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Abstract
Efficient verification algorithms for neural networks often depend on various abstract 
domains such as intervals, zonotopes, and linear star sets. The choice of the abstract 
domain presents an expressiveness vs. scalability trade-off: simpler domains are less pre-
cise but yield faster algorithms. This paper investigates the hexatope and octatope abstract 
domains in the context of neural net verification. Hexatopes are affine transformations of 
higher-dimensional hexagons, defined by difference constraint systems, and octatopes are 
affine transformations of higher-dimensional octagons, defined by unit-two-variable-per-
inequality constraint systems. These domains generalize the idea of zonotopes which can 
be viewed as affine transformations of hypercubes. On the other hand, they can be con-
sidered as a restriction of linear star sets, which are affine transformations of arbitrary H
-Polytopes. This distinction places hexatopes and octatopes firmly between zonotopes and 
linear star sets in their expressive power, but what about the efficiency of decision pro-
cedures? An important analysis problem for neural networks is the exact range computa-
tion problem that asks to compute the exact set of possible outputs given a set of possible 
inputs. For this, three computational procedures are needed: (1) optimization of a linear 
cost function; (2) affine mapping; and (3) over-approximating the intersection with a half-
space. While zonotopes allow an efficient solution for these approaches, star sets solves 
these procedures via linear programming. We show that these operations are faster for hex-
atopes and octatopes than they are for the more expressive linear star sets by reducing the 
linear optimization problem over these domains to the minimum cost network flow, which 
can be solved in strongly polynomial time using the Out-of-Kilter algorithm. Evaluating 
exact range computation on several ACAS Xu neural network benchmarks, we find that 
hexatopes and octatopes show promise as a practical abstract domain for neural network 
verification.
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1 Introduction

The success of deep feed-forward neural networks (DNN) in computer vision and speech 
recognition has prompted applications in critical infrastructure. These applications range 
from using pre-trained perception and speech-recognition modules in safety-critical logic 
(self-driving cars and medical decision making) to learning controllers from reinforcement 
signals [38] to learning succinct representations of formally verified controllers (ACAS 
Xu). The increasing prevalence of DNNs in safety-, privacy-, and social- critical systems 
motivates the focus of the formal methods community [2, 4, 7, 41] in developing verifica-
tion technology to meet the challenge of improving trust in DNNs. Robustness [12, 25], 
safety [24, 30], and fairness [8, 11] are among the key verification problems over neural 
networks.

Abstract interpretation [3, 15] is a well-established framework for program verification 
that formalizes the exploration of the program semantics at the granularity provided by the 
underlying domain. For example, intervals [15] form an abstract domain facilitating analy-
sis in which sets of states are represented as hyperrectangles. Other abstract domains such 
as difference constraints, octagons (unit-two-variables-per-inequality or UTVPI), and poly-
hedral (linear constraints) have been successfully deployed for the verification of DNNs. 
However, the multi-layer architecture of DNNs, when combined with linear function com-
position followed by a non-linear activation function at each layer, results in the repeated 
intersection of abstract spaces with linear inequalities. For this reason, abstract domains 
that do not permit an efficient affine mapping suffer in exploring the layered state space of 
the DNNs.

Zonotopes [36] solve this problem by representing an abstract set as an affine map-
ping of an interval generator set. For zonotopes, the key operations for DNN verification, 
such as nonemptiness, optimization, and over-approximation, can be performed via effi-
cient, enumerative procedures. Linear star sets [17, 42] generalize zonotopes by represent-
ing the generator set using the polyhedral domains. This generalization, while improving 
the expressiveness, leads to the decision procedures depend upon solving linear programs, 
which tends to be the performance bottleneck in the overall algorithm. While linear pro-
gramming is known to be solvable in polynomial time, via a number of celebrated interior-
point algorithms [28], there is no known strongly polynomial algorithm. Dantzig’s simplex 
algorithm is a popular algorithm to solve LP and works well in practice, but for general 
LPs, the time complexity of the simplex algorithm is not polynomial [29], and subexpo-
nential lower bounds hold even for randomized pivoting rules [18].

For some subclasses of linear programming problems, more efficient solutions exist. 
In particular, when the constraints are restricted to difference constraints ( xi  xj  c ) 
or UTVPI constraints ( ±xi ± xj  c ), then the duals of the corresponding LPs can be 
reduced to minimum cost flow (MCF) problems [1], for which there exist strongly poly-
nomial time algorithms [21]. The Out-of-Kilter algorithm is one popular algorithm for 
solving minimum cost flow that also produces a solution to the dual [1]. It runs in time 
O((m2 + m  n  log n)  U) on a network with m arcs and n nodes and maximum supply/
demand U. Alternatively, the network simplex algorithm is a specialized version of the 
simplex to solve minimum cost flow problems. Unlike standard simplex, network simplex 
runs in polynomial time [35]. Given its relative efficiency, it is natural to ask:

Is it possible to replace linear programming with min-cost flow in neural network 
verification?
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This question motivates the investigation of sub-classes of star sets that are more gen-
eral than zonotopes, but enable efficient decision procedures based on MCF problems. 
For this purpose, we introduce octatopes: sets that can be defined as affine maps of 
UTVPI constrained sets (octagons [34]). Since octatopes are a special class of star sets, 
the affine transformation remains efficient. We also study hexatopes as the images of 
difference constrained sets (hexagons [34] or zones [10]). A key contribution of this 
paper is that the key operations required for verification using octatopes and hexatopes 
can be performed efficiently using algorithms for MCF problems.

Given that the MCF problem can be solved efficiently via Out-of-Kilter algorithm 
and network simplex (touted [9] to be 200–300 times faster than simplex), this benefit 
will translate to the efficiency of octatopes/hexatopes for LP-intensive applications like 
reachability analysis of neural networks. While the current state-of-the-art implemen-
tations of the algorithms for the MCF problem are not as advanced as those for LP, we 
believe that this will change in light of the proposed application. We implement the 
octatope and hexatope abstract domains and show their effectiveness on several ACAS 
Xu networks [26], a popular benchmark for neural network verification. An extended 
abstract of this paper was presented at the 25th International Symposium on Formal 
Methods [5].

Related work A growing body of research exists on different methods to verify neu-
ral networks [32], including recent tool competitions [6]. Algorithms can be catego-
rized into search, optimization, and reachability solutions. In the space of search pro-
cedures, the seminal Reluplex method proposes an extension of the simplex algorithm 
used for linear programming to handle ReLU networks [26]. This method has been 
widely adopted and extended by, for example, posing verification as a constraint satis-
faction problem [27]. This can then be solved using off-the-shelf Satisfiability Modulo 
Theory (SMT) solvers like z3 [16]. The use of SMT enables reasoning over different 
activation functions and topologies.

Interval arithmetic is another popular approach often used to estimate the range of 
output values given a range of inputs while tracking the input and output ranges of 
individual activation functions [45]. This can be computed by using linear program-
ming to derive lower and upper bounds for a given node in the network. The work of 
[22] combines this with symbolic interval propagation and gradient descent to find 
counter-examples to the over-approximations established by the linear programming 
solutions. More sophisticated node splitting strategies that account for downstream 
effects on successor nodes can also be used as part of the symbolic interval propaga-
tion phase [23]. Per-neuron split constraints can also further improve efficiency [46].

Optimization solutions to the verification based on ILP have been explored. This 
is a natural formulation for the verification of neural networks due to the use of affine 
transformations and the fact that piecewise linear activation functions can be encoded 
using a set of binary linear constraints [2]. The work in [39] extends similar ideas by 
estimating the maximum disturbance that is permitted at the input and proposing pre-
solve procedures to speed up the solution.

Although solutions based on SMT-solving and mathematical programming are 
often complete, they require the entire network to be encoded within the correspond-
ing constraints, thereby limiting scalability. In contrast to these search and optimiza-
tion solutions, the use of reachability analysis for verification of neural networks has 
been shown to scale to larger instances at the cost of completeness. Examples of this 
include the use of zonotope and star set abstract domains. The former can be efficiently 
employed to compute conservative over-approximations of output bounds of nodes in a 
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network [20], whereas linear programming can be employed for the latter to find tight 
bounds at the cost of scalability [44]. The work proposed herein seeks to advance the 
state of verification methods based on reachability analysis by providing tighter over-
approximations than zonotopes and more efficient computations than star sets.

2  Preliminaries

Let   denote the set of real numbers and   denote the set of rational numbers. We write 
 m n for the set of all m n dimensional matrices of reals.

For a matrix M   m×n , we write M(i,  )   1×n and M( , j)   m×1 for the ith row vector 
and jth column vector, respectively, of M, for 1  i  m and 1  j  m . Similarly, we write 
M(i, j) for the matrix element at row i and column j. By default, a vector is a column vector 
and we associate a set of matrices  m 1 with the set of vectors  m . For a matrix M   m×n 
we write M𝖳   n×m for its transpose matrix. For a row vector v   1×n , we write v𝖳   n 
for the corresponding (transposed) vector. We write 1n for the all-ones vector of size n and 
I for the identity matrix of some fixed dimension (often clear from context). For a (column) 
vector v = (v1, v2,… , vn)   

n we write vi for its ith element. For a vector v   m and sca-
lar a    , we write a  v for the vector (a  v1,… , a  vm) . For two vectors u, v   m , we 
write u  v for their dot product, i.e., u  v =

 m

i=1
ui  vi . For two matrices M   m×n and 

N   n×p , their product MN   m×p is defined as MN(i, j) = M(i,  )𝖳  N( , j).
We call a function f   n   m linear if f (u) + f (v) = f (u + v) and f (a  v) = a  f (v) 

for all scalars a    and vectors u, v   n . A linear function f   n   m can be rep-
resented as a matrix A  Mm×n such that f (v) = Av for every v   n . A function 
f   n   m is affine if it is a sum of a linear function and a constant, i.e., f (v) = Av + b 
for some A   m×n and b   m.

Definition 1 (Linear Constraint System (LCS)) A linear constraint over a vector x   n is 
a constraint of the form

where a = (a1,… , an)   
n and b    . A linear constraint system (LCS) is a conjunction 

of linear constraints Ax  b where A   m×n and b   m.

3  Veri!cation of neural networks

We primarily work with feedforward neural networks (NNs) with rectified linear unit 
(ReLU) activation functions. We focus on networks with k fully-connected layers, also 
called multi-layer perceptrons. A ReLU is a commonly used activation function 𝜎      
defined as 𝜎(x) = max {x, 0} . We can extend this function from scalars to vectors as 
𝜎   n   n in a straightforward fashion by applying ReLU component-wise. This setup 
is the most typical situation considered for neural network verification tools [6], although 
extensions have been made to other layer types [40, 43] and activation functions [37].

a1x1 + a2x2 + + anxn  b,
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Formally, a neural network (NN) is a function f   i   o , where i is the input 
dimension and o is the output dimension. Each layer of the network is also a function 
fk   

ik   ok with its own input dimension ik and output dimension ok , defined as the 
composition 𝜎k 𝛼k in which 𝛼k   ik   ok is an affine mapping that is followed by the 
application of a ReLU 𝜎k   ok   ok of appropriate dimension. For the network to be 
well formed, it is required that the input dimension of the first layer is i, the output dimen-
sion of the final layer is o, and all intermediate layers have input dimensions equal to the 
output dimension of the preceding layers and output dimension equal to the input dimen-
sion of the following layer. For a network with n layers, the function f is defined by the 
composition fn fn 1 …  f2 f1 . Figure  1 shows a feedforward neural network with three 
layers.

Given the importance of neural networks in critical infrastructure, establishing formal 
guarantees on their performance is of paramount interest. The key verification problems 
concerning neural networks include robustness [12, 25], safety [24, 30], and fairness [8, 
11]. Given a neural network and an input, the robustness problem [12, 25] asks whether 
small perturbations around the input keep the output close to the original value. The safety 
problem [24, 30] asks whether for every input from a given set, the neural network outputs 
do not go outside a given set. Finally, the fairness problem [8, 11] for neural networks is 
typically posed by assuming a partition over the input features within protected and unpro-
tected features, and the verification question involves checking whether the output is robust 
while keeping the protected features constant. All of these problems require computing the 
range of the output for a given range of the input. Since our focus is on developing veri-
fication support, we frame the problem in a broader context as the range computation and 
empty intersection problems.

Definition 2 (Exact Range Computation Problem) Given a neural network implementing 
the function f   i   o and an input set I   i , the exact range computation problem is 
to compute the image 𝖱𝖺𝗇𝗀𝖾(f , I) = {f (x)  x ∈ I}.

Fig. 1  A three layer neural 
network with an input layer 
with four neurons, an internal 
layer with five neurons, and an 
output layer with 2 neurons. This 
network represents a function 
f   4   2.
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Definition 3 (Neural Network Verification Problem) Given an input set I   i , an unsafe 
set U   o , and a neural network that computes f   i   o , the neural network verifica-
tion problem asks whether

As is typical with the state-of-practice in neural network verification, we restrict the input 
sets and unsafe sets to be defined by systems of linear constraints I =

{
x   i ∶ Aix  bi

}
 

and U =
{
x   o ∶ Aux  bu

}
 . The popular ACAS Xu neural network verification bench-

marks [26] satisfy this assumption, and will be used in our experimental evaluation.

3.1  Abstraction based methods

We now describe a general approach to the neural network verification problem that is 
based on interpreting sets in the domains and codomains of NNs (and their component 
layers) with respect to some abstract domain which, in our case, comprises a particu-
lar class of geometric objects. Suppose, for the time being, that an appropriate abstract 
domain has already been chosen. Given an instance of the neural network verification 
problem, the abstraction based paradigm proceeds roughly as follows.

Algorithm 3.1  Abstract Neural Network Verification

1: input: (I) fk = σk ◦ αk, for each layer k in the given NN, (II) input set I, (III) unsafe set U .
2: Identify elements A,B of the abstract domain such that I ⊆ A and U ⊆ B.
3: for each layer k do
4: Compute the image fk(A).
5: Find an element A′ of the abstract domain such that fk(A) ⊆ A′.
6: Set A ← A′.
7: return A ∩ B = ∅.

From the above algorithm, we distill three operations that are fundamental to the 
overall approach: 

1. affine transformation is required to compute 𝛼k(A),
2. half-space intersection is necessary for computing 𝜎k(𝛼k(A)) , and
3. emptiness determination is essential for deciding the final return value.

For the purposes of abstract neural network verification, any reasonable abstract domain 
should facilitate algorithmic execution of these operations. Besides the feasibility of 
carrying out the critical operations, additional properties of an abstract domain that are 
helpful in this context may be inferred from Algorithm 3.1. If a given abstract domain 
is closed under affine transformation, then the instruction on line 5 may be omitted. If 
the abstract domain is closed under intersection, the emptiness check to determine the 
return value is simplified. We proceed by examining two particular geometric abstract 
domains that are useful in the context of abstract neural network verification.

𝖱𝖺𝗇𝗀𝖾(f , I)  U = ∅.
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3.2  Abstract domains: zonotopes and linear star sets

A relatively simple abstract domain is the family of zonotopes [3, 20] and it is defined as 
an affine image of a hypercube.

Definition 4 (Zonotope) An n-dimensional zonotope is the image of a p-dimensional 
hypercube under an affine transformation  p   n . It is given as a pair Z =  c,G⟩ com-
prising a center c   n and a collection of generator vectors g1,… , gp   

n forming a 
matrix G =

[
g1  gp

]
  n×p.

The semantics of Z are defined as

A more expressive abstract domain is the family of linear star sets [33, 42] that can 
be considered as affine image of a polytope.

Definition 5 (Linear Star Set) Linear star sets generalize zonotopes by letting the kernel 
be defined by an LCS; a linear star set is the image of a p-dimensional polytope under 
an affine transformation  p   n . Formally, an n-dimensional star set S is specified as 
a tuple  c,G,A, b⟩ including a matrix A and vector b representing the polytope Ax  b , 
a center c   n , and a collection of generator vectors g1,… , gp   

n that form a matrix 
G =

[
g1  gp

]
  n×p . The semantics of S are defined as

Some examples of zonotopes and linear star sets are shown in Fig. 2. Both a zono-
tope and a linear star set may be viewed as an n-dimensional image of a polytope—
which we refer to as the kernel—under affine transformation. For zonotopes, the kernel 

[[Z]] =
{
Gx + c  −1p  x  1p

}
.

[[S]] = {Gx + c  Ax  b}.

Fig. 2  (Left.) A hypercube (X), two zonotopes f(X) and g(X), and their various compositions ( f g, g f , f f  , 
and g g ) as zonotopes. (Right.) A polytope (X), two linear star sets f(X) and g(X), and their various compo-
sitions as linear star sets.
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is a hypercube, while for linear star sets the kernel is a set defined by a generic polytope. 
Thus, the kernel of a linear star set may be specified as a linear constraint system. The 
kernel of a zonotope can be encoded by an interval constraint system, which is a sys-
tem of linear constraints of the form ai  xi  bi where ai, bi    . In the present work, 
we examine geometric abstract domains that fall between zonotopes and linear star sets 
in terms of precision and complexity. Such domains shall be characterized by the sub-
classes of linear constraint systems that specify their kernels.

3.3  Fundamental Theorems of linear star sets

We now state formally the results [42] about linear star sets that are fundamental to our 
approach towards neural network verification. Each of the following theorems is key to 
ensuring that the operations of affine transformation, half-space intersection, and empti-
ness checking are available and feasible for linear star sets. Since each abstract domain 
considered in this paper forms a subclass of linear star sets, these serve as a template for 
the stronger results we subsequently establish for hexatopes and octatopes.

Theorem 1 Linear star sets are closed under affine transformation.

Theorem 2 The problems of linear optimization and emptiness checking over linear star 
sets can be solved in polynomial time by reduction to linear programming.

Theorem 3 The intersection of a linear star set S =  c,G,A, b⟩ and half space {y  My  d} 
is another linear star set S =  c,G,A , b′⟩ where A′x  b′ comprises the conjunction of 
constraints

3.4  Illustration of NN verification with zonotopes

Now that we have concretely defined some abstract domains, the process of Algo-
rithm 3.1 can be explicitly visualized (in the two dimensional case). Figure 3 depicts the 
first iteration of the algorithm using zonotopes as the abstract domain:

Ax  b and MGx  d  Mc.

Fig. 3  An illustration of the first step of Algorithm 3.1 using the zonotope abstract domain.
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• Figure 3a displays the initial set, which is an elliptical region in the plane in this case;
• Figure 3b overlays the initial set with a box;
• Figure 3c shows an affine image of the initial set and its approximating box;
• Figure 3d plots the result of applying a ReLU after the affine mapping.

For other abstract domains, the graphical illustration remains unchanged, except the 
approximations are stored as those corresponding domains.

3.5  Organization

In the rest of the paper, we extend the notion of zonotopes to define octatopes and hex-
atopes and develop a series of results, analogous to Theorems 1 to 3, that provide the theo-
retical framework for the application of these abstract domains to the verification of neural 
networks.

4  Hexatopes

In this section, we introduce hexatopes that generalize zonotopes, with the kernel being 
specified using a difference constraint system. We will develop analogs of Theorems 1 to 3 
for hexatopes.

Definition 6 (Difference Constraint System) A difference constraint is a linear constraint 
of the form

Fig. 4  (Left.) A difference constraint system (X), two hexatopes f(X) and g(X), and their various composi-
tions. (Right.) A UTVPI system (X), two octatopes f(X) and g(X), and their various compositions.
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A difference constraint system (DCS) is a conjunction of difference constraints.

Definition 7 (Hexatope) A hexatope H =  c,G,A, b⟩ is a special type of linear star set, 
having a kernel Ax  b defined by a difference constraint system.

Some examples of hexatopes are shown in Fig. 4. Our first result mirrors Theorem 1 and 
establishes closure under affine mappings for hexatopes.

Theorem 4 Hexatopes are closed under affine transformation.

Proof From Theorem 1 it follows for any hexatope H =  c,G,A, b⟩ and any affine mapping 
f (x) = Wx + d , that {Wx + d  x ∈ [[H]]} is linear star set H =

⟨
c′,G ,A, b

⟩
 where

Since the transformation does not change the kernel, H′ is indeed a hexatope.    

4.1  Linear optimization via minimum cost flow

In this subsection, we show that for any linear optimization problem over a difference con-
straint system, the dual problem can be reduced to the minimum cost flow problem [1]. 
The minimum cost flow problem is a canonical problem in flow networks (also known as 
transportation networks), where a network is represented as a directed graph with vertices 
(nodes) as junctions and edges (arcs) as channels between those junctions. One assumes 
that some quantity of interest-such as water, oil, population, or traffic-flows through the 
network respecting certain capacity constraints of the channels and we are interested in 
optimizing the total cost associated the flow, given as the cost per unit amount of flow in 
a channel. Formally, we define a flow network and the corresponding minimum-cost flow 
problem as follows.

Definition 8 A flow network G = (V ,E, c, a, d) is a directed graph G = (V ,E) with a capac-
ity c  E    0 and a cost a  E    associated with every edge (arc) and a demand 

xi  xj  b, where b ∈  .

c′ = Wc + d and G =
[
Wg1  Wgp

]
.



188 Formal Methods in System Design (2024) 64:178–199

d  V    associated with every vertex (node). We assume that  v V d(v) = 0 . The mini-
mum cost flow (MCF) problem can be stated as follows:

It is well known that there exist strongly polynomial time algorithms [21] for the MCF 
problem. One example is the Out-of-Kilter algorithm (Algorithm 4.1) that we now review.

Algorithm 4.1  OUT-OF-KILTER(G = (G = (V ,E), c, a, d))

1: Initialize the potential as π ← 0.
2: Let f be a flow in G.
3: Construct the residual network Gf .
4: Compute the kilter number k(u, v) of each edge (u, v) in Gf .
5: while (Gf contains an edge with positive kilter number) do
6: Select an edge (u, v) in Gf with positive kilter number.
7: Let the weight of each edge (u, v) in Gf be max{0, cπ(u, v)}.
8: For w ∈ V \ {u, v}, let l(w) be the weight of the least weight path from v to w.
9: Let P be a shortest path from v to u.

10: For each node w, set π(w) ← π(w) − l(w).
11: if (cπ(u, v) < 0) then
12: Q ← P ∪ {(u, v)}.
13: δ ← min(u,v)∈Q r(u, v).
14: Augment δ units of flow along Q.
15: Update f and Gf .
16: return f .

Out-of-Kilter algorithm A pseudocode for the Out-of-Kilter algorithm is given as Algo-
rithm 4.1. It starts with a possibly infeasible flow and iteratively modifies this flow in a way 
that decreases the infeasibility of the solution and moves it closer to optimality. Each step 
of the algorithm consists of solving a shortest path problem and augmenting the flow along 
the shortest path. It operates on the residual network Gf  corresponding to the current flow f. 
This residual network is constructed as follows. 

Feasible Edges:  If f (u, v) < c(u, v) , we add the edge (u,  v) with a residual 
capacity of r(u, v) = c(u, v)  f (u, v) and cost a(u,  v). If 
f (u, v) > 0 , we add the edge (v, u) with a residual capacity of 
r(v, u) = f (u, v) and cost  a(u, v).

Lower-Infeasible Edges:  If f (u, v) < 0 , we add edge (u,  v) with residual capacity 
r(u, v) =  f (u, v) and cost a(u, v).

Upper-Infeasible Edges:  If f (u, v) > c(u, v) , we add the edge (v, u) with a residual capac-
ity of r(v, u) = f (u, v)  c(u, v) and cost  a(u, v).

For each vertex v in the residual network, the algorithm maintains a poten-
tial 𝜋(v) and for each edge (u,  v) with cost a(u,  v), it maintains the reduced cost 
a𝜋(u, v) = c(u, v)  𝜋(u) + 𝜋(v) . Additionally, for each edge in the residual network, it 
maintains a kilter number k(u,  v) which is 0 if c𝜋(u, v)  0 and is the residual capacity 

Minimize
∑

(u,v) E

f (u, v)  a(u, v)

subject to
∑

u V

f (u, v) −
∑

u V

f (v, u) = d(v) for all v  V ,

0  f (u, v)  c(u, v)for all (u, v)  E.
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r(u,  v) if c (u, v) < 0 . This kilter number represents the change in flow required so that 
each edge satisfies its optimality condition.

Note that the node potentials 𝜋 and reduced costs c𝜋 corresponding to the optimal flow f 
are the optimal solution of the dual problem [1]. The Out-of-Kilter algorithm runs in time 
O((m2 + m  n  log n)  D) on a network with m edges and n vertices and maximum demand 
D.

Theorem 5 The linear optimization problem over hexatopes can be solved in strongly poly-
nomial time via reduction to the minimum cost flow problem.

Proof Consider an n-dimensional hexatope H =  c,G,A, b⟩ which is the image of a 
p-dimensional DCS-defined set. In order to optimize a linear function f over [[H]] , it suffices 
to optimize the composition of functions f h where h(x) = Gx + c over the difference con-
strained set Ax  b . Suppose that f (x) = fx =

 
k fkxk , then the composite objective func-

tion can be written as f h(x) = fGx + fc . Then, omitting the constant term fc which can 
be reincorporated in the end, we have that f h(x) =  k wkxk for some appropriate coef-
ficients wk.

Following chapter  24, Sect.  4 of [14], we construct a directed graph, called the con-
straint graph, to represent the difference constraint system determining the kernel of the 
given hexatope. For each variable xi , there is a vertex vi in the constraint graph. Addition-
ally, there is one extra vertex v0 . Set the demand of each vertex as d(vi) = wi , for all i > 0 , 
and let d(v0) =  

 
k wk . For every constraint of the form xi  xj  b in the DCS, there is 

an edge (vj, vi) in the constraint graph with cost b and infinite capacity. For every vertex vi , 
with i > 0 , there is also an edge (v0, vi) with cost 0 and infinite capacity.

The MCF problem instance constructed in this manner is equivalent to the dual of the 
given linear optimization problem instance over the given DCS. Since the Out-of-Kilter 
algorithm also solves the dual to the minimum cost flow problem [1], running it on the dual 
of the DCS optimization problem will also solve the DCS optimization problem itself. For 
a DCS with m constraints, this process takes O((m2 + m  p  log p)  C) time where C is the 
largest absolute value of any coefficient in the objective function.    

5  Octatopes

In this section, we introduce octatopes that generalize zonotopes, with the kernel being 
specified using a UTVPI constraint system. We will develop analogs of Theorems 1 to 3 
for octatopes.

A UTVPI constraint ai  xi + aj  xj  b is said to be an absolute constraint if ai = 0 
or aj = 0 . An absolute constraint can be converted into constraints of the form: 
ai  xi + aj  xj  b , where both ai and aj are non-zero. Note that a UTVPI constraint 
ai  xi + aj  xj  b is a difference constraint if ai =  aj . The constant that bounds a UTVPI 
constraint is called the defining constant. For instance, the defining constant for the con-
straint x1  x2  9 is 9.

Definition 9 (Octatope) An octatope is a special kind of linear star set  c,G,A, b⟩ , having a 
kernel Ax  b defined by a UTVPI constraint system.
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Some examples of octatopes are shown in Fig. 4 (right). Following the same argument 
used to prove Theorem 1, we establish closure of octatopes under affine mappings.

Theorem 6 Octatopes are closed under affine transformation.

By Theorem 2, linear optimization over linear star sets can be done in polynomial time. 
Our next result shows that linear optimization over octatopes and hexatopes can be done in 
strongly polynomial time.

Theorem 7 The linear optimization problem for octatopes can be solved in strongly poly-
nomial time via reduction to the linear optimization problem for hexatopes.

Proof Following techniques of [31, 34], we convert a UCS U into a DCS D . The first part 
of the conversion creates the variables x+

i
 and x 

i
 in D for each variable xi in U . Then, each 

constraint in U is converted as follows: 

1. Each constraint of the form xi + xj  b becomes two constraints 

2. Each constraint of the form xi  xj  b becomes two constraints 

3. Each constraint of the form  xi + xj  b becomes two constraints 

4. Each constraint of the form  xi  xj  b becomes two constraints 

5. Each constraint of the form xi  b becomes a constraint 

6. Each constraint of the form  xi  b becomes constraint 

Observe that that xi = 1

2
(x+

i
 x 

i
) satisfies the original UCS. Thus, we can consider this as 

the problem maximizing the objective function over variables 1
2
(x+

i
 x 

i
) of the DCS D .  

  

5.1  Emptiness checking

We also consider the feasibility problem for octatopes. That is, the problem of deciding 
whether an octatope is empty.
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Theorem 8 The emptiness of an octatope can be decided in O(p  m) time and O(p + m) 
space where p is the number of generator vectors and m is the number of UTVPI constraints 
defining its kernel.

Proof It is easy to see that an octatope is empty if and only if the UTVPI constraints of its 
kernel are unsatisfiable as linear mappings over polytopes that are monotone with respect 
to set inclusion. The complexity then follows from results on checking the feasibility of 
UTVPI constraint systems [31].    

5.2  Intersection with half-spaces

It follows from Theorem  3 that the intersection of an octatope O =  c,G,A, b⟩ and half 
space {y  My  d} is a star set O =  c,G,A , b′⟩ where the constraints A′x  b′ are the 
conjunction of UCS constraints Ax  b and the hyperplane MGx  d  Mc . In the rest of 
this section, we show how an over-approximation of this intersection can be represented as 
UCS constraints. The treatment for hexatopes is similar, and hence omitted.

Algorithm 5.1  UTVPIBOUNDINGBOX(U, l)

Input: UCS U and constraint l
Output: A utvpi bounding box U′

1: U′ ← ∅
2: for all pairs of variables xi, xj in U do
3: Let u+−

ij = maxU∪{l} xi − xj and add constraint xi − xj ≤ u+−
ij to U′

4: Let u−+
ij = maxU∪{l} xj − xi and add constraint xj − xi ≤ u−+

ij to U′

5: Let u++
ij = maxU∪{l} xi + xj and add constraint xi + xj ≤ u++

ij to U′

6: Let u−−
ij = maxU∪{l} −xi − xj and add −xi − xj ≤ u−−

ij to U′

7: Let u+
i = maxU∪{l} xi and add constraint xi ≤ u+

i to U′

8: Let u−
i = maxU∪{l} −xi and add constraint −xi ≤ u−

i to U′

9: return U′.

We formalize this problem as the  UTVPI  bounding box problem.

Definition 10 (UTVPI Bounding Box) Given a UCS U and an arbitrary linear constraint l, a  
UTVPI  bounding box is a UCS 𝐔′ , such that every solution to U  {l} is a solution to 𝐔′ . For 
a given UCS U and constraint l, a tightest UTVPI bounding box is a bounding box of U  {l} 
that is contained within every other bounding box of U  {l}.

Thus, a UTVPI bounding box of a UCS U and constraint l is a UCS that overestimates the 
solution space of U  {l} . A tightest bounding box is a UCS that overestimates the solution 
space the least. Each of the linear programs used to construct 𝐔′ can be solved (with L bits 
of precision) in O(n2.38  L) time [13]. Since finding the UTVPI bounding box requires solv-
ing O(n2) linear programs, the UTVPI bounding box can be found in O(n4.38  L) time.

Theorem 9 Let U be a UCS and let l be an arbitrary linear constraint. The UCS 𝐔′ , con-
structed by Algorithm 3, is a UTVPI bounding box of U  {l}.
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Proof Let 𝐱  be a solution to U  {l} . Let ai  xi + aj  xj  uij be an arbitrary constraint in 
𝐔′ . By construction of 𝐔′ , we have uij = maxU {l} ai  xi + aj  xj.

Since 𝐱  is a solution of U  {l} , ai  x 
i
+ aj  x 

j
 uij . This means that 𝐱  satisfies the 

constraint ai  xi + aj  xj  uij . Since the constraint ai  xi + aj  xj  uij was chosen arbitrar-
ily, 𝐱  is a solution to 𝐔′ . Note that 𝐱  was an arbitrary solution to U  {l} . Thus, every 
solution to U  {l} is a solution to 𝐔′ . Consequently, 𝐔′ is a UTVPI bounding box of U  {l} .  
  

We now show that 𝐔′ is a tightest UTVPI bounding box of U  {l} . Note that U  {l} 
must have a tightest bounding box. Consider two bounding boxes U1 and U2 of U  {l} . Let 
𝐔  , be the UCS formed by combining the constraints in U1 and U2 . Note that 𝐔  is also a 
bounding box of U  {l} . Additionally, every solution to 𝐔  is a solution to both U1 and U2 . 
Thus, if U  {l} has two incomparable bounding boxes, then a new bounding box can be 
constructed that is tighter than both.

Theorem 10 Let U be a UCS and let l be a linear constraint. The UCS 𝐔′ , produced by 
Algorithm 3, is a tightest UTVPI bounding box of U  {l}.

Proof Assume for the sake of contradiction, that 𝐔′ is not a tightest UTVPI bounding box of 
U  {l} . Thus, there exist a UTVPI bounding box 𝐔′′ and a point 𝐱  such that 𝐱  is a solution 
to 𝐔′ , but not a solution to 𝐔′′ . This means that there is a UTVPI constraint ai  xi + aj  xj  b 
in 𝐔′′ that is violated by 𝐱 .

Let uij = maxU {l} ai  xi + aj  xj . Since 𝐔′′ is a UTVPI bounding box of U  {l} , every 
solution to U  {l} is a solution to 𝐔′′ . Thus, every solution to U  {l} satisfies the con-
straint ai  xi + aj  xj  b . This means that

is bounded from above by b. Thus, uij exists and uij  b.
By the construction of 𝐔′ , the constraint ai  xi + aj  xj  uij is in 𝐔′ . However, 𝐱  is a 

solution to 𝐔′ such that ai  x 
i
+ aj  x 

j
> b  uij . This is a contradiction. Thus, 𝐔′ must be 

a tightest UTVPI bounding box of U  {l} .    

5.3  Range computation for neural nets with prefilters

The exact range computation problem from Definition 2 can be solved using linear star sets 
(see Algorithms 1 and 2 in earlier work for a full review [7]).

The neural network function f as defined in Sect. 3 is a piece-wise affine function of 
the inputs. The range computation proceeds using geometric set operations. The initial set 
of states is represented as a linear star set and propagated through each layer of the net-
work. To go from the output of one layer to the vector of intermediate values at the next 
layer, an affine transformation operation is performed on the set. The effect of the ReLU 
activation in a layer is handled iteratively for each neuron. The set of states is potentially 
split along the neuron input constraint yi = 0 , into a negative region and a positive region, 
using a half-space intersection operation. The negative region is then projected to zero to 
match the semantics of a ReLU. The two sets are then considered independently for the 
remaining neurons in the layer, as well as the rest of the layers in the network. For a given 

max
U {l}

ai  xi + aj  xj
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input set, not all neurons require splitting the set in two, since the input constraints may 
restrict inputs to be strictly positive or negative. To check this, before splitting we first opti-
mize over the set in the direction of the intermediate value x(i)

j
 corresponding to a specific 

neuron j in layer i. If splitting occurs, the two sets are treated independently and propa-
gated through the remaining neurons in the layer, possibly requiring further splitting in the 
remaining parts of the network.

After applying a number of optimizations, the bottleneck of exact range computation 
with star sets is the use of LP solving to compute the input bounds for each neuron [7]. 
To improve analysis speed, rather than speeding up LP solving—which is a well-studied 
problem where further progress is likely to be difficult—we instead seek methods that can 
reduce the number of LPs needed.

In earlier work, zonotope abstract domains have been considered for this task. Rather 
than just propagating star sets through a network, we also propagate a zonotope overap-
proximation that we use in a prefiltering step. Recall that before splitting we first need to 
optimize over the set in the direction of the intermediate value x(i)

j
 . Before optimizing over 

the star set using LP, we first optimize over the zonotope abstraction prefilter. If the zono-
tope abstraction can prove that that the inputs are strictly positive or negative, than we are 
guaranteed the exact result from the LP will be strictly positive or negative as well (as the 
zonotope is an overapproximation of the star set). This allows us to avoid LP, as optimiza-
tion over zonotopes can be done efficiently using a simple loop.

The reason zonotope analysis is not exact is that zonotopes do not support general half-
space intersections when sets must be split. Instead, two approaches have been consid-
ered. The easiest option is to ignore intersections, which is fast but can cause significant 
overapproximation error in the abstraction [19, 43]. Alternatively, we can perform domain 
contraction, which is to search for zonotopes that more tightly overapproximate the inter-
section. Different approaches for domain contraction are possible, ranging from reasoning 
methods over individual constraints to more accurate approaches that use LP solving on the 
star set in the generator coefficient space [7]. Although the LP approach uses the expensive 
operation we are trying to reduce, it can result in an overall reduction of LPs, as the neuron 
input bounds can be computed more accurately.

This work proposes using octatope abstract domains as a prefilter. As described ear-
lier, optimization over octatopes can be done more efficiently than general LP solving. 
The greater expressiveness of octatopes compared with zonotopes means that we can hope 
to further reduce the number of LPs needed with the star set when computing a neuron’s 
input bounds for splitting. We evaluate this impact in our experiments. In terms of han-
dling intersections when splitting sets, octatopes (like zonotopes) cannot exactly support 

Table 1  Number of LP calls 
to find neuron input bounds 
for different abstract domain 
prefilters on various ACASXu 
properties and networks

Prop Net Star-Only Zono-NC Zono-C Hex Oct Minimum

3 1–6 91,762 11,152 3382 2635 2571 1886
3 2–7 77,896 9365 2921 2240 2198 1626
3 3–5 80,988 8990 2711 2131 2092 1710
3 5–2 54,758 15,523 7762 6820 6704 3779
4 1–4 53,036 7736 2597 2389 2330 1926
4 2–7 38,748 3851 1249 888 861 753
4 5–9 68,750 8814 2952 2286 2151 1591



194 Formal Methods in System Design (2024) 64:178–199

any general half-space intersection operation. This means that a domain contraction step 
may be necessary to ensure tight overapproximation.

5.4  Experimental results

We next evaluate the potential savings in LP computation to computing neuron input 
bounds during exact range computation for neural networks. Our evaluation is performed 
on several benchmarks from the ACAS Xu benchmark suite [26], specifically focusing on 
property 3 and 4 where earlier work has shown exact range computation is tractable [7]. 
We generally report number of LPs for different operations rather than runtime, as the runt-
ime is influenced by other factors such code optimizations and the choice of LP solver.

First, we examine the number of LPs needed to perform neuron input range computa-
tion, for different choices of prefilter abstract domain. The LP calls to find the neuron input 
ranges is the bottleneck of the overall range computation algorithm, so its reduction is of 
particular importance. The results are in Table  1. The Star-Only approach uses only LP 
solving with no prefiler, and therefore has the highest number of LPs. The next column, 
Zonotope-NC corresponds to the case where zonotope prefilters are used, but no domain 
contraction is performed (halfspace intersections are ignored). This has a significant reduc-
tion on the number of LP calls, for example in the first row with property 3 and network 
1–6, where the number of LP calls is reduced from 91K to 11K. Using domain contraction 
with zonotopes, Zono-C, further reduces this to around 3.3K. The more precise domains 
with hexatopes and octatopes can further reduce this to around 2.6K and 2.5K, respec-
tively. The minimum column is computed by seeing how many bounds computations could 
not be eliminated as they correspond to cases where the input to a neuron truly can be 
either positive or negative. Even a perfect prefilter could not eliminate these LPs, as pre-
filters only eliminate cases where splitting is impossible. Other approaches could be con-
sidered to remove these LPs, such as tracking specific witness input points that can prove a 
neuron can have both positive and negative inputs, which we may consider in future work. 
Overall, the proposed octatope abstract domain has the potential to reduce the number of 
unnecessary LPs significantly in exact range computation.

When using the new abstract domain, however, there is a trade-off where extra opera-
tions are needed to perform domain contraction as well as to optimize within the abstract 
domains. We used a witness-tracking approach [4], where for each constraint a witness 
point was included that was in the star set and on the boundary of the constraint. When 
new intersections are performed, each witness point is checked to see if it is now excluded 
from the set. When points are excluded, new witness points get generated by solving an LP 

Table 2  Number of LP calls 
for the domain contraction step 
for different abstract domain 
prefilters for various ACAS Xu 
properties and networks

Prop Net Star-Only Zono-NC Zono-C Hex Oct

3 1–6 0 0 12,765 38,400 115,200
3 2–7 0 0 12,280 36,840 110,520
3 3–5 0 0 10,407 31,230 93,690
3 5–2 0 0 21,249 63,750 191,250
4 1–4 0 0 11,828 35,493 106,476
4 2–7 0 0 5533 16,620 49,860
4 5–9 0 0 9906 29,730 89,190
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in the direction of the constraint, which may tighten the constraint. This results in the tight 
abstract domains, but can be expensive when many constraints are possible. For hexatopes 
and octatopes, the number of possible constraints is quadratic in the number of variables 
(ACAS Xu has 5 input variables).

Table 2 shows the number of LPs needed for each example when performing domain 
contraction. Star-Only and Zono-NC do not perform domain contraction, and so have 0 
LPs for this operation. As expected, the more complex the abstract domain, the more oper-
ations are needed. This is due to the contraction method performed, where the number of 
possible LPs needed at a domain contraction step increases as the number of possible con-
straints increases.

In terms of the performance of network simplex for optimizing within the octatope 
domain, the engineering aspect of the problem also requires further development. When 
computing the range of network 2–7 with the input set from property 4, the UTVPI con-
straints were optimized 38,748 times. When using the commercial LP solver Gurobi on 
these constraints, each call took on average of 0.17ms. Formulating the min-cost flow prob-
lem and calling the network_simplex implementation from the networkx python 
library, however, used about 1.9 ms per call, about 11x slower. Further, while Gurobi 
always obtained a result, numerical issues caused network simplex to fail about 0.65% of 
the time.

While octatopes effectively reduce the bottleneck step of input bounds computation, fur-
ther improvements must be made to octatope domain contraction algorithms as well as to 
implementation optimizations of min-cost flow solvers, before an overall speedup can be 
achieved. Nonetheless, it is an encouraging result for DNN verification as we view this as 
an encouraging result to improving the performance of exact range computation of neural 
networks— developing more efficient domain contraction algorithms and improving min-
cost flow implementations is likely easier than coming up with new ways to speed up LP 
solving.

Hexatopes versus octatopes: expressiveness and scalability From their definitions, it is 
clear that hexatopes are less expressive than octatopes, as every octatope is also a hexatope, 
but not the other way around. On the other hand, our experimental results (Table 1) show 
that for similar problems, the octatope abstract domain requires fewer LP calls compared 
to hexatopes. For example, in the first row with property 3 and network 1–6, the number 
of LP calls is reduced from 91K to around 2.6K and 2.5K for hexatopes and octatopes, 
respectively. However, note that the algorithms for octatopes work on UTVPI constraints, 
while hexatopes work with difference constraints. Since the algorithms for UTVPI con-
straints roughly double the size of the constraint graph, optimization over octatopes may 
take more time than for hexatopes on problems of similar size. However, in the absence 
of an efficient UTVPI solver implementation, an exact comparison of scalability between 
hexatopes and octatopes is difficult.

6  Conclusion

The advent of deep neural networks and their inevitable widespread adoption necessitates 
tools by which we can reason about their robustness. The verification community has made 
great strides on this front in recent years through the development of neural network veri-
fication solutions based on search, optimization, and reachability. While search and opti-
mization can often be used to yield sound and complete solutions, such techniques pay the 
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cost of scalability. Methods based on reachability analysis, on the other, can often scale 
better at the cost of completeness. These methods typically employ an abstract domain rep-
resentation of the input–output behavior of nodes in the neural network for a given set of 
inputs. These abstract domains range from zonotopes to star sets that differ in their trade-
off between scalability and precision.

We proposed octatopes as a new abstract domain which corresponds to affine transfor-
mations of unit two-variable per inequality (UTVPI) constraints. Octatopes provide tighter 
abstractions than zonotopes while optimization can be formulated as a min-cost flow prob-
lem that is theoretically more efficient than linear programming. Our experiments using 
octatope abstract domains for exact range computation of neural networks confirmed their 
accuracy, as we were able to reduce the bottleneck step of using LP to compute each neu-
ron’s input bounds. Given that the minimum-cost flow (MCF) problem can be efficiently 
solved via the Out-of-Kilter algorithm and network simplex algorithms, this benefit is 
expected to extend to the efficiency of octatopes/hexatopes for neural network verification 
problems. Unfortunately, the current state-of-the-art implementations of the algorithms for 
the MCF problem are not as optimized as those for LP, preventing this work from experi-
mentally demonstrating scalability gains in wall-clock time. In our experiments, we found 
that it was faster to use the highly-optimized commercial LP solver Gurobi instead of 
the theoretically faster min-cost flow formulation. A key takeaway from this research is 
the need for optimal implementations of UTVPI solvers and their potential applications in 
improving the state-of-the-art in neural network verification. Other future research direc-
tions include examining ways to improve domain contraction, as well as investigating other 
application areas of octatopes such as neural network verification with over-approxima-
tions, software analysis, and hybrid systems reachability.
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