
Vol:.(1234567890)

Formal Methods in System Design (2024) 64:178–199
https://doi.org/10.1007/s10703-024-00457-y

RESEARCH

The hexatope and octatope abstract domains for neural
network verification

Stanley Bak1 · Taylor Dohmen2 · K. Subramani3 · Ashutosh Trivedi2 ·
Alvaro Velasquez2 · Piotr Wojciechowski3

Received: 7 December 2023 / Accepted: 16 May 2024 / Published online: 17 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Efficient verification algorithms for neural networks often depend on various abstract
domains such as intervals, zonotopes, and linear star sets. The choice of the abstract
domain presents an expressiveness vs. scalability trade-off: simpler domains are less pre-
cise but yield faster algorithms. This paper investigates the hexatope and octatope abstract
domains in the context of neural net verification. Hexatopes are affine transformations of
higher-dimensional hexagons, defined by difference constraint systems, and octatopes are
affine transformations of higher-dimensional octagons, defined by unit-two-variable-per-
inequality constraint systems. These domains generalize the idea of zonotopes which can
be viewed as affine transformations of hypercubes. On the other hand, they can be con-
sidered as a restriction of linear star sets, which are affine transformations of arbitrary H
-Polytopes. This distinction places hexatopes and octatopes firmly between zonotopes and
linear star sets in their expressive power, but what about the efficiency of decision pro-
cedures? An important analysis problem for neural networks is the exact range computa-
tion problem that asks to compute the exact set of possible outputs given a set of possible
inputs. For this, three computational procedures are needed: (1) optimization of a linear
cost function; (2) affine mapping; and (3) over-approximating the intersection with a half-
space. While zonotopes allow an efficient solution for these approaches, star sets solves
these procedures via linear programming. We show that these operations are faster for hex-
atopes and octatopes than they are for the more expressive linear star sets by reducing the
linear optimization problem over these domains to the minimum cost network flow, which
can be solved in strongly polynomial time using the Out-of-Kilter algorithm. Evaluating
exact range computation on several ACAS Xu neural network benchmarks, we find that
hexatopes and octatopes show promise as a practical abstract domain for neural network
verification.

Keywords Neural network verification · Abstract domains · Zonotopes · Star sets ·
Difference constraint system · Unit-two-variables-per- inequality (UTVPI) constaint
system

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-024-00457-y&domain=pdf

179Formal Methods in System Design (2024) 64:178–199

1 Introduction

The success of deep feed-forward neural networks (DNN) in computer vision and speech
recognition has prompted applications in critical infrastructure. These applications range
from using pre-trained perception and speech-recognition modules in safety-critical logic
(self-driving cars and medical decision making) to learning controllers from reinforcement
signals [38] to learning succinct representations of formally verified controllers (ACAS
Xu). The increasing prevalence of DNNs in safety-, privacy-, and social- critical systems
motivates the focus of the formal methods community [2, 4, 7, 41] in developing verifica-
tion technology to meet the challenge of improving trust in DNNs. Robustness [12, 25],
safety [24, 30], and fairness [8, 11] are among the key verification problems over neural
networks.

Abstract interpretation [3, 15] is a well-established framework for program verification
that formalizes the exploration of the program semantics at the granularity provided by the
underlying domain. For example, intervals [15] form an abstract domain facilitating analy-
sis in which sets of states are represented as hyperrectangles. Other abstract domains such
as difference constraints, octagons (unit-two-variables-per-inequality or UTVPI), and poly-
hedral (linear constraints) have been successfully deployed for the verification of DNNs.
However, the multi-layer architecture of DNNs, when combined with linear function com-
position followed by a non-linear activation function at each layer, results in the repeated
intersection of abstract spaces with linear inequalities. For this reason, abstract domains
that do not permit an efficient affine mapping suffer in exploring the layered state space of
the DNNs.

Zonotopes [36] solve this problem by representing an abstract set as an affine map-
ping of an interval generator set. For zonotopes, the key operations for DNN verification,
such as nonemptiness, optimization, and over-approximation, can be performed via effi-
cient, enumerative procedures. Linear star sets [17, 42] generalize zonotopes by represent-
ing the generator set using the polyhedral domains. This generalization, while improving
the expressiveness, leads to the decision procedures depend upon solving linear programs,
which tends to be the performance bottleneck in the overall algorithm. While linear pro-
gramming is known to be solvable in polynomial time, via a number of celebrated interior-
point algorithms [28], there is no known strongly polynomial algorithm. Dantzig’s simplex
algorithm is a popular algorithm to solve LP and works well in practice, but for general
LPs, the time complexity of the simplex algorithm is not polynomial [29], and subexpo-
nential lower bounds hold even for randomized pivoting rules [18].

For some subclasses of linear programming problems, more efficient solutions exist.
In particular, when the constraints are restricted to difference constraints (xi xj c)
or UTVPI constraints (±xi ± xj c), then the duals of the corresponding LPs can be
reduced to minimum cost flow (MCF) problems [1], for which there exist strongly poly-
nomial time algorithms [21]. The Out-of-Kilter algorithm is one popular algorithm for
solving minimum cost flow that also produces a solution to the dual [1]. It runs in time
O((m2 + m n log n) U) on a network with m arcs and n nodes and maximum supply/
demand U. Alternatively, the network simplex algorithm is a specialized version of the
simplex to solve minimum cost flow problems. Unlike standard simplex, network simplex
runs in polynomial time [35]. Given its relative efficiency, it is natural to ask:

Is it possible to replace linear programming with min-cost flow in neural network
verification?

180 Formal Methods in System Design (2024) 64:178–199

This question motivates the investigation of sub-classes of star sets that are more gen-
eral than zonotopes, but enable efficient decision procedures based on MCF problems.
For this purpose, we introduce octatopes: sets that can be defined as affine maps of
UTVPI constrained sets (octagons [34]). Since octatopes are a special class of star sets,
the affine transformation remains efficient. We also study hexatopes as the images of
difference constrained sets (hexagons [34] or zones [10]). A key contribution of this
paper is that the key operations required for verification using octatopes and hexatopes
can be performed efficiently using algorithms for MCF problems.

Given that the MCF problem can be solved efficiently via Out-of-Kilter algorithm
and network simplex (touted [9] to be 200–300 times faster than simplex), this benefit
will translate to the efficiency of octatopes/hexatopes for LP-intensive applications like
reachability analysis of neural networks. While the current state-of-the-art implemen-
tations of the algorithms for the MCF problem are not as advanced as those for LP, we
believe that this will change in light of the proposed application. We implement the
octatope and hexatope abstract domains and show their effectiveness on several ACAS
Xu networks [26], a popular benchmark for neural network verification. An extended
abstract of this paper was presented at the 25th International Symposium on Formal
Methods [5].

Related work A growing body of research exists on different methods to verify neu-
ral networks [32], including recent tool competitions [6]. Algorithms can be catego-
rized into search, optimization, and reachability solutions. In the space of search pro-
cedures, the seminal Reluplex method proposes an extension of the simplex algorithm
used for linear programming to handle ReLU networks [26]. This method has been
widely adopted and extended by, for example, posing verification as a constraint satis-
faction problem [27]. This can then be solved using off-the-shelf Satisfiability Modulo
Theory (SMT) solvers like z3 [16]. The use of SMT enables reasoning over different
activation functions and topologies.

Interval arithmetic is another popular approach often used to estimate the range of
output values given a range of inputs while tracking the input and output ranges of
individual activation functions [45]. This can be computed by using linear program-
ming to derive lower and upper bounds for a given node in the network. The work of
[22] combines this with symbolic interval propagation and gradient descent to find
counter-examples to the over-approximations established by the linear programming
solutions. More sophisticated node splitting strategies that account for downstream
effects on successor nodes can also be used as part of the symbolic interval propaga-
tion phase [23]. Per-neuron split constraints can also further improve efficiency [46].

Optimization solutions to the verification based on ILP have been explored. This
is a natural formulation for the verification of neural networks due to the use of affine
transformations and the fact that piecewise linear activation functions can be encoded
using a set of binary linear constraints [2]. The work in [39] extends similar ideas by
estimating the maximum disturbance that is permitted at the input and proposing pre-
solve procedures to speed up the solution.

Although solutions based on SMT-solving and mathematical programming are
often complete, they require the entire network to be encoded within the correspond-
ing constraints, thereby limiting scalability. In contrast to these search and optimiza-
tion solutions, the use of reachability analysis for verification of neural networks has
been shown to scale to larger instances at the cost of completeness. Examples of this
include the use of zonotope and star set abstract domains. The former can be efficiently
employed to compute conservative over-approximations of output bounds of nodes in a

181Formal Methods in System Design (2024) 64:178–199

network [20], whereas linear programming can be employed for the latter to find tight
bounds at the cost of scalability [44]. The work proposed herein seeks to advance the
state of verification methods based on reachability analysis by providing tighter over-
approximations than zonotopes and more efficient computations than star sets.

2 Preliminaries

Let denote the set of real numbers and denote the set of rational numbers. We write
 m n for the set of all m n dimensional matrices of reals.

For a matrix M m×n , we write M(i,) 1×n and M(, j) m×1 for the ith row vector
and jth column vector, respectively, of M, for 1 i m and 1 j m . Similarly, we write
M(i, j) for the matrix element at row i and column j. By default, a vector is a column vector
and we associate a set of matrices m 1 with the set of vectors m . For a matrix M m×n
we write M𝖳 n×m for its transpose matrix. For a row vector v 1×n , we write v𝖳 n
for the corresponding (transposed) vector. We write 1n for the all-ones vector of size n and
I for the identity matrix of some fixed dimension (often clear from context). For a (column)
vector v = (v1, v2,… , vn)

n we write vi for its ith element. For a vector v m and sca-
lar a , we write a v for the vector (a v1,… , a vm) . For two vectors u, v m , we
write u v for their dot product, i.e., u v =

 m

i=1
ui vi . For two matrices M m×n and

N n×p , their product MN m×p is defined as MN(i, j) = M(i,)𝖳 N(, j).
We call a function f n m linear if f (u) + f (v) = f (u + v) and f (a v) = a f (v)

for all scalars a and vectors u, v n . A linear function f n m can be rep-
resented as a matrix A Mm×n such that f (v) = Av for every v n . A function
f n m is affine if it is a sum of a linear function and a constant, i.e., f (v) = Av + b
for some A m×n and b m.

Definition 1 (Linear Constraint System (LCS)) A linear constraint over a vector x n is
a constraint of the form

where a = (a1,… , an)
n and b . A linear constraint system (LCS) is a conjunction

of linear constraints Ax b where A m×n and b m.

3 Veri!cation of neural networks

We primarily work with feedforward neural networks (NNs) with rectified linear unit
(ReLU) activation functions. We focus on networks with k fully-connected layers, also
called multi-layer perceptrons. A ReLU is a commonly used activation function 𝜎
defined as 𝜎(x) = max {x, 0} . We can extend this function from scalars to vectors as
𝜎 n n in a straightforward fashion by applying ReLU component-wise. This setup
is the most typical situation considered for neural network verification tools [6], although
extensions have been made to other layer types [40, 43] and activation functions [37].

a1x1 + a2x2 + + anxn b,

182 Formal Methods in System Design (2024) 64:178–199

Formally, a neural network (NN) is a function f i o , where i is the input
dimension and o is the output dimension. Each layer of the network is also a function
fk

ik ok with its own input dimension ik and output dimension ok , defined as the
composition 𝜎k 𝛼k in which 𝛼k ik ok is an affine mapping that is followed by the
application of a ReLU 𝜎k ok ok of appropriate dimension. For the network to be
well formed, it is required that the input dimension of the first layer is i, the output dimen-
sion of the final layer is o, and all intermediate layers have input dimensions equal to the
output dimension of the preceding layers and output dimension equal to the input dimen-
sion of the following layer. For a network with n layers, the function f is defined by the
composition fn fn 1 … f2 f1 . Figure 1 shows a feedforward neural network with three
layers.

Given the importance of neural networks in critical infrastructure, establishing formal
guarantees on their performance is of paramount interest. The key verification problems
concerning neural networks include robustness [12, 25], safety [24, 30], and fairness [8,
11]. Given a neural network and an input, the robustness problem [12, 25] asks whether
small perturbations around the input keep the output close to the original value. The safety
problem [24, 30] asks whether for every input from a given set, the neural network outputs
do not go outside a given set. Finally, the fairness problem [8, 11] for neural networks is
typically posed by assuming a partition over the input features within protected and unpro-
tected features, and the verification question involves checking whether the output is robust
while keeping the protected features constant. All of these problems require computing the
range of the output for a given range of the input. Since our focus is on developing veri-
fication support, we frame the problem in a broader context as the range computation and
empty intersection problems.

Definition 2 (Exact Range Computation Problem) Given a neural network implementing
the function f i o and an input set I i , the exact range computation problem is
to compute the image 𝖱𝖺𝗇𝗀𝖾(f , I) = {f (x) x ∈ I}.

Fig. 1 A three layer neural
network with an input layer
with four neurons, an internal
layer with five neurons, and an
output layer with 2 neurons. This
network represents a function
f 4 2.

183Formal Methods in System Design (2024) 64:178–199

Definition 3 (Neural Network Verification Problem) Given an input set I i , an unsafe
set U o , and a neural network that computes f i o , the neural network verifica-
tion problem asks whether

As is typical with the state-of-practice in neural network verification, we restrict the input
sets and unsafe sets to be defined by systems of linear constraints I =

{
x i ∶ Aix bi

}

and U =
{
x o ∶ Aux bu

}
 . The popular ACAS Xu neural network verification bench-

marks [26] satisfy this assumption, and will be used in our experimental evaluation.

3.1 Abstraction based methods

We now describe a general approach to the neural network verification problem that is
based on interpreting sets in the domains and codomains of NNs (and their component
layers) with respect to some abstract domain which, in our case, comprises a particu-
lar class of geometric objects. Suppose, for the time being, that an appropriate abstract
domain has already been chosen. Given an instance of the neural network verification
problem, the abstraction based paradigm proceeds roughly as follows.

Algorithm 3.1 Abstract Neural Network Verification

1: input: (I) fk = σk ◦ αk, for each layer k in the given NN, (II) input set I, (III) unsafe set U .
2: Identify elements A,B of the abstract domain such that I ⊆ A and U ⊆ B.
3: for each layer k do
4: Compute the image fk(A).
5: Find an element A′ of the abstract domain such that fk(A) ⊆ A′.
6: Set A ← A′.
7: return A ∩ B = ∅.

From the above algorithm, we distill three operations that are fundamental to the
overall approach:

1. affine transformation is required to compute 𝛼k(A),
2. half-space intersection is necessary for computing 𝜎k(𝛼k(A)) , and
3. emptiness determination is essential for deciding the final return value.

For the purposes of abstract neural network verification, any reasonable abstract domain
should facilitate algorithmic execution of these operations. Besides the feasibility of
carrying out the critical operations, additional properties of an abstract domain that are
helpful in this context may be inferred from Algorithm 3.1. If a given abstract domain
is closed under affine transformation, then the instruction on line 5 may be omitted. If
the abstract domain is closed under intersection, the emptiness check to determine the
return value is simplified. We proceed by examining two particular geometric abstract
domains that are useful in the context of abstract neural network verification.

𝖱𝖺𝗇𝗀𝖾(f , I) U = ∅.

184 Formal Methods in System Design (2024) 64:178–199

3.2 Abstract domains: zonotopes and linear star sets

A relatively simple abstract domain is the family of zonotopes [3, 20] and it is defined as
an affine image of a hypercube.

Definition 4 (Zonotope) An n-dimensional zonotope is the image of a p-dimensional
hypercube under an affine transformation p n . It is given as a pair Z = c,G⟩ com-
prising a center c n and a collection of generator vectors g1,… , gp

n forming a
matrix G =

[
g1 gp

]
 n×p.

The semantics of Z are defined as

A more expressive abstract domain is the family of linear star sets [33, 42] that can
be considered as affine image of a polytope.

Definition 5 (Linear Star Set) Linear star sets generalize zonotopes by letting the kernel
be defined by an LCS; a linear star set is the image of a p-dimensional polytope under
an affine transformation p n . Formally, an n-dimensional star set S is specified as
a tuple c,G,A, b⟩ including a matrix A and vector b representing the polytope Ax b ,
a center c n , and a collection of generator vectors g1,… , gp

n that form a matrix
G =

[
g1 gp

]
 n×p . The semantics of S are defined as

Some examples of zonotopes and linear star sets are shown in Fig. 2. Both a zono-
tope and a linear star set may be viewed as an n-dimensional image of a polytope—
which we refer to as the kernel—under affine transformation. For zonotopes, the kernel

[[Z]] =
{
Gx + c −1p x 1p

}
.

[[S]] = {Gx + c Ax b}.

Fig. 2 (Left.) A hypercube (X), two zonotopes f(X) and g(X), and their various compositions (f g, g f , f f ,
and g g) as zonotopes. (Right.) A polytope (X), two linear star sets f(X) and g(X), and their various compo-
sitions as linear star sets.

185Formal Methods in System Design (2024) 64:178–199

is a hypercube, while for linear star sets the kernel is a set defined by a generic polytope.
Thus, the kernel of a linear star set may be specified as a linear constraint system. The
kernel of a zonotope can be encoded by an interval constraint system, which is a sys-
tem of linear constraints of the form ai xi bi where ai, bi . In the present work,
we examine geometric abstract domains that fall between zonotopes and linear star sets
in terms of precision and complexity. Such domains shall be characterized by the sub-
classes of linear constraint systems that specify their kernels.

3.3 Fundamental Theorems of linear star sets

We now state formally the results [42] about linear star sets that are fundamental to our
approach towards neural network verification. Each of the following theorems is key to
ensuring that the operations of affine transformation, half-space intersection, and empti-
ness checking are available and feasible for linear star sets. Since each abstract domain
considered in this paper forms a subclass of linear star sets, these serve as a template for
the stronger results we subsequently establish for hexatopes and octatopes.

Theorem 1 Linear star sets are closed under affine transformation.

Theorem 2 The problems of linear optimization and emptiness checking over linear star
sets can be solved in polynomial time by reduction to linear programming.

Theorem 3 The intersection of a linear star set S = c,G,A, b⟩ and half space {y My d}
is another linear star set S = c,G,A , b′⟩ where A′x b′ comprises the conjunction of
constraints

3.4 Illustration of NN verification with zonotopes

Now that we have concretely defined some abstract domains, the process of Algo-
rithm 3.1 can be explicitly visualized (in the two dimensional case). Figure 3 depicts the
first iteration of the algorithm using zonotopes as the abstract domain:

Ax b and MGx d Mc.

Fig. 3 An illustration of the first step of Algorithm 3.1 using the zonotope abstract domain.

186 Formal Methods in System Design (2024) 64:178–199

• Figure 3a displays the initial set, which is an elliptical region in the plane in this case;
• Figure 3b overlays the initial set with a box;
• Figure 3c shows an affine image of the initial set and its approximating box;
• Figure 3d plots the result of applying a ReLU after the affine mapping.

For other abstract domains, the graphical illustration remains unchanged, except the
approximations are stored as those corresponding domains.

3.5 Organization

In the rest of the paper, we extend the notion of zonotopes to define octatopes and hex-
atopes and develop a series of results, analogous to Theorems 1 to 3, that provide the theo-
retical framework for the application of these abstract domains to the verification of neural
networks.

4 Hexatopes

In this section, we introduce hexatopes that generalize zonotopes, with the kernel being
specified using a difference constraint system. We will develop analogs of Theorems 1 to 3
for hexatopes.

Definition 6 (Difference Constraint System) A difference constraint is a linear constraint
of the form

Fig. 4 (Left.) A difference constraint system (X), two hexatopes f(X) and g(X), and their various composi-
tions. (Right.) A UTVPI system (X), two octatopes f(X) and g(X), and their various compositions.

187Formal Methods in System Design (2024) 64:178–199

A difference constraint system (DCS) is a conjunction of difference constraints.

Definition 7 (Hexatope) A hexatope H = c,G,A, b⟩ is a special type of linear star set,
having a kernel Ax b defined by a difference constraint system.

Some examples of hexatopes are shown in Fig. 4. Our first result mirrors Theorem 1 and
establishes closure under affine mappings for hexatopes.

Theorem 4 Hexatopes are closed under affine transformation.

Proof From Theorem 1 it follows for any hexatope H = c,G,A, b⟩ and any affine mapping
f (x) = Wx + d , that {Wx + d x ∈ [[H]]} is linear star set H =

⟨
c′,G ,A, b

⟩
 where

Since the transformation does not change the kernel, H′ is indeed a hexatope.

4.1 Linear optimization via minimum cost flow

In this subsection, we show that for any linear optimization problem over a difference con-
straint system, the dual problem can be reduced to the minimum cost flow problem [1].
The minimum cost flow problem is a canonical problem in flow networks (also known as
transportation networks), where a network is represented as a directed graph with vertices
(nodes) as junctions and edges (arcs) as channels between those junctions. One assumes
that some quantity of interest-such as water, oil, population, or traffic-flows through the
network respecting certain capacity constraints of the channels and we are interested in
optimizing the total cost associated the flow, given as the cost per unit amount of flow in
a channel. Formally, we define a flow network and the corresponding minimum-cost flow
problem as follows.

Definition 8 A flow network G = (V ,E, c, a, d) is a directed graph G = (V ,E) with a capac-
ity c E 0 and a cost a E associated with every edge (arc) and a demand

xi xj b, where b ∈ .

c′ = Wc + d and G =
[
Wg1 Wgp

]
.

188 Formal Methods in System Design (2024) 64:178–199

d V associated with every vertex (node). We assume that v V d(v) = 0 . The mini-
mum cost flow (MCF) problem can be stated as follows:

It is well known that there exist strongly polynomial time algorithms [21] for the MCF
problem. One example is the Out-of-Kilter algorithm (Algorithm 4.1) that we now review.

Algorithm 4.1 OUT-OF-KILTER(G = (G = (V ,E), c, a, d))

1: Initialize the potential as π ← 0.
2: Let f be a flow in G.
3: Construct the residual network Gf .
4: Compute the kilter number k(u, v) of each edge (u, v) in Gf .
5: while (Gf contains an edge with positive kilter number) do
6: Select an edge (u, v) in Gf with positive kilter number.
7: Let the weight of each edge (u, v) in Gf be max{0, cπ(u, v)}.
8: For w ∈ V \ {u, v}, let l(w) be the weight of the least weight path from v to w.
9: Let P be a shortest path from v to u.

10: For each node w, set π(w) ← π(w) − l(w).
11: if (cπ(u, v) < 0) then
12: Q ← P ∪ {(u, v)}.
13: δ ← min(u,v)∈Q r(u, v).
14: Augment δ units of flow along Q.
15: Update f and Gf .
16: return f .

Out-of-Kilter algorithm A pseudocode for the Out-of-Kilter algorithm is given as Algo-
rithm 4.1. It starts with a possibly infeasible flow and iteratively modifies this flow in a way
that decreases the infeasibility of the solution and moves it closer to optimality. Each step
of the algorithm consists of solving a shortest path problem and augmenting the flow along
the shortest path. It operates on the residual network Gf corresponding to the current flow f.
This residual network is constructed as follows.

Feasible Edges: If f (u, v) < c(u, v) , we add the edge (u, v) with a residual
capacity of r(u, v) = c(u, v) f (u, v) and cost a(u, v). If
f (u, v) > 0 , we add the edge (v, u) with a residual capacity of
r(v, u) = f (u, v) and cost a(u, v).

Lower-Infeasible Edges: If f (u, v) < 0 , we add edge (u, v) with residual capacity
r(u, v) = f (u, v) and cost a(u, v).

Upper-Infeasible Edges: If f (u, v) > c(u, v) , we add the edge (v, u) with a residual capac-
ity of r(v, u) = f (u, v) c(u, v) and cost a(u, v).

For each vertex v in the residual network, the algorithm maintains a poten-
tial 𝜋(v) and for each edge (u, v) with cost a(u, v), it maintains the reduced cost
a𝜋(u, v) = c(u, v) 𝜋(u) + 𝜋(v) . Additionally, for each edge in the residual network, it
maintains a kilter number k(u, v) which is 0 if c𝜋(u, v) 0 and is the residual capacity

Minimize
∑

(u,v) E

f (u, v) a(u, v)

subject to
∑

u V

f (u, v) −
∑

u V

f (v, u) = d(v) for all v V ,

0 f (u, v) c(u, v)for all (u, v) E.

189Formal Methods in System Design (2024) 64:178–199

r(u, v) if c (u, v) < 0 . This kilter number represents the change in flow required so that
each edge satisfies its optimality condition.

Note that the node potentials 𝜋 and reduced costs c𝜋 corresponding to the optimal flow f
are the optimal solution of the dual problem [1]. The Out-of-Kilter algorithm runs in time
O((m2 + m n log n) D) on a network with m edges and n vertices and maximum demand
D.

Theorem 5 The linear optimization problem over hexatopes can be solved in strongly poly-
nomial time via reduction to the minimum cost flow problem.

Proof Consider an n-dimensional hexatope H = c,G,A, b⟩ which is the image of a
p-dimensional DCS-defined set. In order to optimize a linear function f over [[H]] , it suffices
to optimize the composition of functions f h where h(x) = Gx + c over the difference con-
strained set Ax b . Suppose that f (x) = fx =

k fkxk , then the composite objective func-

tion can be written as f h(x) = fGx + fc . Then, omitting the constant term fc which can
be reincorporated in the end, we have that f h(x) = k wkxk for some appropriate coef-
ficients wk.

Following chapter 24, Sect. 4 of [14], we construct a directed graph, called the con-
straint graph, to represent the difference constraint system determining the kernel of the
given hexatope. For each variable xi , there is a vertex vi in the constraint graph. Addition-
ally, there is one extra vertex v0 . Set the demand of each vertex as d(vi) = wi , for all i > 0 ,
and let d(v0) =

k wk . For every constraint of the form xi xj b in the DCS, there is

an edge (vj, vi) in the constraint graph with cost b and infinite capacity. For every vertex vi ,
with i > 0 , there is also an edge (v0, vi) with cost 0 and infinite capacity.

The MCF problem instance constructed in this manner is equivalent to the dual of the
given linear optimization problem instance over the given DCS. Since the Out-of-Kilter
algorithm also solves the dual to the minimum cost flow problem [1], running it on the dual
of the DCS optimization problem will also solve the DCS optimization problem itself. For
a DCS with m constraints, this process takes O((m2 + m p log p) C) time where C is the
largest absolute value of any coefficient in the objective function.

5 Octatopes

In this section, we introduce octatopes that generalize zonotopes, with the kernel being
specified using a UTVPI constraint system. We will develop analogs of Theorems 1 to 3
for octatopes.

A UTVPI constraint ai xi + aj xj b is said to be an absolute constraint if ai = 0
or aj = 0 . An absolute constraint can be converted into constraints of the form:
ai xi + aj xj b , where both ai and aj are non-zero. Note that a UTVPI constraint
ai xi + aj xj b is a difference constraint if ai = aj . The constant that bounds a UTVPI
constraint is called the defining constant. For instance, the defining constant for the con-
straint x1 x2 9 is 9.

Definition 9 (Octatope) An octatope is a special kind of linear star set c,G,A, b⟩ , having a
kernel Ax b defined by a UTVPI constraint system.

190 Formal Methods in System Design (2024) 64:178–199

Some examples of octatopes are shown in Fig. 4 (right). Following the same argument
used to prove Theorem 1, we establish closure of octatopes under affine mappings.

Theorem 6 Octatopes are closed under affine transformation.

By Theorem 2, linear optimization over linear star sets can be done in polynomial time.
Our next result shows that linear optimization over octatopes and hexatopes can be done in
strongly polynomial time.

Theorem 7 The linear optimization problem for octatopes can be solved in strongly poly-
nomial time via reduction to the linear optimization problem for hexatopes.

Proof Following techniques of [31, 34], we convert a UCS U into a DCS D . The first part
of the conversion creates the variables x+

i
 and x

i
 in D for each variable xi in U . Then, each

constraint in U is converted as follows:

1. Each constraint of the form xi + xj b becomes two constraints

2. Each constraint of the form xi xj b becomes two constraints

3. Each constraint of the form xi + xj b becomes two constraints

4. Each constraint of the form xi xj b becomes two constraints

5. Each constraint of the form xi b becomes a constraint

6. Each constraint of the form xi b becomes constraint

Observe that that xi = 1

2
(x+

i
 x

i
) satisfies the original UCS. Thus, we can consider this as

the problem maximizing the objective function over variables 1
2
(x+

i
 x

i
) of the DCS D .

5.1 Emptiness checking

We also consider the feasibility problem for octatopes. That is, the problem of deciding
whether an octatope is empty.

x+
i
 x

j
 b and x

i
+ x+

j
 b.

x+
i
 x+

j
 b and x

i
+ x

j
 b.

x
i
 x

j
 b and x+

i
+ x+

j
 b.

x
i
 x+

j
 b and x+

i
+ x

j
 b.

x+
i
 x

i
 2 b.

x
i
 x+

i
 2 b.

191Formal Methods in System Design (2024) 64:178–199

Theorem 8 The emptiness of an octatope can be decided in O(p m) time and O(p + m)
space where p is the number of generator vectors and m is the number of UTVPI constraints
defining its kernel.

Proof It is easy to see that an octatope is empty if and only if the UTVPI constraints of its
kernel are unsatisfiable as linear mappings over polytopes that are monotone with respect
to set inclusion. The complexity then follows from results on checking the feasibility of
UTVPI constraint systems [31].

5.2 Intersection with half-spaces

It follows from Theorem 3 that the intersection of an octatope O = c,G,A, b⟩ and half
space {y My d} is a star set O = c,G,A , b′⟩ where the constraints A′x b′ are the
conjunction of UCS constraints Ax b and the hyperplane MGx d Mc . In the rest of
this section, we show how an over-approximation of this intersection can be represented as
UCS constraints. The treatment for hexatopes is similar, and hence omitted.

Algorithm 5.1 UTVPIBOUNDINGBOX(U, l)

Input: UCS U and constraint l
Output: A utvpi bounding box U′

1: U′ ← ∅
2: for all pairs of variables xi, xj in U do
3: Let u+−

ij = maxU∪{l} xi − xj and add constraint xi − xj ≤ u+−
ij to U′

4: Let u−+
ij = maxU∪{l} xj − xi and add constraint xj − xi ≤ u−+

ij to U′

5: Let u++
ij = maxU∪{l} xi + xj and add constraint xi + xj ≤ u++

ij to U′

6: Let u−−
ij = maxU∪{l} −xi − xj and add −xi − xj ≤ u−−

ij to U′

7: Let u+
i = maxU∪{l} xi and add constraint xi ≤ u+

i to U′

8: Let u−
i = maxU∪{l} −xi and add constraint −xi ≤ u−

i to U′

9: return U′.

We formalize this problem as the UTVPI bounding box problem.

Definition 10 (UTVPI Bounding Box) Given a UCS U and an arbitrary linear constraint l, a
UTVPI bounding box is a UCS 𝐔′ , such that every solution to U {l} is a solution to 𝐔′ . For
a given UCS U and constraint l, a tightest UTVPI bounding box is a bounding box of U {l}
that is contained within every other bounding box of U {l}.

Thus, a UTVPI bounding box of a UCS U and constraint l is a UCS that overestimates the
solution space of U {l} . A tightest bounding box is a UCS that overestimates the solution
space the least. Each of the linear programs used to construct 𝐔′ can be solved (with L bits
of precision) in O(n2.38 L) time [13]. Since finding the UTVPI bounding box requires solv-
ing O(n2) linear programs, the UTVPI bounding box can be found in O(n4.38 L) time.

Theorem 9 Let U be a UCS and let l be an arbitrary linear constraint. The UCS 𝐔′ , con-
structed by Algorithm 3, is a UTVPI bounding box of U {l}.

192 Formal Methods in System Design (2024) 64:178–199

Proof Let 𝐱 be a solution to U {l} . Let ai xi + aj xj uij be an arbitrary constraint in
𝐔′ . By construction of 𝐔′ , we have uij = maxU {l} ai xi + aj xj.

Since 𝐱 is a solution of U {l} , ai x
i
+ aj x

j
 uij . This means that 𝐱 satisfies the

constraint ai xi + aj xj uij . Since the constraint ai xi + aj xj uij was chosen arbitrar-
ily, 𝐱 is a solution to 𝐔′ . Note that 𝐱 was an arbitrary solution to U {l} . Thus, every
solution to U {l} is a solution to 𝐔′ . Consequently, 𝐔′ is a UTVPI bounding box of U {l} .

We now show that 𝐔′ is a tightest UTVPI bounding box of U {l} . Note that U {l}
must have a tightest bounding box. Consider two bounding boxes U1 and U2 of U {l} . Let
𝐔 , be the UCS formed by combining the constraints in U1 and U2 . Note that 𝐔 is also a
bounding box of U {l} . Additionally, every solution to 𝐔 is a solution to both U1 and U2 .
Thus, if U {l} has two incomparable bounding boxes, then a new bounding box can be
constructed that is tighter than both.

Theorem 10 Let U be a UCS and let l be a linear constraint. The UCS 𝐔′ , produced by
Algorithm 3, is a tightest UTVPI bounding box of U {l}.

Proof Assume for the sake of contradiction, that 𝐔′ is not a tightest UTVPI bounding box of
U {l} . Thus, there exist a UTVPI bounding box 𝐔′′ and a point 𝐱 such that 𝐱 is a solution
to 𝐔′ , but not a solution to 𝐔′′ . This means that there is a UTVPI constraint ai xi + aj xj b
in 𝐔′′ that is violated by 𝐱 .

Let uij = maxU {l} ai xi + aj xj . Since 𝐔′′ is a UTVPI bounding box of U {l} , every
solution to U {l} is a solution to 𝐔′′ . Thus, every solution to U {l} satisfies the con-
straint ai xi + aj xj b . This means that

is bounded from above by b. Thus, uij exists and uij b.
By the construction of 𝐔′ , the constraint ai xi + aj xj uij is in 𝐔′ . However, 𝐱 is a

solution to 𝐔′ such that ai x
i
+ aj x

j
> b uij . This is a contradiction. Thus, 𝐔′ must be

a tightest UTVPI bounding box of U {l} .

5.3 Range computation for neural nets with prefilters

The exact range computation problem from Definition 2 can be solved using linear star sets
(see Algorithms 1 and 2 in earlier work for a full review [7]).

The neural network function f as defined in Sect. 3 is a piece-wise affine function of
the inputs. The range computation proceeds using geometric set operations. The initial set
of states is represented as a linear star set and propagated through each layer of the net-
work. To go from the output of one layer to the vector of intermediate values at the next
layer, an affine transformation operation is performed on the set. The effect of the ReLU
activation in a layer is handled iteratively for each neuron. The set of states is potentially
split along the neuron input constraint yi = 0 , into a negative region and a positive region,
using a half-space intersection operation. The negative region is then projected to zero to
match the semantics of a ReLU. The two sets are then considered independently for the
remaining neurons in the layer, as well as the rest of the layers in the network. For a given

max
U {l}

ai xi + aj xj

193Formal Methods in System Design (2024) 64:178–199

input set, not all neurons require splitting the set in two, since the input constraints may
restrict inputs to be strictly positive or negative. To check this, before splitting we first opti-
mize over the set in the direction of the intermediate value x(i)

j
 corresponding to a specific

neuron j in layer i. If splitting occurs, the two sets are treated independently and propa-
gated through the remaining neurons in the layer, possibly requiring further splitting in the
remaining parts of the network.

After applying a number of optimizations, the bottleneck of exact range computation
with star sets is the use of LP solving to compute the input bounds for each neuron [7].
To improve analysis speed, rather than speeding up LP solving—which is a well-studied
problem where further progress is likely to be difficult—we instead seek methods that can
reduce the number of LPs needed.

In earlier work, zonotope abstract domains have been considered for this task. Rather
than just propagating star sets through a network, we also propagate a zonotope overap-
proximation that we use in a prefiltering step. Recall that before splitting we first need to
optimize over the set in the direction of the intermediate value x(i)

j
 . Before optimizing over

the star set using LP, we first optimize over the zonotope abstraction prefilter. If the zono-
tope abstraction can prove that that the inputs are strictly positive or negative, than we are
guaranteed the exact result from the LP will be strictly positive or negative as well (as the
zonotope is an overapproximation of the star set). This allows us to avoid LP, as optimiza-
tion over zonotopes can be done efficiently using a simple loop.

The reason zonotope analysis is not exact is that zonotopes do not support general half-
space intersections when sets must be split. Instead, two approaches have been consid-
ered. The easiest option is to ignore intersections, which is fast but can cause significant
overapproximation error in the abstraction [19, 43]. Alternatively, we can perform domain
contraction, which is to search for zonotopes that more tightly overapproximate the inter-
section. Different approaches for domain contraction are possible, ranging from reasoning
methods over individual constraints to more accurate approaches that use LP solving on the
star set in the generator coefficient space [7]. Although the LP approach uses the expensive
operation we are trying to reduce, it can result in an overall reduction of LPs, as the neuron
input bounds can be computed more accurately.

This work proposes using octatope abstract domains as a prefilter. As described ear-
lier, optimization over octatopes can be done more efficiently than general LP solving.
The greater expressiveness of octatopes compared with zonotopes means that we can hope
to further reduce the number of LPs needed with the star set when computing a neuron’s
input bounds for splitting. We evaluate this impact in our experiments. In terms of han-
dling intersections when splitting sets, octatopes (like zonotopes) cannot exactly support

Table 1 Number of LP calls
to find neuron input bounds
for different abstract domain
prefilters on various ACASXu
properties and networks

Prop Net Star-Only Zono-NC Zono-C Hex Oct Minimum

3 1–6 91,762 11,152 3382 2635 2571 1886
3 2–7 77,896 9365 2921 2240 2198 1626
3 3–5 80,988 8990 2711 2131 2092 1710
3 5–2 54,758 15,523 7762 6820 6704 3779
4 1–4 53,036 7736 2597 2389 2330 1926
4 2–7 38,748 3851 1249 888 861 753
4 5–9 68,750 8814 2952 2286 2151 1591

194 Formal Methods in System Design (2024) 64:178–199

any general half-space intersection operation. This means that a domain contraction step
may be necessary to ensure tight overapproximation.

5.4 Experimental results

We next evaluate the potential savings in LP computation to computing neuron input
bounds during exact range computation for neural networks. Our evaluation is performed
on several benchmarks from the ACAS Xu benchmark suite [26], specifically focusing on
property 3 and 4 where earlier work has shown exact range computation is tractable [7].
We generally report number of LPs for different operations rather than runtime, as the runt-
ime is influenced by other factors such code optimizations and the choice of LP solver.

First, we examine the number of LPs needed to perform neuron input range computa-
tion, for different choices of prefilter abstract domain. The LP calls to find the neuron input
ranges is the bottleneck of the overall range computation algorithm, so its reduction is of
particular importance. The results are in Table 1. The Star-Only approach uses only LP
solving with no prefiler, and therefore has the highest number of LPs. The next column,
Zonotope-NC corresponds to the case where zonotope prefilters are used, but no domain
contraction is performed (halfspace intersections are ignored). This has a significant reduc-
tion on the number of LP calls, for example in the first row with property 3 and network
1–6, where the number of LP calls is reduced from 91K to 11K. Using domain contraction
with zonotopes, Zono-C, further reduces this to around 3.3K. The more precise domains
with hexatopes and octatopes can further reduce this to around 2.6K and 2.5K, respec-
tively. The minimum column is computed by seeing how many bounds computations could
not be eliminated as they correspond to cases where the input to a neuron truly can be
either positive or negative. Even a perfect prefilter could not eliminate these LPs, as pre-
filters only eliminate cases where splitting is impossible. Other approaches could be con-
sidered to remove these LPs, such as tracking specific witness input points that can prove a
neuron can have both positive and negative inputs, which we may consider in future work.
Overall, the proposed octatope abstract domain has the potential to reduce the number of
unnecessary LPs significantly in exact range computation.

When using the new abstract domain, however, there is a trade-off where extra opera-
tions are needed to perform domain contraction as well as to optimize within the abstract
domains. We used a witness-tracking approach [4], where for each constraint a witness
point was included that was in the star set and on the boundary of the constraint. When
new intersections are performed, each witness point is checked to see if it is now excluded
from the set. When points are excluded, new witness points get generated by solving an LP

Table 2 Number of LP calls
for the domain contraction step
for different abstract domain
prefilters for various ACAS Xu
properties and networks

Prop Net Star-Only Zono-NC Zono-C Hex Oct

3 1–6 0 0 12,765 38,400 115,200
3 2–7 0 0 12,280 36,840 110,520
3 3–5 0 0 10,407 31,230 93,690
3 5–2 0 0 21,249 63,750 191,250
4 1–4 0 0 11,828 35,493 106,476
4 2–7 0 0 5533 16,620 49,860
4 5–9 0 0 9906 29,730 89,190

195Formal Methods in System Design (2024) 64:178–199

in the direction of the constraint, which may tighten the constraint. This results in the tight
abstract domains, but can be expensive when many constraints are possible. For hexatopes
and octatopes, the number of possible constraints is quadratic in the number of variables
(ACAS Xu has 5 input variables).

Table 2 shows the number of LPs needed for each example when performing domain
contraction. Star-Only and Zono-NC do not perform domain contraction, and so have 0
LPs for this operation. As expected, the more complex the abstract domain, the more oper-
ations are needed. This is due to the contraction method performed, where the number of
possible LPs needed at a domain contraction step increases as the number of possible con-
straints increases.

In terms of the performance of network simplex for optimizing within the octatope
domain, the engineering aspect of the problem also requires further development. When
computing the range of network 2–7 with the input set from property 4, the UTVPI con-
straints were optimized 38,748 times. When using the commercial LP solver Gurobi on
these constraints, each call took on average of 0.17ms. Formulating the min-cost flow prob-
lem and calling the network_simplex implementation from the networkx python
library, however, used about 1.9 ms per call, about 11x slower. Further, while Gurobi
always obtained a result, numerical issues caused network simplex to fail about 0.65% of
the time.

While octatopes effectively reduce the bottleneck step of input bounds computation, fur-
ther improvements must be made to octatope domain contraction algorithms as well as to
implementation optimizations of min-cost flow solvers, before an overall speedup can be
achieved. Nonetheless, it is an encouraging result for DNN verification as we view this as
an encouraging result to improving the performance of exact range computation of neural
networks— developing more efficient domain contraction algorithms and improving min-
cost flow implementations is likely easier than coming up with new ways to speed up LP
solving.

Hexatopes versus octatopes: expressiveness and scalability From their definitions, it is
clear that hexatopes are less expressive than octatopes, as every octatope is also a hexatope,
but not the other way around. On the other hand, our experimental results (Table 1) show
that for similar problems, the octatope abstract domain requires fewer LP calls compared
to hexatopes. For example, in the first row with property 3 and network 1–6, the number
of LP calls is reduced from 91K to around 2.6K and 2.5K for hexatopes and octatopes,
respectively. However, note that the algorithms for octatopes work on UTVPI constraints,
while hexatopes work with difference constraints. Since the algorithms for UTVPI con-
straints roughly double the size of the constraint graph, optimization over octatopes may
take more time than for hexatopes on problems of similar size. However, in the absence
of an efficient UTVPI solver implementation, an exact comparison of scalability between
hexatopes and octatopes is difficult.

6 Conclusion

The advent of deep neural networks and their inevitable widespread adoption necessitates
tools by which we can reason about their robustness. The verification community has made
great strides on this front in recent years through the development of neural network veri-
fication solutions based on search, optimization, and reachability. While search and opti-
mization can often be used to yield sound and complete solutions, such techniques pay the

196 Formal Methods in System Design (2024) 64:178–199

cost of scalability. Methods based on reachability analysis, on the other, can often scale
better at the cost of completeness. These methods typically employ an abstract domain rep-
resentation of the input–output behavior of nodes in the neural network for a given set of
inputs. These abstract domains range from zonotopes to star sets that differ in their trade-
off between scalability and precision.

We proposed octatopes as a new abstract domain which corresponds to affine transfor-
mations of unit two-variable per inequality (UTVPI) constraints. Octatopes provide tighter
abstractions than zonotopes while optimization can be formulated as a min-cost flow prob-
lem that is theoretically more efficient than linear programming. Our experiments using
octatope abstract domains for exact range computation of neural networks confirmed their
accuracy, as we were able to reduce the bottleneck step of using LP to compute each neu-
ron’s input bounds. Given that the minimum-cost flow (MCF) problem can be efficiently
solved via the Out-of-Kilter algorithm and network simplex algorithms, this benefit is
expected to extend to the efficiency of octatopes/hexatopes for neural network verification
problems. Unfortunately, the current state-of-the-art implementations of the algorithms for
the MCF problem are not as optimized as those for LP, preventing this work from experi-
mentally demonstrating scalability gains in wall-clock time. In our experiments, we found
that it was faster to use the highly-optimized commercial LP solver Gurobi instead of
the theoretically faster min-cost flow formulation. A key takeaway from this research is
the need for optimal implementations of UTVPI solvers and their potential applications in
improving the state-of-the-art in neural network verification. Other future research direc-
tions include examining ways to improve domain contraction, as well as investigating other
application areas of octatopes such as neural network verification with over-approxima-
tions, software analysis, and hybrid systems reachability.
Acknowledgement This material is based upon work supported by the Air Force Office of Scientific
Research and the Office of Naval Research under award numbers FA9550-19-1-0288, FA9550-21-1-0121,
FA9550-22-1-0450, FA9550-22-1-0029, N00014-22-1-2156, and FA9550-23-1-0066. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force or the United States Navy. This research was
supported in part by the Air Force Research Laboratory Information Directorate through the Air Force
Office of Scientific Research Summer Faculty Fellowship Program, contract numbers FA8750-15-3-6003,
FA9550-15-0001, and FA9550-20-F-0005. This work is also supported by the National Science Foundation
(NSF) grant CCF-2009022 and by NSF CAREER awards CCF-2146563 and CNF-2237229.

Author contributions All authors contributed equally.

Data availability Data is available upon request.

Declarations

Conflict of interest We declare that we have no Conflict of interest.

Ethical approval This manuscript was created by following all the ethical guidelines. In particular, an
extended abstract of this work was published in FM 2023. This has been indicated in the abstract as a footnote.

References

 1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Pren-
tice Hall, Upper Saddle River

197Formal Methods in System Design (2024) 64:178–199

 2. Akintunde M, Lomuscio A, Maganti L, Pirovano E (2018). Reachability analysis for neural agent-
environment systems. In: 16th international conference on principles of knowledge representation and
reasoning

 3. Albarghouthi A (2021) Introduction to neural network verification. http:// verifi edde eplea rning. com
 4. Bak S (2021) nnenum: verification of ReLU neural networks with optimized abstraction refinement.

In: NASA formal methods symposium, pp 19–36. Springer
 5. Bak S, Dohmen T, Subramani K, Trivedi A, Velasquez A, Wojciechowski P (2023) The octatope

abstract domain for verification of neural networks. In: Chechik M, Katoen J-P, Leucker M (eds), For-
mal methods—25th international symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Pro-
ceedings, volume 14000 of Lecture Notes in Computer Science, pp 454–472. Springer

 6. Bak S, Liu C, Johnson T (2021) The second international verification of neural networks competition
(VNN-comp 2021): summary and results. arXiv: 2109. 00498

 7. Bak S, Tran H-D, Hobbs K, Johnson TT (2020) Improved geometric path enumeration for verifying
Relu neural networks. In: Proceedings of the 32nd international conference on computer aided verifica-
tion. Springer

 8. Baluta T, Shen S, Shinde S, Meel KS, Saxena P (2019) Quantitative verification of neural networks
and its security applications. In: Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, pp 1249–1264

 9. Bazaraa MS, Jarvis JJ, Sherali HD (2008) Linear programming and network flows. Wiley, New York
 10. Behrmann G, David A, Larsen KG, Håkansson J, Pettersson P, Yi W, Hendriks M (2006) UPPAAL

4.0. In: 3rd international conference on the quantitative evaluation of systems (QEST 2006), 11-14
September 2006, Riverside, California, USA, pp 125–126. IEEE Computer Society

 11. Biswas S, Rajan H (2023) Fairify: fairness verification of neural networks. In: 2023 IEEE/ACM 45th
international conference on software engineering (ICSE), pp 1546–1558. IEEE

 12. Casadio M, Komendantskaya E, Daggitt ML, Kokke W, Katz G, Amir G, Refaeli I (2022) Neural
network robustness as a verification property: a principled case study. In: International conference on
computer aided verification, pp 219–231. Springer

 13. Cohen MB, Lee YT, Song Z (2021) Solving linear programs in the current matrix multiplication time.
J ACM 68(1):3:1-3:39

 14. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT Press,
Cambridge

 15. Cousot P, Cousot R (1977) Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIG-
PLAN symposium on principles of programming languages, POPL ’77, pp 238–252, New York, NY,
USA. Association for Computing Machinery

 16. De Moura L, Bjørner N (2008). Z3: an efficient SMT solver. In: International conference on tools and
algorithms for the construction and analysis of systems, pp 337–340. Springer

 17. Duggirala PS, Viswanathan M (2016). Parsimonious, simulation based verification of linear systems.
In: International conference on computer aided verification, pp 477–494. Springer

 18. Friedmann O, Hansen TD, Zwick U (2011) Subexponential lower bounds for randomized pivoting
rules for the simplex algorithm. In: Symposium on theory of computing, STOC’11, pp 283–292, New
York, NY, USA. ACM

 19. Gehr T, Mirman M, Drachsler-Cohen D, Tsankov P, Chaudhuri S, Vechev M (2018). Ai2: safety and
robustness certification of neural networks with abstract interpretation. In: 2018 IEEE symposium on
security and privacy (SP), pp 3–18. IEEE

 20. Ghorbal K, Goubault E, Putot S (2009). The zonotope abstract domain Taylor1+. In: International con-
ference on computer aided verification, pp 627–633. Springer

 21. Goldberg AV, Tarjan RE (1989) Finding minimum-cost circulations by canceling negative cycles. J
ACM 36(4):873–886

 22. Henriksen P, Lomuscio A (2020). Efficient neural network verification via adaptive refinement and
adversarial search. In: ECAI 2020, pp 2513–2520. IOS Press

 23. Henriksen P, Lomuscio A (2021). Deepsplit: an efficient splitting method for neural network verifica-
tion via indirect effect analysis. In: Proceedings of the 30th international joint conference on artificial
intelligence (IJCAI21), To appear

 24. Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X (2020) A survey of safety and
trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and inter-
pretability. Comput Sci Rev 37:100270

 25. Huang X, Kwiatkowska M, Wang S, Wu M (2017) Safety verification of deep neural networks. In:
Computer aided verification: 29th international conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I 30, pp 3–29. Springer

http://verifieddeeplearning.com
http://arxiv.org/abs/2109.00498

198 Formal Methods in System Design (2024) 64:178–199

 26. Katz G, Barrett C, Dill DL, Julian K, Kochenderfer MJ (2017) Reluplex: an efficient SMT solver
for verifying deep neural networks. In: International conference on computer aided verification, pp
97–117. Springer

 27. Katz G, Huang DA, Ibeling D, Julian K, Lazarus C, Lim R, Shah P, Thakoor S, Wu H, Al Z, Dill DL,
Kochenderfer MJ, Barrett C (2019) The marabou framework for verification and analysis of deep neu-
ral networks. In: Dillig I, Serdar T (eds) Comput Aided Verif. Springer, Cham, pp 443–452

 28. Khachiyan LG (1979), A polynomial time algorithm for linear programming. Doklady Akademii Nauk
SSSR, 244(5), 1093–1096, English translation in Soviet Math. Dokl. 20:191–194

 29. Klee F, Minty GJ (1972) How good is the simplex algorithm? Inequalities III:159–175
 30. Kuutti S, Bowden R, Jin Y, Barber P, Fallah S (2020) A survey of deep learning applications to auton-

omous vehicle control. IEEE Trans Intell Transp Syst 22(2):712–733
 31. Lahiri SK, Musuvathi M (2005) An efficient decision procedure for UTVPI constraints. In: Gramlich

B (ed) Frontiers of combining systems. Springer, Berlin, pp 168–183
 32. Liu C, Arnon T, Lazarus C, Barrett C, Kochenderfer MJ (2019). Algorithms for verifying deep neural

networks. arXiv: 1903. 06758
 33. Manzanas Lopez D, Johnson T, Tran H-D, Bak S, Chen X, Hobbs KL (2021) Verification of neural

network compression of ACAS Xu lookup tables with star set reachability. In: AIAA Scitech 2021
Forum, p 0995

 34. Miné A (2006) The octagon abstract domain. Higher-order Symb Comput 19(1):31–100
 35. Orlin JB (1996) A polynomial time primal network simplex algorithm for minimum cost flows. In:

Proceedings of the 7th annual ACM-SIAM symposium on discrete algorithms, SODA ’96, 474-481,
USA. Society for Industrial and Applied Mathematics

 36. Singh G, Gehr T, Mirman M, Püschel M, Vechev MT (2018) Fast and effective robustness certifica-
tion. NeurIPS 1(4):6

 37. Singh G, Gehr T, Püschel M, Vechev M (2019) An abstract domain for certifying neural networks.
Proc ACM Program Lang 3(POPL):1–30

 38. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. MIT Press, Cambridge
 39. Tjeng V, Xiao KY, Tedrake R (2018) Evaluating robustness of neural networks with mixed integer

programming. In: International conference on learning representations
 40. Tran H-D, Bak S, Xiang W, Johnson TT (2020). Verification of deep convolutional neural networks

using imagestars. In: International conference on computer aided verification, pp 18–42. Springer
 41. Tran H-D, Cai F, Diego ML, Musau P, Johnson TT, Koutsoukos X (2019) Safety verification of

cyber-physical systems with reinforcement learning control. ACM Trans Embed Comput Syst (TECS)
18(5s):1–22

 42. Tran H-D, Manzanas Lopez D, Musau P, Yang X, Nguyen LV, Xiang W, Johnson TT (2019) Star-
based reachability analysis of deep neural networks. In: ter Beek MH, McIver A, Oliveira JN (eds)
Formal methods—the next 30 years. Springer, Cham, pp 670–686

 43. Tran H-D, Pal N, Musau P, Lopez DM, Hamilton N, Yang X, Bak S, Johnson TT (2021) Robustness
verification of semantic segmentation neural networks using relaxed reachability. In: International con-
ference on computer aided verification, pp 263–286. Springer

 44. Tran H-D, Yang X, Lopez DM, Musau P, Nguyen LV, Xiang W, Bak S, Johnson TT (2020) NNV: the
neural network verification tool for deep neural networks and learning-enabled cyber-physical systems.
In: International conference on computer aided verification, pp 3–17. Springer

 45. Wang S, Pei K, Whitehouse J, Yang J, Jana S (2018) Efficient formal safety analysis of neural net-
works. In: Advances in neural information processing systems, vol 31

 46. Wang S, Zhang H, Xu K, Lin X, Jana S, Hsieh C-J, Kolter JZ (2021) Beta-crown: efficient bound
propagation with per-neuron split constraints for complete and incomplete neural network verification.
arXiv: 2103. 06624

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/2103.06624

199Formal Methods in System Design (2024) 64:178–199

Authors and A#liations

Stanley Bak1 · Taylor Dohmen2 · K. Subramani3 · Ashutosh Trivedi2 ·
Alvaro Velasquez2 · Piotr Wojciechowski3

 * K. Subramani
 k.subramani@mail.wvu.edu
 Stanley Bak
 stanley.bak@stonybrook.edu
 Taylor Dohmen
 taylor.dohmen@colorado.edu
 Ashutosh Trivedi
 ashutosh.trivedi@colorado.edu
 Alvaro Velasquez
 alvaro.velasquez@colorado.edu
 Piotr Wojciechowski
 pwojciec@mail.wvu.edu
1 Stony Brook University, Stony Brook, USA
2 University of Colorado Boulder, Boulder, USA
3 West Virginia University, Morgantown, USA

	The hexatope and octatope abstract domains for neural network verification
	Abstract
	1 Introduction
	2 Preliminaries
	3 Verification of neural networks
	3.1 Abstraction based methods
	3.2 Abstract domains: zonotopes and linear star sets
	3.3 Fundamental Theorems of linear star sets
	3.4 Illustration of NN verification with zonotopes
	3.5 Organization

	4 Hexatopes
	4.1 Linear optimization via minimum cost flow

	5 Octatopes
	5.1 Emptiness checking
	5.2 Intersection with half-spaces
	5.3 Range computation for neural nets with prefilters
	5.4 Experimental results

	6 Conclusion
	Acknowledgement
	References

