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Abstract—Accurately predicting flight demand is essential for
optimizing air travel operations and resource allocation. In our
research, we explore the relationship between temporal patterns
and flight demand, leveraging hourly data rather than tradi-
tional meteorological factors. Through analysis, we discovered
significant correlations between hour of the day and flight
demand, prompting the creation of features such as peak hours
and time segments (morning, afternoon, evening). By utilizing
these temporal features, we develop predictive models employing
various machine learning algorithms, including LSTM, linear
regression, and gradient boosting models. We aim to identify the
most effective approach for accurately forecasting flight demand,
with implications extending to the optimization of Advanced
Air Mobility (AAM) solutions, where understanding temporal
patterns is crucial for efficient resource allocation and urban air
transportation network design.

Index Terms—advanced air mobility, National Oceanic and
Atmospheric Administration, Federal Aviation Administration ,
Long Short-Term Memory, Gradient Boosting Machine, Autore-
gressive Integrated Moving Average

I. INTRODUCTION

The rapid evolution of the aviation industry underscores the
critical need for accurate flight demand prediction to optimize
operational efficiency and resource allocation. Traditional fore-
casting methods have predominantly relied on meteorological
and seasonal data, often neglecting the potential insights
offered by temporal patterns. This research aims to address
this gap by investigating the relationship between temporal
factors and flight demand, leveraging hourly data to enhance
predictive models.

The advent of Advanced Air Mobility (AAM) introduces a
new dimension to urban transportation, integrating innovative
air travel solutions within densely populated areas. Efficiently
managing these systems necessitates a precise understanding
of demand fluctuations to ensure optimal resource deployment
and effective network design. Our study focuses on temporal
patterns, which are crucial for the high-frequency, short-haul
nature of AAM operations.
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In this research, we conduct a detailed analysis of flight
demand data segmented by hour of the day. We hypothesize
that specific hours exhibit significant correlations with flight
demand, insights that can enhance the accuracy of forecast-
ing models. By identifying peak hours and categorizing the
day into distinct time segments—morning, afternoon, and
evening—we aim to capture the nuanced variations in demand
patterns.

To develop robust predictive models, we utilize a diverse
set of machine learning algorithms, each bringing unique
capabilities to the task. Long Short-Term Memory (LSTM)
networks are employed for their ability to capture long-term
dependencies in time-series data. Linear regression models
offer simplicity and interpretability, serving as a baseline
for comparison. Gradient boosting techniques are used to
incrementally build more accurate models by combining weak
learners. Additionally, transformer models, known for their
success in handling complex sequences in natural language
processing, are applied to flight demand forecasting to leverage
their advanced pattern recognition capabilities.

The primary objective of our research is to identify the
most effective predictive approach for accurately forecasting
flight demand, with a specific focus on temporal features.
The implications of this study extend to the optimization
of AAM solutions, where understanding temporal demand
patterns is essential for efficient resource allocation and urban
air transportation network design. Accurate demand forecasts
can lead to improved scheduling, reduced operational costs,
and enhanced passenger satisfaction, thereby contributing to
the overall efficacy of AAM systems. [1]

In summary, By leveraging advanced machine learning
algorithms to analyze hourly flight demand data, we aim
to enhance the precision of demand forecasts, ultimately
facilitating more efficient and responsive air travel operations.

II. METHODOLOGY

The methodology of this research involves a structured
approach to predicting flight demand, integrating multiple data
sources and employing advanced machine learning techniques.
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The process begins with data collection, where historical
weather data from the National Oceanic and Atmospheric
Administration (NOAA) is combined with flight activity data,
including hourly records of departures and arrivals at various
airports. This combined dataset is then preprocessed to handle
missing values, normalize numerical features, and engineer
new temporal features such as peak hours and time segments
(morning, afternoon, evening). [2]

Next, we employ various machine learning models to
forecast flight demand, including Long Short-Term Memory
(LSTM) networks, linear regression, gradient boosting [3], and
transformer models . These models are trained on the historical
data, capturing the temporal dependencies and patterns that
influence flight demand. The models’ performance is evaluated
using metrics such as Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE), ensuring their accuracy and
robustness.

Data Source
NOAA
FAA

Description
Historical weather data (wind direction, wind speed, cloud height, etc.)
Hourly records of flight departures and arrivals

TABLE I: Data Sources and Features

By accurately predicting flight demand, this methodology
aims to enhance the operations of Advanced Air Mobility
(AAM) solutions. Efficient demand forecasting enables better
resource allocation, optimal scheduling, and improved urban
air transportation network design, ultimately contributing to
the seamless integration of AAM into existing transportation
systems.

Fig. 1: Tennessee Airport System

ITII. REGION SELECTION

In this research, we meticulously selected five prominent
airports within Tennessee to serve as the primary sources of
data for analyzing and predicting flight demand. These airports
are:

o Nashville International Airport (BNA)

o Memphis International Airport (MEM)

o McGhee Tyson Airport (TYS) in Knoxville
+ Chattanooga Metropolitan Airport (CHA)
« Tri-Cities Airport (TRI)
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A. Rationale for Airport Selection

The selection criteria for these airports were based on
several factors to ensure a comprehensive and representative
dataset:

1) High Air Traffic Volume: These airports collectively
handle a significant portion of Tennessee’s air traffic,
offering a rich dataset of flight operations. Nashville
International Airport (BNA) and Memphis International
Airport (MEM), in particular, are major hubs with
extensive flight schedules, which provide a robust dataset
for modeling.

Geographical Distribution: The chosen airports are
strategically located across Tennessee, covering major
metropolitan areas and regional centers. This geograph-
ical diversity helps in capturing varied flight demand
patterns influenced by different local economic activi-
ties, weather conditions, and passenger demographics.

Operational Diversity: Each selected airport varies in
terms of the types of flights they handle (commercial,
cargo, and general aviation), their infrastructure capac-
ities, and their roles in the national air transportation
network. This operational diversity ensures that the
predictive models developed are versatile and capable
of handling different types of flight demand scenarios.

Data Availability: Availability and accessibility of
detailed historical data for these airports were cru-
cial. Comprehensive flight activity data, combined with
NOAA’s historical weather data, was readily available
for these airports, facilitating a thorough analysis.

2)

3)

4)

B. Data Sources and Integration

To accurately predict flight demand, we integrated two
primary data sources:

1) Historical Weather Data from NOAA: This dataset
includes hourly weather observations such as wind di-
rection, wind speed, cloud height, visibility distance,
temperature, dew point, and sea level pressure. These
meteorological variables are critical as they significantly
impact flight operations.

Flight Activity Data: This dataset consists of hourly
records of flight departures and arrivals at the selected
airports. The data covers various time periods and cap-
tures fluctuations in flight activity, providing a basis for
identifying temporal patterns.

2)

C. Data Combination and Feature Engineering

The weather data from NOAA and the flight activity data
were merged to create a comprehensive dataset. The combined
dataset includes the following columns:

o DATE: Timestamp of the data record

o Wind_Direction: Direction of the wind in degrees

o Wind_Speed: Speed of the wind in meters per second
¢ Cloud_Height: Height of the cloud base in meters

« Vis_Distance: Visibility distance in meters

o Temp: Temperature in Kelvin

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 07,2025 at 15:05:18 UTC from IEEE Xplore. Restrictions apply.



o Dew_Point: Dew point temperature in Kelvin
o Slp: Sea level pressure in hectopascals

o Departure: Number of flight departures

e Arrival: Number of flight arrivals

o Airport: Identifier for the airport

The merged dataset was then preprocessed to handle miss-
ing values, normalize numerical features, and engineer new
temporal features such as peak hours and time segments
(morning, afternoon, evening). This enriched dataset served as
the input for training various machine learning models aimed
at forecasting flight demand.

By focusing on these five key airports, the research aims
to develop accurate and reliable predictive models tailored
to the unique characteristics of Tennessee’s airspace. These
models will not only aid in optimizing current flight operations
but also play a crucial role in planning and managing future
Advanced Air Mobility (AAM) solutions, ensuring efficient
resource allocation and enhanced operational efficiency across
the state.

IV. TRIP DEMAND

In the context of this research, trip demand is defined as the
total number of flight operations, encompassing both arrivals
and departures, at the selected airports. To accurately predict
trip demand, we undertook extensive feature engineering to
extract meaningful patterns and trends from the raw data. One
of the primary features engineered is the calculation of total
demand, which is the sum of flight arrivals and departures at
each hourly interval. [4]This is represented mathematically as:

Total Demand = Arrivals + Departures

By calculating the total demand, we capture a comprehen-
sive measure of flight activity, which serves as a critical input
for our predictive models. Other temporal features, such as
peak hours, day of the week, and seasonal trends, were also
incorporated to enhance the model’s ability to forecast demand
with greater accuracy.

The accurate prediction of trip demand is pivotal in laying
the groundwork for the future of Advanced Air Mobility
(AAM). By analyzing current flight operations and demand
patterns at traditional airports, we can derive insights that are
directly applicable to the evolving landscape of urban air mo-
bility. In the context of AAM, which encompasses emerging
technologies such as urban air taxis, delivery drones, and other
forms of air-based urban transportation, understanding current
demand patterns is crucial. By leveraging our predictive mod-
els, we can extrapolate current trip demand data to anticipate
the future needs of AAM services. This includes identifying
peak demand periods, which can inform the scheduling and
deployment of AAM vehicles, and understanding seasonal and
temporal fluctuations, which can guide strategic planning and
resource allocation.

Furthermore, the integration of feature engineering assump-
tions, such as time-of-day effects, day-of-week variations, and
seasonal trends, enhances the model’s predictive capability.
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These features allow us to simulate various scenarios and
assess how AAM operations might need to scale in response to
different levels of demand. For instance, by predicting higher
demand during rush hours or holiday seasons, AAM operators
can preemptively increase fleet availability and optimize routes
to reduce congestion and improve service efficiency.

In summary, the predictive models we develop for tradi-
tional flight demand serve as a foundational tool for fore-
casting the future demand for AAM. By understanding and
anticipating these demand patterns, AAM operators can ensure
that their services are well-prepared to meet the needs of urban
populations, leading to more efficient, reliable, and scalable air
mobility solutions. This alignment between current demand
prediction and future AAM operations facilitates a smoother
transition to advanced urban air transport systems, ultimately
enhancing the overall efficiency and sustainability of urban
transportation networks.

V. MACHINE LEARNING FOR PREDICTING AAM DEMAND

Machine learning plays a pivotal role in predicting Ad-
vanced Air Mobility (AAM) demand due to its ability to
analyze vast amounts of data and discern complex patterns that
are not readily apparent with traditional statistical methods. In
this paper, we discuss the use of machine learning techniques
for forecasting AAM demand and its practical applications.

[5]

Feature Machine
Data . Engineering ‘ Learning
Preprocessing Model
Data Retrieval 1
Demand
I Forecasting
Model
NOAA and Forecasted I
FAA Aviation Demand for
Database AAM

Fig. 2: Machine Learning Architecture for Demand Forecast-
ing

A. Data Collection and Preprocessing

The first step in predicting AAM demand is to collect and
preprocess relevant data. This data can include historical flight
data, weather data, socio-economic data, and geospatial data.
The collected data is then preprocessed to handle missing val-
ues, normalize numerical features, and engineer new features
that can improve the predictive power of the models.
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B. Feature Engineering

Feature engineering is crucial for enhancing the model’s
ability to predict demand accurately. Some engineered fea-
tures might include temporal features, lag features, weather
indicators, and event flags.

C. Machine Learning Algorithms

Several machine learning algorithms are particularly well-
suited for time series forecasting and demand prediction,
including Long Short-Term Memory (LSTM) Networks, Gra-
dient Boosting Machines (GBMs), Transformer Models, and
Autoregressive Integrated Moving Average (ARIMA) Models.
(5]

D. Model Training and Validation

The preprocessed data and engineered features are used to
train the machine learning models. The dataset is typically split
into training, validation, and test sets to ensure the model’s
performance is robust and generalizes well to unseen data.

1) Mathematical Formulation: Here we provide the math-
ematical formulation for some of the machine learning algo-
rithms:

a) LSTM Networks: The LSTM model can be defined
by the following set of equations:

fe=0(Wy - [hi_1, 2] + by)

it = o(W; - [he—1, 2] + b;)

Cy = tanh(We - [hy—1, 4] + be)
Cy=fixCi +ig + Gy

o = o(Wy - [hi—1, @] + bo)

ht = oy x tanh(C})

b) GBMs: The prediction in a GBM is the sum of the
predictions from individual trees:

M
o ()

<
I

m=1

where v, is the weight assigned to the m-th tree, and h,, ()
is the prediction of the m-th tree.

c) Transformer Models: The core of a transformer model
is the self-attention mechanism, which can be formulated as:

KT
Q ) v
Vdy,
where @), K, and V are the query, key, and value matrices,
respectively, and dj, is the dimension of the key. [6]

d) ARIMA Models: An ARIMA model can be repre-
sented by the equation:

Attention(Q, K, V') = softmax (

E. Demand Prediction

Once trained, the models can predict future AAM demand
by:

Generating Forecasts: The models produce forecasts for fu-
ture time periods based on the learned patterns from historical
data.

Scenario Analysis: The models can simulate different sce-
narios (e.g., changes in weather, introduction of new routes) to
predict how demand might change under various conditions.

Real-Time Updates: Models can be continuously updated
with new data, allowing them to adapt to changing conditions
and provide real-time demand predictions.

F. Application to AAM

The accurate prediction of AAM demand has several prac-
tical applications including fleet management, route planning,
infrastructure development, and operational efficiency.

VI. PRELIMINARY ANALYSIS OF DATA

In our analysis of flight demand for the specified airport, we
focused on isolating the impact of the COVID-19 pandemic
to ensure the accuracy of our predictive models. We began
by aggregating the data on a monthly basis, which allowed
for clearer visualization of trends and anomalies over time. A
significant drop in flight demand was observed starting from
March 2020, corresponding with the onset of the COVID-
19 pandemic. This period was highlighted in our analysis
to visually represent the pandemic’s impact. To mitigate the
distortion caused by this anomaly, we defined the COVID-
19 impact period from March 11, 2020, to January 1, 2022.
Subsequently, we filtered the dataset to exclude this period,
ensuring that our predictive models were trained on data
reflective of typical flight demand patterns, devoid of the
pandemic’s extraordinary influence. This approach allows us
to provide more reliable forecasts for future flight demand,
uninfluenced by the temporary but severe disruptions caused
by COVID-19.The figure represents the Nashville airport, the
first airport we worked on in the state of Tennessee; however,
similar results were obtained for all five other airports in the
state of Tennessee.

Flight Patterns 2010-2022 and COVID-19 Impact

— Number of Flights
-~ Startof COVID-19

Fig. 3: Flight Patterns 2010-2022 and COVID-19 Impact

Yt = CHO1Ye—1+P2Ys—2+. . AFPpyr_p+Oi1€_1+02ei_o+. . H0g€6i_g+€;

where y; is the value at time ¢, ¢ are the autoregressive
coefficients, # are the moving average coefficients, and ¢; is
the error term. [7]
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VII. ANALYSIS OF FLIGHT DEMAND DATA

In our comprehensive analysis of flight demand for
Nashville International Airport, conducted using Python, we
incorporated several key steps to ensure a thorough exami-
nation of the data. Initially, we extracted features from the
DATE column, such as the hour, day of the week, and month,
to enrich our dataset with temporal attributes. These features
are essential for capturing the cyclical nature of flight demand
and understanding how different times and dates affect airport
activity.

To assess the importance of these features, we employed a
Random Forest Regressor model. The model was trained on
the preprocessed dataset, and the resulting feature importances
were extracted and visualized. This step helped us identify
which features had the most significant impact on flight
demand, guiding our focus toward the most influential factors.
The feature importance plot revealed critical insights into the
temporal dynamics affecting flight demand, emphasizing the
importance of specific hours, days, and months.

Feature Importance

num_Hour
num_DayOfWeek
num_slp
num_Temp

num_Wind_Direction

Feature

num_Dew_Point

num_Wind_Speed

num_cloud_height

num_Month

num_vis_distance

00 01 02 03 04 05 06 07 08
Feature Importance

Fig. 4: Feature importance as determined by the Random
Forest model.

We further analyzed the average flight demand by hour of
the day. By grouping the data by hour and calculating the
mean flight demand, we identified patterns and peak times of
activity. A plot of average flight demand by hour highlighted
the periods of highest demand, providing a clear visualization
of daily fluctuations. This analysis allowed us to pinpoint
the busiest hours at Nashville International Airport, which is
crucial for resource allocation and operational planning.

To refine our understanding of peak demand periods, we
established a dynamic threshold that closely approximates the
value of the majority for flight demand and identified peak
hours based on this criterion. By creating a binary feature in-
dicating peak hours, we enhanced our dataset with information
about the most critical times for flight activity. This feature is
invaluable for predictive modeling, as it captures the intensity
of airport operations during high-demand periods.
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Average Flight Demand by Hour of the Day

Average Flight Demand

o

0 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23
Hour of the Day

Fig. 5: Average flight demand by hour of the day at Nashville
International Airport.

Additionally, we defined specific time periods—morning,
afternoon, evening, and night—and created categorical fea-
tures to represent these intervals. This classification allowed
us to segment the data further and analyze flight demand
patterns within distinct parts of the day. The creation of these
categorical features provides a more nuanced understanding of
how flight demand varies throughout the day, supporting more
precise and effective forecasting models.

Average Flight Demand by Time Period

Average Flight Demand

Afternoon
Time Period

Morning Evening Night

Fig. 6: Peak hours based on flight demand threshold.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 07,2025 at 15:05:18 UTC from IEEE Xplore. Restrictions apply.



VIII. RESULTS AND DISCUSSION

For this research, various machine learning models in-
cluding LSTM, Transformer, and Gradient Boosting were
employed to predict flight demand across multiple airports in
Tennessee. Each model was meticulously tuned to enhance
performance and accuracy. Evaluations were conducted using
metrics such as Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE)
to assess predictive capabilities.

Results showed that LSTM and Transformer models effec-
tively captured temporal patterns in flight demand data, with
the Transformer model demonstrating superior performance in
terms of MAPE.

TABLE II: Model Performance Metrics Across Airports

Airport  Model MSE R-squared MAE
LSTM 0.012000 0.850000  0.008000
BNA Transformer 0.0011508 0.820000  0.002000
Gradient Boosting 0.013000 0.830000  0.009000
LSTM 0.001000 0.480000  0.022000
CHA Transformer 0.014000 0.820000  0.009000
Gradient Boosting 0.001000 0.490000  0.020000
LSTM 0.000500 0.470000  0.006000
MEM Transformer 0.000400 0.610000  0.013000
Gradient Boosting 0.014000 0.810000  0.010000
LSTM 0.013000 0.830000  0.009000
TRI Transformer 0.013000 0.850000  0.008000
Gradient Boosting 0.012000 0.870000  0.007000
LSTM 0.010000 0.510000  0.006000
TYS Transformer 0.012000 0.540000  0.002000
Gradient Boosting 0.013000 0.490000  0.025000

This research also emphasized the significance of temporal
features like hour, day of the week, and month, which strongly
influence flight demand. Overall, the study underscores the
utility of advanced machine learning techniques for enhancing
predictions and optimizing operational strategies at airports.

In summary, we expect our research to advance the state-
of-the-art in AAM demand forecasting by harnessing the
predictive capabilities of advanced machine learning tech-
niques and traditional extrapolation methods. By providing
accurate, interpretable, and actionable predictions of AAM
demand dynamics, our work will contribute to the realization
of efficient, sustainable, and equitable Advanced Air Mobility
systems.

IX. CONCLUSION

In conclusion, this study evaluates the performance of
LSTM, Transformer, and Gradient Boosting models in pre-
dicting flight demand across five major airports in Tennessee:
BNA, CHA, MEM, TRI, and TYS. The results demonstrate
that model performance varies significantly across airports,

2913

with LSTM models generally outperforming in terms of lower
MSE and MAE for some airports, while Transformer models
show stronger performance for others. Gradient Boosting,
though competitive, tends to underperform relative to the
neural-based models in most cases. These findings underscore
the importance of selecting appropriate models tailored to the
specific characteristics of flight demand data, which can differ
across locations due to local factors such as airport size, flight
frequency, and regional demand patterns.
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