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Abstract—Explainable Artificial Intelligence (XAI) has become
a widely discussed topic, the related technologies facilitate better
understanding of conventional black-box models like Random
Forest, Neural Networks and etc. However, domain-specific
applications of XAI are still insufficient. To fill this gap, this
research analyzes various machine learning models to the tasks
of binary and multi-class classification for intrusion detection
from network traffic on the same dataset using occlusion
sensitivity. The models evaluated include Linear Regression,
Logistic Regression, Linear Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Random Forest, Decision Trees, and
Multi-Layer Perceptrons (MLP). We trained all models to the
accuracy of 90% on the UNSW-NB15 Dataset. We found that
most classifiers leverage only less than three critical features
to achieve such accuracies, indicating that effective feature
engineering could actually be far more important for intrusion
detection than applying complicated models. We also discover
that Random Forest provides the best performance in terms of
accuracy, time efficiency and robustness. Data and code available
at https://github.com/pcwhy/XML-IntrusionDetection.git

I. INTRODUCTION

Machine learning (ML) has emerged as a transformative tool
in the field of intrusion detection, providing a robust approach
to enhancing cybersecurity measures. By leveraging the ability
to learn from and adapt to evolving data without explicit
programming, ML techniques can effectively identify novel
and sophisticated cyber threats. This adaptive capability is
crucial in an environment where attackers continuously modify
their strategies to evade detection. ML algorithms, including
supervised, unsupervised, and reinforcement learning, analyze
patterns and anomalies in vast datasets, enabling the prediction
and detection of potential intrusions with high accuracy. As
such, the application of ML in intrusion detection systems
(IDS) represents a significant step forward in developing
dynamic, responsive security strategies that can anticipate and
mitigate threats in real-time, thus ensuring the integrity and
confidentiality of information systems.

Despite the efficacy of machine learning in intrusion detec-
tion, the deployment of these technologies raises significant
concerns, particularly regarding the opaque nature of certain
ML models. Black-box models, such as deep neural networks,
often lack transparency in their decision-making processes,
making it challenging for cybersecurity professionals to in-
terpret or trust the rationale behind specific detections or
classifications [1]. This uncertainty can complicate compliance
with regulatory standards that demand clear audit trails and

explainability of security systems. Furthermore, the inability to
interpret model decisions can hinder the identification and cor-
rection of biases in training data, potentially leading to unfair
or ineffective security measures. Such limitations underscore
the need for developing more interpretable machine learning
models and methods that maintain high detection performance
while providing greater transparency and accountability in
their operations [2].

In the landscape of explainable Al (XAI), several methods
stand out for their ability to render machine learning models
more interpretable, especially in critical applications like in-
trusion detection. LIME (Local Interpretable Model-agnostic
Explanations [3]) is another key technique that approximates
the locally predictive behavior of the model around a specific
instance, thus providing insights into the decision-making
process. SHAP (SHapley Additive exPlanations [4]) assigns
each feature an importance value for a particular prediction,
integrating game theory to ensure consistency and accuracy
in feature attribution. Grad-CAM (Gradient-weighted Class
Activation Mapping [5]) uses the gradients of any target
concept flowing into the final convolutional layer to produce
a coarse localization map highlighting important regions for
predictions. Some research even use GradCAM to analyze
the potential vulnerabilities within deep neural networks [6],
[7], but such method is only applicable to algbraically dif-
ferentiable models. Occlusion Sensitivity [8] investigates the
influence of different parts of input data on the output by
systematically occluding sections of the data and observing
the changes in output. This method is particularly useful for
identifying which data segments are most critical for decision-
making, offering clear visual explanations. Each of these
methods offers a different approach to enhance transparency
in ML models, but Occlusion Sensitivity is especially valuable
for its direct and intuitive visualization capabilities.

In this paper, we utilize Occlusion Sensitivity to analyze the
decision behavior of different machine learning models trained
on the UNSW-NBI15 Dataset [9], which captures network
traffic traces of a hybrid of real modern normal activities and
synthetic contemporary attacks. We compare the behavior of
various classifiers and ovr findings are as follows:

« Most of our models only exploit less than three highly
ranked features regardless if feature selection.

o The classifiers depends highly on time-dependent fea-
tures, such as Source or Destination Time to Live (#t]),
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and thus can generate highly domain-specific models.

o We show that

« Random Forest show the best robust by treating all input
features equally, and therefore, it still maintains the best
performance while top features are not available.

The remainder of this paper is organized as follows: A
literature review of related work is presented in Section II.
We present the methodology in Section III. Evaluation and
discussion are presented in Section IV and conclusions in
Section V.

II. RELATED WORK

Statistical machine learning is characterized by its ability
to model complex data through probabilistic approaches, en-
abling systems to make predictions or decisions based on data
analysis, helping in tasks like classification, regression, and
clustering under uncertainty. Statistical machine learning has
played a pivotal role in advancing network intrusion detection
systems (NIDS), offering diverse approaches for identifying
and mitigating cyber threats. For instance, Barbara et al. [10]
utilized data mining algorithms to develop the ADAM project,
a real-time anomaly detection system. Another work, done
by Tavallaee et al. [11], presented an improved KDD dataset
for benchmarking intrusion detection algorithms. Similarly,
Kruegel and Vigna [12] explored anomaly detection using
sequences of system calls, enhancing the detection accuracy
of host-based IDS. Additionally, Thaseen and Kumar [13]
integrated SVM classifiers with feature reduction techniques
to efficiently handle high-dimensional data in network traffic.
Despite its wide adaption, Statistical learning models needs
intensive human efforts in feature engineering and can be
susceptible to overfitting, particularly when the data has high
variance or the model is too complex, leading to poor gener-
alization on new, unseen data.

Compared with Statistical Machine Learning, Deep learning
has increasingly become a pivotal approach, providing robust
mechanisms to detect sophisticated cyber threats. Deep learn-
ing models, primarily due to their ability to learn complex
patterns without hard effort in feature engineering from large
volumes of data, have shown significant promise in distin-
guishing between normal traffic and potential threats with
high accuracy. Yin et al. [14], demonstrated their effectiveness
in capturing spatial features within network traffic. Similarly,
Kim et al. [15] employed Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memory (LSTM) networks, to
analyze temporal features of traffic data for anomaly detection.
Further, Javaid et al. [16] explored the use of Self-Taught
Learning (STL), a hybrid model that combines deep learning
with sparse coding to enhance feature learning in an unsuper-
vised manner. While deep learning offers substantial improve-
ments in network intrusion detection, it also presents several
challenges. One major drawback is the requirement for vast
amounts of labeled training data, which is expensive and time-
consuming to gather in the cybersecurity domain. Additionally,
deep learning models are often seen as “black boxes,” pro-
viding limited interpretability regarding their decision-making

processes, which can be a critical shortfall in security appli-
cations where understanding the rationale behind decisions is
essential.

The growing interest in making machine learning models,
especially those applied to network intrusion detection, more
interpretable and trustworthy, has spurred the development of
explainable artificial intelligence (XAI) approaches in this do-
main. For instance, Sauka et al. [17] developed an adversarial
robust and explainable intrusion detection system using deep
learning, emphasizing the enhancement of model transparency
and robustness. Patil and colleagues [18] proposed a machine
learning-based intrusion detection system that highlights the
potential of explainability in security applications, focusing
on demystifying the black-box nature of complex models.
Keshk et al. [19] introduced an explainable deep learning
framework specifically tailored for IoT networks, underscoring
the critical need for clarity in automated security systems
within such environments. Furthermore, Wang et al. [20] and
Barnard et al. [21] have contributed significantly by integrating
techniques like SHAP (SHapley Additive exPlanations) to
elucidate the decision-making processes of their intrusion
detection models, thus facilitating a better understanding and
trust among network security personnel.

Explainable machine learning (XAI) models for network in-
trusion detection often face challenges such as increased com-
putational complexity and potentially reduced performance
due to the overhead of generating explanations. Additionally,
while providing transparency, the explanations themselves may
be too technical or abstract for non-specialist users, limiting
their practical usefulness in real-world security applications
where clear and actionable insights are required. Such limi-
tations motivate us to use Explainable Al method to perform
a comparative analysis on the behaviors of different machine
learning-enabled intrusion detectors on the same dataset.

III. METHODOLOGY

We use Occlusion Sensitivity to analyze the behavior of
different machine learning models on UNSW-NB15 dataset.
We want to see if the trained machine learning model we use
for IDS could unintentionally become biased towards specific
features.

A. Data Preprocessing

The UNSW-NBI15 Dataset [9] contains 175,341 entries
across 45 distinct columns. We conduct the following data
preprocessing steps:

e Removal of incomplete records: we remove records con-
taining missing values resulting in a reduced dataset
of 81,173 entries. An overview of intrusion category is
given in Figure 1, the prevalence of 'Normal’ traffic at
48.66%, followed by significant portions of ’Generic’
at 24.01%, ’Fuzzers’ at 19.94%, and smaller fractions
for ’Backdoor’, *Analysis’, ’Exploits’, ’Reconnaissance’,
’DoS’, and *Worms’.

o Encoding categorical features: we convert categorical
features into one-hot encoding.
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Fig. 1. Distribution of intrusion attack categories after data preprocessing.
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Fig. 2. Feature correlation matrix

o Scaling and Normalization: We re-scale numerical values
to the range of [0, 1].

o Feature Selection: we remove features that have less than
0.3 of correlation with the classification label. The corre-
lation matrix of features is given in Figure 2. The selected
features for both binary and multi-class classifiers as well
as their Correlation Coefficients are in Figures 3 and 4.
To evaluate the impact of such feature selection criteria,
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Fig. 3. Selected features for binary classifiers.
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Fig. 4. Selected features for multi-class classifiers.

we also train and analyze the models without feature
selection as for comparison.

e Data Synthetic and Model Training: We divided the
dataset randomly to compose training (80%) and test
(20%) set, our stopping criteria for model training are
either reach 90% of classification accuracy or improve-
ment less than 1% after the latest epoch.
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Fig. 5. Feature sensitivity of binary intrusion detection model classifiers trained with complete features.
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B. Binary Classifier Analysis

The binary classification task distinguishes between nor-
mal network behavior (non-intrusive) and abnormal behavior
(intrusive). The models employed for this task are imported
directly from scikit-learn library with default configurations,
they are: Linear Regression, Logistic Regression, Linear SVM,
K-Nearest Neighbor, Random Forest, Decision Tree, and MLP.

C. Multi-Class Classification Analysis

The multi-class intrusion detection models utilize the same
suite of models to predict various attack categories such
as DoS, Exploits, Fuzzers, and others. Similar performance
metrics have been calculated for the multi-class models to
evaluate their effectiveness in distinguishing between the dif-
ferent attack categories. Additionally, occlusion sensitivity has
been implemented to identify the most influential features for
the predictions.

IV. EVALUATION & DISCUSSION
A. Binary Classifiers

The feature sensitivity with respect to classification accuracy
degradation of binary classifiers are given in Figures 5 and
6. As depicted, most binary models are extremely sensitive
to less than three top features, in particular, Decision Tree
model is extremely sensitive to even single feature occulusion
occlusion. Meanwhile, Multi-Layer Feed-Forward Neural Net-
work and Random Forest models exploit more features than
other models. We adjusted the L2 regularization coefficient
of MLP model from 0.0001 to 0 and we did not observe
significant differences. A possible explanation is that the
neural network only leverages a few highly important features
and thus develops a sparse internal structure which is not
sensitive to the L2 regularization.

Linear Regression

Logistic Regression

3 KN
Random Forest

Decision Tree -

Features

Fig. 6. Feature sensitivity of binary intrusion detection model classifiers
trained with selected features.

We masked the Top-2 features of the binary classifiers to
analyze the performance degradation of classifiers, depicted
in Figure 7. We found that only Random Forest and K-
NN classifiers maintain the most insignificant performance
degradation.

-50

Fas

Accuracy Drop (%)

Fig. 7. Accuracy degradation after masking the Top-2 features.

B. Multi-Class Classifiers

The feature sensitivity results of multi-class classifiers also
indicates that models utilize more features than in binary clas-
sifier when there’s no feature selection procedure. Conversely,
when feature selection is performed, most classifiers indicates
the rtl-related features are more critical for classification ac-
curacy. Interestingly, Random Forest is not sensitive to single
feature masking in both binary and multi-class scenarios,
similar to binary classification scenario, Decision Tree model
is extremely sensitive to even single feature occlusion.

- 40
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Decision Tree - 0.00 0.00
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%4
9,

Features

Fig. 8. Feature sensitivity w.r.t. classification accuracy of multi-class intrusion
detection model.

Interestingly, if we mask out the top-2 most important
features, as depicted in Figure 9, the models performance
degradation may not be as significant as in binary classifiers as
in Figure 7. We still find that Random Forest still has the best
robustness when the top-2 features are mask-out. Moreover,
we found that the classifiers rely highly on the time-dependent
features, such as sttl and drtl, simply means that the all these
models may face challenges or become useless if they are
ported to different application scenarios.

To compare the feature sensitivity of the models, we re-train
all the models with the top-3 7TL-related features removed
and derive the feature sensitivities in Figure 10. Compare with
Figure 5, the models utilize more features while the Decision
Tree model still has a strong bias towards specific features.

C. Model Overhead Comparison

We compare the time consumption of deriving all the mod-
els considering full feature set as in Figure 11. Our experiment
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Fig. 10. Feature sensitivity of binary intrusion detection model classifiers trained with complete features.
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Fig. 9.

Accuracy degradation after masking the Top-2 features

is done in standard Google Colab environment with Intel(R)
Xeon(R) CPU at 2.20GHz and 12.7GB of RAM, as depicted,
Random Forest becomes the best model for the UNSW-NB15
dataset by fully utilizing the features and providing the best
efficiency.

V. CONCLUSION

This paper utilizes Occlusion Sensitivity method for a
comparative study on feature importance of various machine
learning models for network intrusion detection on UNSW-
NB15 dataset. We found that most machine learning models,
including Neural Network model exploit few critical features
to make decisions and users have to mask out critical features
to let model focus on other useful features. In the meantime,
Random Forest is the only model that treat all input features
equally. Our further experiment also reveal that Random Forest
is more veratile than neural network models such as MLP
by proving similar performance with better robustness and
significantly less training time. Our finding also indicates
that explainable Al-guided feature engineering could be a
promising approach for deriving robust model while maintain
uncompromising performances.

Our future direction includes improving airspace ATC work-
load assessment by considering metrics beyond delayed and

B Binary Classifier Training Time

mmm Binary Classifier Inference Time
Emm Multi-Class Classifier Training Time
B Multi-Class Classifier Inference Time

Fig. 11.

Comparison of model overhead.

total flights. Additionally, we plan to explore neural networks’
potential in generating comprehensive airspace configuration
plans.
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