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Abstract—The model’s uncertainty estimation is what adver-
sarial attacks target and exploit. However, the attacker may not
always have a clear understanding of how the model estimates
uncertainty. Different types of uncertainty can impact these
attacks differently because not all sources of uncertainty are
equally affected by the attack strategies. We investigate the
impact of various noise distributions as well as adversarial attacks
on distinct networks. Our objective is to establish a threshold for
quantifying network robustness. To achieve this, we analyze three
network models, progressively increasing the depth of layers. Our
analysis incorporates Shannon entropy and Kullback-Leibler
divergence to assess model uncertainty. This directs our attention
toward identifying a criterion for measuring uncertainty. Notably,
our findings shed light on the manipulation of neural network
uncertainty through adversarial attacks, highlighting variations
across diverse datasets and models.

Index Terms—Adversarial Examples; Uncertainty; Kullback-
Leibler Divergence (KLD); Deep Neural Networks (DNN); Net-
work Robustness.

I. INTRODUCTION

The rapid development of Artificial intelligence (AI) and
Machine Learning (ML), particularly in Deep Neural Net-
works (DNNs), has ushered in a new era of technological
breakthroughs across various domains. Despite these achieve-
ments, there are growing concerns about the security and
robustness of these technologies. The integration of AI and
ML into critical systems makes understanding and addressing
these vulnerabilities not just a technical challenge, but also
a necessity for ensuring the reliability and safety of these
systems in real-world applications.

Central to these concerns is the threat posed by adversarial
examples. These are inputs deliberately designed to look
nearly identical to original data but are capable of fooling
DNNs into making incorrect predictions [1], [2]. The exis-
tence of adversarial examples exposes a critical weakness in
machine learning models, particularly in DNNs, challenging
their reliability and questioning their effectiveness in practical
applications [3].

In this paper, we provide a comprehensive analysis of
adversarial examples, focusing on their formation and impact
on DNNs. We explore a variety of attack methods, employing

This research was partially supported by the National Science Foundation
under Grant No. 2309760 and Grant No. 2317117.

techniques such as gradients, optimization, and mathematics to
create these deceptive inputs. Our study includes an examina-
tion of both white-box attacks, which necessitates knowledge
of the model’s architecture [4], and black-box attacks, which
do not [5]. Additionally, we investigate targeted attacks that
manipulate the model’s output to a specific class [6], as well
as untargeted attacks aimed at inducing any misclassification
[7]. Furthermore, we explore the role of model entropy as
a measure of uncertainty in predictions [8], analyzing how
adversarial perturbations can manipulate the confidence levels
of DNNs in classifying data, thereby uncovering their vulner-
abilities and suggesting improvements for robustness [9].

Our work distinguishes itself from previous studies by
providing a detailed exploration of various adversarial attack
methods and their implications on DNNs. Unlike existing
research that predominantly focuses on identifying vulnera-
bilities, our paper extends to proposing potential solutions
for improving the robustness of DNNs. We also offer a
comparative analysis of our proposed DNN network model
against other models in the contex of these adversarial threats,
highlighting the unique contributions and advancements of our
research.

The remainder of the paper is structured as follows: Section
II delves into an in-depth exploration of Adversarial attacks
and their prevalent methods. Section III conducts a compar-
ative analysis between our proposed DNN network model
against alternative models. In Section IV, we quantify the
level of uncertainty present within the dataset, including both
training and testing sets. Section V engages in a comprehen-
sive discussion of the findings, accompanied by comparative
diagrams for enhanced clarity. The paper concludes in Section
VI, summarizing the key takeaways of our study.

II. RELATED-WORK

Adversarial attacks on DNNs have emerged as a critical
concern, prompting extensive research efforts toward enhanc-
ing the robustness and security of these systems. To overcome
the ambiguous causes of adversarial attacks, several different
mechanisms can be employed. Uncertainty inference (UI) has
been introduced for estimating how uncertain the outputs of
DNNs are to further improve their reliability and applicability
[10]. DNNs are unable to evaluate the uncertainty of their
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outputs since they prefer to generate precise predictions as
opposed to choosing between confidence intervals. Two broad
categories of uncertainty are model uncertainty and data uncer-
tainty. To determine the degree of generalization uncertainty
in models, the first method is known as misclassification
detection which involves finding out-of-domain occurrences.
The second method is assessing data uncertainty which focuses
on finding out-of-distribution occurrences for noisy data. [11].
This paper [12] introduces shallow information and obtains
predictions from different depths of a DNN, they adopt a
multi-head architecture which is similar to GoogLeNet-style
[13]. After each fully connected layer, they obtain multiple
predictions which are treated as a sample for Dirichlet dis-
tribution estimation from each head. This is to produce a
MoGMM-FC layer, the classifier of a Deep Neural Network
(DNN) is combined with a mixture of Gaussian Mixture
Models. Building upon the concept of leveraging various
depths within a Deep Neural Network (DNN), as described in
the previous paragraph, this paper [14] presents and compares
two uncertainty assessment techniques that do not rely on test
data. The Shannon entropy of class probabilities predicted by
Deep Neural Networks (DNN) and Random Forest (RF) is
used to implement uncertainty assessment at the pixel level.
This research paper explores the effects of various adversarial
attacks and techniques during the training and testing phases.
We analyze Gaussian, uniform, salt-and-pepper noise to the
related datasets and use popular attack methods to evaluate
their robustness. We discuss the effectiveness of adversarial
attacks and the impact of entropy on model confidence. Fur-
ther, we assess the uncertainty level of noise in each dataset by
establishing a noise threshold by exploiting the KL divergence
concept [15]. This means understanding how the uncertainty
of a model changes when exposed to adversarial perturbations.

III. EXPERIMENT

To gauge the uncertainty inherent in the network’s response
to adversarial attacks, we introduce controlled noise or pertur-
bation into the dataset. The ensuing uncertainty levels in both
input and output domains are quantified, providing valuable
insights into the network’s sensitivity to perturbations.

A. Experiment Design

1) Dataset: To elucidate the impact of various attack
methods on the network’s behavior, highlighting the inter-
play between adversarial attacks, network performance, and
uncertainty, we utilized three popular datasets such as MNIST,
CIFAR-10, and ImageNet. MNIST dataset consists of 70,000
grayscale images of handwritten digits from 0 to 9. These
images Contain 60,000 images (size of 28x28 pixels) for
model training and 10,000 images for evaluating the trained
models’ performance. CIFAR-10 is a dataset that contains
60,000 (32x32) color images in 10 different classes. The
dataset is divided into five training batches and one test batch,
each with 10,000 images. The test batch contains exactly
1000 randomly selected images from each class. ImageNet is
an image database that contains over 14 million images. We

chose 10 categories from ImageNet: goldfish, ostrich, axolotl,
chameleon, hummingbird, admiral, violin, ice cream, teapot,
and rapeseed, with each category containing 1300 training
images and 50 test images with the dimensions (224x224x3).

2) Uncertainty Metrics: We briefly describe the metrics,
such as Shannon entropy and Kullback-Leibler divergence,
and how they capture uncertainty. Entropy, encompassing
uncertainty or a deficiency in the level of confidence dur-
ing a model’s decision-making process [16], signifies that
the model’s evaluation of situations or predictions lacks a
firm conviction or definitive determination. Consequently, data
points exhibiting higher entropy are prioritized for labeling, as
they possess the potential to offer the most informative insights
to the model [17]. Furthermore, elevated entropy values within
a sample may indicate its affiliation with an unseen or out-of-
distribution (OOD) category, rendering it valuable for tasks
such as anomaly detection and model robustness assessment
[18]. Techniques grounded in entropy, such as Bayesian neural
networks and Monte Carlo dropout, prove instrumental in cap-
turing epistemic uncertainty, which encompasses uncertainty
stemming from limited data and model ambiguity [19]. On the
other hand, KLD serves as a useful tool for quantifying the
distinction (referred to as distance) between two distributions
[20]. This concept typically considers when the same fault
pattern between distinct datasets may exhibit varying degrees
of fault magnitude.

B. Experimental Setup

1) Network Architecture: The CNN model is designed
using sequential layers, comprising convolutional layers (con-
sisting of 32, 64, 128, 256, and 512 filters respectively, with
a kernel size of (3, 3), ’relu’ activation, and ’same’ padding)
followed by max-pooling (with a pool size of (2, 2)) layers to
extract hierarchical features from the input images. The model
further includes dense (fully connected with 512, 256, 128, 64,
and 32 units respectively, each activated by ’relu’ activation.)
layers to perform classification based on the learned features.
The model’s loss function is categorical cross-entropy, which
is commonly used for multi-class classification tasks. The
Adam optimizer with a learning rate of 0.001 is employed
for model optimization. The model’s performance is evaluated
on both clean and noisy test datasets. The level of noise
is introduced using Gaussian noise with varying standard
deviations, Uniform noise, and Salt-and-Pepper noise with a
valid range.

2) Uncertainty Evaluation: In this work, we propose three
different CNN architectures: model 1 (7-layers) denoted as C,
model 2 (10-layers) denoted as D, and model 3 (13-layers) of
convolutional neural network layers denoted as E. For each
model, we consider two networks; the models trained without
noise are C0, D0, and E0, and the models trained with noise
are C1, D1, and E1. For each model we test the networks once
with a clean test dataset and once with a poisoned test dataset.
In general we have clean dataset elements, (xa0 , ya0 )clean,
and noisy dataset elements, (xa1 , ya0 )noisy , where we add
noise by xa1

= xa0
+ n. Then we analyzed our models
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by evaluating the Shannon Entropies and KL Divergences.
The Shannon Entropy was calculated within each individual
dataset, while the KL Divergence was calculated between
the true label distribution and predicted label distributions
from each test dataset. Analyzing the Shannon entropy helps
us understand the randomness introduced by the adversarial
noise; higher entropy values indicate greater uncertainty in
model predictions. The KL divergence allows us to assess how
the noise affects the model’s understanding of the data. Higher
KL divergences signify more substantial differences between
two distributions and a larger degree of dissimilarity in the
distributions.

IV. DISCUSSION

A. Experimental Result

In our proposed Convolutional Neural Network (CNN)
model aimed at achieving accurate outcomes, we made a
deliberate decision to forgo the inclusion of several estab-
lished techniques such as batch normalization, dropout, and
regularization techniques like L1 and L2 regularization. While
these methods are known to enhance the robustness of neural
networks, our rationale behind this choice was rooted in our re-
search focus on understanding the precise extent of ambiguity
present in both the model’s input and output. By intentionally
keeping the network architecture more straightforward, we
aimed to capture a clearer representation of the uncertainty
intrinsic to the data and the model itself. We conducted tests
using three different noise distributions, as shown in Table I.
The results reveal interesting patterns. In a scenario where the
training dataset is clean but the testing dataset is poisoned
with 1% to 5% noise, Salt-&-Pepper noise proves to be
more detrimental to the CIFAR-10 dataset. When the training
dataset is poisoned but the testing dataset is clean, Uniform
distribution is more effective in causing misclassification for
1% to 5% noise levels. In the last scenario, where both
the training and testing datasets are poisoned, Uniform and
Gaussian noise exhibit more impact at 1% and 5% noise levels,
respectively.

TABLE I
TRAINING AND TESTING OUR PROPOSED MODEL WITH DIFFERENT

LEVELS OF NOISE DISTRIBUTIONS IN TO CIFAR-10 DATASET.

Train Test Noise S & P Uniform Gaussian
Clean Clean 0% 87.50% 87.50% 87.50%
Clean Poison 1% 54.01% 70.13% 68.91%

5% 53.66% 64.99% 54.18%
Poison Clean 1% 87.22% 69.42% 69.77%

5% 87.21% 63.12% 68.13%
Poison Poison 1% 86.08% 70.06% 70.52%

5% 62.31% 65.32% 62.03%

Table II, presents an evaluation of the performance of our
proposed network model (Model 3) under the mentioned attack
methods, comparing it to relevant benchmarks. This evaluation
highlights the effectiveness of our approach in mitigating
adversarial effects. As we can see, MNIST dataset is more
robust compared to other datasets. FGSM attack is malevolent

in the CIFAR-10 dataset and PDG has a more misleading effect
on ImageNet dataset.

TABLE II
TESTING OUR PROPOSED MODEL WITH POPULAR ADVERSARIAL

ATTACKS WITH DIFFERENT DATASETS.

Attack MNIST CIFAR-10 ImageNet
FGSM 83.19% 76.9% 78.91%
PDG 82.32% 78.6% 77.01%
C&W 81.21% 77.10% 79.80%

In Table III, our model was subjected to testing. In the
absence of any attacks, we achieved the highest accuracy
across three datasets with the MNIST dataset. However, when
noise was introduced to our test dataset, the results indicated
that Gaussian noise had the most adverse impact on accuracy
for the ImageNet dataset, while salt-&-pepper noise had the
greatest negative effect on CIFAR-10. Additionally, uniform
noise had a notable impact on the accuracy of CIFAR-10 as
well.

TABLE III
TRAINING AND TESTING OUR PROPOSED MODEL WITH DIFFERENT NOISE

DISTRIBUTIONS.

Attack MNIST CIFAR-10 ImageNet
NA 88.05% 87.50% 79.89%

Gaussian 81.43% 79.98% 74.13%
Salt & Pepper 80.18% 76.00% 76.79%

Uniform 80.65% 75.90% 77.12%

B. Evaluating Shannon Entropy in each Model

After evaluating model performance under attack, we inves-
tigated the uncertainty and sensitivity of our models to noise.
According to Fig. 1, higher entropy values may be obtained
by increasing the depth of a model.

This may be due to the fact that deeper models usually
recognize more complex patterns in the data. Consequently,
this can increase the unpredictability of models from the
increase in noise sensitivity. In turn, Shannon entropy values
may be lowered by making the model well-regularized and
more robust. Regularization techniques like dropout, batch
normalization, and adversarial training can help mitigate the
impact of noise on model predictions, but as we mentioned
before, we overlooked these techniques.

For Model 1 in Fig. 1, the average entropy does not show
a clear trend with the increase in noise percentage, suggesting
that the model’s output distribution may not be significantly
impacted by noise. The entropy values across different data
conditions (clean train data & poisoned test data, poisoned
train data & poisoned test data, and poisoned train data &
clean test data) are relatively close together, which could imply
that Model 1 maintains a consistent level of uncertainty across
these conditions.

Model 2’s entropy values display slight variations with the
increase in noise percentage, although, like Model 1, there
isn’t a clear consistent trend. The variation in entropy between
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Model 3 - Shannon Entropy
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Clean Train Data & Poisoned Test Data Poisoned Train Data & Poisoned Test Data Poisoned Train Data & Clean Test Data

Fig. 1. Shannon entropy for Models 1, 2, and 3.

the different data conditions is more pronounced compared to
Model 1, indicating that Model 2’s response to data integrity
is more sensitive. This model may show different levels of
uncertainty depending on whether the train or test data is
poisoned, as well as the combination of both.

The entropy for Model 3 exhibits similarly subtle fluc-

tuations with increasing noise percentages, without a strong
indication of a trend. However, the entropy levels in Model 3
are more varied across the different data conditions compared
to Model 1, but less so than Model 2. This suggests that
Model 3 has a differential response to the various types of
data poisoning, with some configurations leading to higher
uncertainty in the model’s output distribution than others.

Across all models, the lack of a clear upward or downward
trend in entropy with increasing noise suggests that the models
may have varying degrees of resilience or sensitivity to noise,
depending on the specific condition of the data. The relatively
close grouping of entropy values under different conditions for
each model also indicates that the models may not be highly
sensitive to the type of data poisoning. This could be due to
the models’ inherent robustness to such issues or because the
noise does not lead to a significant increase in uncertainty as
captured by Shannon entropy. Each model exhibits its unique
characteristics in handling data integrity, which could inform
their application in environments where data quality can be
compromised.

C. Evaluating KL Divergence in each Model

In Fig. 2, increasing noise levels boost entropy, amplifying
unpredictability and pixel value variation, causing more un-
certainty in predictions. Beyond a threshold, excessive noise
dominates, leading to predictions converging towards random-
ness and reduced entropy due to overfitting.
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Model 3 - KL Divergence
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Fig. 2. KL Divergence for each model.
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High noise levels flatten pixel distributions, reducing pre-
diction diversity and entropy as the neural network struggles
with noisy patterns. The impact of model depth on KL
divergence is complex, depending on training and architecture.
Deeper models may have varying KL divergence compared
to shallower ones. Overfitting to training noise can result
in higher KL divergence when exposed to adversarial noise
while well-generalizing deeper models might exhibit lower KL
divergence when attacked.

For Model 1, the graphs indicate an upward trend in KL
divergence as the noise percentage increases. This pattern
is observed when the training data is clean and the testing
data is poisoned, when the training data is poisoned and
the testing data is clean, and also when both are poisoned.
The most significant increase in divergence occurs when both
training and testing data are poisoned, suggesting that Model
1’s performance is highly sensitive to the presence of noise in
the data.

In the case of Model 2, the observed KL divergence values
are somewhat lower than those of Model 1, particularly when
the training data is not poisoned. This suggests a relative
robustness in Model 2’s ability to handle noise, especially
during the testing phase. Nonetheless, the same general trend
remains: as the noise level rises, so does the KL divergence.

Model 3 exhibits the lowest KL divergence values among
the three models, indicating a stronger robustness to data
poisoning. Even as the noise percentage increases, the KL
divergence for Model 3 rises more gradually compared to the
other models, which might reflect a better capacity to manage
noisy data.

Overall, the increasing trend of KL divergence with higher
noise percentages across all models is consistent with the
expectation that noise leads to a greater deviation from the
expected distribution. However, Model 3 stands out as being
the most robust against data corruption, as demonstrated by
its consistently lower KL divergence values under all tested
conditions. This analysis suggests that Model 3 may be the
most suitable choice when working with data that is at risk of
being compromised or is inherently noisy.

V. SUMMARY AND CONCLUSIONS

Our study provides valuable insights into the realm of
adversarial attacks on DNNs by introducing the concept of
uncertainty quantification as a crucial factor. Through our
evaluation of the network’s responses when subjected to
various attack strategies and by estimating uncertainty levels,
we underscore the significance of considering uncertainty in
the pursuit of bolstering DNN robustness. The objective is to
assess the resilience of each model against these adversarial
manipulations, shedding light on the broader landscape of
security.

Our research delves into a specific domain of adversarial
machine learning, offering a fresh perspective on the vul-
nerabilities of Deep Neural Networks (DNNs) to adversarial
attacks. By integrating the concept of uncertainty quantifica-
tion into our analysis, we have opened up a vital dialogue

on the importance of understanding and managing uncertainty
in these models. Through our experiments, we examined
the network’s behavior under various adversarial strategies,
measuring the levels of uncertainty that manifest within the
models’ predictions.

Our analysis of various models’ responses to noise-infused
inputs, as evidenced by the changes in Kullback-Leibler
divergence and Shannon entropy across multiple scenarios,
provides an empirical foundation to assess model resilience.
It is evident that different models exhibit distinctive patterns
of uncertainty, indicating that a one-size-fits-all solution to
bolstering robustness is inadequate. Instead, a model-specific
approach is warranted.

The KL divergence results reveal the extent to which
each model’s predicted probability distribution diverges from
the expected outcome under adversarial conditions. These
findings suggest that as the noise level increases, so does
the divergence, although the rate of increase and the overall
impact vary by model. Model 3, in particular, showcased a
comparatively lower divergence, suggesting a higher degree of
resilience against adversarial attacks. Similarly, the Shannon
entropy metrics underscored the models’ varying degrees of
uncertainty under poisoned data conditions, providing insights
into the models’ information processing stability.

In conclusion, our study not only emphasizes the signifi-
cance of considering uncertainty in enhancing DNN robustness
but also sets the stage for future explorations into adaptive
defensive strategies. By assessing the resilience of each model
against adversarial attacks, our work contributes to the broader
landscape of cybersecurity. As adversarial threats evolve, our
methodology offers a framework for ongoing evaluation and
improvement, ensuring that DNNs can be trusted even in the
most challenging of circumstances.

VI. FUTURE WORK

Building upon our current research into the resilience of
Deep Neural Networks (DNNs) to adversarial attacks, our
future work aims to expand the scope and depth of our under-
standing in this critical area. Our next step is to refine uncer-
tainty quantification methods by exploring advanced statistical
techniques and applying them to a wider variety of DNN
architectures. This would help in discerning the subtleties
in model responses across different layers and structures,
providing a more detailed view of where vulnerabilities lie.

To address the vulnerabilities uncovered, we plan to develop
and test a suite of defensive mechanisms. These defenses
would be directly informed by the uncertainty metrics we’ve
studied, aiming to improve model hardening through training
regimens that incorporate adversarial examples and through
real-time detection systems that can identify and adapt to
attacks as they occur.

A key component of future research will also involve
the transferability of our findings. We aim to apply the
insights gained from our initial models to new domains and
applications, exploring how different types of data and tasks
affect a model’s susceptibility to manipulation. Considering
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the broader implications of our work, we anticipate engaging
with the ethical dimensions of robust AI systems. Future inves-
tigations will need to balance enhanced security with concerns
such as data privacy, bias mitigation, and transparency.
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