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Abstract 16 

Consistent and accurate measurement of public perceptions of water quality is useful for understanding 17 

water use behaviors, policy development/support, and community engagement, all essential for sustainable 18 

water management. Toward consistent and accurate measurement, we refined and examined the initial 19 

psychometric properties of a Water Quality Perception Scale (WQPS). In this study, we report an 20 

exploratory factor analysis (EFA) with 18 items on a group of respondents (N=154), which identified one 21 

primary factor, 'Individual Water Quality Perception,' consisting of 13 items and two additional factors 22 

represented by the remaining 5 items. Subsequently, a confirmatory factor analysis (CFA) was performed 23 

with (n=147 participants), including both original (n=74 assessed at a separate time from their original 24 

assessment) and new participants (n=73). The results of the CFA affirmed the initial loadings of the 13-25 

item WQPS in a single factor. The scale demonstrated internal consistency, with coefficients of 0.91 and 26 

0.89 (Cronbach's alpha) in the two samples, and the measure showed convergent validity with the 27 

Household Water Insecurity Experiences Scale (HWISE), ( r = -0.41 and -0.49 in the respective samples). 28 

This scale holds promise toward consistent and accurate measurement instrument for researching public 29 

perceptions of water quality, guiding policy and public initiatives to improve water management strategies. 30 

Avenues for further development and use are discussed. 31 

Keywords 32 

Water quality perceptions, scale development, water insecurity 33 

 34 

  35 



3 
 

Introduction 36 

Water quality, encompassing water's physical, chemical, and biological attributes, remains a cornerstone of 37 

environmental sustainability, public health, and economic development (Duan et al., 2013; Gholizadeh et 38 

al., 2016). The United Nations' Sustainable Development Goal 6 exemplifies the global emphasis on 39 

drinking water quality, which seeks to "ensure availability and sustainable management of water and 40 

sanitation for all" (Hoekstra et al., 2017). Nevertheless,  the public's understanding and perception of water 41 

quality often diverge from the objective measurements of scientists and policymakers (Doria, 2010; Eden, 42 

1996; Pacione, 2003). This mismatch can result in non-optimal water-related behaviors, suboptimal policy 43 

support, and public resistance to critical water initiatives (Grey et al., 2013; Nelson et al., 2023). 44 

Myriad water quality problems can affect public perception. While commendable strides in 45 

improving water quality have been made, high-profile incidents, like the lead-contaminated water crisis in 46 

Flint, Michigan, can dominate public discourse even in the most industrialized countries (Pauli, 2020). 47 

Moreover, other communities across the United States, including Newark, New Jersey, and Jackson, 48 

Mississippi, have faced water-related crises (Kim et al., 2023; Yang & Faust, 2019). These situations not 49 

only spotlight the immediate health concerns but also lead to heightened distrust in authorities and a skewed 50 

perception of overall water quality in the nation. Water quality perception involves the process through 51 

which individuals pick, structure, and decode sensory information to construct a coherent understanding of 52 

their water quality (Alhassan & Kwakwa, 2013; Auslander & Langlois, 1993; Heekeren et al., 2008; Hu et 53 

al., 2011). It confluences an individual's experiences, deeply ingrained cultural beliefs, educational 54 

background, and prevailing media narratives (Tuan, 1990). Even if objective measures indicate that water 55 

is safe for drinking, significant mistrust or concerns over quality can lead to notable consequences, ranging 56 

from reduced consumption to increased reliance on unsustainable bottled water (Doria, 2006, 2010).  57 

A gap between perception and reality can have tangible consequences. Distrust in public water systems can 58 

lead to increased bottled water consumption, which has environmental implications and places a financial 59 

burden on households (Nelson et al., 2023). Misconceptions about water quality can lead to negative public 60 

behaviors, hindering the implementation of necessary water infrastructure upgrades or pollution control 61 
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measures (Pierce & Gonzalez, 2016). Indeed, Sarkar (2022) has suggested including a module of questions 62 

in the American Housing Survey (AHS) that would provide data to determine and track the link between 63 

the perception of water quality and local-level communication regarding it, the effectiveness of the 64 

frequency of receiving such information, and other factors that link perception and consumption (Sarkar, 65 

2022) 66 

Consistent and accurate measurement of water quality perceptions is needed. Such assessments are 67 

at an important intersection between the engineering, social, policy, and human aspects of water security 68 

and sustainability (Weems et al., 2023). While qualitative approaches such as interviews and focus groups 69 

offer depth, they are often constrained in scope and scalability (Agunbiade & Ogunleye, 2012; Davis et al., 70 

2019; Goss & Leinbach, 1996). Their inherent design often limits their applicability to smaller, targeted 71 

populations. This poses challenges in generalizing findings or scaling up these methods for broader regional 72 

or national assessments. However, it is important to recognize the evolving methodologies within 73 

qualitative research that address these limitations. Various studies have demonstrated innovative methods 74 

to scale qualitative data, leveraging technologies and mixed-methods approaches that enhance data 75 

collection, analysis, and generalization capabilities (Crespo et al., 2021; Zachariadis et al., 2013). This 76 

includes the use of digital platforms for wider participant recruitment, software for data analysis, and 77 

strategic integration with quantitative methods to broaden the scope of research findings (O’Connor et al., 78 

2016; Rupert et al., 2017). 79 

Questionnaires, often structured and closed-ended, can be developed based on insights from 80 

qualitative work to assess large samples (Doria et al., 2009; Levêque & Burns, 2017). Conversely, responses 81 

from these questionnaires can guide the design of qualitative approaches for deeper insights (Braun et al., 82 

2021). However, a lack of standardization in question framing, response scales, and thematic focus can lead 83 

to inconsistencies, making it challenging to conduct cross-comparative analyses or aggregate data from 84 

different studies. Furthermore, while water infrastructure decisions are often local, the factors influencing 85 

public perceptions of water quality can have regional or national resonance (Alhassan & Kwakwa, 2013; 86 
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Pierce & Gonzalez, 2016; Yang & Faust, 2019). Factors such as environmental policies and media 87 

narratives can greatly influence public perception on a larger scale (Heekeren et al., 2008).  88 

Research helping to move toward a consistent and accurate measurement instrument of water 89 

quality perceptions is needed, similar to the work done on "water insecurity" with the Household Water 90 

Insecurity Experiences (HWISE) Scale developed by Young et al. (2019). The HWISE is used in several 91 

contexts to understand water insecurity and facilitate consistency assessment across studies. To this end, 92 

this study aimed to provide initial psychometric data on a Water Quality Perception Scale (WQPS). To 93 

facilitate consistency, a large portion of the items selected for analysis in this study were initially included 94 

in a study by Doria et al. in 2009. Their paper explored the influence of organoleptic properties (taste, smell, 95 

and color) on perceptions of tap water quality (Doria et al., 2009). The items from Doria's study were 96 

adapted, sometimes directly and sometimes with modifications, to fit a broader context, attempting to make 97 

them relevant across diverse geographic and cultural environments. In the original work by Doria et al. 98 

(2009), the items were treated as separate individual indicators; however, this paper aimed to determine if 99 

these items comprise a unitary or multifaceted construct of "water quality perception". In other words, can 100 

a set of items from tap water quality perceptions be considered separate indicators? 101 

Data collection for this particular project was conducted in Puerto Rico. Acknowledging the 102 

significant impact of hurricanes on Puerto Rico's water infrastructure and quality (Brown et al., 2018; Mejia 103 

Manrique et al., 2021), the research team also developed items that address these specific challenges related 104 

to the hurricane season. Hurricanes and their aftermath play a substantial role in shaping the perception of 105 

water quality and safety. In Phase 1, we describe the development of the WQPS and explore its factor 106 

structure using exploratory factor analysis (EFA). We expected there to be a core set of items but that there 107 

may be additional factors from the initial set of items tested. In Phase 2, we use confirmatory factor analyses 108 

(CFA) to replicate the factor structure identified via the EFA analyses. We also examine the WQPS's 109 

association with a similar construct of water insecurity using the Household Water Insecurity Experiences 110 

(HWISE) Scale developed by Young et al. (2019). We predicted that the WQPS scale would be moderately 111 
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(because water quality is similar but distinct from water insecurity) and negatively correlated with the 112 

HWISE (i.e., more water insecurity is associated with lowered water quality perceptions).  113 

 114 

Methods 115 

Initial Instrument 116 

Table 1 links each WQPS item to its source. 117 

Table 1 Water Quality Perception Scale Items and Sources 118 

 Construct Water Quality Perception Scale Items Source 

Quality My tap water is usually of high-quality (Doria et al., 2009) 

Risk 
There are health risks associated with drinking water in my home from my 

tap* 

(Doria et al., 2009) 

Taste I am happy with the taste of my tap water (Doria et al., 2009) 

Color I am happy with the color of my tap water (Doria et al., 2009) 

Odor I am happy with the smell of my tap water (Doria et al., 2009) 

Maintenance The water pipes and taps of my home are clean and well-maintained  (Doria et al., 2009) 

Friends Some friends told me negative comments regarding my tap water. (Doria et al., 2009) 

Family Some family members told me negative comments regarding my tap water (Doria et al., 2009) 

Memorability Tap water has caused health problems for me or for someone in my family (Doria et al., 2009) 

Trust I trust my water service company (e.g., AAA/PRASA) 
(Doria et al., 2009; 

Nelson et al., 2023) 

Familiarity I am used to my tap water (Doria et al., 2009) 

Pressure I am satisfied with the tap water pressure in my home  (Doria et al., 2009) 

Lead/Chemical My tap water is contaminated with lead or any chemicals* (Doria et al., 2009) 

Chlorine My tap water has too much chlorine* (Doria et al., 2009) 

Hardness 1 My tap water has too much limescale* (Doria et al., 2009) 

Hardness 2 My tap water is too hard*  (Doria et al., 2009) 

Hurricane 1 
I am worried about the quality of water and water contamination (e.g., 

chemicals) during the hurricane season 
Author construct 

Hurricane 2 
I am worried about the quality of water and water contamination (e.g., 

chemicals) after the hurricane season 
Author construct 

Note: *reverse coded items 119 

Respondents are asked to answer each of these 18 items on a 5-point Likert-type agreement scale 120 

from strongly disagree to strongly agree. To ensure linguistic accuracy, the survey was meticulously 121 

translated into Spanish by one of our authors, who is a native of Puerto Rico, thus ensuring cultural 122 

relevance and precision in our Spanish-language questionnaire. The administration of the survey was 123 
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conducted by a team of four field research assistants, who ensured the quality and consistency of the data 124 

collection process throughout the study.  125 

Sampling Strategy and Data Collection 126 

These data came from a larger study of repeated disasters on water insecurity and mental health outcomes 127 

in Puerto Rican communities. Puerto Rico is an ideal study area for this initial work because while the 128 

mainland USA has faced its share of water quality challenges, Puerto Rico, a U.S. territory, navigates an 129 

even more challenging situation. This is not solely a product of infrastructure or policy but is significantly 130 

amplified by natural hazards, particularly hurricanes (Brown et al., 2018; Kaufman, 2019). Historically, 131 

Puerto Rico has faced infrastructural challenges. Aging pipelines, wastewater treatment limitations, and 132 

compromised water sources have perennially influenced the island's water narrative (Mejia Manrique et al., 133 

2021). The situation, complex in its own right, is exacerbated by natural hazards. Puerto Rico lies in a 134 

region frequently hit by hurricanes. Disasters like Hurricane Maria in 2017 not only affected the island's 135 

infrastructure but also critically impacted water quality. The heavy rainfall and flooding led to the overflow 136 

of sewage systems, the runoff of contaminants from damaged industrial sites, and the mixing of fresh water 137 

with salt water, all of which contributed to widespread drinking water contamination (Fischbach et al., 138 

2020; Ghosh et al., 2021; Rosinger, 2018).  139 

 Data was collected in four municipalities: Loiza, Aguas Buenas, Comerio, and Utuado. Loiza, 140 

characterized by its Afro-Puerto Rican heritage, encapsulates economic disparities often overshadowed by 141 

Puerto Rico's more commercially celebrated regions (Nelson et al., 2023). A deep-seated economic 142 

marginalization in Loiza interfaces with water insecurity, necessitating a nuanced exploration. Aguas 143 

Buenas, ironically, which means "good waters" in Spanish, has been a hotspot for infrastructural challenges, 144 

especially post-hurricane devastations (Laskow, 2018). Both Hurricanes Maria and Fiona have strained its 145 

already fragile water distribution systems, inducing multifaceted adversities for its populace. The 146 

topographical intricacies of Comerio, which lies in Puerto Rico's mountains, lead to unique challenges. 147 

Access to consistent, clean water sources remains a perennial issue, further intensified during seasonal 148 
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fluctuations (Marcos, 2022). Utuado's proximity to abundant water sources is marred by outdated water 149 

treatment. Despite its geographical proximity to freshwater sources, contamination and accessibility 150 

challenges are rampant (Holladay et al., 2021).  151 

In the first phase of our research, we focused on the collection of survey data from 154 residents 152 

spanning three municipalities: Loiza, Comerio, and Aguas Buenas. These data were gathered prior to the 153 

devastating effects of Hurricane Maria from May 2022 to July 2022. Following the hurricane, Phase 2 was 154 

initiated, where we expanded our geographical scope to include an additional region, Utuado, following the 155 

low response rate from Loiza after Hurricane Fiona. Hence, the data for the second phase encapsulated 156 

survey data from 147 residents of Loiza, Comerio, Aguas Buenas, and Utuado, specifically after the impacts 157 

of Hurricane Fiona from September 2022 to February 2023. The methodologies and survey instruments 158 

implemented in both studies were reviewed and approved by the Institutional Review Board (IRB) of Iowa 159 

State University. 160 

Data Analysis 161 

Phase 1: Exploratory Factor Analysis 162 

The 18-item items from Table 1 were initially analyzed using the pre-hurricane Fiona dataset (N=154) with 163 

exploratory factor analysis (EFA)executed in STATA 15 statistical software. The principal axis factoring 164 

of the item correlation matrix using a Varimax rotation was used to simplify factor identification (Janus & 165 

Offord, 2007; Ohan et al., 2000). The varimax rotation was used to present a clearer, more discernible factor 166 

structure (Osborne, 2019). Maximizing the variance of the squared loadings ensures that items 167 

predominantly load onto a single factor, which considerably simplifies interpretation and subsequent 168 

utilization. Critical to the factor interpretation is the consideration of factor loadings. These loadings serve 169 

as markers, pointing towards the correlation strength between individual items and the identified constructs. 170 

Convention in the literature dictates that items with loadings above certain thresholds, often set at 0.3, 171 

significantly represent a specific factor (Beavers et al., 2019). It is through this lens that each item's 172 

relevance to the identified constructs was determined. 173 

 174 
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Phase 2: Confirmatory Factor Analysis 175 

Following the EFA results in Phase 1, we conducted a Confirmatory Factor Analysis (CFA) with the post-176 

hurricane Fiona dataset (N=147) to confirm the factor structure of the scale items. This methodological 177 

approach tests the alignment of the proposed factor structure with the observed data (Luong & Flake, 2023). 178 

Initially, the factor model was specified based on insights from the EFA results and a robust theoretical 179 

foundation, wherein each item was systematically aligned to its hypothesized factor. Full Information 180 

Maximum Likelihood (FIML) approach was adopted for the analysis (Enders, 2001). We examined the 181 

model's fit with the data using multiple fit indices. Specifically, the chi-square statistic, Comparative Fit 182 

Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and the 183 

Standardized Root Mean Square Residual (SRMR) were assessed against accepted benchmarks (Hu & 184 

Bentler, 1998). Modification indices were examined to discern potential enhancements, ensuring that any 185 

revisions were grounded both statistically and theoretically.  186 

Convergent Validity 187 

The convergent validity of the WQPS scale was assessed by conducting Pearson correlations between the 188 

total WQPS scores and the total HWISE scores at both Phase 1 and Phase 2.  189 

  190 
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Results 191 

Phase 1 192 

Descriptive Statistics 193 

Table 2 reports the demographic characteristics of the participants in phase 1 of the study.  194 

Table 2 Demographics Results of Phase 1 195 

Variable  N Descriptive Statistics Value % 

Age  154 Minimum 20 - 

  Mean 62.83 - 

  Median 66 - 

   Maximum 93 - 

Gender 154 Female 115 75% 

   Male 39 25% 

Education  152 No Schooling Completed 3 2% 

  Elementary School Degree 13 8% 

  Middle School Degree 14 9% 

  High School Diploma 72 47% 

  Bachelor's Degree 34 22% 

  Associate's Degree 14 9% 

   Other/Missing 4 3% 

Race 154 White  46 30% 

  Black/African American  46 30% 

  Asian 0 0% 

  Native Hawaiian/Pacific Islander 0 0% 

  American Indian/Alaska Native 2 2% 

  Mixed (5) 28 18% 

    Other/Missing (6) 32 20% 

 196 

Correlation of WQPS Items at Phase 1 197 

The Pearson correlation matrix in Figure 1 shows the relationships between the individual items of the 198 

initial 18-item WQPS. Coefficients range from -1 to 1, where 1 denotes a perfect positive correlation, -1 199 

denotes a perfect negative correlation, and 0 indicates no correlation. The color gradient represents the 200 

direction and strength of these correlations: shades of blue indicate positive correlations, shades of red 201 

denote negative correlations, and the color's intensity reflects the correlation's magnitude. Most of these 202 

items indicate moderate to high correlation values amongst themselves. Such a pattern suggests the 203 

appropriateness of factor analysis (i.e., the items are factorable) and that each item correlated at an 204 

acceptable level with the total.  205 
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 206 

Figure 1 Pearson Correlation Matrix of Initial WQPS Items in Phase 1 (*** p<0.01, ** p<0.05, * p<0.1) 207 

 208 

Exploratory Factor Analysis 209 

The Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy was 0.895, a value suggesting adequate 210 

sample size (Kaiser, 1991). Furthermore, Bartlett's test of sphericity was significant (p < .001), thereby 211 

confirming that correlations between WQPS items were substantial enough to warrant factor analyses 212 
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(Beavers et al., 2019). The data had a few missing values. Each item on the WQPS had between 0.65% to 213 

9.74% missing.  214 

A factor solution was obtained by considering Kaiser's criterion (retaining factors with eigenvalues 215 

greater than one), the interpretability of obtained factor solutions, and the internal consistency of obtained 216 

factors provided by STATA 15, which suggested a three-factor model. Each factor potentially represented 217 

distinct dimensions of people's perceptions related to water quality. Three factors with 18 items were 218 

extracted: [1] individual water quality perception (13 items); [2] external/family-induced water quality 219 

perception (3 items); and [3] hurricane-related water quality perception (2 items) (Table 3). Internal 220 

consistency (Cronbach's alpha) for factors 1 was 0.93; for factors 2 and 3, internal consistency was 0.84 221 

and 0.73, respectively (see Table 3). We identified the first factor as a reliable subscale because Cronbach's 222 

a was larger than 0.9, which indicates excellent internal consistency (Cronbach, 1951; Taber, 2018). 223 

Conceptually, factor 1 encompasses a range of items that directly reflect an individual's subjective 224 

assessment of their tap water quality. Central to this factor appear to be those that directly address the 225 

sensory qualities of the water (taste, color, smell) and health-related concerns (presence of chemicals or 226 

contaminants like lead, chlorine, or limescale). These items are critical as they are likely to have a direct 227 

and significant impact on an individual's overall perception of water quality. Other items in this factor, like 228 

satisfaction with water pressure, trust in the water service company, and the condition of water pipes and 229 

taps, while still relevant, might be considered more peripheral. They contribute to the overall perception 230 

but might not be as directly influential as the sensory and health-related aspects. The high internal 231 

consistency of this factor suggests that these items when considered together, provide a comprehensive and 232 

reliable measure of an individual's perception of their water quality.  233 

Despite the acceptable levels of internal consistency for factors 2 and 3, we encountered high 234 

skewness values that signaled a distributional bias in the responses (Dinno, 2009). Conceptually, factor 2 235 

was external perception focused on the individual's perception – these are on what others thought about 236 

water quality, and factor 3 was situation-dependent focusing on the hurricane. Coupled with the limited 237 

number of items for factors 2 and 3, factors 2 and 3 appear to be in need of additional refinement and 238 
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additional development. Figure 2 shows the distribution curve of the total score of the 13-item WQPS at 239 

Phase 1. 240 

 241 

242 

Figure 2 Distribution Curve of WQPS at Phase 1 243 

 244 
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Table 3 Exploratory Factor Analysis of the Water Quality Perception Scale (WQPS) (all loadings >0.3). 245 

 246 

WQPS Factors and Items 
No. of 

Items 
Mean SD Skewness 

Factor 

Loading 

Cron-

bach's (α) 

Eigen

value 

Factor 1: Individual Water Quality Perception 13     0.93 8.89 

Tap water is usually of high quality  2.05 1.90 0.31 0.79   
There are health risks associated with drinking water in my home from my tap*  2.82 1.98 -0.18 0.58   
I am happy with the taste of my tap water  1.87 1.99 0.45 0.86   
I am happy with the color of my tap water  1.9 2.03 0.40 0.87   
I am happy with the smell of my tap water  2.09 1.95 0.26 0.85   
The water pipes and taps of my home are clean and well maintained   2.89 1.86 -0.46 0.49   
I trust my water service company (i.e., AAA/PRASA)  2.26 1.92 0.10 0.70   
I am used to my tap water  3.05 1.97 -0.55 0.70   
I am satisfied with the tap water pressure in my home   2.96 1.89 -0.34 0.74   
My tap water is contaminated with lead or any chemicals*  3.14 1.85 -0.32 0.47   
My tap water has too much chlorine*  2.07 1.82 0.33 0.65   
My tap water has too much limescale*  3.01 1.96 -0.30 0.64   
My tap water is too hard*   2.97 1.88 -0.31 0.58   
Factor 2: External Water Quality Perception 3     0.84 1.57 

Some friends told me negative comments regarding my tap water.  1.08 1.83 1.32 -0.86   
Some family members told me negative comments regarding my tap water  1.34 2.01 0.99 -0.82   
Tap water has caused health problems for me or for someone in my family  0.99 1.64 1.53 -0.78   
Factor 3: Hurricane Induced Water Quality Perception 2     0.73 1.35 

I am worried about the quality of water and water contamination (e.g., chemicals) during 

the hurricane season  

4.07 1.57 -1.65 -0.82 

  
I am worried about the quality of water and water contamination (e.g., chemicals) after the 

hurricane season  

4.35 1.33 -2.21 -0.88 

  
Total 18 43.61 16.25 0.05 - 0.91 - 

Note: *reverse coded items 247 
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Convergent Validity 248 

The Pearson correlation analysis revealed a correlation of -0.41 (p<0.01) between the WQPS and HWISE 249 

scores. It suggests that when individuals have a high perception of their drinking water quality, they are 250 

likely to report lower levels of water insecurity, providing an estimate of convergent validity consistent 251 

with the prediction.  252 

Phase 2 253 

Descriptive Statistics 254 

Table 4 illustrates the demographic breakdown of the participants in Phase 2 (N= 147), which included 255 

some recurring participants from Phase 1 (n = 74).  256 

Table 4 Demographics Results of Study 2 257 

Variable  N Descriptive Statistics Value % 

Age  140 Minimum 22 - 

  Mean 58.39 - 

  Median 59 - 

   Maximum 90 - 

Gender 147 Female 124 85% 

   Male 23 15% 

Education  147 No Schooling Completed 6 4% 

  Elementary School Degree 12 8% 

  Middle School Degree 14 10% 

  High School Diploma 47 32% 

  Bachelor's Degree 27 18% 

  Associate's Degree 30 20% 

   Other/Missing 11 8% 

Race 147 White  81 55% 

  Black/African American  16 11% 

  Asian 0 0% 

  Native Hawaiian/Pacific Islander 0 0% 

  American Indian/Alaska Native 1 0% 

  Mixed 45 31% 

    Other/Missing 4 3% 

 258 

 259 

Correlation of Final WQPS Items at Phase 2 260 

The Pearson correlation matrix in Figure 3 shows individual items of the final 13-item WQPS total score 261 

from Phase 1. The matrix again reveals, as in phase 1, that the majority of these items demonstrate moderate 262 

to high positive correlation values with each other. Such trends suggest a shared variance between these 263 
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items, possibly alluding to underlying commonalities that these individual items may be addressing. 264 

Moreover, each item exhibits a positive correlation with the total score of the final WQPS, suggesting that 265 

they contribute significantly to the composite measure. The strength of these correlations with the total 266 

score emphasizes the internal consistency of the final WQPS, indicating that these items effectively capture 267 

the essence of the water quality perception construct that the scale endeavors to measure.  268 

 269 

Figure 3 Correlation Matrix of Final WQPS Items in Phase 2 (*** p<0.01, ** p<0.05, * p<0.1) 270 

 271 
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Confirmatory Factor Analysis 272 

CFA restricted loadings exclusively on the identified single factor (Marsh et al., 1998, 2020). The results 273 

of the CFA supported the adequacy of this one-factor model. Specifically, the initial fit parameters 274 

generated by STATA in the CFA were as follows: χ2 (65) = 211.07 (p<0.001), Root mean squared error of 275 

approximation (RMSEA) = 0.134, 90% confidence interval (CI) = [0.114, 0.154]. The Comparative fit 276 

index (CFI) and Tucker-Lewis index (TLI) values were 0.83 and 0.80, respectively, while the Standardized 277 

root mean squared residual (SRMR) was 0.08. 278 

The model's modification indices hinted that the estimation of error covariances between five item 279 

pairs could enhance the model. The five-item pairs were color-odor, color-lead/chemical, trust-familiarity, 280 

lead/chemical-hardness1, and chlorine-hardness1. Error covariances for the five-item pairs were then freely 281 

estimated. The final fit indices after modification generated by STATA in the CFA were as follows: χ2(59) 282 

= 73.67 (p = 0.095), RMSEA = 0.044, 90% confidence interval (CI) = [0.000, 0.074], indicating a good fit 283 

(Hu & Bentler, 1998). The CFI and TLI values were 0.98 and 0.97, respectively, surpassing the 284 

recommended 0.95 threshold often cited in research (Finch, 2020; Kashyap & Singh, 2017). The SRMR 285 

was 0.054, indicating an acceptable level of model fit way below the threshold of 0.09 (Cho et al., 2020). 286 

Figure 4 shows the distribution curve of the 13-item WQPS at Phase 2. 287 
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 288 

Figure 4 Distribution WQPS at Phase 2 289 

 290 

Convergent Validity 291 

The Pearson correlation revealed that the WQPS had a correlation of -0.49 (p<0.01) with HWISE, again 292 

suggesting convergent validity. 293 

Discussion 294 

The analysis of water quality perceptions occupies a crucial intersection across multiple disciplines, 295 

including engineering, geosciences, and social sciences (Weems et al., 2023). This intersectionality 296 

highlights the necessity of examining both physical factors, such as the accessibility and sources of drinking 297 

water, and intangible factors, notably human water quality experiences and perceptions (Alhassan & 298 

Kwakwa, 2013; Auslander & Langlois, 1993; Heekeren et al., 2008; Hu et al., 2011). Accuracy and 299 

reliability in measuring these water quality perceptions are paramount. This study makes a significant stride 300 

towards refining the measurement of water quality perceptions, drawing parallels to the methodologies 301 

employed in assessing "water insecurity" via the Household Water Insecurity Experiences (HWISE) scale. 302 
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The Water Quality Perception Scale (WQPS) developed through this research has the potential for 303 

application in diverse contexts to enhance the understanding of water insecurity and promote uniformity in 304 

evaluation of water quality perceptions across different studies. 305 

Further building on the foundational work by Doria et al. (2009), which illuminated the critical 306 

influence of sensory experiences—such as taste, color, and odor—on people's perceptions of water quality, 307 

this research proposes a set of 13 key items that form the core of the "Individual Water Quality Perception" 308 

construct. These findings advocate for a singular unitary construct that revolves around the direct sensory 309 

experiences that individuals have with drinking water, suggesting that water quality perceptions are integral 310 

components of how water quality is assessed and understood. Moreover, the observed negative correlation 311 

between perceived water quality (measured with the WQPS) and water insecurity (measured with HWISE) 312 

suggests that when individuals think highly of their water quality through positive sensory experiences such 313 

as clear appearance, pleasant taste, and absence of foul odors, their sense of water security increases. This 314 

correlation logically aligns with the expectation that water insecurities tend to diminish when perceptions 315 

of water quality are positive. 316 

 317 

Study Limitations 318 

The present study has several limitations but points to several areas of further study and refinement. The 319 

participant sample, chosen for an initial wide distribution of responses, may not fully represent the broader 320 

population. This calls for replication and refinement of the scale in additional settings or among additional 321 

groups. Large-scale studies of broader representative populations on drinking water vulnerabilities are 322 

needed. Moreover, the current set of items may not capture all facets of water quality perceptions that a 323 

more expansive item set could. Similarly, the question of whether specific terms like 'limescale,' often 324 

crucial in water quality discussions, are understood uniformly by all participants, especially considering 325 

varying educational and cultural backgrounds. Furthermore, self-reported measures always carry the risk 326 

of social desirability bias, where participants might provide responses they believe are expected rather than 327 

their true perceptions (Randall & Fernandes, 1991). However, as the scale primarily measures perception, 328 
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such questioning remains a key method to capture beliefs and attitudes. Research on the linkages between 329 

different water compositions within safe drinking limits and quality perceptions may help in the refinement 330 

of future items. For instance, incorporating qualitative methods such as in-depth interviews or participatory 331 

workshops could offer richer, context-specific understandings of attitudes towards water quality (Lin et al., 332 

2020; Nelson et al., 2023). Additionally, exploring more interdisciplinary research on sensory perception 333 

and environmental psychology can inform the development of more sophisticated items for measuring 334 

water quality perceptions. Furthermore, existing work on taste sensitivity could be applied in water quality 335 

perception research to develop more items (Puputti et al., 2018).  336 

Language dialect differences and the translation of items, particularly for a study potentially 337 

involving multi-lingual participants, add another layer of complexity. Recognizing the importance of 338 

accurate and culturally sensitive translation, the study was translated into the Puerto Rican dialect of 339 

Spanish by one of the authors, a native of Puerto Rico. This approach indicates an understanding of the 340 

subtleties involved in translation and the impact of regional dialects on comprehension. Ensuring that 341 

participants, especially in regions where this dialect is spoken, have a consistent understanding of each item 342 

is crucial for the validity of the findings. 343 

Lastly, while the research identified and focused on the "Individual Water Quality Perception," it 344 

is crucial to remember that water quality perceptions are multifaceted, and other external indicators not 345 

deeply probed in this study might have significant influence. Future research should aim to address these 346 

limitations by developing and further refining the two other indicators related to "External Water Quality 347 

Perception" and "Hurricane Induced Water Quality Perception" identified in the study to provide a more 348 

comprehensive understanding of the topic. 349 

 350 

Conclusion 351 

This study provided initial psychometric data toward understanding public perception of water quality. 352 

Given the ever-growing concerns surrounding water insecurity globally, the WQPS items might be a 353 
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valuable addition to the studies that aim to understand water crises. By complementing other similar 354 

measures, such as the HWISE scale, it may augment assessment of the myriad factors related to water 355 

security. Comprehensive, consistent and accurate measurement of water quality are at an important 356 

intersection between the engineering, social, policy, and human aspects of water security and sustainability 357 

(Weems et al., 2023). Public perception, often an enigma for utility providers, including this module of 358 

questions in Housing Survey (such as the AHS) could provide data to determine and track the link between 359 

the perception of water quality and local-level communication regarding it, (Sarkar, 2022). helping utility 360 

providers better understand user perceptions   361 

Periodic deployment of this scale in surveys can furnish utilities with real-time insights into public 362 

sentiment. Such proactive gauging of perceptions is pivotal, especially when navigating crises like 363 

contamination events or post-disaster scenarios. Addressing areas flagged by the public, whether it is the 364 

taste of tap water or concerns over contamination, allows utilities to prioritize interventions and bolster 365 

public trust. For instance, if misgivings about tap water's taste become prominent, utility companies can 366 

engage in dual strategies: rectifying potential causes and launching awareness campaigns to educate the 367 

public, ensuring that misconceptions are addressed head-on. Public health officials, on the other hand, can 368 

also benefit from consistent and accurate assessment. An informed understanding of water quality 369 

perceptions can be the linchpin in devising strategies that nudge the populace from bottled water reliance 370 

to increased tap water consumption, addressing both health and environmental concerns. 371 

Lastly, policymakers can utilize consistent and accurate assessments to shape nuanced, community-372 

centric water policies. An in-depth grasp of public sentiment, as facilitated by the scale, ensures that policies 373 

resonate with community concerns and aspirations. In tumultuous times, especially during crises, such a 374 

tool becomes invaluable, guiding the formulation and communication of swift, effective response strategies. 375 

  376 
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