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A Machine-Learning Approach to Biosignature Exploration

on Early Earth and Mars Using Sulfur Isotope and Trace
Element Data in Pyrite

Maria C. Figueroa,' Daniel D. Gregory? Kenneth H. Williford? David J. Fike* and Timothy W. Lyons'

Abstract

We propose a novel approach to identify the origin of pyrite grains and distinguish biologically influenced
sedimentary pyrite using combined in situ sulfur isotope (9°*S) and trace element (TE) analyses. To classify
and predict the origin of individual pyrite grains, we applied multiple machine-learning algorithms to coupled
0**S and TE data from pyrite grains formed from diverse sedimentary, hydrothermal, and metasomatic proc-
esses across geologic time. Our unsupervised classification algorithm, K-means++ cluster analysis, yielded six
classes based on the formation environment of the pyrite: sedimentary, low temperature hydrothermal,
medium temperature, polymetallic hydrothermal, high temperature, and large euhedral. We tested three super-
vised models (random forest [RF], Naive Bayes, k-nearest neighbors), and RF outperformed the others in pre-
dicting pyrite formation type, achieving a precision (area under the ROC curve) of 0.979 = 0.005 and an
overall average class accuracy of 0.878 + 0.005. Moreover, we found that coupling TE and 6**S data signifi-
cantly improved the performance of the RF model compared with using either TE or 6°*S data alone. Our
data provide a novel framework for exploring sedimentary rocks that have undergone multiple hydrothermal,
magmatic, and metamorphic alterations. Most significant, however, is the demonstrated potential for distin-
guishing between biogenic and abiotic pyrite in samples from early Earth. This approach could also be
applied to the search for potential biosignatures in samples returned from Mars. Key Words: pyrite—biosigna-
tures—machine learning—trace elements—sulfur isotopes. Astrobiology 24, 1110-1127.

1. Introduction

C urrent methods for identifying signatures of past life are
complicated by the rarity of unambiguous fossils and
difficulties associated with preservation of ancient organic
materials (e.g., Brasier et al., 2005). However, minerals that
form through direct or indirect biological processes, while
incorporating trace elements (TEs) in concentrations that are
proportional to those in the surrounding fluid, can provide
details about past environmental conditions and about the life
present at the time of formation. In addition, advances in spa-
tially resolved geochemical techniques for analyzing discrete

mineral grains can significantly minimize the overprinting
effects potentially present in bulk-sample techniques.

Pyrite (FeS,), the most common metal sulfide mineral at
Earth’s surface (Rickard and Luther, 2007), can form
through multiple pathways. These include abiotic chemical
precipitation within magmatic and volcanic/hydrothermal
systems as well as through biologically mediated pathways
in sedimentary systems. In this context, biogenic pyrite is
defined as containing sulfur that experienced recent and
local metabolic processing, in contrast to abiotic pyrite that
incorporates sulfur without contemporaneous metabolic
involvement.
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EXPLORING PYRITE AS A BIOSIGNATURE WITH ML

Typically, pyrite formation in sedimentary deposits ini-
tiates with sulfur-metabolizing microorganisms. Generally,
pyrite forms when reactive iron reacts with hydrogen sulfide
(H,S) produced primarily from microbial sulfate reduction
(MSR). In this process, sulfate-reducing bacteria reduce sul-
fate (SO,%) to H,S. This biological process can be repre-
sented by the general equation: SO,* + 2CH,O — H,S +
2HCO;5™ (Canfield, 2001). Once H,S is produced, it can react
with iron (Fe’*) in the environment to form pyrite. The sim-
plified pyrite formation can be represented by the general
equation: Fe** + 2H,S — FeS, + 4H" (Berner, 1984; Can-
field et al., 1992; Rickard, 2012; Rickard and Luther, 2007).

In addition, other sulfide-producing microorganisms can
also contribute to pyrite formation. Sulfur-disproportionating
bacteria, for example, can produce H,S from intermediate
sulfur species, such as elemental sulfur (SO), which can con-
tribute to the formation of pyrite (Picard et al., 2016;
Thamdrup et al., 1993; Fike et al., 2015). The metabolic
processes of sulfur-metabolizing microbes result in large
shifts toward lighter sulfur isotopes (328 relative to 34S),
resulting in comparatively low 6**S,, values that are often
considered indicative of life (Canfield and Teske, 1996; Can-
field and Thamdrup, 1994; Fike et al., 2015; Jgrgensen et al.,
2019).

Although biogenic processes are the primary contributors
to sedimentary pyrite formation, abiotic processes, such as
thermochemical sulfate reduction (TSR), can also occur dur-
ing late-stage diagenesis via sulfate reduction linked to
organic matter and hydrothermal heating (>110°C) (Jiang
etal., 2018, 2015; Machel, 2001; Machel et al., 1995). Pyrite
formed via TSR generally results in **S enrichment relative
to microbially mediated pyrite (Kiyosu and Krouse, 1990;
Machel, 2001; Machel et al., 1995). However, distinguishing
biogenicity solely based on §°*S values becomes challenging
due to overlapping signatures influenced by various factors
such as the source and availability of sulfur, system tempera-
ture, and disproportionation mechanisms (e.g., Eldridge
et al., 2016; Marini et al., 2011; Tino et al., 2023).

As pyrite forms, it incorporates a wide variety of TE in
concentrations that can be characteristic of its environment.
Recent work using in situ micro- and nanoscale measure-
ments from sedimentary pyrite deposited on the seafloor has
shown that Mo and Ni content in pyrite is linked to changes
in local and global oxygen availability, whereas Co, Cu, and
Zn are associated with variations in nutrient availability and
productivity (Johnson et al.,, 2015; Large et al., 2014;
Mukherjee and Large, 2020; Sweere et al., 2023). Thus, TE
concentrations in pyrite serve as an indicator of paleoenvir-
onmental conditions and, in particular, allow for the distinc-
tion between low- and high-temperature origins (Gregory
et al., 2019b). Our results and related statistical modeling
suggest that this combination of 6>*S and TE content could
enable the recognition of pyrite as a biosignature on early
Earth and Mars.

1.1. Sulfurisotopes in pyrite

Through geologic time, the burial of oxidized and reduced
S species in marine sediments has been closely tied to the
redox state of Earth’s atmosphere. For instance, the lack of
oxygen in the Archean atmosphere led to low sulfate concen-
trations in the oceans and a small >*S/*%S fractionation effect
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in the resulting pyrite, relative to the fractionations after the
Great Oxidation Event ~2.3-2.4 billion years ago (e.g.,
Habicht et al., 2002; Crowe et al., 2014). Since isotopic sig-
natures of S metabolisms are among the earliest evidence of
life (ca. 3.45Ga; e.g., Bontognali et al., 2012; Ohmoto et al.,
1993; Shen et al., 2001), identifying S isotope fractionations
unambiguously associated with microbial cycling is of
immense interest in studies of early life.

Pyrite S isotopes have been used to reconstruct the early
evolution of sulfur metabolisms and ocean redox chemistry
(Canfield and Teske, 1996; Fike et al., 2015; Ohmoto et al.,
1993; Shen et al., 2009; Johnson et al., 2015). However,
these isotope records alone are not conclusive biosignatures,
as large ranges in (334Spy, including low 634Spy values, can
be explained by multiple nonbiological (abiotic) processes
(Wernette et al., 2018).

Biogenic S isotope fractionations in sedimentary pyrite
are affected by multiple factors, including the source of sul-
fur, the rate and extent of MSR, and the formation and pres-
ervation of pyrite. These factors can track evolving redox
chemistry of the oceans and the life within those waters
(Leavitt et al., 2013; Sim et al., 2019, 2011). Moreover,
recent studies are in agreement that sedimentary pyrite for-
mation is affected by global and local processes (Atienza
et al., 2023; Fike et al., 2015; Gomes et al., 2018; Gomes
and Hurtgen, 2015; Gorjan et al., 2012; Pasquier et al.,
2021a, 2021b). Global processes include the evolution of
seawater sulfate concentrations and isotopic composition,
which reflect the input and output of sulfur over long time-
scales related to weathering, volcanism, burial, and subduc-
tion (Jgrgensen et al., 2019; Zhu et al., 2021). Local
processes include the availability of organic matter, iron, and
oxygen, which affect the biological community and the asso-
ciated fractionations. Also important is the degree of basin
restriction, which affects the sulfate inventory and the iso-
topic exchange (Fike et al., 2015; Pasquier et al., 2021a,
2021b). These processes, although informative about the his-
tory of the sedimentary environment, are major drivers of
variability in the (3348py record.

Pyrite that reflects purely abiotic processes typically has
0%*S values characteristic of its formation processes. For
example, pyrite that forms from magmatic-hydrothermal or
metamorphic processes typically has 0°*S values close to the
~0 %, typical of mantle-derived sulfur (Hutchison et al.,
2020; Labidi et al., 2015). However, in certain hydrothermal
systems, the formation of pyrite can involve the reaction of
sulfate minerals (i.e., anhydrite or barite) with hydrothermal
fluids, which can result in significant S isotope fractionation
between the reactants and products. The extent of this frac-
tionation depends on the temperature, pressure, redox condi-
tions, and the kinetics of the reactions. The typical 5°*S
values for pyrite formed through these processes can range
from approximately —109,, to +109,,, depending on the frac-
tionation effect and the initial 9**S of the sulfate (Hutchison
et al., 2020; Labidi et al., 2015; LaFlamme et al., 2018).

Moreover, TSR can have fractionation effects similar to
the generally interpreted 6°*S fractionation (>21%,) indica-
tive of biological origin (Machel, 2001; Tino et al., 2023).
The fractionation effect for TSR depends on the temperature
(>150°C), the equilibrium state, and the kinetic effect of the
reaction, which can cause the fractionation to be either
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higher or lower than the theoretical equilibrium value (Cai
et al., 2003; Hu et al., 2022; Meshoulam et al., 2016). Conse-
quently, TSR has the potential to produce pyrite with 5°*S
values similar to biogenic pyrite; however, TE enrichment
patterns and morphologies of TSR-derived pyrite differ from
those of biogenic pyrite (Hu et al., 2022; Machel, 2001; Tino
et al., 2023). For instance, TSR results in a more pronounced
enrichment of TEs reflective of the composition of hydro-
thermal fluids, whereas MSR-related enrichment is generally
less pronounced and more selective (e.g., Sun et al., 2024).
In addition, the higher temperature in TSR leads to larger
and well-defined crystals compared with the frequently
observed framboidal morphology in microbially mediated
pyrite, reflecting biological processes and organic matter
interactions (e.g., Liu et al., 2019).

1.2. Pyrite trace elements

During formation, pyrite incorporates a variety of TE in
concentrations that can be characteristic of its environment.
TE sources are variable and can come from the water col-
umn, hydrothermal fluids, and detrital material, including
metals adsorbed onto Fe(hydr)oxides and organic matter.
For sedimentary pyrite, the TE content is expected to scale
with the concentrations, and thus bioavailability, of dis-
solved TEs within the surrounding water column or pore flu-
ids. Redox-sensitive TEs such as Mo, Cu, and Zn are useful
in revealing redox conditions in the water column and during
diagenesis, and varying concentrations over long timescales
can align with marine inventories and thus prevailing redox
conditions in the biosphere (Gregory, 2020; Gregory et al.,
2017; Large et al., 2017, 2014). More specifically, a combi-
nation of TEs (U, Mo, Cr, and Co) can be used to determine
whether the overlying water column was oxic, suboxic,
anoxic, or euxinic (Algeo and Lyons, 2006; Anbar et al.,
2007; Gregory et al., 2015; Lyons et al., 2003; Morford
et al., 2001; Tribovillard et al., 2006). An advantage of using
TE concentrations lies in their strong retention in pyrite dur-
ing subsequent hydrothermal and metamorphic events—up
to greenschist facies metamorphism (Genna and Gaboury,
2015; George et al., 2018; Large et al., 2007).

There can be disagreement about the role of hydrothermal
fluids for syngenetic metal enrichments in the rock record;
however, established patterns, including those presented in
the present study, help us make that distinction. For example,
pyrite formed in high-temperature hydrothermal environ-
ments (i.e., iron oxide copper-gold [IOCG] deposits) con-
tains greater amounts of Co, Ni, Te, and Se and lesser
amounts of T1, Mn, Sb, and Hg compared with pyrite formed
in lower-temperature environments (i.e., sedimentary depos-
its; Reich et al., 2013; Keith et al., 2016; Sykora et al., 2018;
Gregory et al., 2019b). There is, nonetheless, significant
overlap in TE concentrations between biologically mediated
sedimentary pyrite and abiotically precipitated forms, which
elevates the relevance of this study.

1.3 Machine learning

Recent advances in machine learning (ML) have the
potential to advance our understanding of complex geochem-
ical patterns and the processes they reflect. ML algorithms
can improve pattern identification from large and diverse
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datasets, improving interpretations, predictions, and decision
making. This value is elevated by the significant overlap that
exists for 534Spy and TE data from different pyrite formation
types, specifically between sedimentary and hydrothermal
processes. These relationships are not easily resolved by tra-
ditional statistical techniques based on empirical methods
that subjectively group data. An important distinction from
commonly used statistical models is that ML models can
find patterns in data without requiring assumptions, which
offers greater prediction accuracy for poorly understood
associations. ML techniques have been used successfully in
previous work to predict ore deposit type (Gregory et al.,
2019b). Building on these datasets and associated successes,
we couple new and previously published data of TE and
534Spy from pyrite grains from diverse sedimentary and
hydrothermal deposits across geologic time. Beyond value
added to the TE approach, we specifically explore whether
the inclusion of S isotope data improves our ability to iden-
tify pyrite origins with confidence.

2. Methods

Data preprocessing was primarily executed in Python,
with random forest (RF) classifier training and prediction
evaluation conducted in the open-source data mining soft-
ware platform Orange (DemsSar et al., 2013). This project
arose from multiple published pyrite analyses, including
from the Geological Survey of Western Australia (Belousov
et al., 2015) and the Geological Survey of South Australia
(Gregory et al., 2015). Additional data from various ore
deposits have been generated, leading to the current dataset
of 865 pyrite analyses. The data are represented in Figure 1.
Details follow, and a thorough statistical summary is avail-
able in the Supplementary Data S1.

2.1. Trace elements

LA-ICP-MS data are from a number of different sources
and represent those in previously published peer-reviewed
articles (Gilbert et al., 2014; Gregory et al., 2019a, 2019b,
2015). For the present and previous studies, LA-ICP-MS
facilities at the University of Tasmania, Australia, and the
University of Toronto, Canada, were used to analyze pyrite
TE concentrations. Both facilities followed the same proto-
col with spot size and standards. Detailed analytical proce-
dures are available in the work of Gregory et al. (2019a). All
samples were analyzed for Co, Ni, Cu, Zn, As, Mo, Ag, Sb,
Te, Au, Tl, and Pb, and these are the elements emphasized
here. Beam size varied from 10 to 100 um, depending on the
size of the pyrite analyzed and the goals of the primary
study. For each analysis, background was measured for 30 s
before laser ablation periods of 40 to 60 s. The analyses
were conducted in a pure He atmosphere, and Ar was added
to the gas stream before injection into the ICP-MS to
improve aerosol transport. Standards were analyzed at the
start and end of each sample change and approximately
every 25 analyses in between. The standards STDGL3
(Belousov et al., 2015) and GSD-1G (Guillong et al., 2005)
were used. The software package SILLS (Guillong et al.,
2008) was used for data reduction and concentration
calculations.
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FIG. 1. Radial visualization of the dataset. Left: Distribution of the dataset across all 12 trace elements (TEs) delineated
in terms of pyrite deposit type. All samples used in this study are included. Right: Distribution of the dataset across all 12
TE and 6**S data points. Each axis represents one of the 12 TEs. Data points are plotted based on their values for these ele-
ments, with their positions reflecting a balance of all TE concentrations. Proximity of a point to an axis indicates a stronger

influence of the corresponding TE.

2.2. Sulfur isotope analysis

In situ S isotope analyses were completed using the sensi-
tive high-resolution microprobe (SHRIMP SI) at the Austra-
lian National University, with a spot size of 20 p and 5-13
analyses conducted as a linear transect across the samples.
The instrumental uncertainties for the SHRIMP SI measure-
ments were below 0.39, (20). The detailed SHRIMP SI ana-
lytical procedures, including the standards used, are
available in the work of Gregory et al. (2019b). SIMS meas-
urements were collected on the Cameca IMS 7f-GEO at
Washington University. Replicate analyses were conducted
on an in house standard (5°*S = 0.13 + 0.30%,; Meyer et al.,
2017) and a Balmat standard (6**S = 15.1%,). The 2¢ stand-
ard deviation was 0.39,,. The isotope values are expressed in
standard delta notation (5348) as per mil (%,) deviation from
the Vienna-Canyon Diablo Troilite reference standard.

2.8. Data processing

To mitigate the influence of TEs from micro-inclusions of
other minerals within the pyrite that might be included dur-
ing the ablation, the data were screened to ensure that no
analyses had > 1% Zn, 2% As, 1% Cu, 1% Ni, and 2% Co,
as suggested by Gregory et al. (2015). For measurements
that were below the detection limit, we imputed half the
detection limit for those elements. This approach acknowl-
edges the presence of the element at a low concentration
while avoiding introducing artificial zeros that could skew
the data. Zeros and null values represent true non-detections
by the instrument and were left as null in the dataset.

Pyrite groups were defined by data that correspond to the
same deposit type (e.g., carbonaceous shales) as classified
through previous studies of each. In instances where > 60%
of values for a specific element within a pyrite group were
below detection limit or missing, we excluded that group
from the master dataset. This cutoff was selected to maintain
a balance between preserving a substantial sample size and
ensuring the integrity of data quality. Outliers, identified by
using the local outlier factor method, a Euclidean distance
technique (Alghushairy et al., 2021), were also systematically

removed to enhance the robustness of the dataset for subse-
quent analyses.

2.4. Data clustering

In the present study, we used data clustering to categorize
data points with similar attributes and determine the optimal
number of classes for ML models. To accomplish this, we
first adjusted the data by normalizing the features (the 12
TEs of interest and 534Spy) to have values between O and 1.
This allows for an even evaluation and comparison of data
values per feature and improves the clustering analysis out-
comes. We then applied the K-means++ clustering algorithm
(Arthur and Vassilvitskii, 2007) to the normalized data using
the software package scikit-learn in Python. K-means++ is
an unsupervised ML technique for grouping (clustering) data
based on the similarity of their features. This method groups
data by initiating a randomized smart centroid and selecting
the rest of the centroids based on the maximum square
distances.

To determine the optimal number of clusters, we used the
silhouette coefficient method (Rousseeuw, 1987), which
measures the similarity of a data point to its own cluster
compared with other clusters and ranges from —1 to 1. A
higher silhouette coefficient indicates a better-defined clus-
ter, whereas a negative coefficient indicates that the data
point may be better placed in a different cluster.

2.5. Model selection

We used Orange, an open source ML and data visualiza-
tion package in Python (Demsar et al., 2013), for the devel-
opment of ML models. Three supervised machine learning
algorithms were optimized for the dataset: RF, Naive Bayes,
and k-nearest neighbors (K-NN). These algorithms were
selected given their capabilities to perform multivariable
classifications. In addition, these algorithms have been used
for similar Earth science applications (e.g., Shelton et al.,
2021; Lui et al., 2022).

The RF algorithm uses a collection of relatively uncor-
related decision trees in which each tree predicts the
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classification of an unknown sample. The class that most
of the decision trees produce is ultimately the final predic-
tion (e.g., Breiman, 2001). The naive Bayes classification
method is a simple probabilistic classifier that uses Bayes’
theorem and assumes each of the features is independent
and contributes equally to the model outcome (Dai et al.,
2017; Zhang and Sakhanenko, 2019). It classifies new sam-
ples based on the maximum a posteriori decision rule, which
assigns a data point to a class by the highest posterior proba-
bility from the feature values and assumes that features are
independent from each other. The K-NN algorithm uses
labeled input data, in this case by pyrite formation environ-
ment, and produces a distance matrix to calculate the distance
between the training data and the new data (Campos et al.,
2016; Cover and Hart, 1967). Any new data are classified
based on the class of the nearest known data points. The code
used in the present study is available at https://github.com/
mcfig/pyrite-ML.

2.6. Model training and validation

A 70/30 split was made on the dataset to divide it into a
training set and a validation set. The sampling split was
made following the replicable (deterministic) method and
the stratified method to ensure that they follow the composi-
tional proportions of the original dataset. Confusion matrixes
were produced to compare the performance of the model for
each class. Overall model performance was determined by
using statistical results for false positives and false negatives
for each algorithm (i.e., accuracy, recall, and precision). In
addition, the receiver operator characteristic (ROC) curve
and the area under the ROC curve (AUC) (Mandrekar, 2010)
were used as evaluation metrics. The ROC curve plots true
positive rates against false-positive rates; subsequently, the
AUC summarizes the ROC curve, representing the probabil-
ity of correctly identifying pyrite types with a single value
(0-1), where 1 indicates perfect discrimination.

3. Results
3.1. Cluster analysis

The K-means++ clustering algorithm was applied with the
number of clusters varying from 2 to 10. The optimal number
of clusters was determined to be five based on the silhouette
coefficient method, as it gave the highest silhouette score
(0.847). Cluster 1 (C1) contained a larger portion of the data
points with 44.6%; C2 contained 20.5%, whereas C3, C4,
and C5 contained 14.5%, 12.6%, 7.8%, respectively. To visu-
alize the clusters, the data points are plotted in Figure 2 as a
heatmap that highlights the distinctive feature values associ-
ated with each cluster. Observations within each cluster show
that they differ slightly in their feature values, yet data points
are effectively separated into temperature-dependent groups.
For instance, C1 included all the sedimentary samples as well
as pyrite from orogenic gold deposits (with some exceptions,
see Section 3.2); C2 included all the homogenous large
euhedral pyrite. C3 included the pyrite that formed in low-
temperature hydrothermal fluid deposits (Carlin type and
Irish-type deposits), whereas C4 included all the pyrite from
polymetallic hydrothermal deposits, and C5 included all the
pyrite from high-temperature skarn deposits.

FIGUEROA ET AL.

3.2. Determining classes

With the exception of CI, all the clusters grouped the
pyrite samples according to their temperature of formation
and mineral deposit type. For example, C2 consisted of all
homogenous large euhedral pyrite, whereas C3 contained
pyrite samples formed from low-temperature hydrothermal
fluids (Carlin type and Irish type deposits). C4 included
pyrite samples from polymetallic hydrothermal deposits, and
CS5 consisted of pyrite from high-temperature skarn deposits.
However, CI included all the sedimentary samples, includ-
ing modern marine framboids, pyrites from shales, and syn-
sedimentary (pre-ore) pyrite samples from ore deposits, such
as SEDEX and gold deposits, as well as pyrite data from oro-
genic gold deposits and SEDEX deposits that formed at
higher temperatures (300-450°C; Tan et al., 2022; Zhang
et al., 2022).

Based on these results, we divided the C1 cluster into two
classes: (1) sedimentary and (2) medium temperature. This
approach allowed us to define six distinct classes of pyrite
from the five clusters: sedimentary and medium temperature
(both from C1), low-temperature hydrothermal (C3), poly-
metallic hydrothermal (C4), high-temperature hydrothermal
(C5), and large euhedral (C2). Table 1 summarizes the clas-
sification labels of the pyrite samples based on their tempera-
ture of formation and mineral deposit type. The proportion
of each class was generally well balanced (13—22% of the
total data), except for the high-temperature class, which
comprised only 8% of the total dataset. Despite this observa-
tion, we retained the high-temperature pyrite deposits as a
singular class due to their geochemical significance and rele-
vance in understanding the chemical fingerprint of magmatic
and metasomatic processes in pyrite. In addition, the deci-
sion to label one class as “large euhedral,” diverging from
the temperature-dependent labels assigned to other groups, is
underpinned by the unique characteristics and formation
conditions of these particular homogeneous crystals of
approximately 1 cm® in size.

Large euhedral and homogeneous pyrite crystals are pre-
dominantly found in hydrothermal vein deposits typically
under temperatures of approximately 200—300°C, although
this temperature range can vary depending on multiple fac-
tors such a geothermal gradient and fluid chemistry (Ridley,
2013). However, the key determinants for this pyrite crystal
structure are the slow cooling rate and ample space provided
by the vein systems for crystal growth. The slow growth pro-
cess allows for the systematic exclusion of TE from the crys-
tal structure during growth. By contrast, rapid crystal growth
can trap more TE within the crystal lattice and/or nano-
inclusions. As these crystals continue to grow, their lattices
become increasingly ordered, further reducing the potential
for TE incorporation. The inclusion of these analyses in our
dataset is essential, as they provide an end member for pyrite
depleted in TE that can potentially be found in other plane-
tary bodies, thus contributing to our understanding of pyrite
formation under a broad range of conditions.

Feature heterogeneity within each of the six defined classes
was observed and is presented in Figure 2. In this context,
heterogeneity refers to the variation in TE concentrations and
S values within each of the six classes and indicates that
the data points within a class exhibit a range of values. The
polymetallic hydrothermal class displayed the highest overall
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TABLE 1. CLASSIFICATION OF PYRITE SAMPLES BY TEMPERATURE AND DEPOSIT TYPE
Temperature No. data
Class Deposit Types Range (°C) Analysis Studies
Sedimentary Black shales < 100 272 Gregory et al. (2019a)
D. Liet al. (2019)
Carbonaceous shales J. Lietal. (2019)
Modern sediments Zhang et al. (2022)
Low-temperature Carlin-type gold 100 < T < 300 103 D. Lietal. (2019)
hydrothermal Irish-type Pb-Zn J. Lietal. (2019)
Polymetallic Hydrothermal Breccia 250 < T <450 119 This study
hydrothermal SMS Meng et al. (2020)
10CG Ding et al. (2021)
Medium Orogenic gold 300 < T<450 177 Tan et al. (2022)
temperature High-temperature Zhang et al. (2022)
SEDEX
High-temperature Skarn > 450 58 Ding et al. (2021)
Large euhedral Hydrothermal veins approx. 200 < T < 300 168 Gilbert et al. (2014)

heterogeneity among all features. The sedimentary class
exhibited high heterogeneity in specific features, particularly
in 5348, along with low concentrations of Co, Zn, and Au
compared with the other classes. The medium-temperature
class showed homogeneity in Mo and Co and heterogeneity
in the remaining features. The low-temperature hydrother-
mal class had overall low concentrations in Co, Ni, Cu, Zn,
and Au and showed heterogeneity in the remaining features.
The high-temperature class displayed strong homogeneity in
all features. Finally, the large euhedral class exhibited over-
all low concentrations in all TE, except for Te, and showed
homogeneity in 6°*S values.

3.3. Distribution between pyrite classes

Box plots in figures 3 and 4 illustrate the distribution of
several features (5°*S and TEs) among pyrite classes. The
5**S plot reveals that the sedimentary class has the largest
distribution, with values ranging from —34.19/, to +44.39/,,
including both the lowest and highest values in the dataset.
In contrast, large euhedral has the narrowest distribution,
with an average value of +5.3 £ 0.19,, (Fig. 3). The TEs box
plots (Fig. 4) yielded several noteworthy observations. The
sedimentary class, which is central to our investigation,

exhibits a high degree of variability in all TE concentrations,
as indicated by the extended whiskers in the box plot.
Furthermore, the sedimentary pyrite and polymetallic hydro-
thermal pyrite classes demonstrate similarities in the concen-
trations of Cu, As, and Pb. This is evidenced by comparable
median values (represented by the line inside the box) and
elongated lower whiskers, indicating a degree of heteroge-
neity within these classes. In contrast, the large euhedral
pyrite class emerges as the most distinctive, characterized
by generally lower concentrations and a distribution skewed
toward the upper quartile.

Figure 5 depicts feature associations among pyrite classes,
revealing overall scattering and weak correlations. Specifi-
cally, the sedimentary class exhibits significant scattering
that overlaps with the medium temperature, polymetallic
hydrothermal, and low-temperature hydrothermal classes. In
contrast, the high-temperature class exhibits lower scattering,
associated with overall lower TE abundance and a strong dif-
ferentiation by 6°*S (see Fig. 2), as indicated by the cluster-
ing of data points around the 5**S axis. The large euhedral
class demonstrates the least scattering and is strongly influ-
enced by their Te abundance and 6°*S. Although variations
in TE concentrations among the classes are discernible, the

40 S ‘
0 : —_—
20 ! T
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0 $
-20
=30 — 1
Polymetallic Sedimentary Low Temp Large Euhedral High Med
Hydrothermal Hydrothermal Temperature  Temperature

FIG. 3. Box plot showing the distribution of pyrite classes in relation to 6°*S values. The box plot captures the distri-
bution of the six pyrite classes with respect to their 0°*S values. Each box represents the interquartile range (IQR) of
5%*S for a specific pyrite class, with the median indicated by the central line. Whiskers extend to the minimum and
maximum values within 1.5 times the IQR. Outliers, represented as individual points, are displayed.
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similarities in element concentrations make it challenging to
identify clear trends or patterns solely based on their distri-
bution. A pairwise scatterplot of the data, color coded by
class, is provided in the supplementary information (Supple-
mentary Fig. S2) and further emphasizes the scattering and
complexity of the dataset. These observations underscore the
intricate behavior of TEs in pyrite and the need for ML tech-
niques in classifying pyrite formation types.

3.4. Model evaluation and selection

We evaluated three classification algorithms—RF, naive
Bayes, and K-NN—for their ability to predict pyrite forma-
tion type. Table 2 summarizes the performance of each algo-
rithm in terms of average area under the ROC curve (AUC),
class accuracy (CA), precision, and recall over 10-fold cross
validation.

In the context of our multi-class classification evaluation,
the AUC provides an aggregate measure of how well the
model distinguishes between the various pyrite formation
types. It represents the probability that the model correctly
ranks instances from different classes. RF demonstrated
superior performance with an average AUC of 0.979 + 0.005
and an overall average CA of 0.878 £ 0.005.

To put this into perspective, RF outperformed the other
models by exhibiting 10.9% higher accuracy than Naive
Bayes (CA = 0.792 = 0.005) and 35.5% higher accuracy
than K-NN (CA = 0.648 + 0.008). In addition, higher preci-
sion (0.883 £ 0.005) and recall (0.878 % 0.005) scores for
each class indicate a better performance in classifying both
positive and negative instances for RF when compared with
the other models. Moreover, the low standard deviation of
the RF model (¢ = 0.005, n = 10) indicates good reproduci-
bility and consistency in its performance. Based on these
results, we selected RF as the algorithm of choice for the fol-
lowing stages of model development.

3.4.1. Evaluation of features. To test whether pyrite
0*'S values are useful features for pyrite type identification,
we created three models for comparison. One model had
only the 12 TEs as features (variables), another used only the
53*S values, and the third coupled TE and 534Spy,

In Figure 6, we present the results of cross-validation
tests, with the training set comprising 70% of the data and
the test set containing the remaining 30%, depicted as confu-
sion matrixes. The model utilizing only the TEs as features
achieved an overall CA of 0.943. In contrast, the model rely-
ing solely on 6°*S as the feature attained a lower overall CA
of 0.724. However, when coupling TE with 5 4S, the model
demonstrated remarkable improvement, achieving an overall
CA of 0.991. Specifically for the sedimentary pyrite class,
the TE + 6°*S model achieved perfect AUC, recall, and pre-
cision scores (1.000), whereas the TE model showed lower
scores (AUC = 0.985, recall = 0.867, precision = 0.951), and
the 6>*S-only model scored poorly (AUC = 0.803, recall =
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0.587, precision = 0.628). Our results show that the addition
of 6°*S to the TE dataset significantly enhances the classifi-
cation performance, particularly for sedimentary pyrite,
which is the pyrite formation type of interest in the search
for biogenicity.

3.4. 2 RF prediction scores. To further analyze the per-
formance of the RF classifier in distinguishing pyrite types,
we present a focused examination of prediction scores from
a blind test utilizing pyrite data from seafloor massive sulfide
(SMS) not used during the model training phase (data from
Meng et al., 2020); this effort is depicted in Figure 7. The
model exhibited a robust ability to accurately classify euhed-
ral pyrite (Py-II) from the interior wall and massive pyrite
(Py-1II) from the innermost interior wall. Both pyrite types
were confidently assigned to the polymetallic hydrothermal
class, garnering high prediction scores of 0.88 = 0.09 and
0.97 £ 0.02, respectively.

However, the predictive capability diminished for anhe-
dral pyrite (Py-I) from the outermost chimney zone, with a
confidence score of 0.53 + 0.19 for polymetallic hydrother-
mal. Interestingly, there was a subsequent uptick in the prob-
ability assigned to sedimentary pyrite, reaching 0.22 + 0.06.
Notably, one sample was predicted as sedimentary with a
low probability score of 0.27, followed closely by polymetal-
lic hydrothermal prediction with 0.25.

4. Discussion
4.1. Machine learning for improved pyrite classification

The results of this study demonstrate the potential of ML
to accurately classify pyrite types based on temperature of
formation and deposit type by using TE and 6°*S data. Tradi-
tional statistical methods have inherent limitations due to the
nonlinear relationship between geochemical variables. Our
chosen method for determining classes, K-means++ cluster-
ing, avoids assumptions about data distribution and linear
relationships. This method iteratively minimizes the distance
between data points and centroid, which results in mechani-
cally meaningful clusters compared with traditional methods,
such as hierarchical clustering or principal component analy-
sis. These traditional statistical methods assume that the rela-
tionships among the variables are linear. This assumption
does not hold for our geochemical dataset, where the rela-
tionship among variables can be nonlinear. Pairwise scatter-
plots of the data that further reinforce this argument are
available in the SI (Supplementary Fig. S1-S2). In contrast,
our method can better capture the underlying structure of the
data, resulting in groupings with elevated mechanistic mean-
ing compared with traditional statistical methods.

The observations from the data distributions (Fig. 3-5)
further highlight the greater degree of variability in TE con-
centrations, specifically in sedimentary environments. How-
ever, our use of cluster analysis facilitated the grouping of

>

FIG. 4. Box plot illustrating the distribution of pyrite classes in relation to trace elements. These box plots show the
distributions of pyrite classes in terms of six trace elements—Ni, Cu, As, Pb, Co, and Sb in ppm. Each box represents
the interquartile range (IQR) of trace element values for a specific pyrite class, with the median indicated by the central
line. Whiskers extend to the minimum and maximum values within 1.5 times the IQR, and outliers are depicted as indi-

vidual points.
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FIG. 5. Radial visualization by pyrite classes. Left: Distribution across data for all 12 trace elements (TEs). Right:
Distribution across data for all 12 TEs and °*S. Data points are color-coded into pyrite label classes.

the pyrite data into six distinct classes that further provided
insights into their geochemical variability and the relation-
ships among multiple features.

4.2. Distinguishing diverse pyrite types

4.2.1. Cluster analysis. From the clustering results, we
identified that grouping pyrite by temperature of formation is
an effective way to create robust classes for predictive mod-
els. The subsequent classification method is beneficial for
predictive models in differentiating sedimentary pyrite from
hydrothermal/magmatic-sourced pyrite, as it can give impor-
tant context about its origin and the geological setting in
which it formed.

Traditional geochemical methods for deciphering ancient
high- and low-temperature settings are typically a multistep
process that includes a variety of techniques, including geo-
chemical and isotopic analyses of pyrite and other minerals,
host rocks, and fluids, and followed by implementing quanti-
tative analysis for interpretation—particularly for large data-
sets across multiparameter space (e.g., George et al., 2018;
Gregory et al., 2019a, 2017; Johnson et al., 2015; Large
et al., 2007; J. Li et al., 2019). Here, we provide a novel
approach that requires fewer steps compared with traditional
geochemical protocols. For example, our classifier was able
to accurately distinguish the multiple generations of pyrite
from a gold deposit, as described in the work of J. Li et al.
(2019). It distinguished the syn-sedimentary pyrite data from
the post-depositional pyrite and correctly identified them as
sedimentary and low-temperature hydrothermal, respectively.

4.2.2. Random Forest. RF can accurately classify pyrite
based on temperature of formation and mineral deposit type.
The superior performance of the RF algorithm over Naive
Bayes and K-NN may be attributed to its superior ability to
manage nonlinear relationships. Specifically, the construc-
tion of multiple decision trees using a random subset of fea-
tures allows RF to capture nonlinear relationships and
interactions among the various features, which can be diffi-
cult to capture using Naive Bayes and K-NN. The combina-
tion of multiple decision trees also helps reduce the impact
of outliers and noise on the final prediction. Another advant-
age of RF is that it is less prone to overfitting compared with
Naive Bayes and K-NN. This difference is because bootstrap
aggregation (bagging) and random feature selection reduce
variance in the model and prevent overfitting. Naive Bayes,
on the other contrary, can overfit if the features are strongly
correlated, and K-NN is prone to overfitting if the number of
neighbors is too small.

The initial classification of pyrite based only on TE data
resulted in a misclassification rate of 11% for sedimentary
pyrite as low-temperature hydrothermal and 2.2% as poly-
metallic hydrothermal (Fig. 3). However, when 6°*S data
were added to the classification model, the accuracy for sedi-
mentary pyrite improved significantly, which resulted in a
perfect classification rate. These results further indicate that
0**S values alone are not a strong biological signature; see
the work of Moreras-Marti et al. (2022) for an exhaustive
discussion about S isotopes as potential biosignatures for
Mars exploration. Despite the limitations that S isotopes
alone hold, the sulfur data significantly improve the detec-
tion of sedimentary pyrite when coupled with TE results.

TABLE 2. MoDEL EVALUATIONS. THESE ARE THE AVERAGE VALUES AND STANDARD DEVIATION (~ = 10) FOR THE
EvaLuAaTIiON METRICS FOR EACH MODEL

Model AUC CA Precision Recall

Random forest 0.979 + 0.005 0.878 + 0.005 0.883 + 0.005 0.878 = 0.005
Naive Bayes 0.964 £+ 0.005 0.792 £+ 0.005 0.814 = 0.004 0.792 £ 0.003
K-NN 0.887 = 0.008 0.648 + 0.008 0.654 +0.010 0.648 +0.010

AUC is the area under the ROC curve, CA is class accuracy, precision quantifies the number of positive class predictions that belong to
the positive class. Recall quantifies how many of the true positives in the dataset were classified correctly.
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Our results highlight that combining 5**S with TEs results in
improved distinction of sedimentary pyrite from low-
temperature hydrothermal and polymetallic depositional sys-
tems, which was a limitation in the model when using only
TEs. Therefore, the incorporation of 6>*S data into the pyrite
classification model and categorization of the classes by tem-
perature of formation improves the model’s accuracy, mean-
ing it makes more correct predictions of pyrite type. In
addition, this coupling improves the model’s robustness,
meaning the model is able to provide reliable predictions
despite noise in data distribution.

4.3. Unraveling biological influences in pyrite

The results presented highlight the potential to accurately
distinguish sedimentary pyrite from diverse thermally
impacted types. Although the model shows promise in delin-
eating pyrite formation types, a more extensive understand-
ing of biogenic pyrite is necessary. It is also important to
acknowledge that sedimentary pyrite alone is not exclusively
a biosignature, as debates continue with regard to the biolog-
ical and abiotic involvement in its mineralization process.
Recent work on microbial involvement in the formation of
pyrite spherules shows ambiguity in deciphering between
biologically controlled or induced mineralization (Berg
et al.,, 2020; Duverger et al., 2021; Truong et al., 2023).
However, these findings emphasize that pyrite formation in
the presence of microbial activity often results in distinct
morphologies that are not replicated by abiotic processes.
Therefore, while pyrite itself may not be a definitive bio-
signature, its formation pathway, coupled with detailed geo-
chemical and isotopic analyses, can provide strong evidence
for biogenic processes. This underscores the importance of
using a multifaceted approach in biosignature identification,
where pyrite’s formation environment and associated signa-
tures play a crucial role. Additionally, experimental studies
on abiotic low-temperature sedimentary pyrite formation and
TE incorporation (e.g., Baya et al., 2022, 2021; Le Pape
et al., 2017; Morin et al., 2017) may elucidate the abiotic
controls on TE incorporation and abundance, potentially
serving as a valuable end member for abiotic sedimentary
pyrite.

Further, the role of biology cannot be entirely ruled out
for some low- to moderate-temperature hydrothermal depos-
its. Modern SMS deposits, for instance, are intricately linked
to seawater and chemosynthesis-based influences. Our inves-
tigation reveals that the influence of biology on SMS sam-
ples can be inferred from the RF prediction scores, detailed
in subsection 3.4.2 and depicted in Figure 7. The pyrite sam-
ples from the innermost parts of the chimney were classified
as polymetallic hydrothermal with overall high confidence
(predictive) scores. Further, the confidence score for pyrite
from the outermost chimney zone diminished, accompanied

FIGUEROA ET AL.

by an increased probability of sedimentary origin. This shift
in prediction scores for samples from the outermost zone
suggests that the model can capture influences associated
with sedimentary processes even within a hydrothermal sys-
tem. These diverse influences, in this context, are primarily
driven by exposure to seawater and microbially mediated
sulfate reduction. The associated prediction scores highlight
the importance of considering the complex interplay of proc-
esses within a given system and how they may map out spa-
tially and temporally. Similarly, other low-temperature
hydrothermal deposits such as VMS (the ancient analog of
SMS deposits) and SEDEX systems can also exhibit biologi-
cally derived influences. During ore formation, “cooler”” zones
can lead to the precipitation of pyrite influenced by seawater
and other biologically mediated processes. In addition, the
model’s capability to classify pyrite based on temperature-
dependent conditions carries broader implications concerning
geological processes, particularly in relation to tectonism,
with focus on the polymetallic hydrothermal and medium
temperature classes. For example, IOCG, and orogenic gold
deposits are primarily associated with active tectonic zones
such as orogenic belts and continental margins. Both deposit
types require fracture and shear zones created by tectonic
forces to allow for the movement of mineralizing fluids (Gold-
farb et al., 2005; Ridley, 2013; Skirrow, 2022). The ability of
our classification tool to identify pyrite based on temperature-
dependent conditions thus offers a unique lens for unraveling
the temporal dynamics of Martian tectonism and hydrothermal
activity. This possibility not only contributes to constraining
potential habitable periods on Mars but also aids in validating
and interpreting other biosignatures on Earth and potential
signs of life beyond.

4.4. Addressing dataset limitations

One limitation of this study is the relatively small size of
the dataset used for training and analysis. More data should
help to further validate the results and refine the approach.
This consideration is particularly relevant for the large
euhedral group, which currently exhibits strong association
with Te, likely due to the data originating from a single
pyrite specimen. The limited sample size introduces the risk
of overfitting, whereby the model learns specific patterns
instead of generalizable features. Thus, expanding the data-
set to include a wider range of pyrite samples from diverse
environments and deposit types is crucial for several reasons.
First, it serves to mitigate the risk of overfitting by ensuring
that the model is not tailored to localized characteristics,
thereby fostering a more generalizable and robust model.
Second, the addition of more data provides an opportunity to
subdivide the sedimentary class into syndepositional pyrite
and pyrite formed, altered, or overprints by abiotic proc-
esses. In addition, increasing the amount of hydrothermally

>

FIG. 6. Confusion matrices. Top: Confusion matrix for the model using only TEs. Middle: Confusion matrix for the
model using only 5**S. Bottom: Confusion matrix for the model using both TEs and 5**S. The matrices display the per-
centage of instances, with the actual classes on the y-axis and the predicted classes on the x-axis. Color shades repre-
sent the percentage of predicted instances per class, ranging from 0% (white) to pink-green hues in between, and deep
green representing 100%. The sum on the far right and bottom indicates the total instances per class. For each confu-
sion matrix, recall, precision, and area under the ROC curve (AUC) scores are displayed along the bottom. Also shown

are the overall classification accuracy (CA).
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FIG. 7. Random forest (RF) prediction scores for SMS samples. The pyrite samples are from an active pyrite-domi-
nated chimney from the East Pacific Rise hydrothermal field (data from Meng et al., 2020). Three pyrite types were
defined: Py-I refers to anhedral pyrite from the outermost chimney zone; Py-II is euhedral pyrite from the interior wall;
and Py-III massive pyrite from the innermost interior wall. LTH, low-temperature hydrothermal; PMH, polymetallic

hydrothermal.

influenced pyrite would help in subdividing low-temperature
and polymetallic hydrothermal classes and further refine the
definition of a representative biogenic end member. Third, a
more extensive dataset enhances the applicability of the clas-
sification tool, broadening its scope to include pyrite samples
from a wider array of geologic contexts. These motivations,
combined with our promising initial results, underscore the
importance of additional studies that include in sifu pyrite
TE and 5°'S data.

5. Conclusions and Implications

This study leverages a combination of TE and 5°*S,,, data
to identify the origin of pyrite from various geological
deposits. Using cluster analysis, we grouped pyrite samples
based on their temperature of formation and mineral deposit
type, resulting in six distinct classes: sedimentary, low tem-
perature hydrothermal, medium temperature, polymetallic
hydrothermal, high temperature, and large euhedral. Among
the three classification algorithms evaluated—RF, Naive
Bayes, and K-NN—RF proved most effective in predicting
pyrite formation type. The incorporation of 5°*S values as a
feature for pyrite classification, when combined with TE
data, yielded superior accuracy compared with using TE and
%S values alone.

The implications of this study are significant for determin-
ing the origin of pyrite in diverse geological settings, particu-
larly between biogenic and abiotic formation. The six pyrite
classes identified serve as a foundation for future research
related to biogeochemical processes in pyrite. More broadly,
our investigation highlights the value of using ML techniques
alongside geochemical data to unravel complex geochemical

systems in ways that can facilitate mineral exploration and
biosignature identification.

The classification tool developed in this study has the
potential to identify specific markers of biological activity,
including those retained after alteration of pyrite. Such
insight could guide exploration for signs of early life on
Earth and potentially on Mars. Given the abundance of iron
and sulfur in the Martian crust (Gellert et al., 2015; Toulmin
et al., 1977), their interactions and distributions are closely
linked to the formation and weathering of Fe-S minerals.

Pyrite has been identified in certain Martian meteorites,
such as the NWA 7533 impact breccia, where pyrite is the
major sulfur host (Lorand et al., 2020). Although detection
of pyrite on Mars remains limited, rover-based instrumenta-
tion has observed other Fe-S minerals, such as pyrrhotite
(Vaniman et al., 2014; MacArthur et al., 2019). In addition,
sulfates, which can be a product of oxidative weathering of
pyrite, have been detected through remote sensing and direct
observation at various locations on the Martian surface (Bac-
colo et al.,, 2021; Ehlmann and Edwards, 2014; Squyres
et al., 2004). These observations suggest that Martian pyrite
deposits may indeed exist, particularly under the reducing
conditions below the oxidized surface layers.

The geochemical history of Mars has been significantly
influenced by its sulfur cycle, analogous to the carbon cycle
dominating surficial processes on Earth (Franz et al., 2017;
Gaillard et al., 2013; Halevy et al., 2007). This raises impor-
tant considerations regarding the potential differences in the
sulfur cycle systems between Mars and Earth that could
have implications for the S isotope signatures of Martian
pyrite. Although it is essential to recognize and investigate
these variations, our approach, which leverages terrestrial
pyrite S isotopes and TE as biosignatures, can still provide
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valuable information. Terrestrial studies provide a robust
framework for identifying biogenic influences through
well-established S isotope fractionation patterns and TE
distributions. By applying this framework to Martian sam-
ples, we can develop a baseline understanding of potential
biosignatures.

Future missions, particularly those with sample return as a
primary focus, offer promising possibilities in the search for
evidence of past life on Mars. Future studies should further
investigate how the unique conditions and sulfur cycle
dynamics of early Mars might confound the results when
applying interpretations to Martian samples. This would
enhance our ability to accurately identify and understand
sulfur-related biosignatures on Mars while ensuring our
methodology remains adaptable and relevant across different
planetary contexts.
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Abbreviations Used
AUC = area under the ROC curve
CA = class accuracy
IOCG = iron oxide copper-gold
IQR = interquartile range
K-NN = K-nearest neighbors
(LA-)ICP-MS = (laser ablation) inductively coupled
plasma mass spectrometry
LTH = low-temperature hydrothermal
ML = machine learning

MSR = microbial sulfate reduction
PMH = polymetallic hydrothermal
RF = Random Forest
ROC = receiver operator characteristic
SHRIMP-SI = sensitive high-resolution microprobe — stable
isotope
SMS = seafloor massive sulfide
TE = trace element
TSR = thermochemical sulfate reduction




