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Abstract—This survey paper delves into the emerging and
critical area of symbolic knowledge distillation in Large Lan-
guage Models (LLMs). As LLMs like Generative Pre-trained
Transformer-3 (GPT-3) and Bidirectional Encoder Representa-
tions from Transformers (BERT) continue to expand in scale and
complexity, the challenge of effectively harnessing their extensive
knowledge becomes paramount. This survey concentrates on
the process of distilling the intricate, often implicit knowledge
contained within these models into a more symbolic, explicit form.
This transformation is crucial for enhancing the interpretability,
efficiency, and applicability of LLLMs. We categorize the existing
research based on methodologies and applications, focusing on
how symbolic knowledge distillation can be used to improve
the transparency and functionality of smaller, more efficient
Artificial Intelligence (AI) models. The survey discusses the core
challenges, including maintaining the depth of knowledge in a
comprehensible format, and explores the various approaches and
techniques that have been developed in this field. We identify
gaps in current research and potential opportunities for future
advancements. This survey aims to provide a comprehensive
overview of symbolic knowledge distillation in LLMs, spotlighting
its significance in the progression towards more accessible and
efficient Al systems.

Impact Statement—There is burgeoning interest in the po-
tential of symbolic knowledge to enhance the interpretability,
efficiency, and application scope of LLMs, transforming them
into more robust, understandable, and versatile tools. Despite
the recognition of its importance, there remains a notable
dearth of comprehensive research that thoroughly examines and
evaluates the process and implications of this integration. Existing
literature predominantly focuses on either the advancements in
LLMs or content of the knowledge in the LLMs , with less
emphasis on the symbolic knowledge distillation of LLMs. This
survey aims to fill this critical gap by offering an extensive review
of the current state of symbolic knowledge disitllation in LLMs
by highlighting the methodologies, challenges, and advancements
in this field.

Index Terms—Large Language Models, Symbolic Knowledge,
Symbolic Knowledge Distillation

I. INTRODUCTION

l ARGE Language Models (LLMs) are a prominent topic
in Artificial Intelligence(Al), with significant break-
throughs occurring frequently. Trained on extensive data sets
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including websites, research papers, and books, LLMs encap-
sulate knowledge within their numerous parameters. They can
serve as knowledge bases[1], from which information can be
extracted and formatted for various purposes, such as fine-
tuning other models for specific tasks[2], validating actions[3],
or generating larger and more accurate datasets[4]. However,
the knowledge embedded in LLMs is not immediately acces-
sible and requires careful extraction and efficient utilization to
yield effective results.

The knowledge within LLMs, stored in the weights of
their parameters, can be converted into a more interpretable
symbolic form through the process of symbolic knowledge
distillation. The core challenge here lies in translating the
implicit, distributed knowledge encoded in the neural net-
works of LLMs into explicit, symbolic representations. This
transformation is essential for several reasons: to improve the
transparency and interpretability of the models, to facilitate
knowledge transfer to smaller, more efficient models, and to
enable more robust and explainable Al systems. By converting
the knowledge into symbolic form, it becomes possible to
understand the reasoning behind the model’s decisions. This is
crucial for applications where understanding the *why’ behind
predictions or recommendations is as important as the out-
comes themselves. The process is fraught with complexities,
including preserving the nuance and depth of the learned
knowledge while making it comprehensible and utilizable in
a symbolic format.

In this paper, we introduce a detailed framework dedicated
to symbolic knowledge distillation of LLMs, initiating our dis-
cussion with a historical overview of symbolic knowledge dis-
tillation and its evolutionary path to its current state. Following
this, we delve into an analysis of various traditional knowl-
edge distillation methods and their comparison with symbolic
knowledge distillation approaches. We further explore LLM
architectures, including their training and fine-tuning mecha-
nisms. We classify symbolic knowledge distillation techniques
into three distinct categories: Direct, Multilevel, and Dis-
tillation via Reinforcement Learning. Additionally, we have
compiled research papers focused on symbolic knowledge, as
well as those specifically addressing symbolic knowledge dis-
tillation of LLMs. Our survey provides a thorough examination
of the latest developments in symbolic knowledge distillation
of LLMs, highlighting the methodologies, challenges, and
progress in the field, thereby offering valuable insights for the
research community interested in further exploration of this
domain.

The rapid expansion of LLMs has led to the production
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of numerous survey papers. All the previous survey papers
on LLMs cover different aspects except for the symbolic
knowledge. Further exploring we find that no survey paper has
been published related to the symbolic knowledge distillation.
The focus areas of existing survey papers on LLMs include:

o Comprehensive overviews of LLMs[5], [6], [7]
o Evaluation of LLMs|[8]

o Code generation[9]

e LLMs in education[10]

o LLM as Knowledge Base[11], [12]

e Reasoning Knowledge in LLMs[13]

o Explainability in LLMs[14]

o Aligning LLMs with human[15]

o Instruction tuning for LLM[16]

¢ Model Compression in LLM[17]

e Trustworthiness evaluation of LLM[18]
e LLM for software engineering[19]

o Hallucination in LLM[20]

e Multimodal LLM][21]

e LLMs for Robotics[22]

LLMs for Information Retrieval[23]

Our work stands in contrast to existing approaches in sev-
eral key aspects. While traditional methods primarily focus
on either the performance enhancement of smaller models
or the interpretability aspect of knowledge distillation, our
framework synergizes these objectives.

The remainder of this paper is structured as follows: Sec-
tion II reviews the milestones in knowledge distillation and
LLM, establishing the context and background for our work.
Section III details the preliminaries about symbolic knowledge
distillation and LLM, followed by Section IV, which presents
a thorough process of symbolic knowledge distillation in
LLM. Section V discusses the related research work that has
been carried out. In Section VI, we discuss opportunities
that have emerged from Symbolic Knowledge Distillation.
Section VII is devoted to the challenges of implementing
proposed Symbolic knowledge distillation applications. We
identify the obstacles and challenges that may arise. Section
VIII highlights the Lesson Learned and Key Takeaways and
finally, in Section IX, we offer concluding remarks on our
survey paper.

II. MILESTONES IN KNOWLEDGE DISTILLATION AND
LARGE LANGUAGE MODELS

Over the last seven decades, language technology has ad-
vanced significantly. The Turing Test[24], conducted in 1950,
was one of the earliest milestones in this field, which laid
the foundation for the concept that machines can perform at
the level of humans and demonstrate the intelligence. In the
same year Shannon used concept of entropy and provided the
way of prediction of the next letter when the preceding text is
known[25]. In 1964, ELIZA[26] was introduced as a Natural
Language Processing (NLP) computer program which was de-
signed to mimic the conversational style of a psychotherapist.
SHRDLU[27], introduced in 1968, was an early example of
an interactive natural language understanding system which
can understand and respond to natural language commands

related to a simplified world of objects. Following year was the
dominance of the Statistical Language Model(SLM). Notable
works that lead the way were "Introduction of Stochastic
Approach for Parsing"[28] in 1986 and "Statistical Approach
to machine translation"[29] in 1990. Due to the problem like
Brittleness Across Domains, False Independence Assumption
and Shannon-Style Experiments, there was downfall of the
SLMs[30].

With  the  introduction of Long  Short-Term
Memory(LSTM)[31] in 1997, we entered into the era
of Neural Language Model(NLM). These models helped in
language processing by capturing the long term dependencies
and successfully handling the vanishing gradients. In 2001,
the first neural language model was introduced which can be
trained using Stochastic Gradient Descent(SGD) algorithm
and proved to be computationally efficient and scalable to
larger dataset.[32]. Neural Networks not only increased in
scope and functionality but also in terms of the size[33]. The
concept of model compression[34] was introduced in 2006.
Model compression and acceleration techniques was divided
into four different approaches[35]: parameter pruning and
sharing[36][37][38][39][40], low-rank factorization[41][42],
transferred/compact convolutional layers[43] and knowledge
distillation[44].

In 2011, IBM Watson made significant strides in lan-
guage processing by winning a Jeopardy game against human
competitors[45]. Two years later, in 2013, the Word2Vec
algorithm[46] was introduced, which enabled computers to
understand the context of a word and its relationship with other
words using dense vector representation where similar words
are located close to each other. In 2014, seq2seq[47] was
introduced which used encoder to represent variable length
input sequence into fixed length vector and decoder to generate
output sequence. In the same year, Global Vectors for Word
Representation(GloVe)[48] was introduced, which used co-
occurance matrix to capture relationship between the words
in corpus and was successful in capturing the local and global
context informaiton. Knowledge distillation is a model com-
pression technique introduced in 2015 that transfers knowledge
from a high-capacity teacher model to a more compact student
model. Later in that year FitNets[49] was introduced that add
an additional term along with the knowledge distillation loss.
In 2016, study[50] instead of utilizing representations from
a specific point in the network, employed attention maps as
hints, comparing the mean squared error (MSE) between the
attention maps of the student and teacher models. In same
year, SQuAD (Standford Question Answering Dataset)[51]
was introduced, which facilitated the development of question-
answering systems by being benchmark dataset for evaluating
machine reading comprehension.

In 2017, the Transformer[52] model was introduced, which
enabled the development of advanced language models that
can learn relationships between words in a sentence more ef-
ficiently by using the concept of self-attention. In the following
year, 2017 [53] employed a similar approach. However, instead
of utilizing representations or attention maps, they provided
hints by using Gram matrices. In 2018, a supplementary mod-
ule called the paraphraser[54] is incorporated into the model.
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Fig. 1. Milestones in history of LLM and Knowledge Distillation

In same year, ELMo (Embedding from Language Model)[55],
context dependent representation of word was introduced
which uses different embeddings for same word in different
context. Universal Sentence Encoder[56] was also introduced
in same year, which further enhanced language processing by
introducing embeddings for sentence representations and can
handle multiple languages.

General Language Understanding Evaluation(GLUE)[57],
a benchmark to evaluate the performance of NLP mod-
els on a range of language understanding tasks, became a
standard evaluation framework for comparing different lan-
guage models. Bidirectional Encoder Representations from
Transformers(BERT)[58] and Generative Pre-Training-1(GPT-
1)[59] were introduced in the same year, 2018 which begin the
era of Pre-trained Language Model(PLM). In 2019, GPT-2[60]
became the first language model to touch a billion scale of
parameters. Later that year, T5[61] became the first language
model to touch the 10 billion parameter scale. According to
[62] published in 2019, the current approach of extracting hints
may not be optimal due to the loss of information caused
by the ReLU transformation. To address this, they introduced
a modified activation function called marginReLU. In [63]
published in 2020, the student model learns from the inter-
mediate representations of the teacher model by employing a
contrastive loss over these representations. As like the way hu-
man way of learning, knowledge distillation was applied in the
model; self-learning[64], mutual learning[65], teacher student
learning[44], teacher assistant[66] and continual learning[67].
Moreover, the application of knowledge distillation extends
beyond transferring knowledge between models. It can also
be utilized in various other tasks, including adversarial attacks
[68], data augmentation [69][70], data privacy and security
[71], as well as dataset distillation [72][73]. Between 2010 and
2020, the domain of transfer learning experienced significant
expansion, with numerous transfer learning models achieving
state-of-the-art results across various disciplines[74].

Google Shard (GShard)[75], introduced in 2020, became the
first language model to touch the 100 billion parameter scale.

And in 2021, the Generalist Language Model (GLaM)[76]
became the first language model to touch the trillion pa-
rameter scale. Concept of symbolic knowledge distillation[2]
was introduced in the same year which is a technique for
training smaller models using larger models as teachers and
involves distilling knowledge symbolically. Since then sym-
bolic knowledge distillation has been used in various areas
such as reference free sentence summarization[3], compara-
tive knowledge acquisition[77]. The scaling laws for neural
language models[78], reveal that model performance improves
predictably with increases in model size, dataset size, and com-
putational resources, following a power-law relationship. This
means that larger models are significantly more efficient in
learning from data. In 2022 and 2023, this trend persisted, with
various industry leaders introducing new large-scale language
models that leveraged these principles to achieve enhanced
performance, demonstrating the continued advancement and
efficacy of scaling up model size and computational power
in the development of language models. Major technology
companies are investing heavily in developing their own LLMs
because they recognize the immense potential of these systems
to revolutionize various industries, such as healthcare, finance,
and customer service. Also, LLMs can help these companies
maintain their position as leaders in the field of Al and keep up
with competitors. Given the swift advancements in this field,
there is a pressing need to steer Al towards paths that prioritize
safety and responsibility’.

The study[79] concludes that for compute-optimal training,
both the model size and the number of training tokens should
be scaled equally; specifically, each doubling of the model
size should be accompanied by a doubling of the number of
training tokens. Conversely, study[80] suggest that the supply
of high-quality language data will likely be depleted by 2026.
In contrast, low-quality language data and image data are pro-
jected to be exhausted between 2030 and 2050 for low-quality
language data, and between 2030 and 2060 for image data.
The current trajectory of rapidly increasing the parameters of
LLMs, which depend on vast datasets, may decelerate unless
there are significant improvements in data efficiency or new
data sources are discovered. These findings have influenced the
development of next-generation LLMs towards models capable
of generating their own training data for self-improvement.
Furthermore, LLMs will need to incorporate self-fact-checking
capabilities. These scenarios underscore the importance of
symbolic knowledge distillation and suggest a potential shift
of LLMs towards this approach.

It has been utilized for labeling[81][82], where the teacher
model generates outputs based on the provided input, and for
expansion[83][84], where the teacher model produces samples
akin to given demonstrations through in-context learning. For
data generation[85] which involves synthesizing data accord-
ing to specific meta-information, such as a topic or entity,
feedback[86] which involves providing guidance on the stu-
dent’s outputs, encompassing preferences, corrections, and ex-
pansions of challenging samples. Finally, for self-checking[87]

Uhttps://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/3
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-of-artificial-intelligence/(last accessed on: [28/02/2024])
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which entails the student model generating outputs, which are
subsequently filtered for high quality or self-evaluated by the
student model.

III. BACKGROUND AND PRELIMINARIES

For understanding the process of symbolic knowledge distil-
lation of LLMs, we need to dive deeper into the two different
technical theory of knowledge distillation followed by LLMs.
Following sub-section will focus on that part.

A. Knowledge Distillation

Knowledge distillation is a technique used to transfer
knowledge from a larger, more complex model (teacher) to
a smaller, simpler model (student) with the goal of retaining
much of the teacher model’s performance[117]. This process
is crucial in scenarios where computational resources are
limited or where deployment requires lightweight models.
There are various types of traditional knowledge distillation
techniques: response-based, feature-based and relation-based
and one modern symbolic knowledge distillation, each with
its unique approach and area of application:

1) Response-based Knowledge Distillation: Response-
based knowledge distillation involves transferring knowledge
from the teacher model’s final output layer to the student
model, aiming to mimic the teacher’s final predictions. This
approach is straightforward and has proven effective across
various tasks, employing a loss function based on the diver-
gence between the teacher’s and student’s logits. It’s widely
applied in model compression and has been adapted for
different types of model predictions, including object detection
and human pose estimation, where the teacher’s output may in-
clude additional information like bounding box offsets[118] or
heatmaps for landmarks[119]. A key application of response-
based knowledge distillation is in image classification[44],
where "soft targets" — the probabilities assigned to each class
by the teacher model — play a crucial role. These probabilities
are adjusted using a temperature factor to control the soft-
ness of the targets, allowing the transfer of knowledge from
the teacher to the student. The distillation process typically
employs the Kullback-Leibler divergence loss to optimize
the similarity between the teacher’s and student’s probability
distributions.

This method is praised for its simplicity and effectiveness,
particularly in leveraging knowledge for training. However,
its reliance on the final layer’s output means it may not
fully utilize intermediate-level supervision from the teacher,
an aspect crucial for representation learning in deep neural
networks.

2) Feature-based Knowledge Distillation: Feature-based
knowledge distillation taps into the strength of deep neural
networks to learn hierarchical feature representations, a pro-
cess central to representation learning[120]. Unlike response-
based knowledge distillation, which focuses on the outputs
of the last layer, feature-based distillation utilizes the outputs
from intermediate layers, or feature maps, to guide the student
model. This approach is particularly beneficial for training
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models that are both narrower and deeper, as it provides a
richer set of training signals.

The concept was first introduced with Fitnets[49], aiming
to improve student model training by matching feature acti-
vations between the teacher and student directly. Following
this, several methodologies have been developed to facili-
tate this matching process, either directly or indirectly[121].
Notable contributions include the derivation of "attention
maps" to express the use of neuron selectivity transfer[122],
matching probability distributions in feature space[123], and
introducing "factors" for more interpretable intermediate
representations[54]. Techniques like route constrained hint
learning[124] and the use of activation boundaries[125] have
been proposed to minimize the performance gap between
teacher and student models, alongside innovative strategies
like cross-layer knowledge distillation[121] which adaptively
matches teacher and student layers.

Despite the effectiveness of feature-based knowledge trans-
fer in enriching the student model’s learning, challenges re-
main in selecting appropriate layers for hints and guidance due
to the size discrepancies between teacher and student models.
This necessitates further exploration into how best to match
the feature representations between teacher and student models
effectively.

3) Relation-based Knowledge Distillation: Relation-based
knowledge distillation goes beyond the scope of response-
based and feature-based methods by examining the relation-
ships between different layers or data samples within the
teacher model. This approach delves into the dynamics be-
tween feature maps, layers, and even the relationships between
different teachers or data samples, offering a more nuanced
form of knowledge transfer.

Flow of solution process (FSP)[53] utilizes the Gram matrix
between two layers to encapsulate the relationships between
pairs of feature maps through inner product calculations.
Knowledge distillation via singular value decomposition[126]
distill essential information from these relationships. [127]
explored multi-teacher scenarios by constructing graphs based
on logits and features from each teacher, modeling their
importance and relationships. [128] proposed a multi-head
graph-based distillation technique that leverages intra-data
relations between feature maps through a multi-head attention
network. [129] focused on pairwise hint information, allowing
the student model to mimic mutual information flows from
pairs of hint layers in the teacher model.

The distillation loss in relation-based knowledge distilla-
tion is formulated based on the similarity and correlation
functions between the feature representations of teacher and
student models, aiming to capture and transfer the intricate
relationships present in the teacher’s architecture. Relation-
based knowledge can also encompass structured knowledge of
data, privileged information about input features, and various
other categories, each represented by different loss functions
like Earth Mover distance, Huber loss, Angle-wise loss, and
Frobenius norm. While recent advancements have introduced
several types of relation-based knowledge, the challenge re-
mains in effectively modeling the relational information from
feature maps or data samples for knowledge transfer. This area
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TABLE I
TECHNICAL COMPANIES WITH THEIR LLM
Companies LLM Year Parameters(in billions) | Corpus Size
T5[61] 2019 | 11 1 trillion tokens
GShard[75] 2020 | 600 1 trillion tokens
mT5[88] 2021 13 1 trillion tokens
GLaM[76] 2021 1200 1.6 trillion tokens
FLAN[89] 2021 137 Not Available
Google LaMDA[90] 2022 137 1.56T words, 168 billion tokens
Minerva[91] 2022 | 540 38.5B tokens
UL2 [92] 2022 | 20 1 trillion tokens
PaLM[93] 2022 | 540 768 billion tokens
FLAN-T5[94] 2022 | 11 Not Available
FLAN-PaLM[94] 2022 | 540 Not Available
Gemini(https://gemini.google.com/app) 2024 | Not Available Not Available
GPT-2[95] 2019 | 1.5 40GB (~10 billion tokens)
GPT-3[96] 2020 | 175 499 billion tokens
Codex[97] 2021 12 100 billion tokens
OpenAl WebGPT[98] 2021 175 Not Available
InstructGPT[99] 2022 175 Not Available
ChatGPT(https://openai.com/blog/chatgpt) | 2022 | Not Available Not Available
GPT-4[100] 2023 | Not Available Not Available
GPT-J[101] 2021 6 825 GiB
EleutherAl GPT-Neo[102] 2021 | 2.7 825 GiB
GPT-NeoX[103] 2022 | 20 825 GiB
Gopher[104] 2021 280 300 billion tokens
DeepMind AlphaCode[105] 2022 | 41 967 billion tokens
Chinchilla[79] 2022 | 70 1.4 trillion tokens
Sparrow[106] 2022 | 70 Not Available
Galactica[107] 2022 120 106 billion tokens
Meta OPT[108] 2022 | 175 180 billion tokens
OPT-IML[109] 2022 | 175 Not Available
LLaMA[110] 2023 | 65 1.4 trillion
TO[111] 2021 11 Not Available
Hugging Face | BLOOM[112] 2022 175 350 billion tokens (1.6TB)
mTO[113] 2022 | 13 Not Available
Ernie 2.0 Large[114] 2019 1.5 Not Available
Baidu Ernie 3.0[115] 2021 10 375 billion tokens
Ernie 3.0 Titan[116] 2021 | 260 300 billion tokens
Ernie Bot (https://yiyan.baidu.com/) 2023 | Not Available Not Available

continues to be ripe for further research and exploration to
enhance the efficacy of knowledge distillation techniques.

4) Symbolic Knowledge Distillation: Contrary to the meth-
ods discussed earlier, symbolic knowledge distillation is cen-
tered on the distillation and transmission of knowledge in
a symbolic format, including rules, logic, or symbolic rep-
resentations. This method integrates structured knowledge
bases and rules with machine learning models to boost their
performance and clarity. It encodes intricate, structured infor-
mation in a manner that allows for manipulation in reasoning,
inference, and decision-making processes. The importance of
this approach lies in its alignment with human methods of
interpreting and reasoning with knowledge, thus providing
enhanced transparency and interpretability.

Symbolic knowledge distillation represents a technique
within machine learning where knowledge is extracted from
a complex, typically less transparent model (like a deep
neural network) and converted into a symbolic, more under-
standable format. This methodology merges the principles of
conventional knowledge distillation with those of symbolic
Al, aiming to improve the interpretability, transparency, and
possibly the efficiency of machine learning models. It serves
as a bridge between the often "black box" nature of deep
learning models and the necessity for models that can be
comprehended and trusted by humans. Such a requirement

is especially critical in sectors demanding high levels of
responsibility and explainability, including healthcare, finance,
and autonomous driving. Although the specific mathematical
model employed may vary based on the approach and the
symbolic representation chosen, the overall process typically
includes several defined steps.

Training the Teacher Model: A complex model (teacher)
is trained on a dataset to achieve high performance. This model
can be a deep neural network, and its architecture and training
process depend on the specific task (e.g., image recognition,
NLP).

Extracting Knowledge: The subsequent phase involves
deriving insights from the teacher model, achievable through
multiple approaches, including: examining the neuron acti-
vation patterns within the network; employing methods like
Layer-wise Relevance Propagation (LRP)[130] or SHapley
Additive exPlanations(SHAP)[131] to assess the significance
of various inputs in the network’s decision-making process;
and identifying rules or patterns based on the decision bound-
aries established by the network.

Symbolic Representation: The gathered knowledge is
subsequently converted into a symbolic representation. This
process includes: developing decision trees or compiling sets
of logical rules that mimic the neural network’s behavior, and
utilizing graphical models or alternative structured forms to
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Fig. 2. Types of Traditional Knowledge Distillation (a) Response-based, (b)
Feature-based and (c) Relation-based

encapsulate the relationships and dependencies deciphered by
the network.

Training the Student Model: Following the translation
of extracted knowledge into a symbolic form, a simpler and
more interpretable ’student’ model is trained to mimic this
symbolic representation. The training process involves two
key strategies. The symbolic representation may be used
directly as a comprehensive set of rules for decision-making,
allowing the student model to replicate decision processes
based on predefined logical rules or the student model is
trained to approximate the symbolic representation itself. This
approach often incorporates conventional supervised learning
techniques, with the significant distinction that the symbolic
knowledge extracted from the teacher model acts as a guide
or target.

Evaluation and Refinement: Once the student model has
been trained to mimic the symbolic representation, it under-

goes evaluation to verify that it retains the critical knowledge
and performance attributes of the teacher model. This assess-
ment might reveal the need for adjustments either to the sym-
bolic representation itself or to the training methodology of the
student model. Such refinements are crucial for ensuring that
the student not only approximates the teacher’s performance
but does so in a way that is both interpretable and transparent.
This emphasis on interpretability and transparency is key, as it
aims to produce a student model that not only performs well
but also provides insights into its decision-making processes,
making it more understandable and trustworthy to users.

B. Large Language Models

LLMs are the foundation model for the language and has
been the hot topic for past few years. Alot of opportunities
has been created in one hand and due to ineffective use, it
has also created some kind of fear among the users. In this
section we will focus on the architecture of LLM followed by
the training process.

1) Architecture: Transformer[52] architecture is the back-
bone of all the LLMs. Due to its features like parallelizable
computation, attention based mechanism it has been able to
reduced reliance in hand-crafted features and also improved
the performance in NLP tasks. All the LLMs are directly or
in-directly has the root the in the transformer architecture.
Existing all the LLMs can be found to be belonging into one
of the following architecture:

Encoder-Decoder Architecture: The underlying principle
of this architecture involves transforming the input sequence
into a fixed-length vector form, and subsequently, transforming
this representation into the output sequence. The architecture
is composed of two sets of Transformer blocks: one serving
as the encoder and the other as the decoder. The encoder
is tasked with processing the input sequence, utilizing a
series of multi-head self-attention layers to convert it into
latent representations. These representations are then leveraged
by the decoder, which, through an autoregressive process,
generates the output sequence by employing cross-attention
mechanisms to focus on the latent representations provided by
the encoder. PLM like T5[61], BART[132] and Flan-T5[94]
uses this architecture.

Casual Decoder Architecture: The causal decoder archi-
tecture is a type of decoder-only architecture used in language
modeling, where the input and output tokens are processed
in the same fashion through the decoder. This architecture
incorporates a unidirectional attention mask, which ensures
that each input token can only attend to past tokens and
itself by masking all future attentions to zeros. The GPT-
series models, including GPT-1[59], GPT-2[60], and GPT-
3[96], are representative language models of this architecture.
Many other LLMs, such as OPT[108], BLOOM[133], and
Gopher[104], have also adopted the causal decoder architec-
ture.

Prefix Decoder Architecture: The prefix decoder architec-
ture, also known as a non-causal decoder, is another type of
decoder-only architecture which revises the masking mecha-
nism of causal decoders to enable bidirectional attention over
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TABLE 11
COMPARISON OF TRADITIONAL AND SYMBOLIC KNOWLEDGE DISTILLATION PROCESS

Parameters Traditional Knowledge Distillation

Symbolic Knowledge Distillation

Nature of Knowledge Transfer learned probability distribution

Soft outputs or logits which represent the teacher’s

Human-readable representations such as logical rules,
decision trees, or graphical models

Interpretability and Transparency

Student model remains a black-box neural network

Student model, guided by symbolic representations offer
insights into the decision-making process

Methods Used for Distillation soften the teacher’s outputs

Techniques such as temperature scaling are used to

Involve methods like Layer-wise Relevance Propagation
(LRP) or SHAP

Student Model Mimic the teacher model

Can be tune to behave differently than teacher model

Data Generation No

Yes

Layerwise Dependency

Differnet layers have different influences

No such dependency

the prefix tokens, while maintaining unidirectional attention
only on generated tokens. This allows the prefix decoders
to bidirectionally encode the prefix sequence and predict the
output tokens autoregressively, where the same parameters
are shared during encoding and decoding. Unlike the causal
decoder architecture, the prefix decoder architecture can in-
corporate bidirectional information into the decoding process,
making it more suitable for tasks that require understanding
the context of the entire input sequence. Existing representative
LLMs based on prefix decoders include GLM-130B[134] and
U-PaLM[135].

2) Training Process of Large Language Models: The whole
training process of LLM can be divided into two phases:

Pre-trainning:Pre-training LLMs involves training on ex-
tensive unlabeled text datasets to learn general language pat-
terns and insights. The success of pre-training hinges on both
the scale and quality of the training corpus, with large, diverse
datasets allowing models to capture a wide array of language
patterns and generalize effectively to new data.

The pre-training process unfolds in phases, starting with
data collection, which is divided into general and specialized
data sources. General data encompasses a wide range of
text, including webpages, conversations, Q&A portals, and
books, while specialized data targets more niche content like
research papers, code, and multilingual texts. The second
phase, data pre-processing, focuses on refining the dataset
by eliminating noisy, redundant, and irrelevant content. Tech-
niques employed include quality filtering, deduplication (at
sentence, document, and dataset levels), privacy protection
(removing personal information), and tokenization (splitting
text into manageable units for the model). Given that LLMs
are not typically retrained frequently, the pre-training phase
must be approached with precision, prioritizing a balanced mix
of source materials[104], and ensuring both the quantity[110]
and quality[136] of the data are optimal. Pre-training tasks
may involve language modeling[95], favored by decoder-only
architectures for predicting subsequent tokens, or de-noising
autoencoding[132], which focuses on correcting or replacing
corrupted tokens.

Fine tuning or Adaptive tuning: The fine-tuning stage is
crucial for adapting pre-trained LLMs to specific domains or
tasks, leveraging labeled examples or reinforcement learning
to refine the model’s understanding and predictive capabilities.
It encompasses two main strategies: instruction tuning and
alignment tuning.

Instruction tuning entails the fine-tuning of a language
model by incorporating explicit instructions or demonstrations
during training. This approach is designed to direct the model
towards desired behaviors and outcomes, facilitating a more
targeted response to tasks. The instructions for this tuning
can be derived from existing datasets reformatted to include
clear directives or crafted to reflect specific human needs.
Alignment tuning, on the other hand, aims to adjust the
LLM’s outputs to match human expectations accurately, a
process that may involve a trade-off known as the alignment
tax[106]. This concept refers to potential compromises in the
model’s capabilities as it is fine-tuned to prioritize outputs
that are deemed more acceptable or beneficial from a human
perspective. The most commonly used alignment criterias are
helpfulness, honesty, and harmlessness[106][99]. Few other
criteria are also mentioned like behavior, intent, incentive, and
inner aspects[137].

IV. SYMBOLIC KNOWLEDGE DISTILLATION OF LARGE
LANGUAGE MODELS

Symbolic Knowledge Distillation of LLMs aimed at distill-
ing the extensive knowledge encapsulated within LLMs into
more interpretable and efficient forms. It’s central method-
ology revolves around transforming the latent knowledge of
models like GPT-3 into symbolic or rule-based representations.
It involves a sophisticated process designed to transform the
latent, complex knowledge within these models into explicit,
structured, and interpretable forms. This process begins with
the careful crafting of customised prompts that guide LLMs to
generate outputs rich in specific knowledge types. Following
this, NLP techniques like Named Entity Recognition (NER),
Part-Of-Speech (POS) tagging, and dependency parsing, are
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employed to analyze and structure the responses. This step
extract meaningful information and identify patterns within the
text, which are then transformed into structured knowledge
formats such as logic rules, knowledge graphs, or semantic
frames. It derives explicit rules and patterns from the LLMs’
responses, thereby facilitating the encoding of this information
into symbolic representations that can be easily understood and
manipulated.

The subsequent phase of this process involves the refine-
ment and validation of the generated symbolic representations
to preserve depth of knowledge and to ensure their accuracy,
consistency, and practical utility. This includes refining the
symbolic knowledge using the human experts or using the
trained models to classify the generated knowledge on the
basis of quality. The refined symbolic knowledge base under-
goes validation against established benchmarks, allowing for
the assessment of enhancements and ensuring the symbolic
representations meet the required standards of quality and
utility.

The creation of a high-quality knowledge base facilitates the
training of smaller models, demonstrating that a quality dataset
can significantly improve the performance of models that are
100 times smaller than their teacher counterparts[2]. This
highlights the efficacy of integrating symbolic knowledge into
language models, presenting a viable alternative to scaling up
LLMs. Symbolic knowledge distillation generates smaller, yet
more efficient models, making them suitable for deployment
in everyday practical applications, offering a more resource-
efficient pathway to achieving high-quality outputs in language
models.

Various approaches that are used to distill the symbolic
knowledge of LLMs can be categorised as:

A. Direct Distillation

The distillation of symbolic knowledge from LLMs like
GPT-3 begins with the construction of a specific prompt. This
prompt is designed to elicit responses that encapsulate com-
monsense or factual understanding. It could involve scenarios,
questions, or statements that require the application of general
knowledge about the world. The effectiveness of this step
hinges on the ability to craft prompts that are both clear and
contextually rich enough to guide the LLM towards producing
relevant and insightful outputs. Upon receiving the prompt,
the LLM generates a response based on its training and the
intricacies of the provided context. These models, have been
exposed to extensive and varied textual data, encompassing a
wide array of commonsense situations and factual knowledge.
This extensive training enables them to generate responses
that are not only contextually appropriate but also rich in
commonsense and factual knowledge. The model’s response
is a complex interplay of its learned patterns, linguistic un-
derstanding, and the implicit knowledge embedded within its
training corpus. This step translates the implicit knowledge
within the model into explicit textual responses that can be
further analyzed and utilized for knowledge extraction.

The generated text is then analyzed to extract knowledge.
This can be in the form of statements, inferences, or relation-
ships that are implicitly or explicitly expressed in the text.

Symbolic
Knowledge

High Quality Symbolic
Knowledge

Train

Customized
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Human Critic Critic Model

Fig. 4. Overview of Direct Distillation process LLMs

The extraction process might involve additional processing
steps like parsing the text to identify relevant information
or using templates to format the knowledge in a structured
way. The knowledge base derived from this process can be
further improved with the assistance of critics, who may
be human evaluators providing feedback on the quality and
acceptability of the generated content. Once a substantial
volume of high-quality generated data has been accumulated,
this data can be utilized to train a critic model like ROBERTa,
which can be used to evaluate the generated text for accuracy,
relevance, and coherence. The critic model can filter out lower-
quality outputs, ensuring that only high-quality commonsense
knowledge is retained. The high-quality knowledge can then
be distilled into structured formats like knowledge graphs or
further trained into specialized models. This process involves
organizing the knowledge in a way that can be easily utilized
by other systems or models.

B. Multilevel distillation of symbolic knowledge

This approach iteratively refines the knowledge transfer
from a larger, pre-trained teacher model to a smaller, more
efficient student model. The process begins with the teacher
model, typically a LLM like GPT-3, generating initial knowl-
edge base. The generated knowledge base is then filtered
for quality, focusing on aspects like accuracy and length.
The smaller student model, such as GPT2-Large, is initially
trained on this filtered dataset. Subsequently, the student model
generates new knowledge base, which are again filtered to
enhance quality. This cycle of generation and refining through
filtering is repeated iteratively, with each iteration aiming to
improve fidelity and succinctness of the distilled knowledge.

During each iteration, various filters are applied to ensure
the quality which are fidelity filter, length filter or contextual
filter. The Fidelity Filter ensures a true representation of the
input sentence, verified using an off-the-shelf Natural Lan-
guage Inference (NLI) model. The Length Filter controls the
length to fit within a predefined compression ratio, gradually
guiding the model to produce increasingly concise output.
A Contextual Filter is used in some cases, focusing on the
coherence in the larger context of the text. The process results
in the development of increasingly efficient student models
that inherit the distillation ability of the teacher model but
with enhanced control over quality. This method allows for
the creation of high-quality, succinct dataset with diverse
compression ratios, without relying on pre-existing annotated
datasets.
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C. Distillation using Reinforcement Learning policy

The approach refines the policy of a LLM through a two-
step iterative process: generating and filtering data. The first
step, involves using the current LLM policy to generate a
range of output predictions for given contexts, effectively
augmenting the training dataset. Initially, this policy might
be based on a supervised learning model, and the generated
outputs may not be perfectly aligned with human preferences.
However, this step is essential for creating a diverse set of
potential outputs for further refinement. The generated data
forms the basis for the next critical phase of the process.

In the second step, the data produced is ranked and filtered
using a filters like scoring function, typically a learned reward
model trained on human preferences. This step is pivotal in
selecting the best outputs that align with the desired human
outcomes, as determined by the scores from the reward model.
The filtering threshold can be incrementally increased in
subsequent iterations, ensuring that only the top-performing
outputs are selected for further training. The language model
is then fine-tuned on this curated dataset with an offline RL
objective, adjusting its policy to produce outputs that are
more likely to receive high scores. This process of generating
and filtering, repeated iteratively, serves as a feedback loop,
continuously refining the model’s policy towards outputs in-
creasingly aligned with human preferences.

All three techniques mentioned have been successfully
applied to various research areas, including commonsense
reasoning[2], translation[4], summarisation[3] , and mathemat-
ical reasoning[138], among others, yielding significant results.
Fig.7 provides an overview of all the areas explored so
far, with detailed discussions presented in the related works
section. T'able.II] offers insights into each research area,
categorizing them based on the techniques discussed above.

V. RELATED WORKS

In this segment, we begin by exploring the foundational
work that positions LLMs as a knowledge base and then delve
into research focused on analyzing the knowledge contained
within LLMs. Lastly, we review efforts aimed at distilling this
knowledge into a symbolic form. An overview of this concept
is presented in F'ig.7.

A. Knowledge Base of LLM

LLM can act as a knowledge base or oracle that per-
forms well on open-domain question answering without fine-

Symbolic Knowledge Filters

Policy
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Fine Tune Policy Using Offline RL

Fig. 6. Overview of Distillation process using RL

tuning[1]. LLM can also function as the domain-specific KBs
in biomedical field however they are highly influenced by
prompt bias and synonym variance[139]. It rapidly and stably
acquires linguistic knowledge, including syntax, grammar, and
parts of speech, predominantly in the early stages of pre-
training, showing little variation across different domains. In
contrast, the assimilation of factual and commonsense knowl-
edge is slower, more sensitive to the domain of the training
data, and exhibits a more gradual progression throughout the
pre-training period[140].

B. Consistency of Knowledge In LM

The research[141] sheds light on the consistency of knowl-
edge in PLMs like BERT and RoBERTa. Their findings reveal
a concerning lack of consistency in these models, particularly
when responding to paraphrased queries with factual content.
The study[142] adds another layer of complexity to this issue
by highlighting the challenges PLMs face in accurately pro-
cessing negated facts and their susceptibility to being misled
by contextually irrelevant or misleading information.

C. Editing the Knowledge in LLM

Editing knowledge in LLMs has become a prominent
area of research with several innovative approaches pro-
posed to address this challenge. Constrained layer-wise fine-
tuning[143] formulates knowledge modification as a con-
strained optimization problem and allows for fine-tuning
specific layers to update knowledge while retaining exist-
ing information. [144] introduced the concept of Knowledge
Neurons, enabling pinpointing specific components responsi-
ble for factual knowledge within LLMs and providing the
means to manipulate them for altering model output. The
KNOWLEDGEEDITOR[145] offers an efficient way to update
factual knowledge in pre-trained LLMs without extensive
retraining.The paper[146] introduces methods for detecting,
updating, and visualizing beliefs in LLM by using the Sequen-
tial Local and Generalizing (SLAG) update objective. Model
Editor Networks with Gradient Decomposition (MEND)[147]
efficiently edit large-scale pre-trained models by transforming
gradients during fine-tuning. Continual Knowledge Learning
(CKL)[148] addresses the challenge of updating and main-
taining the relevancy of world knowledge in LLMs.
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D. Reasoning with Knowledge in LLM

The research landscape concerning reasoning abilities in
PLMs and transformers, has seen significant exploration and
development. The paper[149] found that while BERT could
learn simpler one-hop rules, it struggled with more complex
two-hop rules and distinguishing between symmetric and non-
symmetric relations. [150] demonstrates that transformers can
effectively emulate reasoning over language, achieving high
accuracy on various synthetic datasets that require different
depths of inference and can act as limited "soft theorem
provers". PROVER[151] extended [150] to answer binary
questions over rule-bases while generating corresponding
proofs for enhanced interpretability. ProofWriter[152] stands
out for its ability to produce implications and corresponding
natural language proofs from given theories, using the T5
transformer architecture. The paper[153] explores the capa-
bility of Transformer Language Models (TLMs) in logical
reasoning with natural language focusing on first-order logic
proofs. The paper[154] explore the capacity of transformer
models to perform deductive reasoning on logical theories
expressed in natural language by introducing a method for gen-
erating challenging reasoning datasets whereas the paper[155]
enhance the deductive reasoning abilities of PLMs using soft
Horn rules and achieved high performance on unseen logical
rules and showed improved understanding of logical properties
like negation and symmetry. The paper[156] introduces a novel
dataset to evaluate the mathematical reasoning capabilities
of neural networks, focusing on problems across arithmetic,
algebra, probability, and calculus.

The paper[157] integrates commonsense reasoning on nat-
ural language question-answering tasks by employing smaller
language models,and demonstrate competitive performance
against large PLMs. RICA (Robust Inference using Common-
sense Axioms)[158],found that PLMs are vulnerable to pertur-
bation attacks, where minor changes in input data drastically

alter their conclusions. The paper[159] presents the Common
Sense Explanations (CoS-E) dataset and the Commonsense
Auto-Generated Explanation (CAGE) framework, which lever-
ages natural language explanations(human-like explanations)
to improve model’s reasoning capabilities.

E. Interpreting the Knowledge of LLM

Interpreting the knowledge encoded in LLMs has been
advanced through various studies, each contributing unique
insights into how these models capture and process linguistic
information. [160] argue that attention weights often don’t
align with other feature importance measures and can produce
similar predictions despite different attention distributions.
This view is nuanced by [161], who suggest that attention
can serve as an explanation, but its validity depends on the
context and testing methods. [162] also investigate attention in
text classification, finding that while there is some correlation
between attention weights and model predictions, attention
weights alone are not definitive indicators of input importance
and propose that gradient-based attention weight rankings
provide a deeper understanding.

The study[163] include method for quantifying non-linearity
in transformers, particularly in feed-forward networks. They
reveal a non-distinct feature extraction process in BERT lay-
ers, influenced by skip connections. [164] demonstrate that
transformer layers function as key-value memories, capturing
textual patterns and inducing distributions over the output
vocabulary, with lower layers focusing on shallow patterns
and upper layers on semantic ones. [165] show that factual
associations in GPT models are tied to localized computations,
particularly in middle-layer feed-forward modules.

F. Explainability in LLM

The study[166] investigates the application of Influence
Functions (IFs) to identify artifacts in models, comparing their
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effectiveness with that of common word-saliency methods.
Researchers in study [167] compare IFs with simpler retrieval-
based methods and suggest that despite the complexity of
IFs, simpler methods can achieve comparable performance.
Exploring further in study[168], they introduce Training-
feature attribution (TFA), which synergizes saliency maps and
instance attribution to effectively uncover artifacts. Researcher
in [169] propose Human In the Loop Debugging using Influ-
ence Functions (HILDIF), a pipeline that employs influence
functions for debugging deep text classifiers, allowing human
involvement in enhancing model performance.

In a different approach, study [170] presents a novel method
for training language models to generate natural text expla-
nations alongside their predictions, utilizing the text-to-text
framework[61]. Addressing the challenge of inconsistency in
natural language explanations, [171] introduces an adversarial
framework to identify and measure these inconsistencies. The
Proto-Trex model[172] uses prototypical examples to explain
model predictions, thus mitigating the opacity often associated
with complex models. Research[173] enhances interpretability
by extracting key text segments, termed "rationales”, serving
as justifications for model predictions. Study[174] works on
improving commonsense reasoning by employing contrastive
explanations generated through specialized prompts, aligning
model reasoning more closely with human cognitive patterns.

G. Symbolic Knowledge Distillation

The conducted research works in this area can be cate-
gorised as follows:

1) Commonsense Knowledge: The study[2] introduces a
transformative shift in the conventional practice, transitioning
from the traditional ’from-human-to-corpus-to-machine’ ap-
proach to an innovative 'from-machine-to-corpus-to-machine’
paradigm through the introduction of symbolic knowledge
distillation. In their research, the authors not only succeed
in creating a substantially larger common-sense dataset from
ATOMIC resource[175], approximately ten times larger than
previously manually synthesized datasets, but also enhance its
diversity and quality. Their novel approach involves training
the common-sense model using this newly generated knowl-
edge graph. Despite being only 1/100th of its predecessor
model, it outperforms the previous model, showcasing the
effectiveness of their approach. The paper[176] introduces
NOVACOMET, an innovative open commonsense knowledge
model that merges the strengths of both knowledge and
general task models. This model, built upon symbolic knowl-
edge distilled from proprietary models like GPT-3, creates
an auditable discrete knowledge graph, NOVATOMIC, which
facilitates open-format training and application to a wide array
of reasoning tasks. It demonstrates superior performance in
commonsense reasoning, outperforming comparable models
in various benchmarks. The model’s training involves novel
techniques like commonsense field masking for enhanced
flexibility in knowledge handling. Iterative Imitation and De-
coding for Distillation(I2D2)[177] framework employs a four-
stage process that includes prompt construction, constrained
decoding using NeuroLogic Decoding, critic filtering, and self-
imitation learning, where the model is iteratively refined based

on its own high-quality outputs. A new corpus, Gen-A-tomic,
was created to provide diverse and accurate commonsense
knowledge. 12D2 demonstrated superior performance in accu-
racy and precision over larger models like GPT-3, with GPT-2
XL showing significant improvements through self-imitation
learning iterations.

2) Translation: Reinforced Self-Training (ReST)[4] is a
method to align LLMs with human preferences in the realm
of machine translation. This approach incorporates reinforce-
ment learning from human feedback (RLHF) to enhance
the output quality. ReST initiates by generating a dataset
through sampling from the initial LLM policy, followed by
the application of offline reinforcement learning algorithms to
refine the policy. This method is identified as more efficient
than traditional online RLHF techniques, primarily because
it facilitates the creation of the training dataset in an offline
manner, promoting the reuse of data. The effectiveness of
ReST is demonstrated through significant improvements in
translation quality, validated by both automated metrics and
human evaluations across various machine translation bench-
marks.

3) Summarisation: REFEREE[3] is a framework for
reference-free sentence summarization that allows for direct
control of compression ratio. It uses Symbolic Knowledge
Distillation to distill latent knowledge from PLMs, resulting
in smaller but better summarizers with sharper controllability.
The framework employs iterative distillation of knowledge,
where student models from previous iterations serve as teacher
models in the next iteration. This iterative process also gen-
erates a high-quality dataset of sentence-summary pairs with
varying compression ratios. The final student models outper-
form the larger GPT3-Instruct model in terms of compression
ratio controllability without compromising the quality of the
summarization.

4) Mathematical Proof and Reasoning: The paper[138]
presents a method called expert iteration, which combines
proof search with learning to improve language modeling in
formal mathematics. The method involves finding new original
proofs for the same statements and closing marginally harder
statements at each iteration, which in turn provides more useful
training data for the next iteration. By interleaving proof search
with learning, expert iteration is able to dramatically outper-
form proof search only. The paper demonstrates the effective-
ness of expert iteration on a manually curated set of problem
statements and achieves state-of-the-art results on the miniF2F
benchmark, a set of formalized statements of mathematical
problems from various competitions.The paper[178] explores
the concept of distilling abilities from LLMs into smaller
ones, specifically for enhancing their performance in multi-
step math reasoning tasks. The process begins with generating
a dataset using a larger model (like GPT-3.5) employing chain-
of-thought reasoning, where the model details the steps leading
to a solution. This dataset is then used to fine-tune a smaller T5
model, with the aim of specializing its abilities in the specific
area of multi-step reasoning. This fine-tuning process allows
the smaller model to learn the complex reasoning patterns
demonstrated by the larger model.
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5) Visual Commonsense: Localized Symbolic Knowledge
Distillation (LSKD)[179] enhances vision-language models by
focusing on localized regions within images. This method
addresses a significant limitation in existing models, which
interpret images as a whole, by introducing Localized Visual
Commonsense models that can specify and reason about
multiple distinct regions in an image. The authors develop a
scalable framework for generating localized visual common-
sense statements and establish the Localized Commonsense
Knowledge Corpus, which aids in expanding the capabilities
of vision+language models to include references-as-input. The
paper highlights the state-of-the-art zero-shot performance of
these models on three localized visual reasoning tasks and
showcases the superiority of the student model over the teacher
model through human evaluation.

6) Instruction Generation: Traditional instruction-tuned
models, reliant on human-written instruction data, often lack
diversity and creativity, constraining the generality of the
model. SELF-INSTRUCT[180] mitigates this by enabling
models to generate their own instructions, inputs, and outputs,
which are then used for fine-tuning. This process involves
generating task instructions, classifying them, creating in-
stances via input-first or output-first approaches, and filtering
out low-quality data. The approach significantly reduces the
need for human-labeled data, fostering a broader and more
creative instructional capability in LMs. The performance
evaluation shows that the GPT3SELF-INST model, fine-
tuned on this self-generated data, substantially outperforms
the vanilla GPT-3 in instruction-following tasks and closely
matches the performance of models like InstructGPTOOI.
Alpaca[181] enhance the SELF-INSTRUCT data generation
pipeline by employing the more advanced text-davinci-003
model for instruction data generation that explicitly defines
the requirements for instruction generation, aiming for more
focused and relevant outputs. The adoption of aggressive
batch decoding, producing 20 instructions simultaneously,
significantly reduces data generation costs and simplifying the
pipeline by eliminating the distinction between classification
and non-classification instructions and generating only a single
instance per instruction, instead of 2 to 3, streamlines the
process. Evol-Instruct[182] is a novel method that uses LLMs
to automatically generate a vast array of complex instructional
data. This approach begins with simple initial instructions and
employs the LLM to evolve these into more sophisticated and
diverse instructions through in-depth and in-breadth evolution
processes. It enhances instructions by adding constraints, in-
creasing reasoning complexity, and diversifying topics, thus
creating a rich dataset for fine-tuning LLMs. This dataset
is used to train the LLaMA model, resulting in WizardLM,
a model demonstrating superior performance in following
complex instructions compared to human-generated datasets
and existing models like ChatGPT.

7) Handling queries: Vicuna-13B[183] is an open-source
chatbot developed by fine-tuning the LLaMA model with
around 70,000 user-shared ChatGPT conversations from
ShareGPT. It demonstrates superior performance, achieving
over 90% of ChatGPT’s quality, and surpassing other models
like LLaMA and Stanford Alpaca. The training, which cost

approximately $300, utilized advanced techniques for handling
multi-turn conversations. Despite its advancements, Vicuna-
13B shares common LLM limitations, such as challenges in
reasoning or math tasks, and has potential issues with factual
accuracy and safety. Koala[184], a chatbot model developed
by fine-tuning Meta’s LLaMA with web-sourced dialogue
data, including interactions with large models like ChatGPT.
Koala demonstrates competitive performance against estab-
lished models such as ChatGPT and Stanford’s Alpaca, par-
ticularly in handling real user queries. ASK ME ANYTHING
PROMPTING (AMA)[185] is a prompting method for improv-
ing the performance of LLMs like GPT-3. AMA leverages
multiple effective but imperfect prompts, aggregating them
using weak supervision to enhance prediction quality. This
method primarily utilizes open-ended question-answering for-
mats, which are found to be more effective than restrictive
prompts. AMA’s recursive use of the LLM to transform task
inputs into these formats, combined with the aggregation of di-
verse prompts, demonstrates significant improvements in LLM
predictions. QAMELEON][186] is an innovative approach to
multilingual question answering (QA) systems, leveraging
PLMs within a few-shot learning framework. PLMs generate
QA pairs in multiple languages, significantly reducing the
need for extensive, language-specific training datasets. By
requiring only a minimal number of examples (as few as five
per language), QAMELEON efficiently fine-tunes QA models,
overcoming traditional constraints of resource-intensive data
annotation. This approach not only simplifies and accelerates
the development of multilingual QA systems but also achieves
superior accuracy and efficiency, demonstrating its potential as
a scalable and effective solution in NLP.

8) Labeling Data: The research paper[81] examines the
efficacy of using GPT-3 for data labeling in NLP tasks, high-
lighting its cost-effectiveness compared to traditional human
labeling. The study reveals that GPT-3 can reduce labeling
costs by 50% to 96% across various tasks, including sentiment
analysis, text classification, and summarization. The paper
introduces a novel framework that combines GPT-3 generated
pseudo labels with human labels, improving performance
under limited budgets. Furthermore, an active labeling strategy
is explored, where low-confidence labels by GPT-3 are re-
annotated by humans, enhancing label quality. Despite these
benefits, the paper notes that GPT-3 is more suited for low-
stakes labeling tasks, as its reliability in high-stakes scenarios
remains limited. The research[82] presents a novel method
for utilizing PLMs in tasks with scarce labeled training data.
This technique involves prompting the LM with multiple
queries about an example, and the model’s responses are
then interpreted as votes for specific labels or as abstentions.
This process, integrated within a weak supervision framework,
leverages the capabilities of the LM as a labeling function.
The Snorkel system is subsequently employed to clean and
refine these noisy label sources, culminating in the creation of
enhanced training data for an end classifier.

9) Task Specific Small Models: The method, "Distilling
step-by-step"[187], involves extracting rationales from LLMs
alongside output labels. These rationales, serving as detailed
explanations for model predictions, are then used in a multi-
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task learning framework to train smaller models on both label
and rationale prediction tasks. This technique significantly
reduces the data and model size required, enabling smaller
models to surpass the performance of LLMs more efficiently.
The paper demonstrates the effectiveness of this approach
across multiple datasets and tasks, showcasing it as a resource-
efficient alternative to standard finetuning and traditional dis-
tillation methods.

10) Complex Reasoning: Orca [188] is designed to en-
hance the capabilities of smaller models through imitation
learning from large foundation models (LFMs). Traditional
methods faced issues like limited imitation signals, small-
scale homogeneous training data, and inadequate evaluation,
leading to an overestimation of the small models’ capabilities.
These models often imitated the style but not the reasoning
process of LFMs. Orca addresses these challenges by learning
from GPT-4’s rich signals, including explanation traces, step-
by-step thought processes, and complex instructions, with
guidance from ChatGPT as a teacher. This approach en-
ables progressive learning through large-scale and diverse
imitation data. Orca significantly outperforms state-of-the-art
instruction-tuned models like Vicuna-13B in complex zero-
shot reasoning benchmarks, achieving more than a 100%
improvement in Big-Bench Hard (BBH) and a 42% im-
provement in AGIEval. Orca reaches parity with ChatGPT in
BBH and exhibits competitive performance in professional and
academic exams like the SAT, LSAT, GRE, and GMAT, in
zero-shot settings without Chain of Thought (CoT), though
it still trails behind GPT-4. Orca 2[189] builds upon the
Orca project, focusing on enhancing smaller LMs’ reasoning
abilities. Orca 2 continues exploration, particularly addressing
the limitations of imitation learning, which had been the
primary method for training small LMs. This method, while
effective in replicating the output of larger models, often fell
short in reasoning and comprehension skills. It introduces
various reasoning techniques (e.g., step-by-step processing,
recall-then-generate, recall-reason-generate, extract-generate,
direct-answer methods) and focuses on teaching small LMs to
choose the most effective reasoning strategy for a given task.
This approach aims to enable small LMs to perform at their
best, regardless of their size, by utilizing more nuanced data
and training strategies. The system is described as a "Cautious
Reasoner," learning to execute specific reasoning steps and
strategize at a higher level how to approach particular tasks.

VI. OPPORTUNITIES

Symbolic Knowledge distillation of LLM has been one
of the heated topics and has been gaining rapid popularity.
Among the various areas, the most prominent areas where it
can be applied are:

A. Creation of larger, diversified and qualitative dataset

It offers significant potential in enhancing dataset qual-
ity and diversity. This process involves extracting structured
knowledge from LLMs to create datasets that are not only
larger in scale but also exhibit a broader range of qualities
and characteristics. These enriched datasets can be pivotal in

TABLE III
RELATED WORKS IN SYMBOLIC KNOWLEDGE DISTILLATION

Research Types Application
2] Direct Commonsense Reasoning
[3] Multi-level Summarisation
[4] RL based Translation
[176] Direct Commonsense Reasoning
[177] Direct Commonsense Reasoning
[138] Direct Mathematical Proof and Reasoning
[178] Direct Mathematical Proof and Reasoning
[179] Direct Visual Commonsense Reasoning
[180] Direct Instruction Generation
[181] Direct Instruction Generation
[182] Direct Instruction Generation
[183] Direct Handling Queries
[184] Direct Handling Queries
[185] Direct Handling Queries
[186] Direct Handling Queries
[81] Direct Labeling Data
[82] Direct Labeling Data
[187] Direct Generating Task Specific Small Models
[188] Direct Complex Reasoning
[189] Direct Complex Reasoning

training more robust and efficient machine learning models,
leading to advancements in various domains such as NLP,
image recognition, and beyond. The ability to generate high-
quality datasets from LLMs accelerates the development of
more sophisticated Al systems, contributing to advances in
both academic research and practical applications.

B. Reduction in the cost by utilising machines in the low level
task under guidance on humans

Implementing symbolic knowledge distillation in low-level
tasks allows for the effective delegation of routine and repeti-
tive tasks to machines, significantly reducing operational costs.
By leveraging the distilled knowledge from LLMs, machines
can perform these tasks with a high degree of accuracy
and efficiency, under the supervision of human experts. This
collaboration between human intelligence and machine capa-
bilities leads to optimized resource utilization, where humans
focus on more complex, creative, or decision-making tasks
while machines handle the routine aspects, thereby enhancing
overall productivity and cost-effectiveness.

C. Smaller and more powerful models than LLMs for summa-
rization, translation, common sense etc

Distilling knowledge from LLMs into smaller models
presents a promising avenue for creating compact yet powerful
Al tools. These distilled models retain the core capabilities
of their larger counterparts but with reduced computational
requirements. This makes them particularly suitable for appli-
cations like text summarization, language translation, and com-
mon sense reasoning, where efficiency and speed are crucial.
These smaller models offer the dual benefits of lower resource
consumption and faster processing times, making them ideal
for deployment in environments with limited computational
resources or for applications requiring real-time responses.
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TABLE IV
RELATED WORKS IN SYMBOLIC KNOWLEDGE DISTILLATION WITH THEIR MAJOR COMPONENTS
Research Teacher Student Dataset Generated Size of Dataset

2] GPT-3(175B) COMET%s%(1,5B) Commonsense Knowledge Graph 6.5M
[3] GPT-3 REFEREE-CONTROL Sentence-summary pairs 100K
[4] Encoder-Decoder Architecture Teacher Itself Translation Dataset N/A
[176] GPT-3 NOVACOMET NOVATOMIC 2.2M
[177] GPT-3 GPT-2 Gen-A-tomic ™
[138] Decoder Only Architecture Teacher Itself Tactic Dataset N/A
[178] GPT-3.5 FlanT5 Math Reasoning N/A
[179] ChatGPT BLIP-2 Localized Commonsense Knowledge 1M
[180] GPT-3 Teacher Itself Instruction Dataset 82K
[181] GPT-3.5 7B LLaMA Instruction Dataset 52K
[182] ChatGPT WizardLM Instruction Dataset 250K
[183] ChatGPT Vicuna-13B Conversational Dataset 70K
[184] ChatGPT Koala-13B Conversational Dataset N/A
[185] GPT3-175B GPT-J-6B Prompt Dataset N/A
[186] PalLM-540B mT5-XL Multilingual QA 47173
[81] GPT-3 RoBERTa Labeled Data 5.1K
[82] GPT-3 TO++ Labeled Data N/A
[187] 540B PaLM 770M T5 Rationales N/A
[188] GPT-4 Orca(13B) Zero shot queries SM
[189] GPT-4 Orca-2 Progressive queries 817K

D. Instruction tuning

Instruction tuning, in the context of symbolic knowledge
distillation from LLMs, refers to the process of refining and
optimizing Al models to better understand and execute specific
instructions. This approach enhances the model’s ability to
interpret and act upon user commands accurately, leading to
more intuitive and user-friendly Al systems. Instruction tuning
is particularly relevant in applications where user interaction is
key, such as virtual assistants, educational tools, and interactive
Al systems. By focusing on instruction tuning, developers
can create Al models that are not only powerful in their
capabilities but also align closely with user expectations and
needs, facilitating more effective and seamless human-Al
interactions.

E. Novel Algorithm and Evaluation Benchmark

Size alone does not determine the quality of language
generation. Innovative approaches, such as those seen in
12D2[177], present a viable option, particularly in scenarios
where utilizing massive models like GPT-3 is impractical.
Given that this field is in its infancy, the evaluation benchmarks
are quite intricate and require significant refinement. Current
evaluation techniques are from traditional knowledge distilla-
tion benchmarks and must be updated to fit this novel area
of study.Symbolic Knowledge Distillation of LLMs involves
two components: the neural aspect (LLMs) and the symbolic
aspect (distilled symbolic knowledge). Together, these form a
Neurosymbolic model, which necessitates the development of
new benchmarks for evaluation, testing, and validation[190].

FE. Creation of Open source data and open model

The concept of symbolic distillation presents an intriguing
avenue for creating open source data and models within the
realm of LLMs. Currently, many LLMs are proprietary and
trained on closed-source data, limiting accessibility and trans-
parency. Symbolic distillation involves extracting symbolic

knowledge and representations from LLMs, which can then
be used to generate open source data. This open data can
serve as the foundation for training new models that are open
source, thereby democratizing access to advanced language
models. By transitioning from closed source to open source,
we can promote transparency, collaboration, and innovation in
the field of NLP, aligning with the principles of open science
and open Al

G. Self Improvement of LLMs

Reinforcement Learning from Human Feedback (RLHF)
has emerged as a prevalent method for refining LLMs. How-
ever, the involvement of human input inherently constrains
its efficacy and outcomes to the limits of human capabili-
ties. Upon undergoing fine-tuning, LLMs can surpass human
performance levels. Leveraging these enhanced models to
autonomously fine-tune themselves, either via rewards[87] or
prompt tuning or alternative mechanisms, presents a viable
strategy for eliminating the limitations imposed by human
intervention opening the gateway for Superintelligence. When
employing Reinforcement Learning (RL) for fine-tuning LLMs
by themselves, opting for Neurosymbolic RL approaches is
often more advantageous. This is because Neurosymbolic RL
not only aids in the tuning process but also enhances the model
with the ability to interpret and explain its decision-making
process comprehensively[191].

H. Cross-domain Symbiosis

Symbolic Knowledge extracted from LLMs extends its util-
ity beyond the linguistic domain. Studies, such [179], demon-
strate that textual knowledge can augment visual models by
offering explanations and enhancing efficiency. This interdis-
ciplinary application can be further leveraged in diverse fields
such as medical imaging, autonomous driving, and surveil-
lance, serving not only to elucidate model outputs but also
to improve transfer from one domain to another(simulation
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to real) by providing the semantic anchors[192]. This cross-
domain synergy highlights the potential of Symbolic Knowl-
edge in broadening the applicability and understanding of
complex Al systems.

L. Industrial Applications

Symbolic knowledge distillation reveals a critical insight:
the effectiveness of LLMs is significantly influenced not only
by their size (number of parameters) but more importantly by
the quality of the datasets on which they are trained. It high-
lights the significant role of symbolic knowledge distillation
in enhancing domain-specific Al applications by fine-tuning
LLMs with specialized corpora and instruction-following
data. Notable implementations include LawyerLLaMA[193]
and LawGPT[194] for legal services, HuatuoGPT[195] and
ChatDoctor[196] for medical applications, XuanYuan[197] for
finance, DARWIN Series[198] and SciGLM[199] for scientific
research. These tailored models demonstrate substantial im-
provements in accuracy, efficiency, and usability, showcasing
the transformative potential of symbolic knowledge distillation
in various industries.

VII. CHALLENGES
A. Ensuring Data Quality and Diversity in Datasets

While symbolic knowledge distillation from LLMs promises
to enhance dataset quality, a major challenge is ensuring the
high quality and representativeness of the generated data. The
datasets derived from LLMs may inherit biases or inaccuracies
present in the original training data of these models. This
can lead to the propagation of errors and skewed perspectives
in the new datasets, affecting the reliability and fairness of
Al systems trained on them. Ensuring data quality requires
rigorous validation processes and mechanisms to identify and
mitigate biases, which can be resource-intensive, complex, is
still an not so explored area.

B. Balancing Automation and Human Oversight in Dataset
Generation

While utilizing machines under human guidance can reduce
costs, achieving the right balance between automation and
human oversight is challenging. Over-reliance on automa-
tion may lead to oversight of nuanced or exceptional cases
that require human judgment. Conversely, excessive human
intervention can negate the efficiency gains from automa-
tion. Establishing effective protocols and systems for human-
machine collaboration, where machines handle routine tasks
while humans oversee and intervene as needed, is crucial but
difficult to optimize.

C. Developing Compact Models Without Compromising Per-
formance

Creating smaller models from LLMs that maintain high
performance levels is a significant challenge.There are research
efforts to quantize LLMs to ultra-low bit sizes, their perfor-
mance has been found lacking and does not meet the stan-
dards required for industrial applications[200][201]. Symbolic

Knowledge Distillation has shown promise in specific, nar-
rower fields such as translation, summarization, and common-
sense reasoning. However, it must evolve into a comprehensive
symbolic knowledge base capable of generalizing across all
domains. Developing these compact models requires sophis-
ticated techniques to compress and optimize the knowledge
transfer without losing the nuances and depth of the original
model.

D. Effective Instruction Tuning for Diverse Applications

Instruction tuning in AI models poses the challenge of
adapting to a wide range of instructions and use cases. Models
must be versatile enough to understand and execute a variety of
commands accurately across different domains and contexts.
This requires extensive training and fine-tuning, which can
be resource-intensive. Moreover, ensuring that the models
remain adaptable and up-to-date with evolving user needs
and language usage is an ongoing challenge, necessitating
continuous monitoring and updates.

E. Adaptability and Continuous Learning

Ensuring that distilled models can adapt to new informa-
tion and evolving data landscapes is challenging. Continuous
learning mechanisms that allow models to update their knowl-
edge without compromising efficiency or requiring complete
retraining are essential for keeping distilled models relevant
and effective.

VIII. LESSON LEARNED AND KEY TAKEAWAYS
A. Efficiency Through Distillation

Symbolic knowledge distillation demonstrates a powerful
method to enhance the efficiency of LLMs. By distilling
complex, large-scale models into smaller, more manageable
versions without significant loss in performance, researchers
can achieve remarkable efficiency gains. This approach not
only reduces computational requirements but also makes ad-
vanced Al capabilities more accessible for applications with
limited resources.

B. Advancement in Commonsense Reasoning

The transition to a ’from-machine-to-corpus-to-machine’
paradigm marks a significant advancement in commonsense
reasoning. This innovative approach, through the creation
of extensive and diverse datasets like ATOMIC and models
like NOVACOMET, underscores the potential of machine-
generated knowledge in improving AI’s understanding and
application of commonsense knowledge.

C. Innovation in Data Generation and Use by Collaborating
Human Intelligence and Machine Capabilities

LLMs has the potential in generating high-quality, diverse
datasets. These datasets serve as a foundation for training more
robust models, emphasizing the importance of data quality,
diversity, and the innovative use of symbolic knowledge in
dataset creation. The effective collaboration between human
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oversight and automated processes in dataset generation and
task execution highlights the synergistic potential of combin-
ing human intelligence with machine efficiency. This collabo-
ration is key to overcoming current limitations and unlocking
new capabilities in Al systems.

D. Cross-Domain Applications

The applications of symbolic knowledge distillation extend
beyond NLP into areas such as visual commonsense reasoning
and mathematical proof solving. This cross-domain applica-
bility showcases the versatility of distilled models and their
potential to revolutionize various fields by enhancing model
performance and understanding.

E. Instruction Tuning and Generation

The development and refinement of techniques for instruc-
tion tuning and generation signify a leap towards creating
more user-friendly and intuitive Al systems. Models capable
of generating their own instructions or being finely tuned to
understand and execute specific commands can lead to more
natural and effective human-Al interactions.

F. Challenges and Opportunities

While the advancements are notable, they also underscore
challenges such as ensuring data quality, balancing automation
with human oversight, and developing compact models with-
out compromising performance. Addressing these challenges
presents opportunities for further research and innovation
in model training, dataset creation, and the development of
algorithms for enhanced capabilities and benchmark for the
evaluation.

To address the identified gaps in current research on sym-
bolic knowledge distillation, it is crucial to first ensure the
quality and diversity of datasets through rigorous validation
to identify and mitigate biases inherited from LLMs, ensuring
the trustworthy knowledge distillation. Balancing automation
and human oversight is also essential; effective protocols for
human-machine collaboration can optimize efficiency while
ensuring nuanced cases are handled appropriately.Though the
size of data required for efficient distillation is still unknown,
research[202] propose that only 1000 high quality human
curated data is enough. Another challenge is developing
compact models without compromising performance, which
requires sophisticated techniques to compress and optimize
knowledge transfer while maintaining the depth of the original
models. Effective instruction tuning for diverse applications
demands extensive training and fine-tuning to ensure models
can accurately execute various commands across domains.
Ensuring adaptability and continuous learning in distilled
models is vital, necessitating mechanisms for ongoing updates
without compromising efficiency. Addressing these areas will
advance symbolic knowledge distillation towards more reliable
and practical applications.

IX. CONCLUSION

This survey paper has explored the emerging and crucial
domain of symbolic knowledge distillation in LLMs. As
LLMs continue to grow in scale and complexity, the need
to effectively extract and represent their extensive knowledge
becomes paramount. By categorizing existing research based
on methodologies and applications, we have highlighted how
symbolic knowledge distillation can enhance the transparency
and functionality of smaller, more efficient AI models. This
comprehensive overview underscores the significance of sym-
bolic knowledge distillation in advancing more accessible
and efficient Al systems. While there is a notable lack of
comprehensive research in this area, our survey paper fills this
crucial gap by offering an extensive review of the current state
of symbolic knowledge distillation in LLMs, shedding light on
methodologies, challenges, and advancements in this field.
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