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Abstract—The aim of this study is to investigate into µAFL,
a non-intrusive, feedback-driven fuzzing framework, evaluated
on Cortex M4 embedded systems and Unix platforms, focusing
on the STM32F407VE Cortex M4 microcontroller. By leveraging
the SEGGER J-Trace Pro for trace collection, it demonstrates
µAFL’s utility beyond its traditional scope, showcasing its efficacy
in both embedded and general-purpose computing environments.
Our analysis, enriched by juxtaposing µAFL’s capabilities with
traditional AFL, emphasizes the adaptability and effectiveness
of fuzzing methodologies in firmware security enhancement.
Furthermore, the study provides a deep understanding of fuzzing
execution on different hardware, presenting an execution strategy
for the STM32F407VE that highlights the framework’s potential
in identifying vulnerabilities, evidenced by tests on specific
firmware programs such as an LED blinking program integrated
with semihosting breakpoints and ETM tracing. The use of
uninitialized memory sections and strategically placed break-
points offers significant insights into the firmware’s execution
flow. The results of our comparative analysis clearly show that
µAFL excels at uncovering vulnerabilities, reinforcing the need
for evolving fuzzing methodologies to build stronger security
systems for embedded devices. This contribution underscores the
importance of refining fuzzing techniques to meet the intricate
security demands of contemporary computing environments.

Index Terms—firmware fuzzing, µAFL, STM32F407VE, Em-
bedded Trace Macrocell, firmware security

I. INTRODUCTION

Firmware vulnerabilities present a considerable challenge
to the security and operational integrity of embedded sys-
tems, potentially creating avenues for unauthorized access and
control. Addressing these vulnerabilities is paramount, and
fuzzing has emerged as a key technique in this endeavor.
By applying invalid, unexpected, or random data inputs to
programs and analyzing their responses, fuzzing helps identify
weaknesses in software that could be exploited by attackers

[1], [2]. While traditional fuzzing tools like American Fuzzy
Lop (AFL) have demonstrated their efficacy in desktop and
server environments, the unique constraints and requirements
of embedded systems necessitate specialized approaches.

µAFL emerges as an innovative solution tailored to these
challenges [3]. As a non-intrusive, feedback-driven fuzzing
framework, µAFL leverages hardware features such as the Em-
bedded Trace Macrocell (ETM) to conduct efficient, coverage-
guided fuzzing on embedded firmware. This approach marks a
promising advancement in enhancing the security of embedded
systems. To date, explorations of µAFL’s capabilities have
been notably concentrated on platforms such as the NXP
TWR-K64F120M. This focus lays the groundwork for further
investigations into the framework’s adaptability and efficacy
across a wider range of microcontroller boards.

In light of this, our paper aims to extend the exploration of
µAFL’s utility to include a more diverse array of embedded
hardware, with a particular emphasis on the STM32F407VE

Cortex M4 microcontroller. Through a thorough examination
of the hardware-software setup required for this microcon-
troller, including the utilization of its ETM and the J-Trace Pro
debugger for efficient trace collection and firmware fuzzing,
we provide an in-depth analysis of µAFL’s applicability to a
broader hardware context. Moreover, by comparing µAFL’s
performance with that of traditional AFL in the fuzzing of
common Unix programs, we deliver insights into the com-
parative effectiveness of these tools across various computing
environments.

Our work not only underscores µAFL’s versatility and
potential in enhancing the security of an expanded range
of embedded systems but also supports reproducibility and
further research in firmware security. This effort represents
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a significant stride forward in our collective endeavor to
bolster the defenses of embedded systems against firmware
vulnerabilities.

The remainder of this paper is organized as follows: Section
II provides a background on fuzzing and the µAFL approach.
Section III introduces the preliminaries, including overviews of
AFL and the methodology behind µAFL. Section IV describes
adapting µAFL for the STM32F407VE board. Section V outlines
our experimental setup, followed by results and analysis in
Sections VI and VII. We discuss our findings in Section VIII.
Finally, Section IX concludes the paper, suggesting directions
for future research.

II. BACKGROUND

The landscape of software testing has been profoundly
reshaped by the advent of fuzzing tools, among which Amer-
ican Fuzzy Lop (AFL) stands out for its general-purpose
application [4]. AFL revolutionized the approach to uncov-
ering vulnerabilities by instrumenting code to monitor ex-
ecution paths, thus optimizing the search for unexplored
code regions. However, the unique demands of embedded
systems—characterized by constrained resources and specific
operational requirements—necessitate a tailored approach [5].
Enter µAFL, a tool designed to bridge this gap by tar-
geting firmware fuzzing within microcontrollers. Diverging
from AFL’s source code modification strategy, µAFL adopts
a hardware-in-the-loop methodology, leveraging embedded
system development tools and hardware features like ARM’s
Embedded Trace Macrocell (ETM) for non-intrusive feedback
collection [6].

The transition to µAFL is exemplified in our choice of
the STM32F407VE [7] board for our study. This board,
equipped with an ARM Cortex M4 processor, mirrors the
TWR-K64F120M [8] in its processor architecture, offering a
comparable testing ground with advanced debugging fea-
tures. Central to our investigation is the ETM unit of the
STM32F407VE, providing real-time instruction tracing crucial
for the nuanced analysis required in firmware fuzzing. This ca-
pability, coupled with the board’s Data Watchpoint and Trace
(DWT) unit for comprehensive data and event monitoring,
underscores µAFL’s potential in pinpointing vulnerabilities
more effectively within embedded systems, thereby enhancing
their security and reliability.

III. PRELIMINARIES

A. AFL Overview

AFL stands as a cornerstone in the domain of fuzzing
tools, renowned for its effective utilization of compile-time
instrumentation to enhance software testing. By ingeniously
transforming target binaries to monitor execution paths, AFL
facilitates a feedback-driven fuzzing process that prioritizes
unexplored code regions, thereby optimizing coverage and
efficiency in vulnerability detection [9] [10]. Unlike µAFL,
which employs hardware features for non-intrusive feedback
collection, AFL’s method involves inserting additional code
into the program at compile time, using tools like afl-gcc or

afl-clang. This process not only aids in identifying executed
code segments but also in mapping out the application’s
behavior under various input conditions. Furthermore, AFL’s
unique approach to coverage mapping through a bitmap file
exemplifies its capability to adaptively guide the fuzzing input
generation towards areas less traversed. The comparison be-
tween AFL and µAFL underscores AFL’s significance in lay-
ing the groundwork for feedback-driven fuzzing, highlighting
its instrumental role in advancing the field of software security
through meticulous exploration of potential vulnerabilities.

B. µAFL Approach

The µAFL framework introduces a novel, non-intrusive
feedback-driven fuzzing methodology specifically tailored for
microcontroller firmware, distinguishing itself from AFL by
leveraging the Embedded Trace Macrocell (ETM) hardware
feature [11]. This approach eliminates the need for conven-
tional AFL instrumentation, thus bypassing software modifica-
tion and the associated overhead. µAFL’s utilization of ETM
allows for comprehensive instruction trace collection directly
from the hardware, offering detailed insights into branch
execution without altering the firmware’s operational integrity.
Key to its operation is the integration of Linear Code Sequence
And Jump (LCSAJ) analysis, which processes the ETM out-
put efficiently, facilitating the identification of unexplored
code paths with minimal performance impact [11]. Moreover,
µAFL employs a combination of online trace collectors and
offline trace analyzers to refine the collected data, filtering
out irrelevant information and enhancing the overall efficiency
of the fuzzing process. This strategic approach addresses
the challenges associated with fuzzing stripped binaries in
firmware, which are notably difficult to instrument, thereby
extending the applicability of fuzzing techniques to a wider
range of embedded systems.

IV. ADAPTING µAFL

A. Target Platform

Our research adapts the µAFL framework for use with
the STM32F407VE Cortex M4 board, a choice driven by the
board’s robust support for critical features essential for effec-
tive fuzzing, such as the Embedded Trace Macrocell (ETM).
This adaptation marks a shift from the initial implementations
on platforms like the NXP TWR-K64F120M, primarily cho-
sen for their ease of integration with µAFL’s non-intrusive
feedback-driven fuzzing methodology. The STM32F407VE was
selected for its widespread availability, superior hardware
capabilities, and compatibility with µAFL’s requirements for
detailed instruction trace collection through ETM, facilitating a
comprehensive evaluation of the fuzzing process on embedded
systems.

B. Software Configuration

The integration of µAFL into the STM32F407VE’s firmware
development process involved several critical steps. Utilizing
the KEIL MDK, we compiled the target firmware, ensuring
the generated .axf file was optimally configured for µAFL’s
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fuzzing process. An .axf file is an executable file format con-
taining compiled code, data, and debug information, generated
by Arm toolchains like KEIL MDK or GCC, which can be
directly loaded and executed on Arm-based microcontrollers.
Special attention was paid to the ETM configuration to guar-
antee efficient trace collection, necessitating adjustments to
µAFL’s default settings to align with the STM32F407VE’s
hardware specifications. This process highlighted the impor-
tance of a meticulous setup to enable effective trace data
capture, which is paramount for the success of the fuzzing
operation. Challenges encountered during the adaptation, such
as compatibility issues between µAFL and the target plat-
form’s software environment, were systematically addressed
through targeted modifications to µAFL’s source code and
the deployment of custom scripts designed to streamline the
trace collection process.

These adjustments to µAFL, tailored to the STM32F407VE

board, underscore the framework’s flexibility and the potential
for its application across a diverse range of embedded sys-
tems. Through this adaptation process, we aim to demonstrate
µAFL’s capabilities in uncovering vulnerabilities within the
firmware, thereby contributing to the enhancement of software
security in critical embedded applications.

V. METHODOLOGY

A. Environment Setup and Preliminary Configuration

In this section, we briefly discuss the key points regarding
setting up the environment for our experiments. Our setup
process involves configuring both hardware and software com-
ponents to effectively use the µAFL framework for fuzzing
the STM32F407VE Cortex M4 board firmware.

Fig. 1. Fuzzing Trace Reference board STM32F407VE firmware with J-
Trace Pro debug dongle [12]

B. Setting up essential Environment Variables

The environment variables in Listing 1 are used before
executing the ETMFuzz.

1 $ export AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1
2 $ export AFL_SKIP_CPUFREQ=1

Listing 1. Common environment variables before initiate fuzzing process

The AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1 variable tells
AFL to not stop fuzzing when a crash is missed. This can be
useful in situations where it’s expected that not all crashes
will be caught due to some kind of limitation, like a time
constraint or resource limit.

The AFL_SKIP_CPUFREQ=1 variable tells AFL to skip the checks
it usually does for CPU frequency scaling. In normal opera-
tions, AFL checks to ensure the CPU is running at full speed
to ensure maximum efficiency for the fuzzing process, but
setting this variable allows the fuzzing to occur regardless of
the CPU’s speed.

1) Changing Configuration Files for J-Trace PRO and
STM32F407VE: To set up the µAFL environment, we first
made adjustments in the device.h file, specifically changing
the JLINK_SERIAL_NO and DEVICE_NAME to match our hardware
setup. This customization is crucial for the J-Trace device
to correctly interface with our chosen microcontroller board,
facilitating precise trace collection during fuzzing sessions.

2) Tracing Configuration in trace.h File: We tailored
the trace.h file from the official µAFL GitHub repository
[13] to fit our target microcontroller, STM32F407VE. This in-
volved disabling configurations for other devices and ensuring
the trace functionality is properly set up for our experiments.

3) Additional Steps to Fuzz with STM32F407VE: Integrat-
ing µAFL into the firmware’s build process and preparing
the microcontroller for fuzzing encompassed compiling the
firmware with KEIL MDK and using the J-Trace Pro for trace
data collection. These steps, outlined in detail, are foundational
to our methodology, enabling us to conduct thorough fuzzing
tests on the STM32F407VE applications.

1 $ arm-none-eabi-objcopy -O binary ./led-blinking.axf ./
STM32F407.bin

2 $ ../ETMFuzz_Src/ETMFuzz -t 50 -i in_hello_world -o
out_STM32F407_led ./STM32F407.bin

Listing 2. Commands used to fuzz STM32F407VE applications

This detailed setup description not only elucidates the
experimental groundwork but also ensures reproducibility and
transparency of our research methodology.

4) Command-Line Operations for Fuzzing: Following the
configuration adjustments, we proceed with the firmware
preparation and fuzzing initiation using specific command-line
operations. Here, we use the arm-none-eabi-objcopy utility
to convert the input file led-blinking.axf into a binary file
format (-O binary). The output file is named STM32F407.bin

and is placed in the current directory (./).
To initiate fuzzing with µAFL, we employ the following

command sequence:
• -t 50 sets the timeout to 50 seconds.
• -i in_hello_world designates in_hello_world as the

input directory.
• -o out_STM32F407_led specifies out_STM32F407_led as

the output directory.
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• ./STM32F407.bin identifies the binary file to be fuzzed.
This command sequence is crucial for conducting coverage-

guided fuzz testing on the STM32F407.bin firmware using
the µAFL tool, demonstrating our methodology’s practical
application.

C. Code Availability

Our GitHub repository is based on foundational fuzzing
work [13], adapted for the STM32F407VE Cortex M4 board.
It includes source code, environment setup configurations,
and a README detailing setup and execution instructions,
facilitating reproducibility and further exploration. Repository
link: https://github.com/sbhakim/uAFL-STM32F407VE-App
lications.git.

VI. EXPERIMENTAL SETUP

A. Preparation of Test Cases

To initiate the fuzzing process, we created a dedi-
cated folder within the microAFL/custom_eval directory to
house our test evaluations. This involved the generation
of several .axf files, including helloworld-fibonacci.axf,
helloworld_hardfault.axf, and led-blinking.axf, utilizing
the KEIL Microcontroller Development Kit (MDK) on a
Windows platform. The .axf files serve as executable formats
containing compiled code, data, and debug information, ready
to be loaded onto the STM32F407VE board for fuzzing with
µAFL.

B. KEIL MDK Configuration and Debugging

We configured the KEIL MDK to select the appropriate
debug dongle (J-Link / J-Trace) and to enable ETM tracing,
crucial for capturing detailed execution traces during fuzzing
with µAFL. Specific attention was paid to the debug and
trace settings to optimize the tracing capability and ensure
efficient real-time monitoring. This setup phase was critical
for enabling the high-fidelity tracing required for effective fuzz
testing of the STM32F407VE board.

C. Firmware Compilation and Transfer

The firmware, designed to include various peripherals such
as GPIO and UART for the STM32F407VE application, was
compiled to generate the .axf file. Despite encountering com-
pilation warnings, they were deemed non-critical and thus not
addressed, focusing on functionalities relevant to the fuzzing
objectives with µAFL. The compiled .axf file was then
transferred to a Linux environment, where it was positioned for
fuzzing within the microAFL/custom_eval directory, marking
the final preparation step before initiating the fuzzing process
with µAFL.

VII. RESULTS AND ANALYSIS

A. Fuzzing a simple bug-prone C program with afl-gcc

Listing 3 is a simple file reader that reads structures of type
calculator from a file [14]. It performs calculations based on
the data read and performs various operations using dynamic
memory allocation. The vulfoo function is called with a

filename as a parameter, which is passed as a command-line
argument.

Here are the bugs present in the code:
Double Free: After buff1 is freed, it is freed again if

size1/2 equals 0. This is a double free vulnerability because
it’s undefined behavior to free a pointer that has already been
freed.

Use After Free: If size1/3 equals 0, the program tries to
access buff1 after it has been freed. This is a use-after-free
vulnerability, as the program is accessing memory that it no
longer owns.

Division by Zero: The program calculates size2 as the
division of calc.num1 by calc.num2. If calc.num2 is 0, this
will result in a division by zero error, which is undefined
behavior in C.

Buffer Overflow: The program uses memcpy to copy the
contents of calc.data into buff1 and buff2. However, the size
of calc.data is 10 bytes, while buff1 and buff2 are allocated
size1 and size2 bytes respectively. If size1 or size2 are less
than 10, this results in a buffer overflow as memcpy tries to copy
more data than the destination buffer can hold.
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 struct calculator{
6 int num1;
7 int num2;
8 char data[10];
9 };

10

11 int vulfoo (char *filename){
12 FILE *fp;
13 struct calculator calc;
14

15 fp = fopen(filename, "r");
16

17 if (fp == NULL){
18 printf ("\n Can’t open file or file doesn’t exist.

\n");
19 exit(0);
20 }
21

22 while(fread(&calc, sizeof(calc), 1, fp) > 0){
23 int size1 = calc.num1 + calc.num2;
24 char* buff1 = (char*) malloc(size1);
25

26 memcpy(buff1, calc.data, sizeof(calc.data));
27 free(buff1);
28 /* double free error */
29 if (size1/2==0){
30 free(buff1);
31 } else if (size1/3 == 0){
32 /* Use after free vulnerability */
33 buff1[0] = ’a’;
34 }
35

36 int size2 = calc.num1 / calc.num2;
37 char* buff2 = (char*) malloc(size2);
38 memcpy(buff2, calc.data, sizeof(calc.data));
39 free(buff2);
40 }
41

42 fclose(fp);
43 return 0;
44 }
45

46 int main(int argc, char **argv){
47 vulfoo(argv[1]);
48 }

Listing 3. Demonstration of Common Vulnerabilities in vulfoo.c program:
Double Free, Use After Free, Division by Zero, and Buffer Overflow
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Fig. 2. Printed status of AFL fuzzing of vulfoo program

B. Interpreting the Fuzzing output

Fig. 2 depicts the output of the fuzzing process of Listing
1. In the following, we discuss the most important aspects of
the result.

Total Execs: This refers to the total number of times the
program being fuzzed was executed. In your output, this
is 75.9k (or 75,900 times). Each execution tests a slightly
different input to the program, with the goal of finding inputs
that cause the program to behave unexpectedly.

New Paths: The process of fuzzing involves an exploration
of distinct “paths” through the subject program’s codebase
[15]. Each of these paths corresponds to a unique sequence
of instructions executed during runtime. The identification of
a “new path” denotes an execution instance that successfully
reached a previously unexplored segment of the program’s
code. As per the provided output data, the most recent path
discovery occurred merely three seconds prior, resulting in a
cumulative total of 20 distinct paths discovered thus far in the
process.

Crashes: If the program crashes during an execution, this
represents a potential vulnerability. The output shows both the
total number of crashes and the number of unique crashes, with
unique crashes representing different, non-duplicative potential
vulnerabilities. In your output, there are 5 total crashes, all of
which are unique.

Map Density: This measures the percentage of the pro-
gram’s code that has been reached by the fuzzer’s testing [16].
Here, the map density is quite low at 0.02%, indicating that
the program being fuzzed has a large codebase, or that the
fuzzer has so far only been able to reach a small portion of
the code.

Uniq crashes / Uniq hangs: The terms “uniq crashes”
and “uniq hangs” in the AFL output refer to the distinct

instances of crashes and hangs that were encountered during
the fuzzing process. It’s important to note that these “unique”
instances do not necessarily correspond to entirely different
types of vulnerabilities or bugs [17]. For instance, two crashes
resulting from similar “divide by zero” bugs would be consid-
ered unique, even though the underlying bug is of the same
type. This is because each occurrence is distinct and can
independently cause the program to crash. Therefore, while
AFL provides valuable insights into potential issues within
a codebase, it does not provide specific information about
the type or category of the underlying vulnerabilities, such
as buffer overflow.

Favored Paths: This refers to the number of paths that are
currently deemed “interesting” by AFL and are prioritized for
further exploration. These paths have shown to result in new
coverage and potentially new findings. The number of favored
paths can provide insights into how effectively the fuzzer is
in discovering new parts of the program to explore. In your
output, 5 out of the 20 total paths (25%) are favored, which
suggests that these paths have shown to be especially fruitful
in terms of achieving new coverage or findings.

C. Fuzz Bitmap

AFL uses bitmaps to manage basic block transitions within
the tested program [18] [9], forming both local and global
bitmaps. The local bitmap corresponds to each input file,
monitoring specific code coverage to assess its worth for
further examination. The fuzzing manager amalgamates all
local bitmaps into a global bitmap, guiding the mutation-
based fuzzing process towards untouched code segments and
identifying novel paths [19]. This information can be found
in the fuzz_bitmap file within the “output” directory. In this
file, each line (Listing 5) represents 16 bytes of data with
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asterisks indicating recurring content. The bitmap is structured
in little-endian format, with each byte signifying a branch in
the program.

1 $ hexdump fuzz_bitmap
2 0000000 ffff ffff ffff ffff ffff ffff ffff ffff
3 *
4 0002f90 ffff ffff ffff ffff feff ffff ffff ffff
5 0002fa0 ffff ffff ffff ffff ffff ffff ffff ffff
6 *
7 0003240 ffff ffff ffff ffff ffff ffff ffff fff0
8 0003250 ffff ffff ffff ffff ffff ffff ffff ffff
9 *

10 00033c0 ffff ffff ffff ffff feff ffff ffff ffff
11 00033d0 ffff ffff ffff ffff ffff ffff ffff ffff
12 *
13 0004090 feff ffff ffff ffff ffff ffff ffff ffff
14 00040a0 ffff ffff ffff ffff ffff ffff ffff ffff
15 *
16 0004110 ffff ffff ffff fffe ffff ffff ffff ffff
17 0004120 ffff ffff ffff ffff ffff ffff ffff ffff
18 *
19 0004c40 ffff ffc0 ffff ffff ffff ffff ffff ffff
20 0004c50 ffff ffff ffff ffff ffff ffff ffff ffff

Listing 4. Fuzz Bitmap contains coverage map

AFL doesn’t map branches to bitmap bytes directly, but
assigns random two-byte constant IDs to each branch. The
XOR operation is used to combine the IDs of the current and
last observed branch, capturing both the current branch and the
unique path leading to it. A hashing function then determines
the bitmap entry representing the branch combination, and
each exercise of a specific branch combination increments the
corresponding byte in the bitmap. However, while the bitmap
size is 64KB, the output displays non-repeated sections, and
variations such as fffe, feff, and ffff in the bitmap values
represent different hit counts for program edges.

D. Fuzzing a Vulnerability-Prone STM32F407VE Program
with µAFL

In our research, we examine the use of µAFL for testing
on the STM32F407VE microcontroller, utilizing the J-Trace
PRO debugger. Detailed information and all required files for
this experiment can be found in the /microAFL/custom_eval

directory, ensuring the experiment can be easily replicated.
The experiment centers on the fuzzing of an LED

blinking program to assess µAFL’s capability in un-
covering embedded firmware vulnerabilities. Utilizing the
arm-none-eabi-objcopy utility, the ./STM32F407.bin binary
file, derived from ./led-blinking.axf, is prepared as the sub-
ject for fuzzing. Configured to enforce a strict timeout of 5000
milliseconds for each test case, µAFL initiates the fuzzing pro-
cess, analyzing inputs from the in_hello_world directory and
compiling results into out_STM32F407_led_blinking. This
procedural approach underscores the adaptability and precision
of µAFL in identifying potential security vulnerabilities within
the targeted embedded system.

VIII. DISCUSSION

A. Coverage mapping, tracking and optimizing through AFL
Instrumentation

AFL employs a mechanism known as instrumentation to
transform a target binary, enabling it to provide feedback

regarding which parts of the code are exercised during fuzzing.
This mechanism is executed at compile-time, where the AFL
compiler wrappers like afl-gcc or afl-clang are used to
inject additional code into the program. The injected code
essentially forms a lightweight coverage tracking mechanism
which helps AFL to understand and assess the code paths tra-
versed. The output message “Instrumented 8 locations (64-bit,
non-hardened mode, ratio 100%)” indicates that afl-gcc has
successfully instrumented the provided source file, vulfoo.c,
modifying eight distinct code locations to aid in tracking the
code execution path during fuzzing.

1
2 $ afl-gcc vulfoo.c -o vulfoo
3 afl-cc 2.57b by <lcamtuf@google.com>
4 afl-as 2.57b by <lcamtuf@google.com>
5 [+] Instrumented 8 locations (64-bit, non-hardened mode,

ratio 100%).

Listing 5. Compile-time instrumentation by afl-gcc

Each __afl_ prefixed entity in Listing 6, like
__afl_area_ptr or __afl_fork_pid, corresponds to a unique
function or variable inserted into the program to monitor its
execution, enhancing AFL’s ability to effectively perform
fuzzing operations. The symbols like 0000000000004018, b,
t, B etc., refer to the compile-time memory address offset
and type of symbol respectively, where t denotes a local
text/code segment, b is for local uninitialized data section
(BSS), and B is for global uninitialized data section.

1
2 $ nm vulfoo | grep afl_
3 0000000000004018 b __afl_area_ptr
4 000000000000192e t __afl_die
5 0000000000004028 b __afl_fork_pid
6 0000000000001849 t __afl_fork_resume
7 000000000000178b t __afl_forkserver
8 00000000000017b1 t __afl_fork_wait_loop
9 0000000000004038 B __afl_global_area_ptr

10 0000000000001620 t __afl_maybe_log
11 0000000000004020 b __afl_prev_loc
12 0000000000001648 t __afl_return
13 0000000000001650 t __afl_setup
14 0000000000001936 t __afl_setup_abort
15 0000000000004030 b __afl_setup_failure
16 0000000000001671 t __afl_setup_first
17 0000000000001630 t __afl_store
18 000000000000402c b __afl_temp

Listing 6. AFL instrumented in various places of vulfoo program

B. µAFL leverages ETM for Instruction Trace Collection over
traditional instrumentation

The document introduces a novel approach, µAFL, which
utilizes the ETM hardware feature to generate an instruction
trace, eliminating the need for AFL instrumentation. This ap-
proach is non-intrusive to the firmware, requiring no software
instrumentation and introducing no additional overhead. It
addresses the challenge of dealing with stripped binaries in
firmware, which can be difficult to instrument. ETM by default
collects all branch information, providing a comprehensive
instruction trace for a testcase. Additionally, µAFL employs
online trace collectors and offline trace analyzers to filter
irrelevant ETM packets, thereby enhancing performance.

The 20th International Wireless Communications & Mobile Computing Conference

1146
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 07,2025 at 14:53:12 UTC from IEEE Xplore.  Restrictions apply. 



C. Semhosting and BKPT instructions in µAFL

Semihosting is a feature available on ARM Cortex micro-
controllers, which allows embedded programs to leverage the
capabilities of an attached computer during the operation of a
debugger [20] [21], a feature that proves beneficial in µAFL.
A key aspect of this process is the halting of the CPU target
by a debugger agent, achieved through the use of a breakpoint
instruction, such as BKPT 0xEF or BKPT 0xFF which are used
in µAFL. This halting signals to the host that the target is
requesting a semihosting operation, which is executed by the
host while the CPU remains halted, with the result returned
before the processor continues with its program.

1 #if !defined (__SEMIHOST_HARDFAULT_DISABLE)
2

3 __attribute__((naked))
4 void HardFault_Handler(void){
5 __asm("bkpt 0x11\n\t");
6 __asm( ".syntax unified\n"
7 "MOVS R0, #4 \n"
8 "MOV R1, LR \n"
9 "TST R0, R1 \n"

10 "BEQ _MSP \n"
11 "MRS R0, PSP \n"
12 "B _process \n"
13 "_MSP: \n"
14 "MRS R0, MSP \n"
15 "_process: \n"
16 "LDR R1,[R0,#24] \n"
17 "LDRH R2,[r1] \n"
18 "LDR R3,=0xBEAB \n"
19 "CMP R2,R3 \n"
20 "BEQ _semihost_return \n"
21 "B . \n"
22 "_semihost_return: \n"
23 "ADDS R1,#2 \n"
24 "STR R1,[R0,#24] \n"
25 "MOVS R1,#32 \n"
26 "STR R1,[ R0,#0 ] \n"
27 "BX LR \n"
28 ".syntax divided\n") ;
29 }
30 #endif

Listing 7. Custom HardFault Handler for Semihosting Operations
without Debugger

The code in Listing 7 [13] exhibits a handling mechanism
for semihosting operations in situations where the debugger
is disconnected. Semihosting operations like printf calls can
cause an application to hang if the debugger is not present,
triggered by the “BKPT 0xAB” instruction which, in the absence
of a debugger, incites a hard fault. The default handler for such
a fault often results in an infinite loop, causing the applica-
tion to freeze. The code in Listing 3, however, implements
a custom hard fault handler which inspects the instruction
that induced the hard fault; if the culprit is “BKPT 0xAB”,
it returns control back to the user application, allowing the
application incorporating semihosting operations to function to
some degree without a connected debugger. The code begins
with an inline assembly ‘bkpt’ instruction, which triggers
a breakpoint exception for debugging purposes. Rest of the
code handles HardFault exceptions by performing a stack
frame analysis, checking for a specific identifier in the faulting
instruction’s address, and if found, modifying it to bypass the
fault, thereby intercepting semihosting calls and preventing
HardFaults, before resuming program execution.

In the original µAFL project [22], the code seg-
ment for the hello_world project is located in the
microAFL/microAFL_eval/twrk64f120m_hello_world/ direc-
tory. This project was originally implemented for the NXP
TWR-K64F120M board by the authors of µAFL. However, in our
adaptation for the STM32F407VE board, no errors were detected
upon its inclusion in the KEIL project, resulting in successful
generation of the .axf file.

IX. CONCLUSION

This study has illustrated the pivotal role of µAFL in
advancing the security measures for embedded systems, partic-
ularly through the lens of the STM32F407VE Cortex M4 micro-
controller. The integration of the Embedded Trace Macrocell
(ETM) and SEGGER J-Trace Pro debugger within the µAFL
framework has not only demonstrated a non-intrusive method
for vulnerability identification but also emphasized the tool’s
adaptability to diverse hardware environments. The juxtaposi-
tion of µAFL’s performance against that of traditional AFL,
especially in the fuzzing of Unix programs, sheds light on
the unique challenges and prospects of applying fuzzing tools
across various computing platforms. Our research underlines
the efficacy of µAFL in identifying firmware vulnerabilities,
marking a significant contribution towards the fortification of
embedded systems against potential threats. Future endeavors
in this domain should continue to explore and refine fuzzing
methodologies, ensuring that security frameworks remain re-
silient in the face of evolving cyber threats.
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APPENDIX

SUPPLEMENTARY MATERIAL

This section provides additional technical details and code
examples that supplement the main content of our paper,
particularly focusing on the practical application of µAFL for
fuzzing a simple program on the STM32F407VE board.

A. Practical Application of µAFL on STM32F407VE

To demonstrate the adaptability of µAFL to embedded
systems, we conducted an experiment with a simple LED
blinking program on the STM32F407VE board. This example
showcases the integration of essential configuration steps in
KEIL MDK and the utilization of Embedded Trace Macrocell
(ETM) for non-intrusive instruction tracing.

1) Configuration and Code Setup: The KEIL MDK was
utilized for compiling and setting up the necessary files for
the STM32F407VE board. The program, as depicted below, in-
cludes semihosting breakpoints and ETM tracing instructions
to facilitate detailed analysis during the fuzzing process.
1 #include "stm32f4xx.h"
2 #include "stm32f4xx_hal_gpio.h"
3 #include "stm32f4xx_hal_rcc.h"
4 #include <string.h>

5

6 void SystemClock_Config(void);
7

8

9 /* ETM tracing necessary for uAFL */
10 unsigned int etm_tc_len

__attribute__((section(".non_init")));
11 unsigned char etm_tc[2000]

__attribute__((section(".non_init")));
12 unsigned int etm_tc_idx = 0;
13 unsigned int etm_exit = 0;
14

15 void SystemClock_Config(void) {}
16

17 void delay(volatile int d) {
18 while (d--) {
19 __NOP();
20 }}
21

22 int main(void) {
23 /* Configure the system clock */
24 SystemClock_Config();
25

26 /* Breakpoint before LED Initialization */
27 __asm("bkpt 0xEF\n\t");
28

29 /* Initialize GPIO for LED D2 (PA6) and LED D3 (PA7) */
30 GPIO_InitTypeDef GPIO_InitStruct;
31 __HAL_RCC_GPIOA_CLK_ENABLE();
32 GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9;
33 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
34 GPIO_InitStruct.Pull = GPIO_NOPULL;
35 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
36 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
37

38 /* Initialize the pins to be off (assuming LEDs are
active high) */

39 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8 | GPIO_PIN_9,
GPIO_PIN_RESET);

40

41 /* Breakpoint before LED blinking loop */
42 while (1) {
43 /* Breakpoint before LED toggle */
44 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_8);
45 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_9);
46 delay(1000000 / 6); // Blink 3 times per second
47 /* Breakpoint after LED toggle */
48 }
49

50 /* Breakpoint after LED blinking loop */
51 __asm("bkpt 0xFF\n\t");
52

53 return 0;
54 }

Listing 8. Simple STM32F407VE LED blinking program integrated with
semihosting BKPT instructions and ETM tracing

2) Insights from the Experiment: The inclusion of the
Hardware Abstraction Layer (HAL) libraries abstracts the low-
level hardware interactions, simplifying the firmware develop-
ment for fuzzing. Breakpoints (BKPT) strategically placed at
various stages of the program aid in the ETM’s data collection
process, providing valuable insights into the execution flow
and potential vulnerabilities.

The use of uninitialized memory sections, designated
by __attribute__((section(".non_init"))) compiler di-
rective, enables us to reserve space for dynamically generated
test cases by µAFL, illustrating an innovative approach to
embedded system fuzzing.

3) Observations and Debugging: Throughout the debug-
ging process in KEIL MDK, the program’s execution aligned
with our expectations, demonstrating the effectiveness of the
setup for instruction tracing and the potential of µAFL in
identifying vulnerabilities within embedded systems.

The 20th International Wireless Communications & Mobile Computing Conference

1148
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 07,2025 at 14:53:12 UTC from IEEE Xplore.  Restrictions apply. 


