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Abstract

Consistent and accurate measurement of public perceptions of water quality is useful for understanding
water use behaviors, policy development/support, and community engagement, all essential for sustainable
water management. Toward consistent and accurate measurement, we refined and examined the initial
psychometric properties of a Water Quality Perception Scale (WQPS). In this study, we report an
exploratory factor analysis (EFA) with 18 items on a group of respondents (N=154), which identified one
primary factor, 'Individual Water Quality Perception,' consisting of 13 items and two additional factors
represented by the remaining 5 items. Subsequently, a confirmatory factor analysis (CFA) was performed
with (n=147 participants), including both original (n=74 assessed at a separate time from their original
assessment) and new participants (n=73). The results of the CFA affirmed the initial loadings of the 13-
item WQPS in a single factor. The scale demonstrated internal consistency, with coefficients of 0.91 and
0.89 (Cronbach's alpha) in the two samples, and the measure showed convergent validity with the
Household Water Insecurity Experiences Scale (HWISE), ( r=-0.41 and -0.49 in the respective samples).
This scale holds promise toward consistent and accurate measurement instrument for researching public
perceptions of water quality, guiding policy and public initiatives to improve water management strategies.

Avenues for further development and use are discussed.
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Water quality perceptions, scale development, water insecurity
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Introduction

Water quality, encompassing water's physical, chemical, and biological attributes, remains a cornerstone of
environmental sustainability, public health, and economic development (Duan et al., 2013; Gholizadeh et
al., 2016). The United Nations' Sustainable Development Goal 6 exemplifies the global emphasis on
drinking water quality, which seeks to "ensure availability and sustainable management of water and
sanitation for all" (Hoekstra et al., 2017). Nevertheless, the public's understanding and perception of water
quality often diverge from the objective measurements of scientists and policymakers (Doria, 2010; Eden,
1996; Pacione, 2003). This mismatch can result in non-optimal water-related behaviors, suboptimal policy
support, and public resistance to critical water initiatives (Grey et al., 2013; Nelson et al., 2023).

Myriad water quality problems can affect public perception. While commendable strides in
improving water quality have been made, high-profile incidents, like the lead-contaminated water crisis in
Flint, Michigan, can dominate public discourse even in the most industrialized countries (Pauli, 2020).
Moreover, other communities across the United States, including Newark, New Jersey, and Jackson,
Mississippi, have faced water-related crises (Kim et al., 2023; Yang & Faust, 2019). These situations not
only spotlight the immediate health concerns but also lead to heightened distrust in authorities and a skewed
perception of overall water quality in the nation. Water quality perception involves the process through
which individuals pick, structure, and decode sensory information to construct a coherent understanding of
their water quality (Alhassan & Kwakwa, 2013; Auslander & Langlois, 1993; Heekeren et al., 2008; Hu et
al.,, 2011). It confluences an individual's experiences, deeply ingrained cultural beliefs, educational
background, and prevailing media narratives (Tuan, 1990). Even if objective measures indicate that water
is safe for drinking, significant mistrust or concerns over quality can lead to notable consequences, ranging
from reduced consumption to increased reliance on unsustainable bottled water (Doria, 2006, 2010).

A gap between perception and reality can have tangible consequences. Distrust in public water systems can
lead to increased bottled water consumption, which has environmental implications and places a financial
burden on households (Nelson et al., 2023). Misconceptions about water quality can lead to negative public

behaviors, hindering the implementation of necessary water infrastructure upgrades or pollution control
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measures (Pierce & Gonzalez, 2016). Indeed, Sarkar (2022) has suggested including a module of questions
in the American Housing Survey (AHS) that would provide data to determine and track the link between
the perception of water quality and local-level communication regarding it, the effectiveness of the
frequency of receiving such information, and other factors that link perception and consumption (Sarkar,
2022)

Consistent and accurate measurement of water quality perceptions is needed. Such assessments are
at an important intersection between the engineering, social, policy, and human aspects of water security
and sustainability (Weems et al., 2023). While qualitative approaches such as interviews and focus groups
offer depth, they are often constrained in scope and scalability (Agunbiade & Ogunleye, 2012; Davis et al.,
2019; Goss & Leinbach, 1996). Their inherent design often limits their applicability to smaller, targeted
populations. This poses challenges in generalizing findings or scaling up these methods for broader regional
or national assessments. However, it is important to recognize the evolving methodologies within
qualitative research that address these limitations. Various studies have demonstrated innovative methods
to scale qualitative data, leveraging technologies and mixed-methods approaches that enhance data
collection, analysis, and generalization capabilities (Crespo et al., 2021; Zachariadis et al., 2013). This
includes the use of digital platforms for wider participant recruitment, software for data analysis, and
strategic integration with quantitative methods to broaden the scope of research findings (O’Connor et al.,
2016; Rupert et al., 2017).

Questionnaires, often structured and closed-ended, can be developed based on insights from
qualitative work to assess large samples (Doria et al., 2009; Levéque & Burns, 2017). Conversely, responses
from these questionnaires can guide the design of qualitative approaches for deeper insights (Braun et al.,
2021). However, a lack of standardization in question framing, response scales, and thematic focus can lead
to inconsistencies, making it challenging to conduct cross-comparative analyses or aggregate data from
different studies. Furthermore, while water infrastructure decisions are often local, the factors influencing

public perceptions of water quality can have regional or national resonance (Alhassan & Kwakwa, 2013;
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Pierce & Gonzalez, 2016; Yang & Faust, 2019). Factors such as environmental policies and media
narratives can greatly influence public perception on a larger scale (Heekeren et al., 2008).

Research helping to move toward a consistent and accurate measurement instrument of water
quality perceptions is needed, similar to the work done on "water insecurity" with the Household Water
Insecurity Experiences (HWISE) Scale developed by Young et al. (2019). The HWISE is used in several
contexts to understand water insecurity and facilitate consistency assessment across studies. To this end,
this study aimed to provide initial psychometric data on a Water Quality Perception Scale (WQPS). To
facilitate consistency, a large portion of the items selected for analysis in this study were initially included
in a study by Doria et al. in 2009. Their paper explored the influence of organoleptic properties (taste, smell,
and color) on perceptions of tap water quality (Doria et al., 2009). The items from Doria's study were
adapted, sometimes directly and sometimes with modifications, to fit a broader context, attempting to make
them relevant across diverse geographic and cultural environments. In the original work by Doria et al.
(2009), the items were treated as separate individual indicators; however, this paper aimed to determine if
these items comprise a unitary or multifaceted construct of "water quality perception". In other words, can
a set of items from tap water quality perceptions be considered separate indicators?

Data collection for this particular project was conducted in Puerto Rico. Acknowledging the
significant impact of hurricanes on Puerto Rico's water infrastructure and quality (Brown et al., 2018; Mejia
Manrique et al., 2021), the research team also developed items that address these specific challenges related
to the hurricane season. Hurricanes and their aftermath play a substantial role in shaping the perception of
water quality and safety. In Phase 1, we describe the development of the WQPS and explore its factor
structure using exploratory factor analysis (EFA). We expected there to be a core set of items but that there
may be additional factors from the initial set of items tested. In Phase 2, we use confirmatory factor analyses
(CFA) to replicate the factor structure identified via the EFA analyses. We also examine the WQPS's
association with a similar construct of water insecurity using the Household Water Insecurity Experiences

(HWISE) Scale developed by Young et al. (2019). We predicted that the WQPS scale would be moderately
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(because water quality is similar but distinct from water insecurity) and negatively correlated with the

HWISE (i.e., more water insecurity is associated with lowered water quality perceptions).

Methods

Initial Instrument

Table 1 links each WQPS item to its source.

Table 1 Water Quality Perception Scale Items and Sources

Construct Water Quality Perception Scale Items Source

Quality My tap water is usually of high-quality (Doria et al., 2009)
Risk Thire are health risks associated with drinking water in my home from my | (Doria et al., 2009)

tap
Taste I am happy with the taste of my tap water (Doria et al., 2009)
Color I am happy with the color of my tap water (Doria et al., 2009)
Odor I am happy with the smell of my tap water (Doria et al., 2009)
Maintenance The water pipes and taps of my home are clean and well-maintained (Doria et al., 2009)
Friends Some friends told me negative comments regarding my tap water. (Doria et al., 2009)
Family Some family members told me negative comments regarding my tap water | (Doria et al., 2009)
Memorability | Tap water has caused health problems for me or for someone in my family | (Doria et al., 2009)
. (Doria et al., 2009;
Trust I trust my water service company (e.g., AAA/PRASA) Nelson et al., 2023)
Familiarity I am used to my tap water (Doria et al., 2009)
Pressure I am satisfied with the tap water pressure in my home (Doria et al., 2009)
Lead/Chemical | My tap water is contaminated with lead or any chemicals* (Doria et al., 2009)
Chlorine My tap water has too much chlorine* (Doria et al., 2009)
Hardness 1 My tap water has too much limescale* (Doria et al., 2009)
Hardness 2 My tap water is too hard* (Doria et al., 2009)
Hurricane 1 Iam Worried about the quqlity of water and water contamination (e.g., Author construct
chemicals) during the hurricane season
Hurricane 2 I am worried about the quality of water and water contamination (e.g., Author construct

chemicals) after the hurricane season

Note: *reverse coded items

Respondents are asked to answer each of these 18 items on a 5-point Likert-type agreement scale

from strongly disagree to strongly agree. To ensure linguistic accuracy, the survey was meticulously

translated into Spanish by one of our authors, who is a native of Puerto Rico, thus ensuring cultural

relevance and precision in our Spanish-language questionnaire. The administration of the survey was
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conducted by a team of four field research assistants, who ensured the quality and consistency of the data

collection process throughout the study.

Sampling Strategy and Data Collection

These data came from a larger study of repeated disasters on water insecurity and mental health outcomes
in Puerto Rican communities. Puerto Rico is an ideal study area for this initial work because while the
mainland USA has faced its share of water quality challenges, Puerto Rico, a U.S. territory, navigates an
even more challenging situation. This is not solely a product of infrastructure or policy but is significantly
amplified by natural hazards, particularly hurricanes (Brown et al., 2018; Kaufman, 2019). Historically,
Puerto Rico has faced infrastructural challenges. Aging pipelines, wastewater treatment limitations, and
compromised water sources have perennially influenced the island's water narrative (Mejia Manrique et al.,
2021). The situation, complex in its own right, is exacerbated by natural hazards. Puerto Rico lies in a
region frequently hit by hurricanes. Disasters like Hurricane Maria in 2017 not only affected the island's
infrastructure but also critically impacted water quality. The heavy rainfall and flooding led to the overflow
of sewage systems, the runoff of contaminants from damaged industrial sites, and the mixing of fresh water
with salt water, all of which contributed to widespread drinking water contamination (Fischbach et al.,
2020; Ghosh et al., 2021; Rosinger, 2018).

Data was collected in four municipalities: Loiza, Aguas Buenas, Comerio, and Utuado. Loiza,
characterized by its Afro-Puerto Rican heritage, encapsulates economic disparities often overshadowed by
Puerto Rico's more commercially celebrated regions (Nelson et al., 2023). A deep-seated economic
marginalization in Loiza interfaces with water insecurity, necessitating a nuanced exploration. Aguas
Buenas, ironically, which means "good waters" in Spanish, has been a hotspot for infrastructural challenges,
especially post-hurricane devastations (Laskow, 2018). Both Hurricanes Maria and Fiona have strained its
already fragile water distribution systems, inducing multifaceted adversities for its populace. The
topographical intricacies of Comerio, which lies in Puerto Rico's mountains, lead to unique challenges.

Access to consistent, clean water sources remains a perennial issue, further intensified during seasonal



149

150

151

152

153

154

155

156

157

158

159

160

161
162

163

164

165

166

167

168

169

170

171

172

173

174

fluctuations (Marcos, 2022). Utuado's proximity to abundant water sources is marred by outdated water
treatment. Despite its geographical proximity to freshwater sources, contamination and accessibility
challenges are rampant (Holladay et al., 2021).

In the first phase of our research, we focused on the collection of survey data from 154 residents
spanning three municipalities: Loiza, Comerio, and Aguas Buenas. These data were gathered prior to the
devastating effects of Hurricane Maria from May 2022 to July 2022. Following the hurricane, Phase 2 was
initiated, where we expanded our geographical scope to include an additional region, Utuado, following the
low response rate from Loiza after Hurricane Fiona. Hence, the data for the second phase encapsulated
survey data from 147 residents of Loiza, Comerio, Aguas Buenas, and Utuado, specifically after the impacts
of Hurricane Fiona from September 2022 to February 2023. The methodologies and survey instruments
implemented in both studies were reviewed and approved by the Institutional Review Board (IRB) of lowa

State University.

Data Analysis
Phase 1: Exploratory Factor Analysis

The 18-item items from Table 1 were initially analyzed using the pre-hurricane Fiona dataset (N=154) with
exploratory factor analysis (EFA)executed in STATA 15 statistical software. The principal axis factoring
of the item correlation matrix using a Varimax rotation was used to simplify factor identification (Janus &
Offord, 2007; Ohan et al., 2000). The varimax rotation was used to present a clearer, more discernible factor
structure (Osborne, 2019). Maximizing the variance of the squared loadings ensures that items
predominantly load onto a single factor, which considerably simplifies interpretation and subsequent
utilization. Critical to the factor interpretation is the consideration of factor loadings. These loadings serve
as markers, pointing towards the correlation strength between individual items and the identified constructs.
Convention in the literature dictates that items with loadings above certain thresholds, often set at 0.3,
significantly represent a specific factor (Beavers et al., 2019). It is through this lens that each item's

relevance to the identified constructs was determined.



175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Phase 2: Confirmatory Factor Analysis

Following the EFA results in Phase 1, we conducted a Confirmatory Factor Analysis (CFA) with the post-
hurricane Fiona dataset (N=147) to confirm the factor structure of the scale items. This methodological
approach tests the alignment of the proposed factor structure with the observed data (Luong & Flake, 2023).
Initially, the factor model was specified based on insights from the EFA results and a robust theoretical
foundation, wherein each item was systematically aligned to its hypothesized factor. Full Information
Maximum Likelihood (FIML) approach was adopted for the analysis (Enders, 2001). We examined the
model's fit with the data using multiple fit indices. Specifically, the chi-square statistic, Comparative Fit
Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and the
Standardized Root Mean Square Residual (SRMR) were assessed against accepted benchmarks (Hu &
Bentler, 1998). Modification indices were examined to discern potential enhancements, ensuring that any
revisions were grounded both statistically and theoretically.

Convergent Validity

The convergent validity of the WQPS scale was assessed by conducting Pearson correlations between the

total WQPS scores and the total HWISE scores at both Phase 1 and Phase 2.



191
192
193
194
195

196
197

198

199

200

201

202

203

204

205

Results

Phase 1

Descriptive Statistics

Table 2 reports the demographic characteristics of the participants in phase 1 of the study.

Table 2 Demographics Results of Phase 1

Variable N Descriptive Statistics Value %
Age 154 | Minimum 20 -
Mean 62.83 -
Median 66 -
Maximum 93 -
Gender 154 | Female 115 75%
Male 39 25%
Education 152 | No Schooling Completed 3 2%
Elementary School Degree 13 8%
Middle School Degree 14 9%
High School Diploma 72 47%
Bachelor's Degree 34 22%
Associate's Degree 14 9%
Other/Missing 4 3%
Race 154 | White 46 30%
Black/African American 46 30%
Asian 0 0%
Native Hawaiian/Pacific Islander 0 0%
American Indian/Alaska Native 2 2%
Mixed (5) 28 18%
Other/Missing (6) 32 20%

Correlation of WQPS Items at Phase 1

The Pearson correlation matrix in Figure 1 shows the relationships between the individual items of the
initial 18-item WQPS. Coefficients range from -1 to 1, where 1 denotes a perfect positive correlation, -1
denotes a perfect negative correlation, and 0 indicates no correlation. The color gradient represents the
direction and strength of these correlations: shades of blue indicate positive correlations, shades of red
denote negative correlations, and the color's intensity reflects the correlation's magnitude. Most of these
items indicate moderate to high correlation values amongst themselves. Such a pattern suggests the
appropriateness of factor analysis (i.e., the items are factorable) and that each item correlated at an

acceptable level with the total.

10
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207 Figure 1 Pearson Correlation Matrix of Initial WQPS Items in Phase 1 (*** p<(.01, ** p<0.05, * p<0.1)
208

209  Exploratory Factor Analysis

210  The Kaiser—Meyer—Olkin (KMO) measure of sampling adequacy was 0.895, a value suggesting adequate

211  sample size (Kaiser, 1991). Furthermore, Bartlett's test of sphericity was significant (p < .001), thereby

212 confirming that correlations between WQPS items were substantial enough to warrant factor analyses
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(Beavers et al., 2019). The data had a few missing values. Each item on the WQPS had between 0.65% to
9.74% missing.

A factor solution was obtained by considering Kaiser's criterion (retaining factors with eigenvalues
greater than one), the interpretability of obtained factor solutions, and the internal consistency of obtained
factors provided by STATA 15, which suggested a three-factor model. Each factor potentially represented
distinct dimensions of people's perceptions related to water quality. Three factors with 18 items were
extracted: [1] individual water quality perception (13 items); [2] external/family-induced water quality
perception (3 items); and [3] hurricane-related water quality perception (2 items) (Table 3). Internal
consistency (Cronbach's alpha) for factors 1 was 0.93; for factors 2 and 3, internal consistency was 0.84
and 0.73, respectively (see Table 3). We identified the first factor as a reliable subscale because Cronbach's
a was larger than 0.9, which indicates excellent internal consistency (Cronbach, 1951; Taber, 2018).

Conceptually, factor 1 encompasses a range of items that directly reflect an individual's subjective
assessment of their tap water quality. Central to this factor appear to be those that directly address the
sensory qualities of the water (taste, color, smell) and health-related concerns (presence of chemicals or
contaminants like lead, chlorine, or limescale). These items are critical as they are likely to have a direct
and significant impact on an individual's overall perception of water quality. Other items in this factor, like
satisfaction with water pressure, trust in the water service company, and the condition of water pipes and
taps, while still relevant, might be considered more peripheral. They contribute to the overall perception
but might not be as directly influential as the sensory and health-related aspects. The high internal
consistency of this factor suggests that these items when considered together, provide a comprehensive and
reliable measure of an individual's perception of their water quality.

Despite the acceptable levels of internal consistency for factors 2 and 3, we encountered high
skewness values that signaled a distributional bias in the responses (Dinno, 2009). Conceptually, factor 2
was external perception focused on the individual's perception — these are on what others thought about
water quality, and factor 3 was situation-dependent focusing on the hurricane. Coupled with the limited
number of items for factors 2 and 3, factors 2 and 3 appear to be in need of additional refinement and

12



239  additional development. Figure 2 shows the distribution curve of the total score of the 13-item WQPS at

240 Phase 1.

241

Histogram with Normal Distribution Overlay for Scale at Phase 1

Skewness: 0.19

Number of Observations

o 20 40
242 13 ltem Water Quality Perception Scale at Phase 1

243 Figure 2 Distribution Curve of WQPS at Phase 1

244
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245  Table 3 Exploratory Factor Analysis of the Water Quality Perception Scale (WQPS) (all loadings >0.3).

246
WQPS Factors and Items INtZ;r:)sf Mean SD  Skewness E?)fltdoi;g bC:;)llll'_s (a) 5;%::
Factor 1: Individual Water Quality Perception 13 0.93 8.89
Tap water is usually of high quality 2.05 1.90 0.31 0.79
There are health risks associated with drinking water in my home from my tap* 2.82 1.98 -0.18 0.58
I am happy with the taste of my tap water 1.87 1.99 0.45 0.86
I am happy with the color of my tap water 1.9 2.03 0.40 0.87
I am happy with the smell of my tap water 2.09 1.95 0.26 0.85
The water pipes and taps of my home are clean and well maintained 2.89 1.86 -0.46 0.49
I trust my water service company (i.e., AAA/PRASA) 2.26 1.92 0.10 0.70
I am used to my tap water 3.05 1.97 -0.55 0.70
I am satisfied with the tap water pressure in my home 2.96 1.89 -0.34 0.74
My tap water is contaminated with lead or any chemicals* 3.14 1.85 -0.32 0.47
My tap water has too much chlorine* 2.07 1.82 0.33 0.65
My tap water has too much limescale* 3.01 1.96 -0.30 0.64
My tap water is too hard* 2.97 1.88 -0.31 0.58
Factor 2: External Water Quality Perception 3 0.84 1.57
Some friends told me negative comments regarding my tap water. 1.08 1.83 1.32 -0.86
Some family members told me negative comments regarding my tap water 1.34 2.01 0.99 -0.82
Tap water has caused health problems for me or for someone in my family 0.99 1.64 1.53 -0.78
Factor 3: Hurricane Induced Water Quality Perception 2 0.73 1.35
I am worried about the quality of water and water contamination (e.g., chemicals) during 4.07 1.57 -1.65 -0.82
the hurricane season
I am worried about the quality of water and water contamination (e.g., chemicals) after the 4.35 1.33 -2.21 -0.88
hurricane season
Total 18 43.61  16.25 0.05 - 0.91 -

247 Note: *reverse coded items

14
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Convergent Validity

The Pearson correlation analysis revealed a correlation of -0.41 (p<<0.01) between the WQPS and HWISE
scores. It suggests that when individuals have a high perception of their drinking water quality, they are
likely to report lower levels of water insecurity, providing an estimate of convergent validity consistent

with the prediction.

Phase 2
Descriptive Statistics

Table 4 illustrates the demographic breakdown of the participants in Phase 2 (N= 147), which included

some recurring participants from Phase 1 (n = 74).

Table 4 Demographics Results of Study 2

Variable N Descriptive Statistics Value %
Age 140 Minimum 22 -
Mean 58.39 -
Median 59 -
Maximum 90 -
Gender 147 Female 124 85%
Male 23 15%
Education 147 No Schooling Completed 6 4%
Elementary School Degree 12 8%
Middle School Degree 14 10%
High School Diploma 47 32%
Bachelor's Degree 27 18%
Associate's Degree 30 20%
Other/Missing 11 8%
Race 147 White 81 55%
Black/African American 16 11%
Asian 0 0%
Native Hawaiian/Pacific Islander 0 0%
American Indian/Alaska Native 1 0%
Mixed 45 31%
Other/Missing 4 3%

Correlation of Final WQPS Items at Phase 2

The Pearson correlation matrix in Figure 3 shows individual items of the final 13-item WQPS total score
from Phase 1. The matrix again reveals, as in phase 1, that the majority of these items demonstrate moderate

to high positive correlation values with each other. Such trends suggest a shared variance between these
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264  items, possibly alluding to underlying commonalities that these individual items may be addressing.
265  Moreover, each item exhibits a positive correlation with the total score of the final WQPS, suggesting that
266  they contribute significantly to the composite measure. The strength of these correlations with the total
267  score emphasizes the internal consistency of the final WQPS, indicating that these items effectively capture

268  the essence of the water quality perception construct that the scale endeavors to measure.
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Confirmatory Factor Analysis

CFA restricted loadings exclusively on the identified single factor (Marsh et al., 1998, 2020). The results
of the CFA supported the adequacy of this one-factor model. Specifically, the initial fit parameters
generated by STATA in the CFA were as follows: %*(65) = 211.07 (p<0.001), Root mean squared error of
approximation (RMSEA) = 0.134, 90% confidence interval (CI) = [0.114, 0.154]. The Comparative fit
index (CFI) and Tucker-Lewis index (TLI) values were 0.83 and 0.80, respectively, while the Standardized
root mean squared residual (SRMR) was 0.08.

The model's modification indices hinted that the estimation of error covariances between five item
pairs could enhance the model. The five-item pairs were color-odor, color-lead/chemical, trust-familiarity,
lead/chemical-hardness1, and chlorine-hardness1. Error covariances for the five-item pairs were then freely
estimated. The final fit indices after modification generated by STATA in the CFA were as follows: ¥*(59)
=73.67 (p =0.095), RMSEA = 0.044, 90% confidence interval (CI) = [0.000, 0.074], indicating a good fit
(Hu & Bentler, 1998). The CFI and TLI values were 0.98 and 0.97, respectively, surpassing the
recommended 0.95 threshold often cited in research (Finch, 2020; Kashyap & Singh, 2017). The SRMR
was 0.054, indicating an acceptable level of model fit way below the threshold of 0.09 (Cho et al., 2020).

Figure 4 shows the distribution curve of the 13-item WQPS at Phase 2.

17
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Convergent Validity
The Pearson correlation revealed that the WQPS had a correlation of -0.49 (p<0.01) with HWISE, again

suggesting convergent validity.

Discussion

The analysis of water quality perceptions occupies a crucial intersection across multiple disciplines,
including engineering, geosciences, and social sciences (Weems et al., 2023). This intersectionality
highlights the necessity of examining both physical factors, such as the accessibility and sources of drinking
water, and intangible factors, notably human water quality experiences and perceptions (Alhassan &
Kwakwa, 2013; Auslander & Langlois, 1993; Heekeren et al., 2008; Hu et al., 2011). Accuracy and
reliability in measuring these water quality perceptions are paramount. This study makes a significant stride
towards refining the measurement of water quality perceptions, drawing parallels to the methodologies

employed in assessing "water insecurity" via the Household Water Insecurity Experiences (HWISE) scale.
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The Water Quality Perception Scale (WQPS) developed through this research has the potential for
application in diverse contexts to enhance the understanding of water insecurity and promote uniformity in
evaluation of water quality perceptions across different studies.

Further building on the foundational work by Doria et al. (2009), which illuminated the critical
influence of sensory experiences—such as taste, color, and odor—on people's perceptions of water quality,
this research proposes a set of 13 key items that form the core of the "Individual Water Quality Perception”
construct. These findings advocate for a singular unitary construct that revolves around the direct sensory
experiences that individuals have with drinking water, suggesting that water quality perceptions are integral
components of how water quality is assessed and understood. Moreover, the observed negative correlation
between perceived water quality (measured with the WQPS) and water insecurity (measured with HWISE)
suggests that when individuals think highly of their water quality through positive sensory experiences such
as clear appearance, pleasant taste, and absence of foul odors, their sense of water security increases. This
correlation logically aligns with the expectation that water insecurities tend to diminish when perceptions

of water quality are positive.

Study Limitations

The present study has several limitations but points to several areas of further study and refinement. The
participant sample, chosen for an initial wide distribution of responses, may not fully represent the broader
population. This calls for replication and refinement of the scale in additional settings or among additional
groups. Large-scale studies of broader representative populations on drinking water vulnerabilities are
needed. Moreover, the current set of items may not capture all facets of water quality perceptions that a
more expansive item set could. Similarly, the question of whether specific terms like 'limescale,’ often
crucial in water quality discussions, are understood uniformly by all participants, especially considering
varying educational and cultural backgrounds. Furthermore, self-reported measures always carry the risk
of social desirability bias, where participants might provide responses they believe are expected rather than
their true perceptions (Randall & Fernandes, 1991). However, as the scale primarily measures perception,
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such questioning remains a key method to capture beliefs and attitudes. Research on the linkages between
different water compositions within safe drinking limits and quality perceptions may help in the refinement
of future items. For instance, incorporating qualitative methods such as in-depth interviews or participatory
workshops could offer richer, context-specific understandings of attitudes towards water quality (Lin et al.,
2020; Nelson et al., 2023). Additionally, exploring more interdisciplinary research on sensory perception
and environmental psychology can inform the development of more sophisticated items for measuring
water quality perceptions. Furthermore, existing work on taste sensitivity could be applied in water quality
perception research to develop more items (Puputti et al., 2018).

Language dialect differences and the translation of items, particularly for a study potentially
involving multi-lingual participants, add another layer of complexity. Recognizing the importance of
accurate and culturally sensitive translation, the study was translated into the Puerto Rican dialect of
Spanish by one of the authors, a native of Puerto Rico. This approach indicates an understanding of the
subtleties involved in translation and the impact of regional dialects on comprehension. Ensuring that
participants, especially in regions where this dialect is spoken, have a consistent understanding of each item
is crucial for the validity of the findings.

Lastly, while the research identified and focused on the "Individual Water Quality Perception," it
is crucial to remember that water quality perceptions are multifaceted, and other external indicators not
deeply probed in this study might have significant influence. Future research should aim to address these
limitations by developing and further refining the two other indicators related to "External Water Quality
Perception" and "Hurricane Induced Water Quality Perception" identified in the study to provide a more

comprehensive understanding of the topic.

Conclusion

This study provided initial psychometric data toward understanding public perception of water quality.

Given the ever-growing concerns surrounding water insecurity globally, the WQPS items might be a

20



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

valuable addition to the studies that aim to understand water crises. By complementing other similar
measures, such as the HWISE scale, it may augment assessment of the myriad factors related to water
security. Comprehensive, consistent and accurate measurement of water quality are at an important
intersection between the engineering, social, policy, and human aspects of water security and sustainability
(Weems et al., 2023). Public perception, often an enigma for utility providers, including this module of
questions in Housing Survey (such as the AHS) could provide data to determine and track the link between
the perception of water quality and local-level communication regarding it, (Sarkar, 2022). helping utility
providers better understand user perceptions

Periodic deployment of this scale in surveys can furnish utilities with real-time insights into public
sentiment. Such proactive gauging of perceptions is pivotal, especially when navigating crises like
contamination events or post-disaster scenarios. Addressing areas flagged by the public, whether it is the
taste of tap water or concerns over contamination, allows utilities to prioritize interventions and bolster
public trust. For instance, if misgivings about tap water's taste become prominent, utility companies can
engage in dual strategies: rectifying potential causes and launching awareness campaigns to educate the
public, ensuring that misconceptions are addressed head-on. Public health officials, on the other hand, can
also benefit from consistent and accurate assessment. An informed understanding of water quality
perceptions can be the linchpin in devising strategies that nudge the populace from bottled water reliance
to increased tap water consumption, addressing both health and environmental concerns.

Lastly, policymakers can utilize consistent and accurate assessments to shape nuanced, community-
centric water policies. An in-depth grasp of public sentiment, as facilitated by the scale, ensures that policies
resonate with community concerns and aspirations. In tumultuous times, especially during crises, such a

tool becomes invaluable, guiding the formulation and communication of swift, effective response strategies.
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