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Abstract. The heterogeneous nucleation of ice is an important atmospheric process facilitated by a wide range 

of aerosols. Drop-freezing experiments are key for the determination of the ice nucleation activity of biotic and 

abiotic ice nucleators (INs). The results of these experiments are reported as the fraction of frozen droplets 

fice(T ) as a function of decreasing temperature and the corresponding cumulative freezing spectra Nm(T ) com- 

puted using Gabor Vali’s methodology. The differential freezing spectrum nm(T ) is an approximant to the under- 

lying distribution of heterogeneous ice nucleation temperatures Pu(T ) that represents the characteristic freezing 

temperatures of all INs in the sample. However, Nm(T ) can be noisy, resulting in a differential form nm (T ) 
that is challenging to interpret. Furthermore, there is no rigorous statistical analysis of how many droplets and 

dilutions are needed to obtain a well-converged nm(T ) that represents the underlying distribution Pu(T ). Here, 

we present the HUB (heterogeneous underlying-based) method and associated Python codes that model (HUB- 

forward code) and interpret (HUB-backward code) the results of drop-freezing experiments. HUB-forward pre- 

dicts fice(T ) and Nm(T ) from a proposed distribution Pu(T ) of IN temperatures, allowing its users to test hy- 

potheses regarding the role of subpopulations of nuclei in freezing spectra and providing a guide for a more 

efficient collection of freezing data. HUB-backward uses a stochastic optimization method to compute nm(T ) 
from either Nm(T ) or fice(T ). The differential spectrum computed with HUB-backward is an analytical function 

that can be used to reveal and characterize the underlying number of IN subpopulations of complex biological 

samples (e.g., ice-nucleating bacteria, fungi, pollen) and to quantify the dependence of these subpopulations on 

environmental variables. By delivering a way to compute the differential spectrum from drop-freezing data, and 

vice versa, the HUB-forward and HUB-backward codes provide a hub to connect experiments and interpretative 

physical quantities that can be analyzed with kinetic models and nucleation theory. 

 

 

1  Introduction 

 

Ice nucleators (INs) of biological and abiotic origins present 

in aerosols are responsible for facilitating the heterogeneous 

freezing of atmospheric water droplets above the homoge- 

neous nucleation temperature (Murray et al., 2012; DeMott 

et al., 2016, 2003). The potential of these aerosols as ice 

nuclei has significant implications for cloud properties and 

precipitation patterns (Gettelman et al., 2012; Mülmenstädt 

et al., 2015; Froyd et al., 2022). Freezing experiments are 

key sources of information to determine the range of tem- 

peratures over which INs promote ice nucleation. The most 

common method to characterize INs is through immersion 

freezing experiments, for which a wide range of assays and 

instruments have been developed. A comprehensive report 

of various drop-freezing techniques can be found in Miller et 
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al. (2021). The assays are typically performed by placing uni- 
formly sized water droplets with a known IN concentration 
or area on a substrate or in a multiwall plate that is gradually 

cooled from a temperature above 0 ◦C until all droplets are 

frozen (Kunert et al., 2018; Budke and Koop, 2015). Droplet 

freezing is detected visually or through the measurement of 

the latent heat release (Stratmann et al., 2004; Budke and 

Koop, 2015; Kunert et al., 2018; Reicher et al., 2018), allow- 

ing history. This implies that the IN with the highest charac- 

teristic nucleation temperature in a droplet is responsible for 

its freezing. Given a total number of droplets N0, the num- 

ber of frozen droplets NF(T ) at a temperature T gives the 

range of characteristic freezing temperatures that determines 

the ice nucleation activity and is used to produce the cumu- 

lative freezing spectrum (Vali, 1971, 2014, 2019): 

ing the assignment of a heterogeneous nucleation tempera- 

ture to each droplet. Drop-freezing experiments record the 
Nm (T ) 

1 
= 

X 
[ln 

1 
N0 − ln NL(T )] = − 

X 
ln[1 − fice (T )], (1a) 

fraction of frozen droplets, fice (T ), as a function of decreas- 

ing temperature; for soluble or dispersible INs fice (T ) curves 

are typically collected at various 10-fold dilutions of the IN 

sample. 

Historically, there have been two interpretations of the dis- 

persion of nucleation temperatures in heterogeneous freezing 

experiments. The first approach suggests that the stochas- 

tic nature of the nucleation process dominates the variabil- 

ity in freezing temperatures (Bigg, 1953; Carte, 1956), while 

the second approach assumes that the dispersion in temper- 

atures mostly arises from a distribution of nucleation sites 

(Fletcher, 1969), each with a deterministic, singular nucle- 

ation temperature (Levine, 1950; Vali and Stansbury, 1966). 

Variability in the temperature, volume, and amount of ice- 

nucleating particles per droplet can also contribute to the dis- 

persion of freezing temperatures (Vali, 2019; Knopf et al., 

2020). There is consensus now that both stochastic effects 

and sample heterogeneities contribute to the distribution of 

freezing temperatures, and both approaches are used for the 

modeling of drop-freezing experiments (Vali, 1971; Marcolli 

where NL (T ) N0 NF(T ) is the number of unfrozen 

droplets; fice (T ) NF(T )/N0 is the fraction of frozen 

droplets at temperature T ; and X is a normalization fac- 

tor per unit volume of water, unit mass, or surface of the 

INs (Vali, 2019). For soluble INs, the normalization factor 

is commonly defined by the mass of the ice-nucleating ma- 

terial X ρ(Vdrop d), where ρ is the density of the initial 

solution, Vdrop is the droplet volume, and d is the dilution 

factor (Kunert et al., 2018). The IN surface area per drop, 

X Adrop, is sometimes used as the normalization factor for 

insoluble INs (e.g., dust, crystals), resulting in a cumulative 

spectrum per area denoted as Ns (T ). However, it is challeng- 

ing to measure the total IN surface area accurately (Knopf 

et al., 2020). We note that Eq. (1a) can be used even when 

the absolute concentrations or areas of the INs are unknown, 

provided that the user knows the relative concentration of the 

dilution series derived from a parent sample. The differential 

freezing spectrum nm (T ) is obtained by the differentiation of 

the cumulative spectrum (Vali, 1971): 

et al., 2007; Niedermeier et al., 2011; Murray et al., 2011; 
Broadley et al., 2012; Wright and Petters, 2013; Herbert et nm (T ) = 

dNm(T ) 1 
dT 

= − 
XN (T ) 

dNL (T ) 

dT 
. (1b) 

al., 2014; Harrison et al., 2016; Alpert and Knopf, 2016; 

Vali, 2019; Fahy et al., 2022b). Stochastic modeling of the 

freezing curves is based on predicting the survival probabil- 

ity of liquid water containing INs as a function of supercool- 

ing, and it requires a model for the temperature dependence 

of the nucleation rate of the IN components. These models 

have been solved numerically or evolved with Monte Carlo 

simulations to interpret or resolve the distribution of ice nu- 

cleation properties of minerals (Marcolli et al., 2007; Murray 

et al., 2011; Broadley et al., 2012; Wright and Petters, 2013; 

Herbert et al., 2014; Harrison et al., 2016) and organics (Zo- 

brist et al., 2007; Alpert and Knopf, 2016) and to perform 

parametric bootstrapping of experimental data (Wright and 

Petters, 2013; Harrison et al., 2016). The advantage of the 

stochastic modeling approach is that it enables a direct link 

to microscopic properties of the nuclei and can account for 

the cooling rate dependence of the fice (T ) data. These ap- 

proaches require the use of analytical models for the freezing 

rates and their distribution in the sample. 

The modeling of freezing experiments based on the sin- 

gular approach is based on the framework proposed by Vali 

(1971). He assumed that each particular IN has a characteris- 

tic ice nucleation temperature that is independent of the cool- 

L 

The differential spectrum identifies the density of IN active 

at each temperature and was identified by Vali as the cen- 

tral quantity that can be derived and interpreted from drop- 

freezing experiments (Vali, 1971, 2019). 

The determination of the differential spectrum from the 

cumulative one by finite differentiation is subject to signif- 

icant noise, requiring a careful selection of the temperature 

intervals and extensive sampling (Vali, 2019). As stochas- 

tic effects are not considered in the singular temperature 

formalism, the cumulative and differential spectra should – 

in principle – depend on the cooling rate (Vali, 1994). The 

stochastic nature of ice nucleation, combined with the uncer- 

tainties associated with the experimental measurements (e.g., 

different droplet volumes, inhomogeneous samples, differ- 

ent detection efficiencies), can produce significant variations 

in the cumulative freezing spectra that result in large un- 

certainties in nm (T ) and we provide its associated Python 

code and user manual (https://github.com/Molinero-Group/ 

underlying-distribution, last access: 5 May 2023), published 

in de Almeida Ribeiro et al., 2023). Parametric and nonpara- 

metric bootstrapping based on the singular approximation 

and Monte Carlo simulations have been used to estimate con- 
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fidence intervals in freezing spectrum measurements (Vali, 

2019; Fahy et al., 2022a, b). 

A central assumption of the singular freezing approxima- 

tion is that the freezing of a droplet containing multiple INs 

is promoted by the IN with the highest nucleation tempera- 

ture (Levine, 1950). The extreme value sampling is apparent 

in the concentration dependence of fice (T ) in experiments 

(Marcolli et al., 2007; Budke and Koop, 2015; Kunert et al., 

2018; Lukas et al., 2022). Using probability theory, Joseph 

Levine demonstrated that if the distribution of ice nucleation 

temperatures of the IN population follows an exponential dis- 

tribution, then the sampling of droplet freezing temperatures 

corresponds to a Gumbel distribution, and the median freez- 

ing temperature TMED of the droplets scales with the log- 

arithm of the number (or total nucleating area) of IN per 

droplet (Levine, 1950). Richard Sear more recently demon- 

strated that Levine’s approach is a particular solution for a 

generalized extreme value problem and used modern extreme 

value statistics to derive the scaling of TMED with the number 

of IN sites per droplet for the three generalized extreme value 

(GEV) distributions: Gumbel that would arise from an un- 

derlying IN distribution with exponential tails, Frechet from 

those with power law tails, and Weibull from those with an 

upper cutoff in the freezing temperature of the INs (Sear, 

2013). However, there are limitations for the use of the an- 

alytical approaches of Sear and Levine for the interpretation 

of actual drop-freezing data. First, the extreme value sam- 

pling results in one of the three GEV distributions only in the 

limit of an extremely large number of INs per droplet, while 

in experiments the sampling is typically performed over di- 

lutions down to a few INs per droplet. There is no analytical 

formulation for the dependence of the extreme value distribu- 

tion in the low to intermediate concentration regime. Second, 

the analytical theory assumes that the sampling is complete 

(i.e., the number of droplets is extremely large), while ex- 

periments are typically performed with tens to hundreds of 

droplets. Third, Sear notes that there is no general analyti- 

cal theory to predict the GEV distributions from a mixture of 

populations of nuclei with different temperature dependences 

(Sear, 2013). In this study we overcome these three limita- 

tions through a numerical implementation of extreme value 

statistics for the modeling of drop-freezing experiments. 

A consequence of extreme value sampling is that the dif- 

ferential spectrum nm (T ) represents the underlying distribu- 

tion of ice nucleation temperatures of all INs in the sample, 

which we denote as Pu(T ), only when the sampling of INs in 

the drop-freezing experiments is complete. The underlying 

distribution Pu(T ) is akin to a hub that connects the exper- 

imental freezing temperatures to physical analysis based on 

nucleation theory or kinetic and equilibrium models that can 

elucidate the mechanisms and origins of the distributions of 

INs (Fig. 1). We here call the cumulative spectrum Nm (T ) 
obtained through Eq. (1a) in this complete sampling limit the 

intrinsic cumulative spectrum of the system, Iu (T ) (Fig. 1). 

While there is consensus that the quality of the freezing spec- 

trum increases with the number of droplets, a rigorous anal- 

ysis of how many droplets and IN dilutions should be mea- 

sured to provide accurate freezing spectra is still lacking. The 

first goal of the present study is to provide a strategy to opti- 

mize the sampling of drop-freezing experiments to derive in- 

terpretable differential spectra that are a good approximant of 

the underlying distribution of heterogeneous ice nucleation 

temperatures of the sample. 

The existence of subpopulations or classes in the popula- 

tion of INs (e.g., different classes of bacterial INs, different 

ice-nucleating sites on complex materials like dust) (Turner 

et al., 1990) is common in atmospheric aerosols. While sev- 

eral studies have broadly defined populations from the cu- 

mulative spectra by the range of nucleation temperatures they 

encompass (Turner et al., 1990; Creamean et al., 2019) or the 

origin of the sample (Steinke et al., 2020), there is currently 

no simple procedure to identify and quantify subpopulations 

or classes from cumulative freezing spectra Nm (T ). The sec- 

ond aim of our study is to map the cumulative freezing spec- 

trum Nm(T ) into the differential spectrum nm(T ) in terms 

of subpopulations that may correspond to different physical 

nucleation sites in the sample. 

To reach the aims above, we develop a method we name 

HUB (for heterogeneous underlying-based) to model and in- 

terpret the results of drop-freezing experiments and provide 

its associated Python code and user manual (https://github. 

com/Molinero-Group/underlying-distribution, last access: 

5 May 2023). Our method relies on the singular interpreta- 

tion of freezing experiments: we assume that each individual 

IN has a characteristic nucleation temperature independent 

of its cooling history and that the freezing of a droplet con- 

taining multiple INs is promoted by the IN with the highest 

nucleation temperature. This second assumption allows the 

use of extreme value statistics (Castillo et al., 2005; David 

and Nagaraja, 2004; Gumbel, 2012; De Haan and Ferreira, 

2006) to model and interpret the data. 

We present two implementations of the HUB analysis 

code. The HUB-forward code allows the user to postulate 

an underlying distribution of heterogeneous nucleation tem- 

peratures Pu(T ) in the system of interest. The HUB-forward 

code uses the singular approximation and extreme value 

statistics to generate an artificial IN dilution series similar 

to those obtained in experiments, from which it computes 

the fraction of frozen droplets fice(T ) and from these derive 

Nm(T ) using Vali’s equation (Fig. 1). The HUB-backward 

code works in reverse, extracting the differential spectrum 

nm(T ) from a given cumulative Nm(T ) using a stochastic 

optimization procedure (Fig. 1). HUB-backward allows the 

decomposition of the total population from nm(T ) into sub- 

populations. The combination of HUB-forward and HUB- 

backward allows for an analysis of the sensitivity of Nm(T ) 
to the number of droplets and dilutions, as well as the impact 

of the sampling on the closeness of the differential spectrum 

nm(T ) to the underlying distribution Pu(T ). The determina- 

tion of distributions obtained from the HUB-backward code 

https://github.com/Molinero-Group/underlying-distribution
https://github.com/Molinero-Group/underlying-distribution


5626 I. de Almeida Ribeiro et al.: HUB 

Atmos. Chem. Phys., 23, 5623–5639, 2023 https://doi.org/10.5194/acp-23-5623-2023 

 

 

Tm 

L 

= 
= 

Pi(T ) =    
2π 

2 si 

 

 

Figure 1. Diagram illustrating the usage of the HUB code: nm(T ) is obtained from the sparsely sampled fice(T ) or Nm(T ) through HUB- 

backward, and the effect on fice(T ) or Nm(T ) is obtained from the complete sampling of the underlying distribution Pu(T ) through HUB- 

forward. The intrinsic cumulative spectrum Iu (T ) is proportional to 
f T 

Pu 
(
T '

) 
dT ' (Sect. 2.2). 

 

could further enable the interpretation of the experimental 

ice nucleation spectra with the size and structure of INs us- 

ing nucleation theory, kinetic models, and molecular simu- 

lations. For example, Schwidetzky et al. (2023) illustrate the 

use of the distribution of freezing temperatures obtained with 

HUB-backward, together with classical nucleation theory for 

finite surfaces, to interpret the size of the INs of Fusarium 

acuminatum. 

This paper is organized as follows: Sect. 2 presents the 

methodology, and Sect. 2.1 discusses the details on the im- 

plementation of HUB-forward, while Sect. 2.2 describes the 

HUB-backward procedure to find the differential spectrum 

nm(T ) and discusses how to determine whether or not nm(T ) 
has converged to the underlying distribution Pu(T ). Section 3 

presents examples of applications of both HUB-forward and 

HUB-backward codes and their capabilities. Section 3.1 

analyses the effect of the number of droplets sampled on 

the cumulative freezing spectrum Nm (T ). Section 3.2 uses 

HUB-backward to compute the differential spectra nm(T ) of 

various biological INs with increasing grades of complex- 

ity in their cumulative freezing spectra. Section 3.3 demon- 

strates how to extract nm(T ) from the experimental fraction 

of ice fice(T ) and the impact of the cooling rate on nm(T ). 
We end in Sect. 4 with a discussion of the main conclusions 
and outlook. 

Vali’s equation (Eq. 1a). Using this approach, we investigate 

the relationship between Nm(T ) and Pu(T ) (Fig. 1) and the 

sensitivity of Nm(T ) with respect to the number of droplets 

and dilutions. For generality, we represent Pu(T ) as a linear 

combination of normalized continuous distributions Pi (T ) 
that represent subpopulations of freezing temperatures: 

Pu(T ) = c1P1 (T ) + c2P2 (T ) + . . . + cpPp (T ) , (2) 

where  p  is  the  total  number  of  subpopulations, 

P1 (T ) , P2 (T ) , . . ., Pp (T ) are normalized distribution 

functions, and c1, c2, . . . , cp are their weights such that 
p 

ci 1. These subpopulations could correspond to dif- 
i 1 

ferent chemical, topographical, or structural motifs in the 

IN samples, although chemically distinct species could 

also produce overlapped freezing signatures, and a single 

species could display a broad freezing range. Our formalism 

does not require a mapping of subpopulations of freezing 

temperatures to physical IN sites. The units of Pu(T ) are the 

same as for nm(T ), i.e., those of the cumulative spectrum 

divided by a unit of temperature, but are generally omitted in 

what follows. Throughout this work we assume that Pi (T ) 
can be represented by Gaussian (i.e., normal) distributions: 

 
  1  

) 

 

  
 

− 1 
I 

T −Tmode,i 
i2

 

2.1 HUB-forward method to compute the fraction of 

frozen droplets fice(T ) and cumulative freezing 

spectrum Nm(T ) from a known underlying 

distribution Pu(T ) 

In the HUB-forward analysis we know or assume an underly- 

ing distribution Pu(T ) of ice nucleation temperatures for the 

IN in the sample and generate from it an artificial IN dilution 

series similar to those obtained in experiments, from which 

we compute the cumulative freezing spectrum Nm(T ) using 

where each subpopulation Pi (T ) is further characterized by 

its most likely temperature of freezing Tmode,i and spread of 

distribution of freezing temperatures si. We also provide in 

the HUB code the option for the user to use the log-normal 

distribution, which has a tail towards higher temperatures, or 

the left-tailed Gumbel distribution, which has a tail towards 

lower temperatures. In our model, we assume that the under- 

lying distribution of ice-nucleating temperatures Pu(T ) does 

not change with the concentration of INs. This last condition 

is violated when INs are involved in chemical, aggregation, 

2  Numerical modeling of drop-freezing experiments si 
√ e , (3) 
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or solubility equilibria that alter the proportionality between 

their concentration and the dilution factor of the sample, re- 

sulting in a lack of overlap of the pieces of the cumulative 

spectra Nm(T ) obtained from different dilutions (Bogler and 

Borduas-Dedekind, 2020). 

The number of INs in each droplet is given by the Poisson 

ential spectrum. According to the Fisher–Tippett–Gnedenko 

theorem, the distribution of extreme upper values of the 

Gaussian distribution is the right-skewed Gumbel distribu- 

tion (Castillo et al., 2005; David and Nagaraja, 2004; Gum- 

bel, 2012; De Haan and Ferreira, 2006), which has a fatter 

tail on the high-temperature side of its maximum. Indeed, 

distribution: the shift in P λ (T ) curves in Fig. 1b and c evinces that as 
n 

p(n, λ) = 
n! 

e− , (4) 
the number of INs in the droplet increases, the probability of 

sampling the higher temperature tail of Pu(T ) increases sig- 

where n is the actual number of INs in each droplet and λ 
represents the average number of INs among all droplets of 

the corresponding dilution. Figure 2a shows the probability 
mass function (PMF) for λ = 1, 5, and 10, computed accord- 

ing to Eq. (4) and sampling over N0 = 104 droplets using the 

nificantly. This skew is the reason why several dilutions are 

needed to sample the full population of ice nucleants. 

HUB-forward computes the fraction of frozen droplets and 

cumulative spectra from a proposed underlying distribution 

of freezing temperatures, using extreme value statistics. The 
fraction of frozen droplets fλ (T ) can be calculated as a 

“SciPy Stats” Python framework (Virtanen et al., 2020). As 

λ increases, the probability that any droplet nucleates homo- 

geneously rapidly approaches zero (inset of Fig. 2a). When 

ice 

function of the concentration-dependent distribution: 

T 

there is one IN on average per droplet (λ 1), 37 % of the 

droplets do not have any INs; i.e., they are “empty” droplets 

that would nucleate at the homogeneous nucleation temper- 

λ 
ice ) = max T 

Tm 

 
' dT '  F , 

N0 
(5) 

ature. We note that by performing dilutions until a sizeable 

fraction of droplets nucleate homogeneously, it is possible to 

calibrate the absolute concentration of ice nuclei in the orig- 

inal, undiluted sample. 

To illustrate how the heterogeneous ice nucleation tem- 

peratures recorded in drop-freezing experiments depend on 

the number of INs in the droplets, we start from two exam- 

ples with Pu(T ) represented by one or two Gaussian sub- 

populations, shown with dashed black lines in Fig. 2b and c, 

respectively. We assign a temperature to each IN contained 

in droplets from a 10-fold dilution series of five solutions 

with λ  1, 10, 102, 103, and 104 average number of INs 

per droplet. If the droplet volume is constant, λ is propor- 

tional to the concentration of INs in the droplets. We sample 

N0 104 droplets for each concentration. This N0 is much 

higher than the 100 droplets usually sampled in laboratory 

experiments; we address the effect of sampling in Sect. 3.1 

below. 

To sample independent random values for each IN, the 

number of random variates, which are drawn from Pu(T ), is 

the total number of INs among N0 droplets. Thereby, each 
droplet has a set of temperatures T λ = (T λ, T λ, . . ., T λ), 

where the integration is from the ice melting temperature 

Tm to the temperature T, Nλ is the total number of droplets 

that freeze heterogeneously, and N0 is the total number of 

droplets. We note that the approach taken in this work differs 

from that of previous studies that start from a microscopic 

model for the nucleation sites and nucleation theory to pre- 

dict the fraction of frozen droplets using Monte Carlo simu- 

lations, as well as from previous modeling using the singular 

approximation, which do not account for the statistics of ex- 

treme sampling. 

To use the HUB-forward code, the user must define the 

total number of droplets “ndroplets” that serves as the to- 

tal number of each concentration and the number of sub- 

populations “nsubpop”. If “nsubpop” 1, the user must pro- 

vide the temperature of maximum likelihood Tmode,1 and the 

spread s1. If “nsubpop” 2, the user must provide Tmode,1, 

s1, Tmode,2, s2 and c2. If “nsubpop” 3, the user has to pro- 

vide Tmode,1, s1, Tmode,2, s2, c2, and Tmode,3, s3, c3. To gener- 

ate the cumulative freezing spectrum Nm (T ), the user needs 

to define the total number of concentrations “nconc”; the 

concentration of the parent suspension is defined in “density” 
j 1 2 where j is the droplet index and k 

k and the droplet volume in “volumedrop”. The output is com- 
is the IN index. Since 

we assume that freezing occurs at the characteristic tem- 

perature of the IN with the highest freezing temperature, 

the nucleation temperature for each droplet is defined as the 

maximum, i.e., the extreme upper value, of several indepen- 

posed of different data plots and files: the normalized Pu(T ) 
and P λ (T ), the artificially generated fλ (T ), and Nm (T ) 
built from the 10-fold dilution series. 

Figure 3a and b show the fraction of ice computed using 

dent freezing temperatures T λ = max(T , T , . . ., T ). 
λ 
max (T ) of Fig. 2b and c, which correspond to Pu(T ) with 

Figure 2b and c show the normalized distribution of T λ intermediate plateau in Fig. 3b indicates that no droplets 

for different values of λ, namely P λ (T ). Therefore, Pu(T ) freeze at those temperatures. As discussed above, only 63 % 

represents the underlying probability of heterogeneous ice 

nucleation temperatures independent of the concentration of 

INs, while P λ (T ) represents the concentration-dependent 

of the droplets freeze heterogeneously for λ = 1. We assume 

droplets of uniform volume Vdrop = 0.1 µL obtained through 

10-fold dilution of a parent suspension with λ = 104 INs per 

distribution and has the same units as Pu(T ) and the differ- droplet corresponding to a mass m = 1 mg of IN in a vol- 

N 

P 
two subpopulations and one subpopulation, respectively. The 

λ 
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Figure 2. (a) Probability mass function (PMF) of the Poisson dis- 

tribution representing the number of INs per droplet. Colors rep- 

resent different average numbers of INs per droplet: λ 1 (blue 

squares), λ 5 (purple triangles), and λ 10 (cyan circles). The in- 

set shows the fraction of empty droplets as a function of λ. The con- 

necting lines are solely guides for the eye. Panels (b) and (c) show 

the normalized underlying distributions Pu (T ) of heterogeneous ice 

nucleation temperatures (dashed magenta line), composed of two 

subpopulations and one subpopulation, respectively. Colors repre- 

sent the concentration-dependent normalized distribution P λ  (T ) 

Pu(T ) to the number of droplets and dilutions, as seen in the 

comparison of Nm (T ) generated from the same underlying 

distributions using 100 and 104 droplets in Fig. 3. In Sect. 3.1 

we show that the sampling with 100 droplets for only four di- 

lutions of a system with two subpopulations of INs results in 

distortions of the distribution of freezing temperatures and 

the proportions of these populations in the differential spec- 

trum. 

The knee point in Nm(T ) corresponds to the point of max- 

imum curvature (Satopaa et al., 2011) and has been used to 

characterize the nucleation temperature of a particular sub- 

population (Hartmann et al., 2022). Similar to Hartmann et 

al. (2022), we have identified in Fig. 3c and d the knee points 

(dotted magenta line) of the artificially generated Nm(T ) 
by using a Python function named “kneed”. The Python 

function “kneed” using S 1, curve “concave”, and di- 

rection “decreasing”. The knee points Tknee are very close 

to the temperatures of maximum likelihood Tmode (dashed 

black lines) of the corresponding underlying distribution 

Pu (T ), because under these conditions the differential freez- 

ing spectrum nm(T ) is a very good approximant for Pu(T ). 
However, we find that the removal of the more dilute solu- 

tions eliminates the plateau in Nm(T ) and results in poor es- 

timation of the modes of Pu(T ) from the knee of Nm(T ). 

 
2.2 HUB-backward method to recover the differential 

freezing spectrum nm(T ) from the cumulative 

freezing spectrum Nm (T ) by a stochastic 

optimization procedure 

The HUB-backward code implements a stochastic optimiza- 

tion procedure to extract the differential spectrum nm(T ) 

from a given cumulative spectrum Nm(T ) or from an experi- 

mental fice (T ) curve. The latter is useful when data are avail- 

able for a single concentration. One possibility for obtaining 

nm(T ) from Nm(T ) would be to follow the following steps: 

of heterogeneous ice nucleation temperatures: λ = 
max 

1 (blue squares), (i) propose a trial function ntrial(T ), (ii) use HUB-forward to 

λ = 10 (cyan circles), λ = 102 (green diamonds), λ = 103 (yellow 

×), and λ = 104 (red triangles) INs per droplet. A bin width of 

predict the concentration-dependent distributions P λ,trial (T ) 
for various IN concentrations, (iii) use these in Eq. (5) to pre- 

0.1 was used for Pu (T ) and P λ (T ). All distributions were ob- λ,trial trial 

tained using 104
 

max 

droplets. While the HUB-forward code explicitly 
dict the freezing fractions fice (T ), (iv) compute Nm (T ) 
from the freezing fractions using Eq. (1a), (v) evaluate the 

accounts for Nλ and N0, we note that their ratio can be approxi- 
F mated by λ (1 −λ) based on properties of the Poisson difference between that trial and the target (experimental) 

NF /N0 e 
distribution. 

 

 

ume Vwash 1 mL. We use Eq. (5) and the Pu(T ) of Fig. 2b 

and c to generate fλ (T ) (Fig. 3a and b), sampling either 

100 or 104 droplets per dilution. We combine the fλ (T ) us- 

ing Eq. (1a) to build the cumulative freezing spectra Nm(T ) 
shown in Fig. 3c and d (sampling 104 droplets per dilution) 

and Fig. 3e and f (sampling 102 droplets per dilution). 

The ability of HUB-forward to generate the cumulative 

freezing spectrum Nm(T ) from the underlying distribution 
Pu(T ) allows for an analysis of the sensitivity of Nm(T ) and 

value using 

δ (T ) = log 
I
N trial(T )

i 
− log  

I
N target(T )

i 
, (6) 

 

and then (vi) evolve the parameters that determine ntrial(T ) 
until the difference δ (T ) is minimized. However, the use of 

HUB-forward in steps (ii) and (iii) to generate and evaluate 

hundreds of droplets containing up to tens of millions of INs 

would require significant computations that render this opti- 

mization process inefficient. 

The HUB-backward optimization procedure, sketched in 

Fig. 4, uses a shortcut for steps (ii) and (iii) above to directly 
predict N trial(T ) from ntrial(T ) with fast convergence. The 

m m 
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Figure 3. Panels (a) and (b) represent the fraction of ice fλ  (T ) computed using Eq. (5) and artificially generated data using 104 droplets. 

Panels (c) and (d) are the corresponding cumulative freezing spectra Nm (T ) computed using Vali’s equation. Colors represent the different 

number of INs per droplet: λ  1 (blue squares), λ  10 (cyan circles), λ  102 (green diamonds), λ  103 (yellow ), and λ  104 (red 

triangles). Panels (e) and (f) represent Nm (T ) obtained using 100 droplets. The dashed black lines in (c) and (d) indicate the temperatures 

corresponding to the location of the mode(s) in the underlying distribution. The dotted magenta lines are the knee points computed with the 

Python function “kneed”. 

 

shortcut is based on the understanding that, in the asymptotic 

limit in which the sample is extremely dilute (i.e., λ  0), 

each droplet that nucleates heterogeneously contains a single 

IN. In such a case, sampling an infinitely large number of 

droplets with P λ−→0 (T ) is equivalent to sampling each and 

every IN, i.e., P λ−→0 (T ) Pu (T ). In agreement with this 
ansatz, Fig. 2b and c show that the underlying distribution 

Pu(T ) (dashed black line) and the concentration-dependent 
P λ=1 (T ) (blue squares) sampled with 104 droplets per dilu- 

tion are already very close, i.e., Pu(T )  P λ=1 (T ). 
With this insight and considering the intrinsic cumulative 

T 1 
Tm 

cumulative integral of the differential spectrum as 

T 

HUB-backward uses a spline fit to interpolate the experimen- 

tal N target(T ), in order to have equally spaced temperature 

points to compare with the estimates in N trial(T ). We use the 

“interp1d” algorithm, which is available in the Python SciPy 

library (Virtanen et al., 2020), with a linear interpolation to 

construct new equally spaced data points within the range 

of the lowest and highest temperature values in the freezing 

spectrum. The cost function for the optimization is the mean 

squared error (MSE), computed from the difference δ (T ) in 

Eq. (6): 

MSE = 
1 L 

δ2, (9) 

where t represents the total number of equally spaced points 

trial 
u 

Tm 

ntrial 
(
T '

) 
dT ' × β, (7) 

in δ (T ). 
We use a stochastic global optimization technique based 

on a simulated annealing algorithm to find the set of pa- 

rameters of ntrial (Eqs. 2 and 3) and β (Eq. 7) that globally 
where the integration is from the ice melting temperature 
Tm to the temperature T and β is an adjustable scaling fac- 

tor to be obtained from the optimization. Likewise, a simi- 

lar estimate can be made for a single fraction of ice curve 

f trial (T )  I trial (T ) using Eq. (7) and the mean squared er- 

ror can be directly evaluated (Fig. 4). When the target is a 

cumulative freezing spectrum, HUB-forward uses ntrial (T ) 
to predict a trial cumulative freezing spectrum (Fig. 4), 

N trial (T ) = −ln[1 − Iu (T )] × 
1 

, (8) 

where 1/X corresponds to the maximum of the cumulative 
target 
m 

With Eq. (8) we obtain an N trial (T ) that we compare with 

the target using Eq. (6) (Fig. 4). To do the comparison, 

m 

minimize the MSE. We use the simulated annealing (SA) al- 

gorithm “dual annealing” that is part of the SciPy minimize 

library (Virtanen et al., 2020) with its default arguments pre- 

defined, except for the parameters “maxfun” that sets the 

maximum number of evaluations of the objective function 

(we select “maxfun” 1 000 000 in the examples below) and 

the seed for the generation of random numbers (a new ran- 

dom integer is automatically generated every time the HUB- 

backward code is run). We show below that the optimized 

differential spectra, nm  (T ), are quite insensitive to the 

value of the seed. 

The output of HUB-backward is an optimized differen- 

tial spectrum noptimized(T ) or an optimized fraction of ice 

f optimized(T ). To quantify how much this optimized predic- 

tion deviates from the known underlying distribution in the 
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Figure 4. Flowchart of the optimization procedure to obtain the differential freezing spectrum nm(T ) from the full cumulative freezing 

spectrum Nm(T ) or fraction of frozen droplets fice(T ). 

 

examples of Fig. 5, where Pu(T ) is known, we define the 

mean relative error (MRE) for the set of parameters: 

1 L 
1
1 T 

optimized 
− T 

target 
1
 

  

 
 

values are 3 and 1, respectively. HUB-backward generates 

a plot that compares the original and the interpolated target 

data. 

To identify the minimum number of subpopulations 

 
 

optimized target s − s 1 c
optimized 

− c
target 1

# m f (T ), these functions display a sharp increase. We note 
+ 1 target 1 + 1 i target , (10) ice that assuming a large number of subpopulations may chal- 

1 si 
1 1 ci 

1 
lenge the interpretability of the optimized differential spec- 

where p is the number of subpopulations. 

We now turn our focus to how to select the input param- 

eters required by HUB-backward to start the search for the 

underlying distribution, using the experimental N target(T ) or 

trum n
optimized

(T ).
 

We apply the HUB-backward procedure to the Nm (T ) ob- 

tained in Fig. 3c and d by sampling four 10-fold dilutions 

target m with 100 droplets, i.e., only a total of 500 droplets. Figure 5 
fice (T ) as a guide. The code requires the user to define the 

number of distinct Gaussian subpopulations Pi(T ) that com- 

prise the underlying distribution (Eq. 2) and to provide upper 

and lower bounds for the weights ci, their modes Tmode,i, 

and spreads si of each of these populations. In general, we 

find that defining the minimum and maximum values for the 
weights to cmax = 1 and cmin = 0 (see constraint in Eq. 2), 

shows the comparison between the predicted (solid magenta 

lines) and the target (dashed black lines) Nm (T ) (panels a 

and b) and nm (T ) (panels c and d). Table 1 shows the pre- 

dicted parameters and the precision of the optimization pro- 

cedure to recover the known underlying distribution Pu(T ). 
The MRE between the underlying distribution Pu(T ) and the 
optimized differential spectrum noptimized(T ) is 2 % for the i 

max 
i  

min m 

for the modes Tmode,i and Tmode,i to between the homoge- 

neous nucleation temperature (about −30 ◦C) and the melt- 
ing temperature (0 ◦C), and for the spreads to smax = 10 ◦C 

system with one subpopulation and 13 % for the one with 

two despite the low number of droplets used to sample the 

cumulative freezing spectra in the computer-generated freez- 
and smin = 0.1 

i 
◦  C works well. However, these bounds can be ing experiments. 

tuned in order to better fit the data (as we find for pollen in 

Sect. 3.2 below). If the existing experimental N target(T ) data 

are very noisy, they can be interpolated in HUB-backward 

using the method “interp1d” with “npoints” 100 and then 

smoothed with a Savitzky–Golay filter by changing the pa- 

rameters “window_length”, which is the length of the filter 

window, and “polyorder”, which is the order of the polyno- 

mial used to fit the samples (“filter” in Fig. 4). The default 

We conclude that the HUB-backward code gives a good 

estimate of the mode, spread, and weights of the populations 

of INs in a sample and it can be applied in a situation where 

Pu(T ) is unknown. In Sect. 3.1 we discuss how the accu- 

racy is of the underlying distribution recovered with HUB- 

backward impacted by various schemes of the sampling of 

the number of droplets and dilutions to construct Nm (T ). In 

3 needed to represent a given freezing spectrum, we consider MRE = 
T

mode,i 
that every time a population is accumulated in N ( T ) or 

i i 
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Table 1. Mean relative error (MRE), mean squared error (MSE), and parameters of the optimized differential freezing spectra 
optimized 

nm T 
obtained using the HUB-backward code. The values shown here were calculated based on the average of n 3 independent runs. The error 

bars, shown in parentheses, were calculated by dividing the standard deviation of the values in these runs by 31/2. 
 

MRE MSE Tmode,1 (
◦C) s1 (

◦C) Tmode,2 (
◦C) s2 (

◦C) c2 β 
 

One subpopulation 2 % 1.0(2) × 10−3 −7.80(2) 0.49(2) 0.63(1) 

Two subpopulations 13 % 3.0(2) × 10−3 −7.90(2) 0.54(2) −3.90(2) 0.49(2) 0.16(2) 0.63(1) 
 

 

 
 

 
 

Figure 5. Panels (a) and (b) show the comparison between 
N 

target
(T ) (black circles) and the N 

optimized
(T ) computed with the 

3 Using the HUB code to optimize and analyze 

drop-freezing experiments 

 
3.1 Effect of the number of droplets and dilutions on the 

cumulative freezing spectrum Nm(T ) 

 

Figure 3d–f show Nm(T ) generated with HUB-forward us- 

ing five dilutions from λ 104 to 1 of a solution with Pu(T ) 
containing two populations in a ratio of 9 to 1. The Nm(T ) 
are different when the number of droplets per dilution is 100 

(Fig. 3f) or 104 (Fig. 3d). As shown in the previous section, 

the freezing spectrum obtained with 100 droplets and five 

dilutions has enough sampling to recover this Pu(T ) with 

good accuracy (Fig. 5c and d). We test different number of 

droplets and concentrations, defined by the average number 

of INs per droplet λ, to test the sensitivity of nm(T ) to the 

number of droplets and dilutions when the underlying distri- 

bution Pu(T ) is known. We use HUB-forward to build Nm(T ) 
based on a combination of different numbers of droplets and 

concentrations, similar to the case shown in Fig. 3f. Then, 
optimized 

m m optimized we use HUB-backward to obtain nm (T ), compare it to 

optimized solution nm (T ) (solid red line). Panels (c) and 
(d) show the known underlying distributions Pu(T ) (dashed black 

line) and the optimized underlying distributions 
optimized

(T ) (solid 

red line) based on three independent runs. The parameters of the 

predicted underlying distribution n
optimized 

(T ) are summarized in 
Table 1. 

 

Sect. 3.2, we apply the HUB-backward procedure to obtain 

noptimized(T ) from actual Nm (T ) of experiments with vari- 

ous soluble biological INs. In Sect. 3.3, we apply the HUB- 

backward procedure to obtain n (T ) from fice (T ) of 

experiments of insoluble crystal INs. 

Pu (T ), and test the accuracy of each prediction through its 

mean relative error (MRE) defined in Eq. (10). 

The left panels of Fig. 6 show Nm(T ) generated with 

HUB-forward based on a combination of different concentra- 

tions using 100 droplets for each dilution. The magenta lines 

are based on the data provided by the HUB-backward code. 

The right panels of Fig. 6 compare noptimized(T ) in magenta 

and the known underlying distribution Pu (T ) in black. In this 

example, nm(T ) is very close to Pu (T ) if both subpopula- 

tions are sampled enough. However, if the most dilute solu- 

tion with λ 1 is not included in Nm(T ) (second panel), the 

estimate of the underlying distribution is very poor. Thus, to 

improve the sampling of the lower tail of Pu (T ), we recom- 

mend ending the dilution series always in the immediacy of 

λ 1, which can be gleaned from the temperature range for 

which Nm (T ) becomes flat and a sizeable fraction of droplets 

of the more diluted sample nucleates homogeneously (inset 

of Fig. 2a). The one-to-one correspondence between the frac- 

tion of droplets nucleated homogeneously and the average 

number of particles in the droplet in the highly diluted limit 

(inset of Fig. 2a) demonstrates that reaching this limit allows 

for an absolute calibration of the number of INs in the ini- 

tial sample. Moreover, sampling to concentrations down to 
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Figure 6. Panels (a, c, e, g) represent the cumulative freezing spec- 

tra Nm (T ) sampled from the same underlying distribution Pu(T ). 

Colors represent the different numbers of INs per droplet: λ 1 

(blue squares), λ  10 (cyan circles), λ  102 (green diamonds), 

λ 103 (yellow ), and λ 104 (red triangles). The sampling was 

done using 100 droplets for each concentration. Panels (b, d, f, h) 

represent the differential freezing spectra nm (T ) compared to the 

known underlying distribution Pu(T ), shown by the magenta and 

dashed black lines, respectively. Panels (a–d) were computed with 

a different number of dilutions. The mean relative error (MRE) was 

computed using Eq. (10). The parameters of nm (T ) and Pu(T ) are 

shown in Table S1. 

 

 

about one nucleant per droplet is essential to recover a proper 

weight of the poorly nucleating IN populations. 

The relative weights of class A and C populations in Pseu- 

domonas syringae is approximately 1 to 1000 (Sect. 3.2), 

while the ratio is 9 to 1 in the two-population system exam- 

ple of Fig. 6. To understand the impact of highly imbalanced 

populations on the sampling of the cumulative spectrum and 

recovery of the underlying distribution, we show in Fig. 7 the 

analysis of an example where the subpopulation of highly ef- 

ficient INs is 3 orders of magnitude less likely to occur than 

the subpopulation at lower temperatures, mimicking the one 

of P. syringae. Our analysis confirms that it is important to 

end the dilution series in the immediacy of λ 1 to fully 

represent the contribution of the poorer INs (Fig. 7b–f). Fur- 

thermore, we find that it is important to sample a concentra- 

tion high enough to account for the rare INs that nucleate at 

the warmest temperatures (Fig. 7d–h). 

If only 25 droplets per dilution, instead of 100, are used to 

construct the cumulative spectrum, the impact of insufficient 

sampling at the higher concentrations is more pronounced: 

compare Fig. 8c and Fig. 7d obtained with the same under- 

lying distribution Pu (T ) with 1000 to 1 subpopulation ratios 

and number of dilutions. 

We conclude that an increase in the accuracy in the ac- 

count of the subpopulations requires a higher number of di- 

lutions and the checking of the predictions with the addition 

of each successive concentration to ensure convergence of 

noptimized(T ). Measuring fewer droplets or fewer dilutions 

leads to poor statistics and results in incompleteness or the 

misrepresentation of the underlying distribution in samples 

with multiple subpopulations. In principle, increasing the 

number of droplets of the most concentrated solutions or 

adding more 10-fold concentrated ones until there are no 

changes in the cumulative spectrum is recommended to en- 

sure complete sampling. When that limiting scenario is not 

attainable, the use of HUB-forward to produce synthetic data 

from a proposed underlying distribution, followed by the re- 

covery of the differential spectrum from these data sets, al- 

lows for an estimation of the errors that may be incurred 

for putative, proposed underlying distributions with the sam- 

pling scheme available in the laboratory. 

 

3.2 Obtaining the differential freezing spectrum nm(T ) 

from the experimental cumulative freezing spectrum 

Nm(T ) of biological INs using the HUB-backward 

code 

In this section we use the HUB-backward code to obtain the 

differential freezing spectrum nm(T ) from the cumulative 

freezing spectra Nm(T ) of the fungi Fusarium acuminatum 

strain 3–68 (Kunert et al., 2019), the bacterium P. syringae 

(Schwidetzky et al., 2021), and birch pollen (Dreischmeier, 

2019). We select these systems because they are important 

biological INs and show increasing complexity in terms of 

the apparent number of underlying distributions that define 

their freezing spectra. 

The experimental Nm(T ) obtained for F. acuminatum 

(black squares in Fig. 9a) was obtained by sampling six 10- 

fold dilutions, each with 96 droplets (Kunert et al., 2019). 

Figure 9a shows the cumulative spectra optimized assum- 

ing one (green curve) and two (cyan curve) subpopulations; 

Fig. 9b shows the corresponding optimized differential freez- 

ing spectra. The nm   (T ) with a single subpopulation 

that peaks at 5.9 ◦C is unable to represent the cumulative 

density of the most potent nuclei and misses the inflection 
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Figure 7. Panels (a–d) represent the cumulative freezing spectra 

Nm (T ) sampled from the same underlying distribution Pu(T ). Col- 

ors represent the different number of INs per droplet: λ 1 (blue 

squares), λ 10 (cyan circles), λ 102 (green diamonds), λ 103 

(yellow ), and λ 104 (red triangles). The sampling was done us- 

ing 100 droplets for each concentration. Panels (e–h) represent the 

differential freezing spectra nm (T ) compared to the known under- 

lying distribution Pu(T ), shown by the magenta and dashed black 

lines, respectively. The mean relative error (MRE) was computed 

using Eq. (10) and the parameters of nm (T ) and Pu(T ) are shown 

in Table S2. 

 

 

at around 5.9 ◦C in the experimental data, resulting in a 

mean squared error MSE 0.05. The noptimized(T ) with two 

subpopulations has a lower MSE  0.003 and a better fit that 

suggests a population that peaks at  7.3 ◦C and another at 

5.5 ◦C, in comparable amounts (Table 2). Most notably, the 

two subpopulations do not overlap in the differential freezing 

spectrum, supporting that they may indeed correspond to dif- 

ferent physical entities. The improvement in the fit becomes 

apparent in the inset of Fig. 9a, which shows Nm(T ) on a lin- 

ear scale. The significant slope of Nm(T ) even at the lowest 

temperatures indicates that the sampling of more diluted so- 

Figure 8. Panels (a–c) represent the cumulative freezing spectra 

Nm (T ) sampled from the same underlying distribution Pu(T ). Col- 

ors represent the different number of INs per droplet: λ 1 (blue 

squares), λ 10 (cyan circles), λ 102 (green diamonds), λ 103 

(yellow ), and λ 104 (red triangles). The sampling was done us- 

ing 25 droplets for each concentration. Panels (d–f) represent the 

differential freezing spectra nm (T ) compared to the known under- 

lying distribution Pu(T ), shown by the magenta and dashed black 

lines, respectively. The mean relative error (MRE) was computed 

using Eq. (10). The parameters of nm (T ) and Pu(T ) are shown in 

Table S3. 

 

 

lutions is needed to capture the contribution of the less active 

INs. An attempt to represent F. acuminatum nucleation data 

with three different subpopulations resulted in two of them 

being almost identical. We conclude that adding a third sub- 

population is unnecessary to reproduce the experimental cu- 

mulative freezing spectrum of F. acuminatum. We refer the 

reader to Schwidetzky et al. (2023) for an interpretation of 

the size of the ice-nucleating surface of F. acuminatum based 

on its differential spectrum and nucleation theory. 

Next, we apply the HUB-backward code to analyze the ex- 

perimental freezing spectrum of Snomax®, i.e., inactivated 

P. syringae. The cumulative spectrum suggests the presence 

of two distinct subpopulations, usually called class A (at 

warmer temperatures) and class C (at colder ones). We first 

assume the differential freezing spectrum nm(T ) of P. sy- 

ringae is a combination of two Gaussian populations. The 

parameters of the optimized differential spectrum with two 

subpopulations are listed in Table 2, and the curve is shown 
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Figure 9. Cumulative freezing spectra Nm(T ) obtained from drop-freezing experiments for (a) F. acuminatum strain 3–68 (Kunert et al., 

2019), (b) P. Syringae (Schwidetzky et al., 2021), and (c) birch pollen (Dreischmeier, 2019) (black circles). The solid green, long dashed 
cyan, and short dashed red lines represent N 

optimized
(T ) computed with the optimized differential freezing spectra n

optimized
(T ) obtained 

m m 

with the HUB-backward code considering one, two, and three subpopulations, respectively. Panels (b), (d), and (e) show n
optimized

(T ). The 

gray circles are experimental data points in the measurement of the birch pollen ice nucleation spectrum that were not considered in the 

optimization procedure. Insets in (a) and (c) show Nm(T ) in normal scale. 

 
Table 2. Mean squared error (MSE) and parameters of the differential freezing spectra nm (T ) obtained using the HUB-backward code and 
experimental data as input. The values shown here were calculated based on the average of n  3 independent runs. The error bars, shown in 

parentheses, were calculated by dividing the standard deviation of the values in these runs by 31/2. 

 

Number of MSE Tmode,1 s1 Tmode,2 s2 c2 Tmode,3 s3 c3 β 

populations  (◦C) (◦C) (◦C) (◦C)  (◦C) (◦C)   

F. acuminatum 1 2.0 % −5.90(1) 0.36(1) 0.54(1) 

F. acuminatum 2 0.5 % −7.30(2) 0.62(3) −5.50(1) 0.31(1) 0.35(1) 0.58(2) 

P. syringae 2 2.0 % −9.40(2) 0.77(2) −4.20(2) 0.41(3) 7.0 (2) × 10−4 0.87(1) 

P. syringae 3 1.1 % −9.10(2) 0.70(2) −5.20(1) 0.53(2) 1.0 (1) × 10−3 −3.70(1) 0.27(2) 3.0 (1) × 10−4 0.57(1) 

Birch pollen 3 5.0 % −20.00(2) 0.79(3) −15.60(2) 0.58(1) 9.0(1) ×10−6 −8.40(1) 0.69(2) 6.0 (2) × 10−8 0.39(3) 
 

 

in Fig. 9d with a cyan line. We use a logarithmic scale to rep- 

resent this nm  (T ) because the population correspond- 

ing to class A accounts for less than 0.1 % of the total (Ta- 

ble 2). While the fit with two subpopulations results in a good 

overall account of the target data, we note that there is some 

difference in the region between classes A and C (Fig. 9c). 

The fitting for P. syringae achieves an excellent agreement 

between optimized and target cumulative spectra (Fig. 9c), 

through the prediction of an additional peak located between 

classes A and C (the elusive class B), with a population com- 

parable to class A (Table 2 and red curve in Fig. 9d). How- 

ever, more measurements and analyses are needed to estab- 

lish whether this “class B” peak at −5.2 ◦C is reproducible 

and truly distinct from the one of class A at 3.7 ◦C to 

warrant a physical interpretation. Overall, both the analyses 
with two and three subpopulations agree with previous ones 

(Govindarajan and Lindow, 1988; Warren, 1987) that con- 

cluded that over 99 % of the INs active in P. syringae bacteria 

in Snomax® belongs to class C. The analysis presented here 

for fungal and bacterial INs illustrates how HUB-backward 

can be used to reveal and characterize the underlying number 

of IN subpopulations of complex biological samples. 

To further test the methodology, we model the cumula- 

tive freezing spectrum of birch pollen. Given that the origi- 

nal Nm(T ) data for pollen in Fig. 3.1 of Dreischmeier (2019) 

consist of multiple independent curves, we took one of the 
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many presented in this graph as the target N target(T ) (black 

curve in Fig. 9e) and present some of the additional data – not 

used in the optimization – with gray circles in Fig. 9e. Sec- 

tion S4 in the Supplement shows that the differential spec- 

trum optimized from the whole data set and its sparse sam- 

pling are almost identical because HUB-forward interpolates 

and smooths the input data to produce an equispaced data 

set. The N target(T ) seems to contain three quite separated 

subpopulations, which is confirmed by the accuracy of the 

optimized cumulative spectrum in Fig. 9e. The parameters 

of the optimized differential freezing spectrum noptimized(T ) 
and the MSE are shown in Table 2. Our analysis indicates that 

the two subpopulations that nucleate ice above 16 ◦C con- 

stitute less than 0.01 % of the active nucleating sites in pollen 

(Fig. 9e), consistent with drop-freezing assays that only mea- 

sured solutions with low concentrations of birch pollen and 

did not observe freezing at higher temperatures (Augustin et 

al., 2013; Pummer et al., 2012; Felgitsch et al., 2018), while 

the more extensive data of Dreischmeier (2019) reveal two 

more active subpopulations of INs. 

To further illustrate the use of HUB-backward, Fig. 10 

shows the effect of pH in the modes, spread, and weights 

of the subpopulations that contribute to the nucleation spec- 

trum of P. syringae (Snomax®), using data from Lukas et 

al. (2020). Freezing in the temperature range of class A drops 

about 3 orders of magnitude when the pH is lowered from 

6.2 to 4.4 (Fig. 10b). However, we note that the cumulative 

number of INs is preserved in the experimental cumulative 

freezing spectrum (Lukas et al., 2020), indicating that the 

change in pH did not impact the number of nucleants. Fig- 

ure 10c and d demonstrate that the distributions associated 

with both subpopulations shift to lower temperatures when 

the pH decreases, and the range of freezing temperatures in 

class A becomes broader. An attempt to fit the cumulative 

spectra of Snomax at different pH values with the same sub- 

populations, allowing only for adjustment of their weights, 

resulted in a poor fit to the experimental Nm(T ), support- 

ing the conclusions of Lukas et al. (2020) of a central role 

of electrostatic interactions in the assembly of the bacterial 

ice-nucleating proteins and their ability to bind to ice. This 

analysis exemplifies how HUB-backward can be applied to 

quantify the dependence of IN on environmental variables. 

 

3.3 Obtaining the differential freezing spectrum nm(T ) 

from the experimental fraction of ice fice(T ) of 

insoluble ice nucleators using the HUB-backward 

code 

Section 3.1 and 3.2 discuss how to obtain the differential 

spectrum from a target cumulative one. However, there are 

many cases where the results are presented as a fraction 

of frozen droplets as a function of temperature, fice(T ). In 

these cases, the HUB-backward code can be used to obtain 

the optimized differential freezing spectrum noptimized(T ) di- 

 

 
 

Figure 10. Effect of changing the pH on the subpopulations of 

P. Syringae (Lukas et al., 2020). (a) Differential freezing spectra 

nm (T ) obtained using the HUB-backward code. Colors represent 

the different pH values: 6.5 (long dashed black line), 5.6 (short dot- 

ted blue line), and 4.4 (solid magenta line). (b) Ratio between the 

weights, (c) the modes, and (d) the spreads of each subpopulation 

as a function of pH. The fitting of Nm (T ) and the parameters of 

nm (T ) are shown in Fig. S1 and Table S4. 

 

 

the analysis of droplet freezing data for a sample of lignin 

(Bogler and Borduas-Dedekind, 2020) in which the INs par- 

ticipate in aggregation equilibria. Here, we exemplify the op- 

timization of the differential spectrum of cholesterol from ex- 

perimental freezing data obtained at two cooling rates with 

droplets sampled from a single dilution. 

In the analysis of drop-freezing experiments, it is assumed 

that each IN has a singular freezing temperature, independent 

of the cooling rate. However, ice nucleation is a stochastic 

process, and the underlying distribution of freezing tempera- 

tures Pu (T ) strictly depends on both temperature and cooling 

rate, as slower rates give more time for the system to cross 

the nucleation barrier at warmer temperatures. 

The triangles and squares in Fig. 11a display the ex- 

perimental fice(T ) obtained by sampling the freezing of 

hundreds of 120 µL droplets pipetted from a suspen- 

sion of cholesterol monohydrate crystals in contact with 

Teflon cooled at 0.18 K min−1 (triangles) and 0.06 K min−1 

(squares) (Zhang and Maeda, 2022). Our analysis of the 

freezing data of cholesterol monohydrate shows that even a 

3-fold change in the cooling rate can have a significant effect 

on the differential spectrum (Fig. 11b). 

As expected, the modes of the three populations move to- 
wards warmer temperatures upon decreasing the cooling rate. 

rectly from 
target 

ice 

m 

T ). Section S5 illustrates this approach for We note, however, that the shift in the peaks is not uniform; 
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Figure 11. Use of the HUB-backward code to estimate the opti- 

mized differential freezing spectra n
optimized

(T ) based on the frac- 

is the same as that used by Vali (1971, 2014, 2019) in his 

derivation of the ice nucleation spectra from data of fraction 

of frozen droplets. Different to previous implementations of 

the singular model, HUB accounts for the distribution of the 

number of INs in droplets at a given concentration and uses 

extreme value statistics to represent the effect of dilutions 

in the frozen fraction and freezing spectra. Our method and 

codes allow users to obtain an analytical differential freezing 

spectrum nm(T ) from the experimental distribution of freez- 

ing temperatures, and vice versa. The differential freezing 

spectrum nm(T ) is an approximant to the underlying distri- 

bution of ice-nucleating temperatures Pu (T ), which provides 

a hub to connect the experimental freezing temperatures with 

interpretative physical analyses using kinetic models or nu- 

cleation theory that can be used to elucidate the mechanisms 

of nucleation and origins of these distributions. 

HUB-forward predicts the cumulative ice nucleation spec- 

trum Nm(T ) and fractions of frozen droplets fice(T ) from 

a known (or assumed) underlying distribution Pu(T ) of nu- 

tion of frozen droplets target 
m

 cleation temperatures for the INs in the sample. The HUB- 
fice (T ) of cholesterol (Zhang and Maeda, 

2022) at different cooling rates. Black circles and squares are exper- 

imental data, and dashed cyan and solid red lines are the optimized 

differential spectra given by the HUB-backward code. The parame- 

ters of nm (T ) are shown in Table S5. 

 

 

the middle one seems to be more sensitive to the cooling rate. 

Different sensitivity of the freezing rate of subpopulations 

has also been reported in simulations of nucleation data of 

minerals using the stochastic and modified singular frame- 

works (Herbert et al., 2014; Murray et al., 2011). The mod- 

ified singular model proposes an empirical correction to the 

relation between fice(T ) and Nm(T ) to account for the ef- 

fect of the cooling rate on the shift in these quantities (Vali, 

1994). That analysis could be extended to the analysis of the 

subpopulations of INs obtained with HUB-backward. More- 

over, it would be interesting in future studies to use the rate 

dependence of the mode of the subpopulations to extract the 

steepness of the nucleation barrier with temperature using 

nucleation theory (Budke and Koop, 2015) and to investi- 

gate the relationship between the cooling rate dependence of 

the differential spectrum obtained in the singular approxima- 

tion with the interpretation of the same data modeled with 

the stochastic framework, such as in Wright et al. (2013) and 

Herbert et al. (2014). 

 
4 Conclusions 

 

In this study, we present the HUB method and associated 

Python codes that model (HUB-forward code) and interpret 

(HUB-backward code) the results of droplet freezing experi- 

ments under the assumptions that each ice-nucleating site in 

the sample has a characteristic nucleation temperature that 

is time-independent. The use of the singular approximation 

forward code can be used to investigate the effect of the num- 

ber of droplets and dilutions on the temperature range of the 

cumulative freezing spectrum Nm(T ). Our analysis shows 

that the differential freezing spectrum nm(T ) is identical to 

the underlying distribution of heterogeneous ice nucleation 

temperatures Pu(T ) only when sampling is complete. Mea- 

suring fewer droplets or fewer dilutions can result in a bi- 

ased representation of the differential and cumulative spectra. 

HUB-forward predicts fice(T ) and Nm(T ) from a proposed 

distribution of IN temperatures, allowing its users to test hy- 

potheses regarding the role of subpopulations of nuclei in the 

freezing spectra and providing a guide for a more efficient 

collection of freezing data. 

HUB-backward uses a non-linear optimization method to 

find the differential freezing spectrum nm(T ) that best rep- 

resents the experimental target cumulative freezing spectrum 

Nm(T ) or fraction of frozen droplets fice(T ) in the experi- 

ments. The analytical form of the differential freezing spec- 

trum nm(T ) obtained from HUB-backward offers an inter- 

pretable physical basis. The interpretability of the results in 

terms of subpopulations provides an advantage over polyno- 

mial fitting and differentiation of Nm(T ). Indeed, we show 

that the HUB-backward code can be used to reveal and char- 

acterize the underlying number of IN subpopulations of com- 

plex biological samples (Snomax®, fungi Fusarium acumi- 

natum, and birch pollen) and quantify the dependence of their 

subpopulations on environmental variables. Interestingly, our 

analysis evinces subpopulations that are not obvious to the 

eye and have not previously been identified in these samples. 

The robustness of the signals that correspond to these popu- 

lations and their physical nature require further investigation. 

We illustrate the use of HUB-backward to obtain the dif- 

ferential freezing spectrum nm(T ) from the fraction of frozen 

droplets fice(T ) collected at a single concentration. We apply 

that analysis to demonstrate that nm(T ) depends on the cool- 
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ing rate. The shift in the peaks of the subpopulations to higher 

temperatures upon decreasing the cooling rate is not unex- 

pected, as longer waiting times allow for the surmounting of 

the same nucleation barrier at warmer temperatures. By pro- 

viding the temperature dependence of the mode, spread, and 

weight of the subpopulation peaks, HUB-backward can be 

combined with nucleation theory and other theoretical analy- 

ses to extract the steepness, and maybe even the distribution, 

of nucleation barriers that control the freezing process. 
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