
User-based I/O Profiling for Leadership Scale HPC Workloads

Ahmad Hossein Yazdani
Virginia Tech

Blacksburg, Virginia, United States
ahmadyazdani@vt.edu

Arnab K. Paul
BITS Pilani KK Birla

Goa, India
arnabp@goa.bits-pilani.ac.in

Ahmad Maroof Karimi
Oak Ridge National Laboratory

Oak Ridge, Tenesee, United States
karimiahmad@ornl.gov

Feiyi Wang
Oak Ridge National Laboratory

Oak Ridge, United States
fwang2@ornl.gov

Ali Butt
Virginia Tech

Blacksburg, United States
butta@cs.vt.edu

Abstract

I/O constitutes a signi�cant portion of most of the application run-

time. Spawning many such applications concurrently on an HPC

system leads to severe I/O contention. Thus, understanding and sub-

sequently reducing I/O contention induced by such multi-tenancy

is critical for the e�cient and reliable performance of the HPC

system. In this study, we demonstrate that an application’s per-

formance is in�uenced by the command line arguments passed to

the job submission. We model an application’s I/O behavior based

on two factors: past I/O behavior within a time window and user-

con�gured I/O settings via command-line arguments. We conclude

that I/O patterns for well-known HPC applications like E3SM and

LAMMP are predictable, with an average uncertainty below 0.25 (A

probability of 80%) and near zero (A probability of 100%) within a

day. However, I/O pattern variance increases as the study time win-

dow lengthens. Additionally, we show that for 38 users and at least

50 applications constituting approximately 93000 job submissions,

there is a high correlation between a submitted command line and

the past command lines made within 1 to 10 days submitted by the

user. We claim the length of this time window is unique per user.

CCS Concepts

• Information systems→ Distributed storage.

Keywords

High Performance Computing, I/O characterization, I/O scheduler,

Darshan, I/O pro�ling

ACM Reference Format:

Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang,

and Ali Butt. 2025. User-based I/O Pro�ling for Leadership Scale HPCWork-

loads. In 26th International Conference on Distributed Computing and Net-

working (ICDCN 2025), January 04–07, 2025, Hyderabad, India. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3700838.3700865

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or a�liate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only. Request permissions
from owner/author(s).

ICDCN 2025, January 04–07, 2025, Hyderabad, India

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1062-9/25/01
https://doi.org/10.1145/3700838.3700865

1 Introduction

High Performance Computing (HPC) is essential for addressing

complex and large-scale computational problems. These extensive

computations generally require interaction with storage systems

to handle substantial volumes of data. However, the interaction

with storage systems often degrades the application throughput

due to the extensive sharing among numerous users who collec-

tively transfer multiple petabytes of data. Another factor for the

increase in the I/O bottleneck is the faster evolution of computation

technologies than the storage systems, resulting into much shorter

time for computation [17, 27, 30, 36]. The notable decrease in I/O

performance is observable even for single tasks repeated within a

speci�ed time frame [26, 40–43]. This issue worsens in large-scale

applications using accelerators such as GPUs, TPUs, and DPUs,

which provide computational speeds much higher than traditional

CPUs [9, 10, 12, 13, 18, 25, 34]. In addition, the most recent tech-

nological advancements of supercomputers, such as Aurora [1] at

Argonne National Laboratory, and most recently Frontier at Oak

Ridge National Laboratory [35], enable the HPC applications to

massively increase their computation and I/O in order to achieve

more parallelism at the order of several millions, or billions of

computations per second. This however leads to a signi�cant I/O

bandwidth contention on the �le system. Unfortunately this cannot

be resolved by simply scaling up the I/O resources especially in

a multi-tenant HPC system where the infrastructure is shared by

numerous users. This phenomenon is attributed to the intricate in-

terconnections between computation and I/O nodes, coupled with

the interference arising from concurrent workloads operating on

the allocated resources [22]. To keep up with such an immense

advancement in the computation capability of the HPC workloads,

an extensive study of the I/O characteristics for these workloads is

necessary with the hope that the I/O contention could be reduced

by the insights instilled.

There have been several works characterizing the I/O behav-

ior of HPC applications. Clustering I/O behavior on supercomput-

ers like Mira or ALCF’s Theta, using features extracted from the

Darshan pro�ling tool, is an e�ort to characterize the application

I/O pattern [7, 12, 20, 28]. Another method of achieving high I/O

performance is to adjust the con�guration of �le systems based

on previous runs of the applications [23]. Also, Paul et al. [31]

present �ndings from the I/O behavior, exhibited by the machine

learning jobs across a wide spectrum of science domains. They

note only a few science domains on Summit leverage burst bu�ers,

and these jobs usually produce a massive number of small reads

181



ICDCN 2025, January 04–07, 2025, Hyderabad, India Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang, and Ali Bu�

and writes. Costa et al. [15] take advantage of clustering to detect

the I/O patterns the applications’ job submissions on Blue Waters,

which are made publicly available by NCSA. Bang et al. [8] also

employ clustering for in-depth analysis of the applications’ I/O

behavior on Cori supercomputers in an unsupervised manner. Bez

et al. [11] also characterize the I/O received by di�erent layers

of Summit and Cori, which are two multi-layer supercomputers.

They provide more evidence of the imbalanced usage of di�erent

sublayers of these two systems, besides hinting at the increase in

I/O done through STDIO. Nevertheless, it performs slower than

some renowned I/O interfaces like POSIX and MPI-IO. Furthermore,

Patel et al. [29] demonstrate how �le access patterns are reused

among submissions of the same application. They also show the

patterns that are usually absorbed by the �les that each application

touches. It also demonstrates variability in time from one run to

another. Besides, Wyatt et al. [39] extracts the key features of the

image representations for the job scripts. Using the aforementioned

features, they can predict the I/O runtime of the future submissions.

However, the prediction accuracy �uctuates between 60% and 90%.

This large �uctuation in accuracy can be attributed to variation in

applications’ I/O performance across di�erent runs.

The primary objective of this paper is to model the I/O behavior

of applications using historical user con�guration data over a speci-

�ed period, a topic not thoroughly explored in prior research. Users

signi�cantly in�uence the I/O patterns of applications. For instance,

one user may allocate 10 nodes, while another might over-provision

with 100 nodes, a�ecting both the application’s I/O behavior and

performance. Furthermore, theremay be a link between consecutive

submissions, as users often base the con�guration of subsequent

jobs on the outputs of previous ones, impacting I/O performance.

In this paper, we examine the I/O behavior of HPC applications

and pinpoint user behavior as a source of variance across di�erent

runs. Our analysis reveals that the I/O behavior of these applica-

tions is in�uenced by user-speci�ed parameters. We initially create

a dataset from Darshan logs for the full year of 2020 from the lead-

ership scale Summit supercomputer, which is among the fastest

supercomputers in the world [37]. From the raw Darshan data, we

create a �ne-grained job-level I/O pro�le for every job successfully

executed on the HPC system.

We cluster job executions by user and application based on their

I/O behavior. These clusters represent I/O patterns for the jobs. We

quantitatively link the I/O patterns of application instances to com-

mands submitted within a week. Our study indicates that the I/O

pattern of an application, even with the same execution command,

depends on the submission timeframe and past submissions within

the last 1 to 10 days. In addition, our study reveals that these tempo-

ral relationships are unique to users. This implies the past activities

of the users and the way they con�gure the application in�uences

the execution of an application. We con�rm that this observation

holds for most users running well-known HPC applications like

LAMMPS [24] and E3SM [16].

In summary, we make the following contributions.

(1) We make an I/O pro�le for each job submission of a

user , by extracting and engineering the Darshan features

the corresponding job produces.

MPI-IO

STDIO

POSIX

Parallel File System

Darshan 

core

Job 

info

STDIO 

info

POSIX 

info

MPI-IO 

info

Reduce and 

persist the 

library info

Burst Buffer

Figure 1: The interaction between the I/O libraries and Darshan

logs comprising each library I/O information.

(2) We group the job submissions on Summit, in a user and

application-based manner , which helps us discover the

latent patterns of any type in the underlying job submissions,

and the important features shaping the I/O behavior of that

application.

(3) We show the correlation between the application’s I/O

pa�ern and the history of the activities of the user when

submi�ing the same application. across 38 users submit-

ting 50 applications, which constitute 93000 jobs. We use the

conventional statistical methodologies to attribute the I/O

patterns of a job execution to 1) The command line options

provided by the executor (user), and 2) The history of the

submitted command line options for the same executor and

application within a certain time window.We argue this time-

window is unique to the executor of the application, implying

each user has to be studied di�erently.

(4) Henceforth,we conclude the application’s behavior is not

solely determined by the application or the surrounding

runtime, but the users’ historical attitude towards con�gur-

ing these applications.

2 Background

This section provides a brief overview of Darshan I/O characteriza-

tion tool, which helps generate the logs used in our work. We also

brie�y describe Summit- the HPC system, whose logs and user I/O

activities are analyzed.

2.1 Darshan - I/O Characterization Tool

Darshan [12] is a lightweight pro�ling tool which is capable of

capturing a variety of I/O-related measures from the I/O stack

starting from the time the run begins until the application is shut

down. Figure 1 illustrates the software I/O stack and Darshan. It

records job information such as job ID, executable, start, and end

times. For each I/O interface (e.g. MPI-IO, POSIX, STDIO), library-

speci�c data is logged, including the frequency and average time of

operations (open, read, write, close). Key features include the total

I/O for each interface, the total time, and the number of processes.

Each Darshan log captures about thirty job-related features and

over 200 features for each access to the �le [2].

182



User-based I/O Profiling for Leadership Scale HPC Workloads ICDCN 2025, January 04–07, 2025, Hyderabad, India

Compute Node Compute Node

In-System Storage Layer (Burst Buffer)

NVM NVM/XFS

Mellanox Infiniband EDR Fat-Tree
Network

NSD I/O 
Servers

NSD I/O 
Servers

Figure 2: Architecture of Parallel File System in Summit, compris-

ing of an in-system storage layer (Or Burst-Bu�er), and Alpine, a

250 PB IBM Spectrum Scale (GPFS). In Summit, this layer is called

GPFS.

2.2 Summit

Summit- one of the fastest supercomputers in the world [37], was

manufactured by IBM, and deployed at Oak Ridge National Labo-

ratory (ORNL), whose performance is about 200 PF. Figure 2 de-

picts the architecture of Summit. The supercomputer contains 4068

AC922 compute nodes, each having two IBM POWER9 (P9) proces-

sors and NVIDIA Tesla V100 (Volta) GPUs. Moreover, each node

features 512 GB DDR4 memory, and an NVLink 2.0 bus intercon-

nects each P9 CPU to 3 v100 GPUs. An In�niBand EDR network

with a fat-tree topology connects the nodes. Each compute node

has an installed 1.6 TB NVMe device, the so-called burst bu�er,

providing an aggregate of 7.4 PB raw capacity, with 26.7 TB/s and

9.7 TB/s as the maximum read and write bandwidths, respectively.

In addition, Summit is connected to Alpine, a 250 PB IBM Spectrum

Scale (GPFS) �le system. This �le system is equipped with 154 GPFS

Network Shared Disk (NSD) servers for maintaining �le data in

parallel. Alpine peak bandwidth is estimated to be 2.5 TB/s in ag-

gregate under a large sequential write I / O access pattern. Alpine is

a central-wide �le system and can be directly accessed by all other

Oak Ridge National Laboratory (ORNL)’s resources.

3 Related Work

Several prior works have studied pro�ling the applications’ I/O

patterns at di�erent levels of storage system. This characteriza-

tion identi�es the interaction of I/O layers and the parameters

in�uencing application and system performance. It also reveals op-

portunities to modify applications or enhance system I/O utilities

to improve HPC I/O e�ciency. The prior works in this area usually

fall into two categories: 1) Application-level pro�ling 2) System-level

pro�ling. The goal of pro�ling at the application level is to explain

the relationship between the I/O performance of an application

and the high-level I/O statistics collected using I/O characterization

tools such as Darshan. On the other hand, system level pro�ling is

usually agnostic to applications.

3.1 Application level I/O pro�ling

Using the information from I/O tracing tools like Darshan, which

provides a �ne-grained summary of the I/O activities, the workloads

types can be approximately characterized. There have been several

prior research works on application pro�ling using Darshan. Bang

et al. [7] take a 4-month real-world trace from the Cori system in

NERSC and select a set of features using a novel feature selection

method. It picks the Darshan features which are correlated the

most with the amount of write throughput. The results show that

there are 3 natural clusters to which all the jobs belong. Pavan et

al. [32] use unsupervised learning to characterize I/O applications

by parsing Darshan logs into a set of I/O phases that have only one

access pattern. It uses four months Darshan logs from Interpid at

Argonne National Laboratory. The work demonstrates that most

of the accesses are through POSIX and small requests, and most of

the patterns access unique �les. Ng et al. [28] train a classi�er on a

set of applications, which are selected using features in Darshan

logs submitted on Mira from April 2013 to October 2015. The work

tries to predict the write throughput of the Lustre �le system.

Other prior works leverage the information provided by tracing

the lower-level API calls, or the runtime environment pro�lers.

They seek to optimize the I/O, using the knowledge they have from

the history of runs of the same application, or the applications run-

ning with similar properties. Kim et al. [23] adjust the underlying

storage con�guration based on previous runs of a similar appli-

cation. There has also been prior work on gathering information

from di�erent libraries like MPI-IO, and POSIX [14] by injecting a

code into the application runtime. In addition, Tang et al. [36] de-

velop a benchmark capable of pro�ling a job submitted to Summit,

with a varied con�guration over time across the I/O sublayers, and

then propose SCTuner, which exploits the insights gained from the

pro�ler and dynamically tunes the HDF5 hyperparameters very

e�ciently.

3.2 System level I/O pro�ling

In this approach, a feature set of the system-level information is se-

lected. Examples of such features include the average write latency

to the underlying storage system within a particular time period, or

the number of users and processes running on the system, and the

peak I/O throughput. Wan et al. [38] collect information from the

system-level traces, and extract features which are agnostic of any

particular application. Using certain system-speci�c features, it pre-

dicts the amount of I/O throughput. The work yields 75% accuracy

when applied. Both application and system level pro�les are consid-

ered in [5], which uses knowledge from the workload domain to be

able to map jobs into the system resources so that the storage sys-

tem is e�ciently utilized. The same route is adopted by [4] which

determines the best parameters for an application. Particularly, they

consider a combination of MPI-IO level and Lustre level features

on top of Cori supercomputers and develop a Bayesian model to

predict a performance score like bandwidth. In addition, Patel et

al. bridge the gap between the accessibility of the HPC community

and the I/O behavior of various workloads on top of such a system.

They extract some low-level features like the number of cores, the

amount of wall clock time, the amount of wait time for a job, etc.

using which they showcase some temporal patterns including the

183



ICDCN 2025, January 04–07, 2025, Hyderabad, India Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang, and Ali Bu�

burstiness of the submissions at certain points during the week. In

addition, they predict the running time of the jobs submitted.

Most of the literature and the aforementioned studies fail to

deliver satisfactory performance on certain workloads. This limi-

tation arises because prior jobs of the application’s submitter and

their role in shaping job’s I/O behavior are not considered in their

evaluations. We establish the imperative of adopting an alternative

approach to studying the I/O runtime of diverse workloads through

user-based pro�ling. Pro�ling user behavior at the application level,

utilizing �ner-grained features extracted from Darshan logs, fa-

cilitates a comprehensive understanding of variations in the I/O

pro�les of an application. Our investigation elucidates a correlation

between users’ historical activities and their subsequent submis-

sions, demonstrating a pronounced predictability in the application

I/O behavior when considering the antecedent job con�gurations

of the submitter.

4 Pro�ling I/O behavior of Users

In the preceding section, we emphasized the importance of rec-

ognizing the role played by users in shaping the I/O patterns of

HPC applications, as well as understanding the latent factors within

an application that can enhance the I/O performance of both in-

dividual applications and the overall system. To address this, we

construct an I/O pro�le for each application’s job submission by

employing engineering techniques and extracting features from the

corresponding Darshan log. This pro�le serves as a representation

of the I/O behavior exhibited during the application’s individual

submission. Utilizing the compiled pro�les, we demonstrate the

potential for making inferences based on the historical behavior

of the users, which we have observed across a signi�cant number

of samples, and their respective submissions In the meantime, we

endeavor to explain the means by which the users may contribute

to the behavior di�erence across the submissions of an application.

The remainder of this section fully describes our methodology for

attaining the mentioned objectives, along with the process of ex-

tracting and crafting the necessary features essential for carrying

out these analyses.

4.0.1 Building I/O Profiles. For the development of Input/Out-

put (I/O) pro�les, we leverage counters extracted from Darshan

logs. Each application execution on the Summit supercomputer is

delineated as a job, consisting of tasks instantiated by ‘jsrun’ com-

mands. Every ‘jsrun’ invocation produces a corresponding Darshan

log �le. These logs encapsulate various metrics such as the volume

of bytes read and written, cumulative I/O time, and metadata op-

erations associated with POSIX, MPI-IO, and STDIO [2]. Summit

employs IBM’s Cluster System Management (CSM) as its batch

job scheduler [3]. Darshan logs encompass these metrics for every

�le accessed throughout the application’s execution. Additionally,

the logs facilitate the determination of the number of processes

interacting with a single �le, which provides valuable insights into

I/O contention. Furthermore, the metadata included within a Dar-

shan log, such as the executable name utilized by ‘jsruns’, user

identi�cation, and the start and end times, allows for the amalga-

mation of logs from multiple ‘jsrun’ instances. This metadata is

instrumental in feature engineering and extraction, culminating in

the construction of job-level I/O pro�les.

A subset of counters is selected from the provided Darshan logs,

which encompass approximately 200 counters. Additionally, a dis-

tinct set of features is synthesized from the Darshan logs. The

amalgamation of both extracted and engineered features consti-

tutes an I/O pro�le for each job, as delineated in Table 1. Feature

engineering is deemed indispensable, as Darshan logs encompass

an extensive array of statistics, with a majority of features exhibit-

ing sparsity in most instances. This inherent sparsity introduces

a potential threat to the �delity of the machine learning models

designated for analyzing the submissions. It is imperative that the

organized feature sets semantically preserve the critical I/O charac-

teristics of the job submissions. The ensemble of derived features

collectively forms a comprehensive pro�le for each job. The de-

rived job I/O pro�les enhance job clustering accuracy by re�ecting

the predominant types of access performed by applications. Each

pro�le records features related to I/O accesses for each interface,

the �le system, and the type of access (see Table 1), e�ectively

representing the job’s I/O activity over time.

As discussed, the features we report in Table 1 are calculated for

each I/O interface (POSIX, MPI-IO, STDIO), the �le system receiving

the I/O operations (GPFS or Burst Bu�er), the �le access methods

(FPP, PSF or SSF), and the transfer size category (KB, MB, GB) as

described below.

• I/O interfaces (POSIX, MPI-IO, STDIO). It is notewor-

thy that MPI-IO routines utilize POSIX to perform their I/O.

This is why part of the POSIX I/O may have resulted from

calls made through MPI-IO. To further realize the amount of

contention coming from MPI-IO calls, we separate the I/Os

coming from MPI-IO from the ones arising from the job’s

direct calls to POSIX API. Such discrimination enables us

to recognize how MPI-IO high-level calls are absorbed by

the layers underneath the I/O stack. As a result, this distinc-

tion aids the analysts to have an estimation of the job’s I/O

access pattern. Also, studying MPI-IO metrics allows us to

understand what types of high-level I/O calls the applica-

tions make, and how lower layers transform the queries into

more e�cient ones. Also, as per what is presented in [11],

in some of the science domains, the majority of I/Os are per-

formed via STDIO, which makes them a treasurable source

for learning about the users in the system, and accordingly

to leverage this knowledge to increase the I/O performance.

• File system requests (burst bu�ers (NVMe) vs GPFS).

Previous studies show that the usage of burst bu�ers is not

common across the users in HPC systems, mainly because

users do not know about the speedup they would achieve by

directing their I/Os to burst bu�ers. Therefore, the classi�ca-

tion of features in such terms yields invaluable information

to us from the overall contention on the GPFS, and how we

can balance the contention across di�erent layers of storage.

• Files access method (File access type). We name a �le

accessed by all the processes as single shared �les (SSF). If

more than one (not all) processes access the �le but not all

processes access that �le, we call it part shared �le (PSF),

and �le per process (FPP) if only one process accesses the

�le. Prior works demonstrate that most of the applications

favor independent I/Os rather than collective accesses as

184



User-based I/O Profiling for Leadership Scale HPC Workloads ICDCN 2025, January 04–07, 2025, Hyderabad, India

Features

total number of �les, number of write-intensive �les, number of read-intensive �les

number of read-write �les, number of metadata �les,

total bytes read/written, total number of read/write calls,

total number of metadata operations

Interface (Library) POSIX (Not from MPI-IO), POSIX (From MPI-IO), MPI-IO, STDIO

File System parallel �le system (GPFS for Summit), burst bu�er (node-local NVMe for Summit)

File Access Type Single-shared �le (SSF), Part-shared �le (PSF), File-per-process (FPP)

File Transfer Size Category KB (1 KB - 999 KB), MB (1 MB - 999 MB), GB (1 GB and above)

Table 1: Features derived from a Darshan log. Each feature is reported for every I/O interface, �le system and �le type. The features in bold

represent the number of �les of a certain category, which is determined by Algorithm 1.

stated above, lying in the fact that a lot of users in the HPC

community are mostly not familiar with the primitives dif-

ferent libraries provide. The contention may emerge from

the fact that the underlying parallel �le system fails to trans-

form independent I/O calls into sequential collective I/O calls.

Such grouping provides us with more information about the

slowdowns due to the users mostly doing independent I/O

operations.

• File Transfer Size Category. This categorization is essen-

tial as it can determine the mechanics of potential under-

lying low-level I/O operations. To this end, we consider 3

categories to discretize the transfer size: 1) KB, which cor-

responds to the I/O operations transferring 1 KB or less 2)

MB for transfers ranging from 1 MB to 999 MB), GB for 1

GB transfers and above.

Algorithm 1: Categorization of �les as write-intensive,

read-intensive, metadata or read-write.
Input: Total bytes written into: 1~C4B_FA8CC4=, Total bytes read from: 1~C4B_A403
Output: Category of the �le as being write-intensive, read-intensive, read-write or

metadata
1 begin
2 if 1~C4B_A403 + 1~C4B_FA8CC4= == 0 then // No I/O is done; Label it as

metadata

3 return METADATA

4 A0C8> = (bytes_read - bytes_written) / (bytes_read + bytes_written)

5 if A0C8> >= −1 && A0C8> <= −0.5 then
6 returnWRITE_INTENSIVE

7 else if A0C8> >= 0.5 && A0C8> <= 1 then
8 return READ_INTENSIVE

9 else
10 return READ_WRITE

To generate the pro�les, we �rst aggregate all Darshan logs of

the jsruns within a single job to derive a job-wise summary of the

I/O features for each job submission of an application. We then

need to aggregate the values of the features for di�erent runs of an

application by a single user on a particular scale. Thus, we get one

�le with the features introduced in Table 1. Algorithm 2 explains

how we obtain the user I/O pro�le for a single application for a

speci�c scale. In line 7, we derive the features listed in table 1 for

the given jsrun. The next step is to aggregate these vectors. The

aggregation involves the summation of the features described in

table 1. We name this aggregate vector as the job-level submission

I/O pro�le. Next, we aggregate all of these job-level I/O pro�les

into a single coarse-grained I/O pro�le by averaging all the job-

level pro�les. We suppose that the coarse-grained I/O pro�le could

represent the average behavior of the user when submitting an

application at a scale.

Algorithm 2: Generating user I/O pro�le for one applica-

tion for a speci�c scale.

Output: pro�les generated for every user for each application and scale

1 begin
2 for app in uid_apps do
3 for scale in uid_apps do
4 set jobs_features as empty list

5 for job in app do
6 for jsrun in job do
7 //Extract the features in table 1 from the Darshan statistics

8 jsrun_feature_vector = calculate_features(job_statistics)

9 add jsrun_feature_vector to jsrun_feature_vectors

10 //Compile the features vectors for each jsrun into an individual
job-level I/O pro�le

11 joblevel_pro�le = aggregate(jsrun_feature_vectors)

5 Analysis

In this section, we leverage the pro�les produced for the collection

of executionswemaintain tomodel the I/O activity of an application

as a function of the con�gurable knobs for the application, and

the user’s attitude towards tweaking the settings. To this end, we

need to quantitatively distinguish the job submissions whose I/O

patterns contrast and to identify the causes of jobs di�erentiated in

an interpretable way. To this end, we �rst leverage an unsupervised

learning mechanism to group the submissions by the I/O patterns,

and then in the next subsection, we associate the con�gurable knobs

of the applications with the discovered I/O patterns, and devise

a modeling strategy to �nd out the I/O pattern of an application

under submission.

5.1 Categorizing submissions by I/O pattern

We cluster the job submissions in our dataset in an unsupervised

manner so that the jobs with distinct I/O characteristics are sep-

arated from each other, and to have a representation of the I/O

patterns the jobs yield. The procedure for this categorization is

detailed in Algorithm 3, where we group the submissions by the

submitter (uid) and the executed application (app), and apply the

clustering algorithm for each group. This step helps us reduce the

the random variation of the data, which might have otherwise con-

fuse the clustering algorithm. Following this, we standardize the

features of the corresponding pro�le collection using equation 1,

scaling them down to attain a mean of 0 and a standard deviation

of 1. Subsequently, we eliminate features with a predetermined

185



ICDCN 2025, January 04–07, 2025, Hyderabad, India Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang, and Ali Bu�

0 1 2
Cluster_Label

0.0

0.5

1.0

1.5

2.0

(a) Number of write intensive

�les receiving MB transfers under

STDIO with �le per process access.

0 1 2
Cluster_Label

1.28

1.30

1.32

1.34

1.36

1.38
1e6

(b) Number of GB-sized write

transfers under STDIO with �le

per process access.

0 1 2
Cluster_Label

0.0

0.2

0.4

0.6

0.8

1.0

(c) Number of write intensive

�les receiving GB transfers under

STDIO with �le per process access.

0 1 2
Cluster_Label

0.0

0.2

0.4

0.6

0.8

1.0

(d) Number of KB-sized read trans-

fers under STDIO with Single-

shared �le access.

Figure 3: The contrast between the distinctive features of user A clusters. The x axis represents the cluster label, while the y

axis shows the violin plot values for each feature.

fraction of missing values (80% for all user and application pairs)

or with a zero interquartile range (IQR) distance.

GĩĪėĤĚėĨĚ =

G − `

f
(1)

Algorithm 3: Job clustering grouped by user and applica-

tion.
Input: pro�les generated for each job run: 9>1_AD=_?A> 5 8;4B
Output: The job pro�les labeled with their corresponding I/O cluster for each user and

application

1 begin
2 set ;014;43_9>1_?A> 5 8;4B to empty map

3 forD83 , 0?? inD83_0??_?08AB do
4 D83_0??_?A> 5 8;4B = 9>1_AD=_?A> 5 8;4B[(D83 , 0??)]

5 // Standardize features using equation 1

6 BC3_?A> 5 8;4B = BC0=30A38I4_5 40CDA4B(B20;4_?A> 5 8;4B)

7 // Remove the features which are zero at least 80% of the times, or with

Inter-Quartile Range (IQR) distance of zero

8 BC3_?A> 5 8;4B = 38B20A3_I4A>_5 40CDA4B(BC3_?A> 5 8;4B , 0.8)

9 // Runs HDBSCAN algorithm

10 ;014;43_?A> 5 8;4B = AD=_ℎ31B20=(BC3_?A> 5 8;4B , 14BC_:)

11 ;014;43_9>1_?A> 5 8;4B[(D83 , 0??)] = ;014;43_?A> 5 8;4B

12 return ;014;43_9>1_?A> 5 8;4B

Next, we perform clustering of job pro�les for the designated user

and application. We posit that an application, when executed under

a particular user, manifests multiple patterns only if it exceeds 10

submissions. This threshold is established to prevent the clustering

algorithm from aggregating all data points into a singular group. For

this purpose, we employ the HDBSCAN algorithm [33]. Analogous

to DBSCAN [19, 21], this method is an agglomerative, density-based,

nonparametric clustering algorithm that functions by iteratively

aggregating samples into clusters. However, DBSCAN consolidates

data points into a single cluster if they reside within a manually

tuned distance Ċ , rendering it suboptimal for data sets with varying

density. In such scenarios, a large Ċ causes most data points to be

assigned to a single cluster, whereas a small Ċ yields numerous small

clusters, potentially fragmenting data points that could belong to

the same cluster. HDBSCAN addresses this issue by incorporat-

ing a hierarchical clustering framework, wherein a comprehensive

grid-search is performed across multiple Ċ values. Consequently,

the determination of a secondary parameter, ġ , which delineates

the minimum sample size for each cluster, becomes imperative. For

our analysis, we set ġ to 2, based on the premise that at least two

executions per user should form a cluster. Furthermore, empirical

evidence suggests that the setting ġ = 2 produces a comparable

partitioning compared to the higher values of ġ . Figure 4 elucidates

the distribution of pairwise distances between clusters derived

for various values of ġ . Evidently, elevated values of ġ exhibit ap-

proximately equivalent e�cacy in di�erentiating clusters, thereby

rendering this methodology less e�ective for certain datasets with

larger ġ values. Generally, the minimum sample parameters can

be optimally adjusted per user and application, contingent on the

nature of the tasks and the users’ historical I/O data. This adaptive

clustering per user and application o�ers the distinct advantage of

reduced computational time, enabling system schedulers to explore

a broader spectrum of hyperparameters. Additionally, separating

clustering by user and application improves the model’s ability to

accurately capture I/O patterns and distinguish between users, even

when they run the same application.

2 3 4 5 6 7 8 9 10
k value

0.0

2.5

5.0

7.5

Pa
irw

ise
 D

ist
an

ce

Figure 4: The distribution of the pairwise distances between

the clusters for varying k values, where k is the min sample

hyperparameter in HDBSCAN algorithm.

Our clustering methodology proves highly e�ective, yielding

well-separated clusters for many user and application pairs. Figure 3

illustrates this for user A, who submitted jobs running lmp_mpi on

August 20th and from mid-November to mid-December 2020. This

binary represents the LAMMPS application [24], used to simulate

186



User-based I/O Profiling for Leadership Scale HPC Workloads ICDCN 2025, January 04–07, 2025, Hyderabad, India

molecular groups and provide chemists with insights into material

dynamics.

Cluster 1 submissions tend towards write transfers measured

in Megabytes, whereas Cluster 2 characterizes jobs that perform

write transfers on the order of Gigabytes, particularly under the

�le-per-process access paradigm. Additionally, Clusters 1 and 2

generate single-shared read transfers at the Kilobyte scale, which

Cluster 0 does not exhibit. Each cluster is represented by a range of

values (or an exact value) per feature. For instance, Cluster 0 always

features zero write intensive �les with �le per process at megabyte

scale (�gure 3a), a huge volume of gigabyte-sized write transfers

(�gure 3b), zero GB-sized write intensive �les (�gure 3c), and zero

KB-sized single-shared read transfers (�gure 3d). In contrast, Cluster

1 maximizes KB-sized single-shared read transfers (�gure 3d), while

Cluster 2 has zero GB transfers and a large number of GB-sized

write intensive �les (�gures 3b and 3c), suggesting a more spread

I/O across smaller �les compared to Cluster 0.

5.2 User impact on the application’s I/O
behavior

In this subsection, we quantitatively correlate the behavior of an

application with the past activities of the user when executing an

application. As mentioned before, the users can alter the behavior

of the application via the command line parameters they pass, and

by adjustment of the application’s surrounding runtime, e.g via

directing the I/O tra�c to the Burst Bu�er rather than the slower

�le systems like GPFS or Lustre. In fact, this section �nds an answer

to the following questions:

(1) Which parameters or settings can a user adjust to modify

the I/O behavior of an application, and to what extent can

these settings accurately predict the I/O behavior of a speci�c

application execution?

(2) How much contribution do the settings of the past submissions

of the same application have towards the I/O behavior of the

next execution for the same user?

Based on Darshan’s input, the only adjustable parameter users

have left to �ne-tune would be the selection of command line op-

tions and the binary name submitted for each job. In our analysis,

we focus on the 38 users with the maximum number of submissions

within the system so that we are con�dent that our �ndings can be

generalized to the whole system. Doing so leaves us with around

93000 job submissions. Out of this number of jobs, we focus on

applications popular amongst the HPC community like LAMMPS

and E3SM for which we have the highest number of records.

To measure the impact of the submitted command lines on the

application’s I/O pattern, we extract features from the command

line submitted for each execution. To this end, we get the options

and switches changing from one execution to another for each

user and application, convert this data into nominal features, and

quantify the predictability of the I/O patterns for an execution given

the command line options submitted for that execution, as well as

the past I/O patterns for executions of the same application under

the same executor.

We then measure the ease of predicting the resultant pattern

of an application when a set of command line arguments are sub-

mitted. To this end, we calculate the entropy of the I/O patterns

grouped by the submitted command lines. In fact, entropy repre-

sents the uncertainty in the estimation of the value of a random

variable. Henceforth, the lesser the value of the entropy, the lesser

the multiplicity of the values for the random variable. The entropy

is de�ned as follows for the random variable Ĕ :

4=CA>?~ (- ) = ?ğ ∗ ;>6?ğ (2)

Assuming X takes any of the values Į1, Į2, . . . , Į= , we set Ħ8 to be

the probability that X becomes Į8 . The entropy tends to zero in case

there is a skewness towards a single value. In our case, a value close

to zero suggests a single command line always leads to the same

pattern. For the rest of this section, we plot the entropy variation

within di�erent time scales (In the overall dataset, weekly and

daily).

LAMMPS is a classical molecular dynamics (MD) code that mod-

els ensembles of particles in a liquid, solid, or gaseous state. Its versa-

tility extends to modeling atomic, polymeric, biological, solid-state

(including metals, ceramics, and oxides), granular, coarse-grained,

or macroscopic systems, employing diverse inter-atomic potentials

(force �elds) and boundary conditions. It can model 2d or 3d sys-

tems with sizes ranging from only a few particles up to billions [24],

making it �t for HPC scale. Figures 5a to 5c illustrate the distri-

bution of the entropy of the I/O patterns (clusters) for users who

executed the highest number of commands per unique command

line option in the entire dataset, within a week, and within a day

respectively. According to these �gures, di�erent users executing

the same application with the same options over time may observe

di�erent I/O patterns, while another set of users submitting the

same options may see the same I/O pattern repeated. This implies

the need for pro�ling each user di�erent due to the unique nature of

the temporal I/O patterns they may exhibit. This shows the I/O pat-

tern of the LAMMP application is heavily reliant on the command

line options submitted. For users like A, we �nd the LAMMP script

they specify, alongside the presence of a unique set of simulation

variables controlling the molecular simulation determining the I/O

pattern, while for the other users, the command line only speci�es

the log �les where the output is dumped, making it hard to explain

the actual reason of variation. Moreover, Figure 6 illustrates the

distribution of uncertainty in predicting the I/O patterns for the

top 50 applications in the dataset, as submitted by a single user.

High-performance computing applications like lalibe and e3sm

show minimal variance in I/O patterns (near-zero daily entropy),

indicating their predictability. However, LAMMPS demonstrates con-

sistent behavior when the binaries lmp_summit and lmp_g++ are

used by users C and D, respectively, but exhibits increased uncer-

tainty with lmp_mpi submitted by user E. These �ndings suggest

that di�erent users may require individualized monitoring. Figure 7

mirrors �gure 6, examining executions within a day. These visu-

alizations suggest that shorter analysis periods increase certainty

in predicting execution I/O patterns, often resulting in singular

patterns across more command lines. In the aforementioned plots

(Figures 6 and 7), there are some binaries and applications for which

the I/O pattern varies per command line. For a signi�cant number of

such applications, the command line takes no parameter, meaning

the user intervention in the I/O behavior of the application cannot

be explained using the command line. It is likely that such users

187



ICDCN 2025, January 04–07, 2025, Hyderabad, India Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang, and Ali Bu�

0.0 0.5 1.0 1.5 2.0
Entropy

0.0

0.2

0.4

0.6

0.8

1.0

CD
F UID

A
B
C
D
E

(a) Overall Entropy Distribution.

0.0 0.5 1.0 1.5
Entropy

0.0

0.2

0.4

0.6

0.8

1.0

CD
F UID

A
B
C
D
E

(b) Weekly Entropy Distribution.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Entropy

0.0

0.2

0.4

0.6

0.8

1.0

CD
F UID

A
B
C
D
E

(c) Daily Entropy Distribution.

Figure 5: The distribution of the entropy of LAMMP’s I/O pattern when submitted with the same command line arguments for

di�erent users in the overall dataset, every week, and every day. The user IDs are anonymized.

gm
x_
m
pi

la
lib
e

lm
p_
su
m
m
it

ra
pi
d

hm
c

ph
.x

pm
em

d.
cu
da

.M
PI gt
c

va
sp
_g
pu

_x
l1

cp
pt
ra
j.M

PI
pw

-g
pu

.x
lm

p_
g+

+
qm

c-
ch
ec
k-
af
fin

ity
e3

sm
.e
xe io
r

na
lu
X

ga
m
es
s.0

0.
x

pw
.x

va
sp
_s
um

m
it

qm
cp
ac
k

be
nc
h_
ra
s

lm
p_
Su

m
m
it_
_M

PI
-K
OK

KO
S-
CU

DA
__
GN

U
pm

em
d.
M
PI

de
al
ii_
ex
_6

lm
p_
m
pi

de
al
ii_
ex
_9

su
3_
rh
m
c_
hi
sq

rm
g-
ne

gf
-g
pu

nw
ch
em

Ca
st
ro
3d

.p
gi
.T
PR

OF
.M
PI
.C
UD

A.
ex

m
ai
n.
py

Ca
st
ro
3d

.p
gi
.M
PI
.C
UD

A.
ex

lm
p_
gc
c-
s

pr
ox
y_
ap

p.
x

rm
g-
on

-g
pu

ha
cc
_t
pm

di
re
ct
_d
sf
_m

pi
_a
cc

sc
_d
sf
_m

pi
_a
cc

sc
_d
sf
_f
re
e_
m
pi
_a
cc

sw
4

pw
df
t

be
nc
hm

ar
k.
ga

m
es
s.0

0.
x

vp
ici
o_
un

i_h
5.
ex
e

ga
m
es
s.0

0.
be

nc
h.
x

m
ai
n3

d.
gn

u.
TP

RO
F.M

PI
.e
x

m
dr
un

_m
pi

vp
ici
o_
un

i_h
5

m
pi
_b
en

ch
hy

pr
e_
ap

p
Ca

st
ro
2d

.p
gi
.T
PR

OF
.M
PI
.C
UD

A.
ex

Application

0

1

2

3

4

En
tro

py

Figure 6: The average uncertainty of the application’s I/O

patterns when submitted by a user in the overall dataset. In

this case, we treat the binaries with di�erent namings which

refer to the same application di�erently.

would most likely read �les and settings which are hard-coded in

the application code.

Next, we aim to quantify the interaction between prior and

subsequent job submissions using the same binary. We measure

the mutual information gain between past command-line argu-

ments and the I/O pattern of the following job. To achieve this,

we gather command lines associated with the identical binary as

the job in question. For example, if the succeeding job employs

lmp_summit as a binary, we exclusively consider submissions that

execute lmp_summit for that user. .

Assuming X and Y are two random variables, the mutual in-

formation gain between the two, denoted by ą (Ĕ ;ĕ ) is de�ned as

follows [6]:

ą (Ĕ ;ĕ ) = Ą (Ĕ ) − Ą (ĕ |Ĕ ) (3)

be
nc

h_
ra

s
cp

pt
ra

j.M
PI

e3
sm

.e
xe

gm
x_

m
pi gt
c

ha
cc

_t
pm hm

c io
r

la
lib

e
lm

p_
su

m
m

it
m

ai
n3

d.
gn

u.
TP

RO
F.M

PI
.e

x
m

pi
_b

en
ch

ph
.x

pm
em

d.
cu

da
.M

PI
pw

-g
pu

.x
pw

.x
qm

c-
ch

ec
k-

af
fin

ity
qm

cp
ac

k
ra

pi
d

rm
g-

ne
gf

-g
pu

rm
g-

on
-g

pu
su

3_
rh

m
c_

hi
sq

va
sp

_g
pu

_x
l1

va
sp

_s
um

m
it

vp
ici

o_
un

i_h
5

lm
p_

Su
m

m
it_

_M
PI

-K
OK

KO
S-

CU
DA

__
GN

U
sc

_d
sf

_f
re

e_
m

pi
_a

cc
sc

_d
sf

_m
pi

_a
cc

sw
4

Ca
st

ro
2d

.p
gi

.T
PR

OF
.M

PI
.C

UD
A.

ex
Ca

st
ro

3d
.p

gi
.M

PI
.C

UD
A.

ex
Ca

st
ro

3d
.p

gi
.T

PR
OF

.M
PI

.C
UD

A.
ex

de
al

ii_
ex

_9
ga

m
es

s.0
0.

x
lm

p_
g+

+
m

dr
un

_m
pi

de
al

ii_
ex

_6
di

re
ct

_d
sf

_m
pi

_a
cc

lm
p_

gc
c-

s
nw

ch
em

pr
ox

y_
ap

p.
x

ga
m

es
s.0

0.
be

nc
h.

x
na

lu
X

be
nc

hm
ar

k.
ga

m
es

s.0
0.

x
vp

ici
o_

un
i_h

5.
ex

e
lm

p_
m

pi
m

ai
n.

py
pm

em
d.

M
PI

hy
pr

e_
ap

p
pw

df
t

app

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

M
on

th
ly

 E
nt

ro
py

Figure 7: The average uncertainty of the application’s I/O

patterns when submitted by a user in within a day.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Window Size

0

25

50

75

100

125

150

175

M
ut

ua
l I

nf
or

m
at

io
n

User A
User B
User C
User D
User E

Figure 8:Mutual information between a command’s label and

the options of the command and the preceding commands,

as determined by varying window sizes (1 to 4), for the top

5 users with the highest number of executions in the LAMMP

application. The user IDs are anonymous.

Mutual information measures the reduction in uncertainty about

one variable given knowledge of another. In our study,ĕ denotes the

set of command-line options within a speci�c window (the number

of preceding commands), while Ĕ represents the I/O pattern of

188



User-based I/O Profiling for Leadership Scale HPC Workloads ICDCN 2025, January 04–07, 2025, Hyderabad, India

the subsequent job using the same application. To measure the

correlation between an application’s I/O pattern and past command

submissions, we take the union of all command line options across

di�erent submissions for a given binary. Missing options are �lled

with a default value, ensuring that each command line includes

the complete set of options for consistent comparison. Figure 8

depicts the relationship between a command’s label and its options,

considering both current and preceding commands, for the LAMMP

application among the top 5 users running the same binary with

di�erent options. Mutual information increases with window size,

underscoring the importance of command line history. The varying

slopes indicate unique user patterns, consistent with other binaries

like Lalibe and previous �gures, particularly for window sizes

under 10, corresponding to 1 to 10 days of commands. Notably, the

slope decreases for 4 users, suggesting that beyond a certain point,

preceding commands may become irrelevant to the current job, a

pattern also observed in other applications studied.

6 Discussion and Future Work

We discussed that the I/O patterns of HPC applications are highly

in�uenced by historical con�gurations submitted by the same user

for the same application. The analysis conducted supports this point.

Our study shows that an application’s I/O behavior can be modeled

based on past I/O activity within a speci�c time frame and user-

con�gured I/O settings via command line arguments. The �ndings

indicate that I/O patterns for well-known HPC applications, such

as E3SM and LAMMP, are predictable with low uncertainty within

a short time frame but become more variable over longer periods.

Furthermore, our results reveal a strong correlation between current

and past command-line submissions made by users within 1 to 10

days, with the optimal time window being unique to each user.

Analyzing command-line options aids in storage system schedul-

ing by revealing potential I/O behavior. For instance, reading from

a .csv �le versus a .hdf5 �le can signi�cantly impact �le system

access, in�uencing our modeling and predictions.

However, there are still a lot of aspects in terms of I/O char-

acterization to be investigated. For example, many sample jobs

lack command line options, containing only the executable name,

which limits our analysis by treating all such submissions identi-

cally. However, executables, whether binary or high-level scripts,

often include debugging symbols and source code. Schedulers can

leverage Large Language Models (LLMs) to extract features from

the source code and map them to con�guration knobs, thereby

enabling I/O pattern modeling.

7 Conclusion

I/O is a major part of the applications within HPC. A concurrent

execution of these applications leads to a signi�cant bottleneck

and contention. Consequently, there is a huge need to identify the

underlying causes of such issues, one of which is the nature of the

applications themselves. This aspect of the I/O runtime is greatly

studied by the previous state-of-the-arts. However, they have failed

to provide accurate models of the I/O behavior. In particular, the

behavior of applications can be in�uenced by various means and

user-con�gurable parameters. An example includes the input they

pass to their applications, which is produced by their previous sub-

missions. In this work we quantitatively attribute the variation of

the I/O performance to the user parameters set in a way speci�c to

the users each. We cluster the executions of an application grouped

by the users in an unsupervised manner. We then correlate the

application execution’s resultant I/O pattern (cluster) as a function

of the history of the user activities when executing the same ap-

plication. We employ conventional statistical and ML approaches

to associate the I/O pattern of an application execution with the

executor (user) of the application. Our study shows the resultant

I/O pattern of an execution under a user is highly dependent on

the past submitted command line options of the same application

under the same user within a 1 to 10 day time window, which is

unique to the submitter. This suggests that I/O schedulers have

the potential to leverage knowledge about users’ activities in the

system, opening possibilities for optimization.

Acknowledgments

We thank our anonymous reviewers for their detailed feedback

and valuable suggestions. This work is sponsored in part by the

NSF under the grants: CSR-2106634, CCF-1919113/1919075, CNS-

2045680, OAC-2004751, and OAC-2106446, O�ce of Science of the

U.S. Department of Energy under the grant DE-AC05-00OR22725,

SERB, Govt. of India Start-up Research grant SRG/2023/002445,

BITS CRDF under grant C1/23/173 and BITS Pilani under the grants:

BBF/BITS(G)/FY2022-23/BCPS-123/24-25/R1 and GOA/ACG/2022-

2023/Oct/11. Results presented in this paper were obtained using

the OLCF at Oak Ridge National Laboratory.

References
[1] [n. d.]. Aurora Exascale Supercomputer. https://www.anl.gov/aurora
[2] 2021. https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.

html
[3] 2021. HPC IBM-CSM. https://www.ibm.com/docs/en/spectrum-lsf/10.1.0
[4] Megha Agarwal, Divyansh Singhvi, Preeti Malakar, and Suren Byna. 2019. Active

Learning-based Automatic Tuning and Prediction of Parallel I/O Performance.
In 2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW).
20–29. https://doi.org/10.1109/PDSW49588.2019.00007

[5] Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile, Sophia Lefantzi,
Steve Monk, Je� Ogden, Mahesh Rajan, and Joel Stevenson. 2015. Toward Rapid
Understanding of Production HPC Applications and Systems. In 2015 IEEE In-
ternational Conference on Cluster Computing. 464–473. https://doi.org/10.1109/
CLUSTER.2015.71

[6] A. Al-Ani and M. Deriche. 2002. Feature selection using a mutual information
based measure. In 2002 International Conference on Pattern Recognition, Vol. 4.
82–85 vol.4. https://doi.org/10.1109/ICPR.2002.1047405

[7] Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Sunggon
Kim, and Hyeonsang Eom. 2020. HPC Workload Characterization Using Feature
Selection and Clustering. In Proceedings of the 3rd International Workshop on
Systems and Network Telemetry and Analytics. 33–40.

[8] Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Hanul Sung,
and Hyeonsang Eom. 2021. An In-Depth I/O Pattern Analysis in HPC Systems.
In 2021 IEEE 28th International Conference on High Performance Computing, Data,
and Analytics (HiPC). 400–405. https://doi.org/10.1109/HiPC53243.2021.00056

[9] Keith Bateman, Stephen Herbein, Anthony Kougkas, and Xian-He Sun. 2022.
State of I/O in HPC 2020. (2022).

[10] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir. 2015. Pattern-Driven
Parallel I/O Tuning. In Proceedings of the 10th Parallel Data Storage Workshop
(Austin, Texas) (PDSW ’15). Association for Computing Machinery, New York,
NY, USA, 43–48. https://doi.org/10.1145/2834976.2834977

[11] Jean Luca Bez, Ahmad Maroof Karimi, Arnab K Paul, Bing Xie, Suren Byna,
Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley. 2022. Access Patterns
and Performance Behaviors of Multi-layer Supercomputer I/O Subsystems under
Production Load. In Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing. 43–55.

189



ICDCN 2025, January 04–07, 2025, Hyderabad, India Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang, and Ali Bu�

[12] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Kather-
ine Riley. 2009. 24/7 characterization of petascale I/O workloads. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, 1–10.

[13] Jesus Carretero, Emmanuel Jeannot, Guillaume Pallez, David E Singh, and Nicolas
Vidal. 2020. Mapping and scheduling HPC applications for optimizing I/O. In
Proceedings of the 34th ACM International Conference on Supercomputing. 1–12.

[14] Yan-Tyng Sherry Chang, Henry Jin, and John Bauer. 2016. Methodology and
Application of HPC: I/O Characterization with MPIProf and IOT. In 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT). 1–8. https://doi.org/10.
1109/ESPT.2016.005

[15] Emily Costa, Tirthak Patel, Benjamin Schwaller, Jim M. Brandt, and Devesh
Tiwari. 2021. Systematically Inferring I/O Performance Variability by Examining
Repetitive Job Behavior. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri)
(SC ’21). Association for Computing Machinery, New York, NY, USA, Article 33,
15 pages. https://doi.org/10.1145/3458817.3476186

[16] DOE. 2021. Energy Exascale Earth System Model (E3SM). https://github.com/
E3SM-Project/E3SM.

[17] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[18] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-aware job scheduling for burst bu�er enabled HPC clusters. In Pro-
ceedings of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing. 69–80.

[19] Mihailo Isakov, Eliakin Del Rosario, Sandeep Madireddy, Prasanna Balaprakash,
Philip Carns, Robert B Ross, and Michel A Kinsy. 2020. HPC I/O throughput bot-
tleneck analysis with explainable local models. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–13.

[20] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash,
Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. HPC I/O Throughput
Bottleneck Analysis with Explainable Local Models. In SC20: International Con-
ference for High Performance Computing, Networking, Storage and Analysis. 1–13.
https://doi.org/10.1109/SC41405.2020.00037

[21] Kamran Khan, Saif Ur Rehman, Kamran Aziz, Simon Fong, and Sababady Saras-
vady. 2014. DBSCAN: Past, present and future. In The �fth international conference
on the applications of digital information and web technologies (ICADIWT 2014).
IEEE, 232–238.

[22] Sunggon Kim, Alex Sim, KeshengWu, Suren Byna, Yongseok Son, and Hyeonsang
Eom. 2020. Towards hpc i/o performance prediction through large-scale log
analysis. In Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing. 77–88.

[23] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Teng Wang, Yongseok Son,
and Hyeonsang Eom. 2019. DCA-IO: A dynamic I/O control scheme for parallel
and distributed �le systems. In 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). IEEE, 351–360.

[24] LAMMPS Development Team. 2023. LAMMPS Documentation. https://docs.
lammps.org/Intro_overview.html Accessed on: January 22nd 2024.

[25] Glenn K Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip Carns, and
Nicholas J Wright. 2018. A year in the life of a parallel �le system. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 931–943.

[26] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Old�eld, Todd Korden-
brock, Karsten Schwan, and Matthew Wolf. 2010. Managing variability in the
IO performance of petascale storage systems. In SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–12.

[27] Sarah Neuwirth and Arnab K Paul. 2021. Parallel I/O Evaluation Techniques and
Emerging HPC Workloads: A Perspective. In 2021 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 671–679.

[28] Hong Wei Ng. 2018. Machine learning for selecting parallel I/O benchmark
applications. (2018).

[29] Tirthak Patel and Suren Byna. 2020. Uncovering Access, Reuse, and Sharing
Characteristics of I/O-Intensive Files on Large-Scale Production HPC Systems..
In Proceedings of the 18th USENIX Conference on File and Storage Technologies,
2020.

[30] Arnab K. Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror,
and Ali R. Butt. 2020. Understanding HPC Application I/O Behavior Using
System Level Statistics. In 2020 IEEE 27th International Conference on High Perfor-
mance Computing, Data, and Analytics (HiPC). 202–211. https://doi.org/10.1109/
HiPC50609.2020.00034

[31] Arnab K Paul, Ahmad Maroof Karimi, and Feiyi Wang. 2021. Characterizing
Machine Learning I/O Workloads on Leadership Scale HPC Systems. In 2021 29th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 1–8.

[32] Pablo J Pavan, Jean Luca Bez, Matheus S Serpa, Francieli Zanon Boito, and
Philippe OA Navaux. 2019. An unsupervised learning approach for I/O behavior
characterization. In 2019 31st International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD). IEEE, 33–40.
[33] Md Farhadur Rahman, Weimo Liu, Saad Bin Suhaim, Saravanan Thirumuru-

ganathan, Nan Zhang, and Gautam Das. 2016. Hdbscan: Density based clustering
over location based services. arXiv preprint arXiv:1602.03730 (2016).

[34] Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel �le system for Linux
clusters. In Proceedings of the 4th annual Linux showcase and conference. 391–430.

[35] David Schneider. 2022. The Exascale Era is Upon Us: The Frontier supercomputer
may be the �rst to reach 1,000,000,000,000,000,000 operations per second. IEEE
spectrum 59, 1 (2022), 34–35.

[36] Houjun Tang, Bing Xie, Suren Byna, Philip Carns, Quincey Koziol, Sudarsun
Kannan, Jay Lofstead, and Sarp Oral. 2021. SCTuner: An Autotuner Addressing
Dynamic I/O Needs on Supercomputer I/O Subsystems. In 2021 IEEE/ACM Sixth
International Parallel Data Systems Workshop (PDSW). 29–34. https://doi.org/10.
1109/PDSW54622.2021.00010

[37] TOP 500 Organization. 2022. TOP 500 Supercomputer Sites. https://www.top500.
org/lists/top500/2022/11/.

[38] Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George Ostrouchov,
Jieyang Chen, Norbert Podhorszki, Jeremy Logan, Kshitij Mehta, Scott Klasky,
et al. 2020. I/O Performance Characterization and Prediction through Machine
Learning on HPC Systems. (2020).

[39] Michael R Wyatt, Stephen Herbein, Todd Gamblin, Adam Moody, Dong H Ahn,
and Michela Taufer. 2018. Prionn: Predicting runtime and io using neural net-
works. In Proceedings of the 47th International Conference on Parallel Processing.
1–12.

[40] Bing Xie, Je�rey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and
Norbert Podhorszki. 2012. Characterizing output bottlenecks in a supercom-
puter. In SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–11.

[41] Bing Xie, Yezhou Huang, Je�rey S Chase, Jong Youl Choi, Scott Klasky, Jay
Lofstead, and Sarp Oral. 2017. Predicting output performance of a petascale
supercomputer. In Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing. 181–192.

[42] Bing Xie, Sarp Oral, Christopher Zimmer, Jong Youl Choi, David Dillow, Scott
Klasky, Jay Lofstead, Norbert Podhorszki, and Je�rey S Chase. 2020. Characteriz-
ing output bottlenecks of a production supercomputer: Analysis and implications.
ACM Transactions on Storage (TOS) 15, 4 (2020), 1–39.

[43] Bing Xie, Zilong Tan, Philip Carns, Je� Chase, Kevin Harms, Jay Lofstead, Sarp
Oral, Sudharshan S Vazhkudai, and Feiyi Wang. 2019. Applying machine learning
to understand write performance of large-scale parallel �lesystems. In 2019
IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW). IEEE,
30–39.

190


	Abstract
	1 Introduction
	2 Background
	2.1 Darshan - I/O Characterization Tool
	2.2 Summit

	3 Related Work
	3.1 Application level I/O profiling
	3.2 System level I/O profiling

	4 Profiling I/O behavior of Users
	5 Analysis
	5.1 Categorizing submissions by I/O pattern
	5.2 User impact on the application's I/O behavior

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

