the DAQ system were highly similar to the simulated 

voltage response, which further confirmed the measurement 

accuracy and reliability of the DAQ hardware. The minor 

discrepancies were hypothesized to be due to potential 

deviations in electrode positioning and electrode contact 

impedance on the experimental specimens. In addition, the 

conductivity distribution of pristine UHMWPE samples may 

 
Fig. 7. (a) Resistor network schematic showing current 

flowing into A20 and out of A32. (b) Experimental voltage 

distribution measured across all electrodes compared to 

theoretical values corresponding to (a). 

 

 
Fig. 9. Experimentally measured boundary voltage 

distribution of a 16-electrode UHMWPE sample overlapped 

with the theoretical values simulated from the EIT forward 

problem on a uniform homogenous material. 
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not be perfectly uniform as assumed in the EIT forward 

simulations. 

D. Conductivity Distribution Reconstruction of the 16-

Electrode Configuration 

The first set of EIT damage sensing experiments was 

conducted on the 16-electrode UHMWPE samples. Here, 

damages (i.e., holes) were cut out of the material to introduce 

an area of high impedance at different locations (i.e., four 

corners) on the samples. The changes in boundary voltage 

distribution between the damaged and undamaged samples 

were used as inputs for the EIT reconstruction algorithms, 

including the iterative Gauss-Newton algorithm and the 

TwIST algorithm. First, the hyperparameters in the inverse 

algorithms were selected based on the samples with the most 

anomalies in each test to achieve the optimal reconstruction of 

those cases. Then, the selected hyperparameters were used for 

the remaining reconstructions in each corresponding test. 

More details on the hyperparameters in the EIT inverse 

algorithms can be found in [31]. Fig. 10(a) - 10(d) and 10(e) -

10(l) show the images of damaged samples and their 

correspondingly reconstructed conductivity distributions using 

the two inverse algorithms, respectively. According to the 

color bars, blue regions in Fig. 10(e) - 10(l) indicate areas of 

decreased conductivity compared to the baseline conductivity, 

whereas the red and yellow regions indicate areas of increased 

conductivity. It was clear that the voltage measurements from 

the DAQ system could be utilized for both inverse algorithms 

to detect damages at different locations on the specimens. The 

locations of reconstructed anomalies also matched well with 

those of actual damages. To quantify and compare the 

performance of the two inverse algorithms, the conductivity 

distributions reconstructed from both were evaluated based on 

their pixel values. To be more specific, the blur radius was 

used to rigorously quantify the reconstruction quality and 

resolution [46], [30], [47]. Here, the blur radius (BR) was 

defined as 

 𝐵𝑅 =  √
𝐴𝑅

𝐴0

 (11) 

where A0 is the total sensing area of the domain and AR is the 

area with significant changes in reconstructed conductivity. AR 

can be quantified by the following expression: 

 

 
𝐴𝑅 = ∑ 𝐴𝑖

𝑁

𝑖=1
  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑡ℎ𝑎𝑡 𝛿𝜎𝑖 ≥
1

2
max (𝛿𝜎𝑖) 

(12) 

 

where N is the total number of elements whose conductivity 

values are above the threshold. Equations (11) and (12) show 

that higher resolution reconstructions will lead to a smaller BR 

value. In other words, reconstructed anomalies with blurred 

features would occupy more area in the sensing domain and 

vice versa. The calculated blur radii of the two inverse 

algorithms are shown in Fig. 11. 

It can be observed that for all four configurations with 

anomalies introduced, the images reconstructed with the 

TwIST algorithm exhibited lower blur radii compared to those 

reconstructed with the Gauss-Newton algorithm. This was 

consistent with visual inspection of the reconstruction results 

(i.e., Fig. 10(e) - 10(h) compared to Fig. 10(i) - 10(l)). In other 

words, the compressed sensing technique could effectively 

improve the accuracy and resolution of EIT reconstruction. 

Therefore, the remaining reconstructions performed in the EIT 

damage sensing experiments focused on using the compressed 

sensing TwIST algorithm. 

Two additional sets of experiments were also conducted to 

further evaluate the DAQ system’s performance in detecting 

damage-induced conductivity changes elsewhere on the 

UHMWPE samples. Fig. 12 and 13 show the reconstructed 

conductivity maps corresponding to damage scenarios where 

multiple damages were introduced along the edges and near 

the central regions, respectively. 

 
Fig. 10. (a-d) Optical images of a 16-electrode UHMWPE 

sample with introduced corner damages. Conductivity 

distributions reconstructed using the (e-h) Gauss-Newton 

algorithm and (i-l) compressed sensing TwIST algorithm 

corresponding to the damage scenarios in (a-d), respectively. 

 

 
Fig. 11. Comparison between the Gauss-Newton and TwIST 

compressed sensing algorithms evaluated via blur radius. 
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While the shapes of the reconstructed anomalies did not 

perfectly reflect those of the damages on the UHMWPE 

samples, the locations of the reconstructed anomalies were 

found to match well. The discrepancies in the reconstructed 

anomaly shape were hypothesized as artifacts introduced by 

the reconstruction algorithms when solving the ill-posed EIT 

inverse problem. Other factors such as measurement noise and 

imperfections in electrode spacing can also potentially 

exacerbate the shape discrepancies. Regardless, based on Fig. 

10 - 13, one can clearly observe that the data collected from 

the designed DAQ system, coupled with the compressed 

sensing TwIST algorithm, could effectively detect damage-

induced anomalous conductivity changes at various spatial 

locations across the sensing domain. 

 E. Edge Intelligence 

In this study, the edge computing functionality was 

incorporated with the DAQ system to transform the traditional 

workflow of EIT-based sensing techniques. To address the 

hardware limitations in memory and computational power, the 

EIT damage sensing experiments were conducted with fewer 

number of electrodes (i.e., 8-electrode sample configuration) 

and a coarser finite element mesh to simplify the inverse 

reconstruction. The damages were introduced in the same 

manner as Section IV.D.  

Fig. 14(a) - 14(d) and 14(e) - 14(h) show the images of a 

damaged UHMWPE sample and their corresponding 

reconstructed conductivity distributions performed using the 

nRF52840 Feather microcontroller in the DAQ hardware, 

respectively. It was found that, despite the low resolution, 

damages could still be detected and spatially located via 

performing the conductivity reconstruction on an edge device. 

Also, the reconstruction resolution was arguably sufficient to 

distinguish each anomaly apart from each other. 

Several attempts have been made to improve the 

reconstruction resolution. Due to the microcontroller’s limited 

memory capacity, a finer mesh utilized more on-board 

memory for the mutable arrays and repeatedly led to crashes 

when performing the reconstruction algorithm. Even if there 

was sufficient memory, the computational power of the 

microcontroller further constrained the performance of EIT 

reconstruction algorithm. For the TwIST algorithm used in 

this study, it took the microcontroller about seven minutes to 

complete each reconstruction. This computational time would 

have increased exponentially with refined mesh resolution. It 

was found that when performing EIT reconstruction on the 

edge devices, the most computationally intensive task was 

matrix multiplication with the Jacobian matrix in the inverse 

algorithm. The main contributing factor, as previously 

mentioned in Section III.E, was the fact that the Jacobian 

needed to be accessed by parsing through a CSV file on an SD 

card rather than with on-board RAM or flash memory. 

Therefore, the long reconstruction time suggests that directly 

adapting traditional, iterative EIT reconstruction algorithms 

for low-computational edge devices may not be a viable 

 
Fig. 14. (a-d) Optical images of an 8-electrode UHMWPE 

sample with multiple damages on the corners. Conductivity 

distributions reconstructed with (e-h) the nRF52840 

microcontroller and (i-l) a PC corresponding to the damage 

scenarios in (a-d), respectively. 

 

 
Fig. 13. (a-c) Optical images of a 16-electrode UHMWPE 

sample with multiple damages near the central regions. (d-f) 

Reconstructed conductivity distributions corresponding to the 

damage scenarios in (a-c), respectively. 

 

 
Fig. 12. (a-d) Optical images of a 16-electrode UHMWPE 

sample with multiple damages on the edges. (e-h) 

Reconstructed conductivity distributions corresponding to the 

damage scenarios in (a-d), respectively. 
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solution for real-time analysis. As a potential future direction 

to enhance the EIT edge computing performance, one may 

develop more efficient EIT algorithms to better accommodate 

the limited computational capacity of edge devices. 

To demonstrate that the data collected using the DAQ 

system for this 8-electrode sample configuration was still of 

high quality, the voltage measurements were further processed 

using a PC (i.e., with sufficient hardware memory and 

computational capacity) for comparison. The same mesh size 

as Section IV.D was used here for the reconstruction. Fig. 

14(i) - 14(l) show the reconstructed conductivity distributions 

corresponding to the multiple damages, where the detected 

anomalies were highly defined. The position of each anomaly 

also matched very well with those in the UHMWPE samples. 

This indicated that the data collected from the DAQ system 

was reliable and accurate, and the relatively low quality of 

reconstruction results shown in Fig. 14(e) - 14(h) indeed 

resulted from the edge device’s computational capacity. 

V. CONCLUSION 

This study aims to transform the traditional workflow for 

EIT measurement and data processing with a novel, high-

performance DAQ system. The EIT DAQ system developed in 

this study featured compact footprint, high portability, 

wireless communication, low cost, interfacing with 

smartphone, versatility for various electrode configurations, 

and edge intelligence functionality. Benchmark tests were 

performed by comparing the DAQ measurements with 

circuitry simulation and EIT forward problem simulation. The 

DAQ hardware was demonstrated capable of obtaining stable 

and accurate voltage measurements. To enhance the signal 

quality for ensuring reliable EIT inverse reconstruction, an 

optimized Kalman filter was implemented to process the raw 

measurements, which effectively reduced the noise level. 

Then, the DAQ system was coupled with EIT inverse 

algorithms, including the iterative Gauss-Newton and 

compressed sensing TwIST algorithms, to perform a series of 

spatial damage detection experiments. The DAQ 

measurements were compatible with both reconstruction 

algorithms, but the compressed sensing algorithm showed 

higher reconstruction resolution and accuracy, which was 

consistent with the theory. In addition, to achieve the novel 

edge computing function, the compressed sensing algorithm 

was compiled into a C/C++ library and implemented onto the 

microcontroller in the DAQ system. EIT sensing experiments 

showed that the conductivity distribution of the material of 

interest could be successfully reconstructed on the DAQ 

system itself (without using an external PC).  

It became apparent that modifying traditional, iterative EIT 

reconstruction algorithms for edge deployment may not have 

been the most effective solution. Future research will 

investigate alternative approaches to perform EIT conductivity 

reconstruction more efficiently on the microcontroller to 

overcome the current limitations associated with on-board 

memory and computing capacity. One possible approach is to 

implement machine learning/artificial intelligence-based 

reconstruction algorithms onto the EIT edge devices. Also, 

other capacities of EIT edge intelligence will be investigated, 

such as damage identification and damage severity 

classification. In addition, regarding the DAQ hardware itself, 

additional efforts will be made to further reduce its spatial 

footprint. 

Overall, this study represents a crucial step for advancing 

the development of high-performance EIT DAQ systems with 

edge intelligence for applications in structural health 

monitoring and wearable/implantable technologies.  
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