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AbstractÐ Efficiently managing electricity supply and demand,
especially during peak times to minimize waste, remains a key
challenge for the electric grid. An effective solution involves
incentivizing users to shift their shiftable loads, such as dishwash-
ers and washing machines, to off-peak periods. Non-Intrusive
Load Monitoring (NILM) provides a cost-effective and pragmatic
approach for detailed appliance energy consumption insights.
Among Deep Learning models, TreeCNN has shown superior
performance compared to RNN and traditional CNN models in
energy disaggregation. However, its evaluation has been limited
to the Dataport dataset. To fully assess TreeCNN’s capabilities,
comprehensive testing with diverse datasets like REDD, UK-
DALE, DRED and others is essential. Additionally, integrating
TreeCNN into NILMTK, a dataset standardization tool, enables
thorough comparisons with 16 formatted datasets and other
disaggregation algorithms. In this work, we integrated TreeCNN
into NILMTK toolkit and benchmarked, providing valuable
insights into its effectiveness and real-world usability.

Index TermsÐNon-Intrusive Load Monitoring, load disag-
gregation, smart energy management, demand response, Arti-
ficial Intelligence, Machine Learning, Deep Learning, TreeCNN,
NILMTK, CNN, smart meter, Sequence-to-Point, REDD, UK-
DALE

I. INTRODUCTION

The world is currently facing energy shortages [1] and

carbon emission problems [2]. Statistics show that, on average,

20-30% [3] of a building’s energy is wasted. However, research

studies indicate that optimal use of electric appliances can re-

duce energy consumption by up to 20% [4]. Consumers cannot

effectively reduce energy usage just by looking at monthly

electricity bills. To understand the electricity consumption of

each household appliance, they need detailed consumption

data for each device. Therefore, detailed analysis reports can

motivate users to change their behavior regarding unnecessary

electricity consumption. Additionally, old or faulty appliances

consume more electricity, increasing bills. In this scenario,

aggregated monthly bills do not help clients identify inefficient

appliances which contribute most to electricity costs. Hence,

disaggregated energy consumption data would help consumers

identify malfunctioned appliances and replace them with new

ones.

Due to the increasing demand [5] for electricity, grid oper-

ators face challenges in load balancing. To address this, many

countries are installing smart meters [6] to obtain detailed

electricity usage patterns. With this detailed data analysis,

power suppliers can generate accurate predictions. Consumers

can use these predictions to adjust their behavior and use elec-

tricity more efficiently. Moreover, power companies can also

incentivize clients for optimal usage. For example, consumers

could shift their electricity usage to off-peak hours, earning

incentives from power companies and reducing their electricity

bills. Electricity bills are significantly higher during peak

hours, so shifting usage can result in substantial electricity

savings. Therefore, it is very crucial to break down aggregate

energy to appliance specific usage.

There are two approaches to load monitoring [7], [8]: 1)

Intrusive Load Monitoring (ILM) and 2) Non-Intrusive Load

Monitoring (NILM). ILM measures each appliance’s energy

consumption by attaching sensors to each device. Although

this method provides accurate readings, it is costly and requires

high maintenance. Conversely, the NILM method [9] calcu-

lates disaggregated loads for each appliance using the total

electricity consumption data from a smart meter. Hart [9] first

introduced the NILM approach. While NILM is less accurate

than ILM, it is more cost-effective and avoids ILM’s disad-

vantages. Consequently, NILM is gaining popularity within

the research community.

Combinatorial Optimization (CO) [10] is an early algorithm

used for NILM. It aims to find the optimal set of operational

states that best reconstruct the total power consumption of a

house. However, CO is susceptible to transients, an increasing

number of devices, and devices with similar characteristics.

State-based mathematical models, such as the Factorial Hidden

Markov Model (FHMM), have shown notable performance

for NILM [11]. FHMM analyzes aggregate power signals to

estimate the hidden operational states of each appliance, con-

sidering their state continuity over time [12]. While FHMM-

based methods effectively disaggregate periodic loads, they

perform less well with appliances that have short or infrequent

operating cycles [7]. Additionally, state-based models incur

high computational costs if a household has many appliances
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with many power states [13].

Deep Neural Networks (DNNs) excel in natural language

processing, computer vision, and speech recognition. Recog-

nizing the potential of DNN models for NILM, researchers

adapted convolutional neural networks (CNN) [14] and long

short-term memory (LSTM) models [15] for load disaggrega-

tion, achieving better results compared to mathematical models

[8]. C. Zhang [16] proposed a Sequence-to-Point (Seq2Point)

neural network based on CNN, which outperformed existing

state-of-the-art models. The Seq2Point method is a real-time

energy disaggregation technique that uses a sliding window of

aggregate energy to predict the midpoint value of appliance

consumption within that window [17].

Smart meter specifications worldwide indicate that most

smart meters sample data at an hourly rate [18]. Therefore,

source-separation algorithms must process low sampling rate

time series data. Y. Jia [19] proposed a tree-structured neural

network model based on CNN, which outperformed Recurrent

Neural Network (RNN) [20] and traditional CNN models in

energy disaggregation on low frequency data. However, the

authors used only the Dataport [21] dataset for benchmarking.

This raises several questions: How does the TreeCNN model

compare with other state-of-the-art models like Seq2Point

[16]? Can it generalize across different publicly available

datasets such as REDD [22] and UK-DALE [23]?

NILMTK [24] is a popular open-source toolkit that helps

researchers compare new algorithms with existing energy

disaggregation algorithms, reproduce experimental results, and

compare across different datasets in a standard form. This

toolkit also provides various measurement metrics. We aimed

to incorporate the TreeCNN disaggregation model into this

toolkit to benchmark it against existing models and facili-

tate future comparisons with new algorithms. Benchmarking

TreeCNN across different datasets and models will help us

understand its generalization capabilities and performance

with different types of appliances.

Our main contributions are:

• Integrating the TreeCNN model into the open-source

NILMTK toolkit. For this integration, we preprocessed

the time series data into higher-dimensional data suitable

for the TreeCNN model.

• Comparing the performance of TreeCNN with three en-

ergy disaggregation models: 1) CO, 2) FHMM, and 3)

Seq2Point.

• Evaluating the performance of the TreeCNN model with

five public datasets: 1) REDD, 2) UK-DALE, 3) DRED

4) Smart*, and 5) IDEAL.

This paper is organized as follows: Section II provides a

detailed overview of various existing NILM models. Section

III outlines the steps for integrating the TreeCNN model

into the NILMTK toolkit. Section IV discusses the dataset

selection, appliance selection, evaluation metrics, experimental

setup, and results. Section V points out some limitations of

TreeCNN model, scope for improvement and comparative

analysis with Seq2Point. Finally, Section VI summarizes the

findings and suggests directions for future research.

II. BACKGROUND & MOTIVATION

A. What is Energy Disaggregation?

With the disaggregation approach, we can collect the en-

tire building’s energy usage and then determine the energy

consumption for each appliance, such as HVAC units, dish-

washers, and refrigerators. Knowing each appliance’s energy

consumption has many advantages. Residents can estimate

each appliance’s contribution to their electric bill and iden-

tify any malfunctioning appliances. This feedback can also

motivate behavioral changes. For example, since electricity

prices are higher during peak hours, users could run heavy

appliances during off-peak hours. Electricity distributors, after

observing the forecast, can offer incentives to users to shift

their workload to off-peak hours, benefiting both parties. As

energy is not an unlimited resource, this approach helps reduce

energy waste. The recent boom in smart meters is creating

opportunities for better energy disaggregation.

B. Combinatorial Optimization (CO)

G. Hart [10] first introduced the CO algorithm for non-

intrusive load monitoring. Suppose there are n appliances. Let

x(t) be an n-component Boolean vector representing the state

(ON or OFF) of the n appliances at time t. The aggregated

power at time t is the total sum of the power of individual

appliances that are ON. This problem can be formulated as a

CO problem (1) [10]:

x̂(t) = argmin
x

|P (t)−
n
∑

i=1

xiPi| (1)

In this context, Pi denotes the p-vector representing the

power consumed by the ith appliance during its operation,

while P (t) refers to the p-vector of power at time t. The

objective is to minimize the difference between the observed

power and the predicted power. This is an NP-complete

ªweighted setº problem that can only be solved by exhaustive

search when the size of n is small. This approach struggles

to identify simultaneous state changes of multiple appliances

[7].

C. Factorial Hidden Markov Model (FHMM)

The load disaggregation problem can be modeled as a

Hidden Markov Model (HMM) [25], [26]. An HMM consists

of two types of variables: observed variables and hidden

variables. The sequence of hidden variables forms a Markov

process, where hidden variables represent each appliance’s

state (ON, OFF), and observed variables represent power usage

in NILM. A FHMM is more suitable for modeling time series

generated by several independent processes. FHMM [27] is a

generalization of HMM, featuring multiple independent hidden

state sequences, with each observation depending on multiple

hidden variables. To design the model, we need four compo-

nents: 1) A finite set of hidden states x = x1, x2, x3, ..., xN , 2)

A transition matrix t, representing the probability of changing

states, 3) An emission matrix e, representing the probability

of emitting an observation, 4) An initial state probability

distribution π = {πi}.
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D. Sequence-to-Point(Seq2Point)

Kelly and Knottenbelt [20] proposed the Sequence-to-

Sequence (Seq2Seq) model in 2015, which improved per-

formance compared to existing machine learning models. In

2017, C. Zhang [16] introduced the Seq2Point model based on

CNN, which outperformed Seq2Seq. Seq2Point model takes a

mains window Yt:t+W−1 and outputs the midpoint element

xm of the corresponding window for the target appliance,

where m = t+⌊W/2⌋. Seq2Point generates a single prediction

for each step. For each time step prediction, the model must

iterate through each sample in the window, leading to multiple

predictions for the same data input. This approach requires

significant calculations and computational power, making the

process time-consuming [17].

E. TreeCNN

NILM algorithms work with high frequency (MHz range),

mid frequency (KHz range), and low frequency (less than 1

Hz) data. While high frequency data captures the entire signal,

its collection is costly [17], [28]. However, the widespread

deployment of smart meters has facilitated access to low

frequency data. Y. Jia [19] proposed the TreeCNN NILM

model for low frequency data. This DNN model uses CNN

to capture regular temporal energy consumption patterns in

households. The tree structure of the algorithm isolates the pat-

tern learning of each appliance, avoiding magnitude variance

problems and separating known from unknown appliances.

This model outperformed low frequency models like RNN

and basic CNN models. RNNs suffer from vanishing gradient

problem and lack parallel computation capabilities [16], [29].

Different appliances exhibit distinct temporal patterns. For

example, microwaves follow an hourly usage pattern during

meal times, while dryers display a daily pattern due to periodic

use. Modeling hourly time-series data as a one-dimensional

sequence is insufficient to fully describe appliances. Instead,

this data should be viewed as a high-dimensional compound

of various temporal patterns. The TreeCNN model uses CNN

to create spatial filters from hourly energy data, seen as a 2-D

matrix. These filters distinguish appliances with unique tem-

poral patterns. For instance, filters for microwaves emphasize

the hourly dimension, for dryers the daily dimension, and for

HVAC a combination of both. This allows aggregate readings

to be projected into their corresponding appliance usage.

The tree structure of the TreeCNN model iteratively decom-

poses each appliance’s energy consumption from the aggregate

energy. Each node of the TreeCNN model is a CNN model.

During the convolution phase, the CNN model takes the aggre-

gate input and reduces it to a denser representation, extracting

temporal patterns from the sparse and granular data, resulting

in a lower-dimensional, denser matrix. In the deconvolution

phase, the decoder reverses the encoder’s actions to reconstruct

the input. So, the root node of the tree takes aggregate energy

data as input and regenerates its associated appliance’s energy

consumption as output. The difference between the input and

output is then passed down to the child node of the tree as input

UK-DALE

NILMTK-

DF (1D Time 

Series Data)

Training

Disaggregation

Model

Metrics

TreeCNN
NILMTK Model Interface

Data Interface

NILMTK Toolkit

REDD

Smart*

IDEAL

DRED

Preprocessed 

Data (High 

dimensional)

Fig. 1: TreeCNN model incorporation pipeline in NILMTK

toolkit.

to reconstruct the next associated appliance’s energy consump-

tion. Large energy-consuming appliances overshadow low

energy-consuming appliances, so placing these low energy-

consuming appliances at the end of the tree alleviates this

issue. Additionally, unknown energy consumption introduces

errors in energy disaggregation. Therefore, the tree structure

of this model views unknown energy consumption as a special

appliance to give a more accurate estimation of the observed

appliances. Since finding the optimal tree structure is an NP-

complete problem, the authors of the TreeCNN paper [19]

employed a greedy approach to determine an optimal tree

structure.

F. Non-Intrusive Load Monitoring Toolkit (NILMTK)

In 2014, N. Batra proposed an open-source toolkit called

the Non-Intrusive Load Monitoring Toolkit (NILMTK) for

the NILM research community [24]. Implemented in Python,

NILMTK provides a complete pipeline from datasets to ac-

curacy metrics. Publicly available datasets come in various

formats, making it difficult for researchers to compare their

algorithms across different datasets. NILMTK addresses this

issue by using a standard NILMTK-DF data format and

includes sixteen data converters to standardize public data.

NILMTK also implements benchmarking algorithms such

as CO, FHMM, Seq2Point, and Seq2Seq, allowing researchers

to compare their algorithms with state-of-the-art models. This

has improved the reproducibility of experimental results. Ad-

ditionally, NILMTK offers standard accuracy measurement

metrics, including Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), and F1 score.

The toolkit follows a modular structure and provides APIs

for detailed analysis of each dataset, enhancing understanding.

It is also well-documented [30], making it easy to add new

algorithms or dataset converters.

III. METHODOLOGY

The authors of the TreeCNN model [19] tested it using the

Dataport [21] dataset and compared its performance against

RNN and traditional CNN models. To explore whether this

model can generalize across other datasets and how it com-

pares to benchmark algorithms such as CO and Seq2Point,

we integrated the TreeCNN model into the NILMTK toolkit.

NILMTK is an open-source platform with comprehensive
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documentation [30] for integrating new source disaggrega-

tion algorithms. Integrating the TreeCNN model into the

NILMTK toolkit consists of two key steps: 1) Preprocessing

the NILMTK-DF, and 2) Creating the TreeCNN model class.

Fig. 1 illustrates the TreeCNN model integration pipeline in

the NILMTK toolkit.

A. Preprocessing the Data

Publicly available datasets vary in formatting and labeling.

NILMTK-DF is a standardized dataset format inspired by

the REDD dataset format. Existing datasets can be converted

into this standard format for use with the NILMTK tool.

Once imported, NILMTK retains the data in memory as the

NILMTK-DF data structure. NILMTK-DF stores electricity

data, relevant metadata, and other sensor data such as gas,

water, and temperature. This hierarchical structure is main-

tained as a Pandas DataFrame, indexed by time, and includes

columns for physically measured quantities like active power

for each appliance, mains (from the grid), circuits, etc.

The TreeCNN model works with hourly energy data due

to its key properties: sparsity and regularity across multiple

temporal dimensions, significant variation in energy consump-

tion magnitudes across different appliances, and the presence

of unknown consumption sources [19]. Since the TreeCNN

model is designed for high-dimensional hourly time series data

([Number of houses * Appliance No * Number of Days *

Hours in a Day]), preprocessing is necessary before training

the model. We defined a preprocessing function that takes

Pandas DataFrame data and converts it to hourly data. Once the

data conversion is complete, we feed the data to the TreeCNN

model for training. This allows the TreeCNN model to work

with any dataset available in the NILMTK toolkit.

B. Model Inclusion

NILMTK’s disaggregation algorithms are located in the

‘nilmtk/nilmtk/disaggregate/’ directory and are implemented

as Python classes. We created a class ‘TreeCNN’ that extends

the Disaggregator superclass and implements all required

methods. In this class, we used the ‘partial fit’ (training

method) and ‘disaggregate chunk’ methods. In the ‘ init ’

function, we set ‘self.MODEL NAME’ to ‘TreeCNN’, which

describes our algorithm name. The ‘TreeCNN’ class is then

imported in the ‘ init .py’ file located within the ‘nilmtk/

nilmtk/disaggregate/’ directory. Fig. 2 shows the TreeCNN

model class algorithm in NILMTK toolkit.

The TreeCNN algorithm needs to learn how appliances

consume energy from existing data. Disaggregation algorithms

typically require appliance-level data from the building to be

disaggregated (supervised) or from other buildings (unsuper-

vised). The ‘train jointly’ method in the ‘api.py’ class receives

a MeterGroup data object containing a list of ElecMeter ob-

jects. This function extracts the Pandas DataFrame time series

data of aggregated power and each appliance’s power from the

MeterGroup data. The mains and submeter data are then sent

to the ‘partial fit’ function of the TreeCNN model class for

training. The trained model is stored in volatile memory and

import torch

class TreeCNN(Disaggregator):

 def __init__(self, params):

 self.MODEL_NAME = 'TreeCNN'

 self.save_model_path = params.get('save-model-path', None)

 self.load_model_path = params.get('pretrained-model-path',None)

 def partial_fit(self, train_main, train_appliances, do_preprocessing=True,

 **load_kwargs):

 hd_data = self._preprocess_data(train_main, train_appliances)

self.train_model(hd_data)

def disaggregate_chunk(self, mains):

hd_data = self._preprocess_data(mains)

test_prediction_list = self.test_model(hd_data)

return test_prediction_list

def _preprocess_data(self, mains, appliances = None):

#converts to one dimensional time series data to hourly high 

dimensional  data

…
return hd_data

def train_model(self, hd_data):

#train the TreeCNN model with hd_data

…

 def test_model(self, hd_data):

 test_prediction_list = []

 #test the TreeCNN model with hd_data

…
return test_prediction_list

Fig. 2: TreeCNN model Python class in NILMTK toolkit.

will be lost once the disaggregator object is destroyed. The

‘import model()’ and ‘export model()’ methods can be used

to create persistent models, allowing a model to be loaded

from or saved to disk, facilitating incremental training on large

datasets and sharing of pretrained models within the research

community.

The trained TreeCNN model uses the ‘disaggregate chunk’

method to generate predictions for each appliance. This

method returns predictions as a Pandas DataFrame, with

columns representing individual appliances and rows corre-

sponding to time instants. The returned DataFrame’s indexes

must precisely match those of the input parameter DataFrame.

Subsequently, ‘api.py’ class utilizes this prediction data from

‘disaggregate chunk’ method to compute various performance

metrics.

IV. EVALUATION

A. Dataset Selection

We selected five publicly available datasetsÐREDD, UK-

DALE, DRED, Smart*, and IDEALÐfor training and evaluat-

ing NILM models. Table I characterizes these low-frequency

datasets, all of which are measured in residential setups.

The Reference Energy Disaggregation Data Set (REDD)

[22], was first published in 2011, contains both aggregated

and sub-metered data from six households over several weeks.

The UK-DALE dataset [23], published by the UK recording

Domestic Appliance-Level Electricity project, comprises data

from five households collected from 2012 to 2017, including

both aggregate demand and ground truth demand for each

appliance.
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The Dutch Residential Energy Dataset (DRED) [31] from

the Netherlands records both aggregated and appliance-level

energy consumption from one household over a couple of

months, with data collected every second. The Smart* dataset

[32], published in 2012, provides a variety of environmental

and operational data from three homes, measuring appliance

power and total consumption in kilowatts. The IDEAL data

corpus [33], published by the University of Edinburgh’s School

of Informatics, includes data from 255 UK homes over a

23-month period, with 39 of these homes containing both

aggregated and sub-metered appliance data.

B. Appliances Selection

For our experiments, we considered the fridge, dishwasher,

washing machine, microwave, and kettle appliances from the

UK-DALE dataset. The REDD and Smart* datasets lack kettle

data, while the DRED dataset includes only one building

with fridge, washing machine, and microwave data. For the

IDEAL dataset, we have taken fridge, dishwasher and washing

machine appliances. These appliances significantly impact

total power consumption and represent a diverse range of

device types. The fridge remains constantly ON, whereas the

dishwasher, washing machine, and similar appliances switch

ON and OFF. Low sampling rates pose challenges for ON/OFF

appliances because they may only be used briefly within an

hour, which is a key reason why existing NILM algorithms

often struggle with low sampling rate data.

C. Evaluation Metrics

Energy disaggregation research covers a wide range of

application area. To meet this need, NILMTK [24] offers a

collection of metrics that encompass both general detection

metrics and those specific to energy disaggregation. For our

research work, we have considered MAE [16], [24] and RMSE

[24], [29] to measure and compare the performance of different

energy disaggregation model. MAE and RMSE measure the

precision of energy disaggregation, with RMSE being more

sensitive to outliers.

Mean Absolute Error: It is defined by the sum of the

differences between the predicted power x̂
(n)
i

and the actual

power x
(n)
i

of appliance n in each time slice t, divided by the

appliance’s total energy x
(n)
t

consumption (2).

∑

t
|x

(n)
i

− x̂
(n)
i

|
∑

t
x
(n)
t

(2)

Root Mean Square Error: It is calculated between the

predicted power x̂
(n)
i

and the actual power x
(n)
i

of appliance

n observed over T times (3).

√

1

T

∑

t

(x
(n)
i

− x̂
(n)
i

)2 (3)

Lower MAE and RMSE values indicate better performance.

D. Experimental Setup

We compared the TreeCNN model with other baseline

algorithms, including CO, FHMM, and Seq2Point, measuring

MAE and RMSE parameters. For the TreeCNN model, we

used 3000 epochs, while Seq2Point was run for 50 epochs with

a batch size of 64. Details of the hardware and software config-

urations are provided in Table II. The TreeCNN model works

with hourly data. And, the TreeCNN model constructs a tree

structure using different appliances. Finding the optimal tree

structure is an NP-complete problem [19]. In our experiments,

we used four different orders of appliances to form the tree

structure for the model. From these, we identified the optimal

tree structure to plot the TreeCNN graph. Additionally, we

averaged the energy disaggregation results from all four tree

structures to create the TreeCNN Avg plot. Table III provides

details of the training and testing building data for each dataset.

It also includes the optimal appliance order for TreeCNN,

which was chosen from the four possible orders used in our

experimental setup.

E. Experimental Results

Our evaluation spans three key scenarios: (1) same build-

ing training and testing, (2) cross-building evaluation within

the same dataset, and (3) cross-dataset generalization. While

traditional mathematical models (CO and FHMM) generally

underperformed across all scenarios, we focus our analysis

on comparing the deep learning approaches - TreeCNN and

Seq2Point. We will use the following abbreviations for ap-

pliances throughout: Fridge (F), Dishwasher (DW), Washing

Machine (WM), Microwave (MW), and Kettle (K).

In the DRED dataset (Case 1), as shown in Fig. 3a,

TreeCNN demonstrated superior performance for ON/OFF

devices, with notably low MAE values of 3.43 and 7.89

for WM and MW respectively. The model’s CNN filters

effectively captured both weekly patterns (WM) and daily

patterns (MW), despite the potential overshadowing effect of

high-power appliances. Fig. 3b further highlights TreeCNN’s

superior prediction performance with RMSE values of 52.11

and 45.02 for WM and MW respectively. This performance

demonstrates TreeCNN’s ability to handle appliances with

different temporal patterns simultaneously.

For the Smart* dataset (Case 1, Building 3), we split data

into training (2014-01-01 to 2014-06-30) and testing (2014-

07-01 to 2014-08-30) periods. As shown in Fig. 4a, Seq2Point

achieved the lowest MAE (0.052) for the F, while TreeCNN

showed consistent performance across all appliances, though

with 26% higher MAE for DW compared to baseline models.

The RMSE values (Fig. 4b) for DW, WM, and MW are

almost identical between the models, indicating that both deep

learning approaches handle power variation similarly for these

appliances.

The REDD dataset evaluation (Case 2) focused on cross-

building generalization, with training on buildings 2, 3, 5 and

testing on building 1. During the period from 2011-04-01

to 2011-05-30, WM power consumption in buildings 2 and

5 ranged between 0-6 Watt, indicating infrequent use. Fig.
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TABLE I: Dataset Information

Dataset
Number of
Buildings

Institution Location
Appliance
Sample
Frequency

Aggregate
Sample
Frequency

REDD 6 MIT Massachusetts, US 3s 1s

UK-DALE 5 Imperial College London, UK 6s 1-6s

DRED 1 TUDelft Netherlands 1s 1s

Smart* 3 UMass Western Massachusetts, US 1s 1s

IDEAL 255 University of Edinburgh UK 5s 1s
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Fig. 3: MAE & RMSE measurements of DRED dataset for

Case 1 (Building 1 data is splitted into training (July 05,

2015, to October 30, 2015) and testing (November 01, 2015,

to December 05, 2015) periods).

TABLE II: System Configurations

OS Ubuntu 22.04 LTS

CPU 2x Xeon Silver 4314 (16c, 32t)

GPU Nvidia A40

Memory 192 GB

Storage 4x 960GB NVMe SSD

Python 3.8.17

PyTorch 2.0.0

5a shows both CNN-based models significantly outperformed

traditional approaches, with Seq2Point showing exceptional

performance across all four appliances, achieving a 56.96%

reduction in MAE for F compared to FHMM. This superior

performance stems from better handling of varying power

consumption patterns between buildings. The RMSE results

(Fig. 5b) further highlight the strong performance of TreeCNN

and Seq2Point. Additionally, we verified MAE for FHMM and

Seq2Point algorithms for F, DW appliances with the men-

tioned training and testing setup from [34], which validates

our implementation’s consistency.

In the UK-DALE dataset (Case 2), Fig. 6a demonstrates that

TreeCNN maintained consistent performance with MAE rang-

ing from 34 to 46 across all five appliances, while Seq2Point

achieved the lowest MAE (≈7) for WM. As shown in Fig.

6b, both models handled sharp power usage peaks effectively,

particularly evident in kettle disaggregation where traditional

approaches struggled with short, intense bursts of activity. Our

measured MAE aligned for Seq2Point for F, DW with the

reported training and testing setup from the paper [34].

The IDEAL dataset (Case 2) evaluation (Fig. 7a) highlighted

TreeCNN’s strength in handling WM (MAE ≈64) but revealed

limitations with DW (MAE >90) due to diverse usage patterns.

We observed that power consumption range of WM in testing

unseen data differs from training data, with sharp consump-

tion peaks present in the dataset. TreeCNN outperformed

Seq2Point by 2.8x for WM, suggesting better handling of

operational cycles. Fig. 7b demonstrates TreeCNN’s superior

performance for F and WM appliances, though it struggles

with DW (RMSE ≈350).

Finally, in our cross-dataset experiment (Case 3) using UK-

DALE for training and REDD for testing, Fig. 8a shows

both CNN models demonstrated superior generalization ca-

pabilities. TreeCNN excelled in MW prediction (MAE <25)

but struggled with DW (MAE ≈80) due to varying power

consumption patterns between the UK-DALE and REDD

datasets. The hierarchical tree structure of TreeCNN shows
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TABLE III: Training & Testing Information about Datasets

Dataset
Trained on Building
Data

Tested on Building Data
Appliances Order for
TreeCNN

DRED 1 1 F, WM, M

Smart* 3 3 F, DW, WM, MW

REDD 2, 3, 5 1 F, WM, DW, MW

UK-DALE 1, 5 2 F, DW, WM, MW, K

IDEAL 136, 175 105 F, WM, DW

UK-DALE
& REDD

1, 2 (UK-DALE) 1 (REDD) F, WM, DW, MW
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Fig. 4: Smart* dataset’s MAE & RMSE measurements for

Case 1 (The power measurement for this dataset is in kilowatts,

so the MAE and RMSE values for all models are below 1).
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Fig. 5: REDD dataset’s MAE & RMSE results for appliances

F, DW, WM and MW for Case 2.

limitations in capturing diverse DW patterns efficiently. Fig.

8b illustrates Seq2Point’s consistent performance across all ap-

pliances, attributed to its sequence-to-point learning approach

that better handles complex temporal sequences. Additionally,

our measured MAE for F, WM appliances for CO, FHMM,

and Seq2Point are consistent with the paper [35] findings.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore.  Restrictions apply. 



6891

0

50

100

150

200

250

M
ea

n 
Ab

so
lu

te
 E

rro
r (

M
AE

)

MAE for UK-DALE dataset for disaggregation categories
CO FHMM TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher WashingMachine Microwave Kettle
Disaggregation categories

(a) MAE measurement

0

100

200

300

400

500

Ro
ot

 M
ea

n 
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for UK-DALE dataset for disaggregation categories
CO FHMM TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher WashingMachine Microwave Kettle
Disaggregation categories

(b) RMSE measurement

Fig. 6: UK-DALE dataset experiment for five household

appliances F, DW, WM, MW and K for Case 2.

F. Inference Time Measurement

Trained NILM models are deployed in systems to provide

predictions for unseen household appliance data. The time it

takes for a trained model to generate a prediction for a sample

is called inference time, which is critical because users expect

rapid forecasts that can handle many requests efficiently. To

better understand this metric, we measured the serving time for

one sample using the Smart* dataset, focusing on the fridge ap-

pliance, which is common in every household. We trained four

algorithmsÐCO, FHMM, Seq2Point, and TreeCNNÐusing

data from the building 1, covering the period from 2014-07-01

to 2014-09-30. We recorded the inference time for 100 samples

and averaged the results in milliseconds. Table IV shows

the measured inference times for the four models. Both CO

and FHMM models took around 47 milliseconds per sample.

FHMM uses a probabilistic model with fixed hidden states

and transition probabilities, while CO involves solving an

optimization problem based on precomputed patterns. Both of

these models employ relatively straightforward mathematical

operations for inference. These factors contribute to their short

inference times. Seq2Point model took an average of 120

milliseconds per sample. As a DNN model with many CNN
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Fig. 7: MAE & RMSE values of appliances F, DW and WM

for the IDEAL dataset under Case 2 scenario.

layers, Seq2Point’s inference process involves passing data

through multiple layers of neurons, requiring numerous matrix

multiplications and nonlinear transformations. This complexity

results in a longer inference time compared to simpler models

like CO and FHMM. TreeCNN model took approximately 70

milliseconds per sample. TreeCNN uses fewer CNN layers

than Seq2Point and employs a hierarchical tree structure to ef-

ficiently capture temporal patterns in appliances. This balance

between capturing detailed temporal patterns and maintaining

efficiency results in a medium inference time, longer than CO

and FHMM but shorter than Seq2Point. These results highlight

the trade-offs between model complexity and inference time,

with simpler models being faster but potentially less accurate,

and more complex models being slower but more capable of

capturing intricate patterns in the data.
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Fig. 8: MAE & RMSE values for appliances F, DW, WM

and MW for Case 3 (Trained with the UK-DALE dataset and

tested with the REDD dataset).

TABLE IV: Inference Time for NILM Models

Model Name Inference Time (ms)

CO 47.8

FHMM 47.92

Seq2Point 120.03

TreeCNN 70.76

V. DISCUSSION

A. Limitations, Insights and Scope for Improvement

Our comprehensive evaluation of TreeCNN across multiple

datasets reveals several key limitations and opportunities for

enhancement. First, while TreeCNN excels in single-building

scenarios, its performance degrades when generalizing across

different datasets, particularly for appliances with varying

power consumption patterns. This limitation stems from the

model’s rigid tree structure, which, once optimized for a

specific building’s temporal patterns, may become subopti-

mal when applied to significantly different usage contexts.

The model particularly struggles with appliances exhibiting

sharp power consumption peaks (e.g., dishwashers) or highly

variable usage patterns across households. This challenge is

compounded by the current greedy approach for determining

tree structure, which may not achieve global optimality. To

address these limitations, several promising directions for

improvement emerge: (1) implementing an adaptive tree struc-

ture that can dynamically adjust based on observed patterns

and real-time performance metrics, (2) incorporating attention

mechanisms to better handle varying appliance importance and

temporal patterns, and (3) developing transfer learning capabil-

ities to improve cross-dataset generalization. Additionally, the

integration of contextual features such as time of day, seasonal

patterns, and geographical factors could enhance the model’s

ability to capture more complex usage patterns. The current

implementation’s assumption of consistent temporal patterns

may not hold across different cultural or geographical contexts,

suggesting the need for more sophisticated pattern recognition

mechanisms.

B. Comparative Analysis with Seq2Point

Our experimental results demonstrate fundamental trade-

offs between TreeCNN and Seq2Point models, rooted in

their architectural differences and reflected in their perfor-

mance characteristics. While TreeCNN achieves superior per-

formance in single-building scenarios through its recursive

decomposition approach, Seq2Point demonstrates more robust

generalization across different datasets and buildings. This dif-

ference stems from their core architectural designs: Seq2Point

excels at capturing localized temporal coherence through

its sliding window mechanism, enabling accurate predictions

for ON/OFF appliances with sharp and infrequent power

consumption peaks. Its sequence-to-point learning approach,

which predicts a target appliance’s power consumption for

a specific point within a window, effectively reduces error

accumulation that can plague hierarchical models. TreeCNN,

conversely, employs a hierarchical decomposition strategy that

recursively reduces aggregate power readings into appliance-

specific patterns. While this approach is particularly effective

for continuous appliances like refrigerators and scenarios

with regular, well-separated appliance patterns, it can struggle

with appliances exhibiting sporadic usage patterns due to

residual propagation through the tree structure. This archi-

tectural distinction manifests in computational differences as

well - Seq2Point requires approximately 120 milliseconds

for inference compared to TreeCNN’s 70.76 milliseconds.

Though this 50 milliseconds difference may seem minimal

for offline applications, it becomes significant in large-scale

deployments processing millions of data points. The choice

between these models thus depends on specific application

requirements: TreeCNN is more suitable for single-building

deployments requiring faster inference and handling stable

usage patterns, while Seq2Point’s robust error handling and

temporal coherence make it better suited for multi-building

deployments and cross-regional applications where consistent
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generalization is paramount. Future research could potentially

bridge this gap by developing hybrid approaches that combine

TreeCNN’s hierarchical efficiency with Seq2Point’s robust

temporal pattern recognition capabilities.

VI. CONCLUSION

In this paper, we integrated the TreeCNN model into

the NILMTK toolkit and evaluated its performance against

baseline models across diverse datasets. TreeCNN excelled

in single-building scenarios by effectively isolating appliance

patterns with its hierarchical decomposition, achieving low

MAE and RMSE for both ON/OFF and continuous appliances.

However, its performance diminished in cross-building and

cross-dataset evaluations, particularly for irregular or vari-

able appliance usage patterns like dishwashers. Compara-

tively, Seq2Point demonstrated better generalization across

datasets due to its sequence-to-point architecture, albeit with a

slightly higher inference time (120ms vs. 70ms). Deep learn-

ing models like TreeCNN and Seq2Point outperform tradi-

tional approaches in NILM, but TreeCNN’s limitationsÐrigid

tree structure, error propagation, and suboptimal generaliza-

tionÐhighlight opportunities for improvement. Future work

will focus on adaptive tree structures, transfer learning for

cross-dataset generalization, and pretraining on unlabeled data

to enhance its performance.
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