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Abstract:  26 

The endocrine system is an essential regulator of the osmoregulatory organs that 27 

enable euryhaline fishes to maintain hydromineral balance in a broad range of 28 

environmental salinities. Because branchial ionocytes are the primary site for the active 29 

exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation 30 

is inextricably linked with adaptive responses to changes in salinity. Here, we review the 31 

molecular-level processes that connect osmoregulatory hormones with branchial ion 32 

transport. We focus on how factors such as prolactin, growth hormone, cortisol, and 33 

insulin-like growth-factors operate through their cognate receptors to direct the 34 
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expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction 35 

proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory 36 

(seawater-type) ionocytes. While these connections have historically been deduced in 37 

teleost models, more recently, increased attention has been given to understanding the 38 

nature of these connections in basal lineages. We conclude our review by proposing 39 

areas for future investigation that aim to fill gaps in the collective understanding of how 40 

hormonal signaling underlies ionocyte-based processes.   41 
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1. Introduction 45 

Fishes, the most numerous and diverse vertebrates, consist of three major 46 

classes: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes), and 47 

Osteichthyes (bony fishes) (Moyle and Cech 2004). Teleosts (class Osteichthyes; 48 

subclass Actinopterygii; infraclass Neopterygii; division Teleostei) and lampreys 49 

(members of Class Agnatha) typically maintain extracellular fluids between 270 and 400 50 

mOsm/kg, with Na+ and Cl- constituting the major dissolved ions (Hwang and Lin 2014; 51 

Ferreira-Martins et al. 2016). Therefore, when residing in dilute freshwater (FW) 52 

environments, they are at risk for both excessive hydration and salt loss across body 53 

surfaces. To counterbalance this situation, the gill actively absorbs ions (Na+, Cl-, and 54 

Ca2+) from the external environment, while the kidney and urinary bladder produce large 55 

volumes of dilute urine (Marshall and Grosell 2006; Kaneko et al. 2008). Lampreys and 56 

teleosts residing in seawater (SW), on the other hand, must excrete ions gained by 57 

passive diffusion from the surrounding environment and replace water that is lost via 58 

osmosis. While multiple segments of the gastrointestinal tract work in concert to promote 59 

solute-linked water absorption (Barany et al. 2020; Takei 2021), the gills and kidney 60 

secrete monovalent (Na+, Cl-) and divalent (Mg2+, Ca2+, and SO4
2-) ions into the external 61 

environment, respectively (Kaneko et al. 2008). Cartilaginous fishes are typically marine 62 

in their distribution and operate as osmoconformers by retaining urea and trimethylamine 63 

oxide while maintaining internal Na+ and Cl- concentrations below those of SW (Hwang 64 

and Lin 2014). Hagfishes (members of Class Agnatha) are marine osmoconformers with 65 

limited capacities to regulate internal ion concentrations. 66 

While most fishes inhabit a single aquatic environment characterized as either 67 

FW (0.5‰) or SW (30-40‰), a relatively small percentage of species (~5%) are 68 
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considered “euryhaline” and can withstand both conditions (Schultz and McCormick 69 

2013). Euryhaline species possess the capacity to rapidly modulate ion- and water-70 

transporting activities within the gill, gastrointestinal tract, kidney, and urinary bladder 71 

following changes in salinity (Takei et al. 2014). In turn, they offer valuable opportunities 72 

to resolve how cellular and molecular processes within osmoregulatory organs enable 73 

fish to transition between environmental salinities. As the branchial exchange of ions 74 

with the external environment is critical for maintaining osmoregulatory balance, 75 

decades of focused investigations have pursued how “ionocytes”, cells specialized for 76 

Na+, Cl-, and Ca2+ transport, operate in the gills relative to environmental salinity (Evans 77 

et al. 2005; Dymowska et al. 2012).  78 

 79 

2. Molecular aspects of ionocyte function in the gills 80 

2.1 Freshwater-type ionocytes in teleosts 81 

Historically, various models have been put forth to explain how the branchial 82 

ionocytes of FW-acclimated fishes actively absorb ions against strong electrochemical 83 

gradients (Hwang and Lin 2014). The contrasting models of FW-type ionocytes reflect, in 84 

part, the evolution of different strategies for Na+ and Cl- uptake across the teleost lineage 85 

(Dymowska et al. 2012; Takei et al. 2014; Yan and Hwang, 2019). For euryhaline 86 

teleosts, the most comprehensive models of FW-type ionocytes are derived from 87 

rainbow trout (Oncorhyncus mykiss), Mozambique tilapia (Oreochromis mossambicus), 88 

and Japanese medaka (Oryzias latipes) (Dymowska et al. 2012; Hsu et al. 2014; 89 

Inokuchi et al. 2022). For basal fishes, recent progress has been made in the 90 

development of FW-type ionocyte models for sea lamprey (Petromyzon marinus) 91 

(Ferreira-Martins et al. 2021). Without question, insights into how ionocytes operate in 92 

stenohaline zebrafish (Danio rerio) have supported progress in the euryhaline species 93 

listed above (Guh et al. 2015).  94 

In FW-type ionocyte models for salmonids, largely conceived from findings in 95 

rainbow trout, two distinct subtypes absorb environmental Na+, Cl-, and Ca2+. In one 96 

subtype, termed peanut lectin agglutinin positive (PNA+) cells, Na+/H+ exchangers 2 and 97 

3 (Nhe2 and -3; Slc9a2 and -3), epithelial Ca2+ channel (ECaC), and an Slc26-family 98 

anion exchanger are expressed in the apical membrane. Na+/K+-ATPase (Nka) mediates 99 

the basolateral movement of Na+, while an uncharacterized pathway allows for the exit 100 

of Cl- (Ivanis et al. 2008; Dymowska et al. 2012). The other ionocyte subtype, termed 101 

PNA- cells, expresses an apical Na+ channel, purported to be acid-sensing ion channel 4 102 



 4 

(Asic4), along with apical H+-ATPase. Na+/HCO3
- cotransporter 1 (Nbce1; Slc4a4) and 103 

Nka are also expressed in PNA- cells to mediate the basolateral exit of Na+ (Parks et al. 104 

2007; Dymowska et al. 2014).  105 

Like in trout, there are multiple FW-type ionocytes operating within the branchial 106 

epithelium of euryhaline Mozambique tilapia. “Type II” ionocytes express a Na+/Cl- 107 

cotransporter in the apical membrane to transport Na+ and Cl- into the cell interior (Hiroi 108 

et al. 2008). This Ncc is denoted Ncc2 (Slc12a10) and is not a member of the 109 

“conventional” Ncc1 (Slc12a3) clade (Motoshima et al. 2023). Nka and Clc family Cl- 110 

channel 2c (Clc2c) support the basolateral transport of Na+ and Cl- from the ionocyte 111 

interior into the blood plasma, respectively (Pérez-Ruis et al. 2015; Wang et al. 2015; 112 

Breves et al. 2017b). While Ncc2-expressing ionocytes operate in euryhaline and 113 

stenohaline species spanning teleost clades (Wang et al. 2009; Hsu et al. 2014; Inokuchi 114 

et al. 2017; Lema et al. 2018), they are conspicuously absent in salmonids (Hiroi and 115 

McCormick 2012). In tilapia, a second type of Na+-absorptive ionocyte which expresses 116 

Nka, coined “Type III” ionocytes, is characterized by the apical localization of Nhe3 (Hiroi 117 

et al. 2008). The density of Type III ionocytes (along with nhe3 expression) increases in 118 

the gills of tilapia exposed to low-Na+ conditions (Inokuchi et al. 2008, 2009).  119 

 120 

2.2 Freshwater-type ionocytes in basal fishes 121 

In lampreys, two FW-adaptive ionocytes have been proposed to support ion 122 

uptake (Bartels and Potter 2004; Reis-Santos et al. 2008; Ferreira-Martins et al. 2021). 123 

These two ionocytes differ most notably in their expression of Nka and H+-ATPase. A 124 

“larval FW ionocyte” highly expresses H+-ATPase but shows low expression of Nka, 125 

whereas a “FW ionocyte” (observed in larvae as well as post-metamorphic and adult 126 

stages) strongly expresses both H+-ATPase and Nka. H+-ATPase E subunit (atp6v1e) 127 

expression markedly decreases in the gills when lamprey acclimate to elevated salinities 128 

(Reis-Santos et al. 2008; Ferreira-Martins et al. 2016). The ionoregulatory role of H+-129 

ATPase in FW gills typically involves its co-expression with a pathway for the 130 

electrochemically neutral uptake of environmental Na+. The absorption of environmental 131 

Na+ by lampreys appears to involve the epithelium Na+ channel (ENaC) (Ferreira-Martins 132 

et al. 2016), while Ncc supports both Na+ and Cl- uptake (Barany et al. 2021b). 133 

Accordingly, both ENaC and Ncc are highly expressed in the gills of FW-acclimated 134 

lamprey and exhibit decreased expression during SW acclimation, although which 135 

particular cell-types express these transporters has not been fully elucidated. The co-136 
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involvement of an apical carbonic anhydrase-powered Cl-/HCO3
- exchanger and a 137 

basolateral Cl--channel in Cl- uptake has also been proposed, but the molecular 138 

identities of these transporters are unresolved (Bartels and Potter 2004; Ferreira-Martins 139 

et al. 2021). 140 

 141 

2.3 Seawater-type ionocytes in teleosts 142 

Within the branchial epithelium of marine/SW-acclimated teleosts, SW-type 143 

ionocytes actively secrete excess Na+ and Cl- into the environment. SW-type ionocytes 144 

express Nka and Na+/K+/2Cl- cotransporter 1 (Nkcc1; Slc12a2) in the basolateral 145 

membrane to energize and facilitate the Na+- and K+-coupled passage of Cl- from blood 146 

plasma into the cell interior (Marshall and Grosell 2006; Kaneko et al. 2008). The 147 

catalytic α-subunit of the Nka enzyme contains binding sites for ATP, Na+, and K+ 148 

(Geering 2008). Two distinct isoforms of the α-subunit (α1a and α1b) were identified in 149 

salmonids, first by Richards et al. (2003). In salmonids and cichlids, these isoforms have 150 

functional capacities exclusive to either FW (α1a) or SW (α1b), with branchial expression 151 

“switching” from one to the other during salinity transitions (Bystriansky et al. 2006; 152 

Nilsen et al. 2007; McCormick et al. 2009; Tipsmark et al. 2011; Dalziel et al. 2014). 153 

Apically located cystic fibrosis transmembrane conductance regulator 1 (Cftr1) enables 154 

Cl- to exit SW-type ionocytes and to enter the external environment (Marshall and 155 

Grosell 2006). With Nkcc1 and Cftr1 forming the pathway for transcellular Cl- excretion, 156 

tight-junction complexes composed of claudins (Cldns) between ionocytes and adjacent 157 

accessory cells provide the paracellular route for Na+ to exit the gill (Marshall and 158 

Grosell 2006; Tipsmark et al. 2008b; Bui and Kelly 2014). Attendant increases in 159 

branchial Nka, Nkcc1, and Cftr1 expression coincide with SW-acclimation. For this 160 

reason, all three ion transporters are widely used as key markers of branchial ion-161 

secretory capacity. 162 

 163 

2.4 Seawater-type ionocytes in basal fishes 164 

The pathways for branchial Cl- secretion are far less resolved in basal fishes than 165 

in teleosts. Cftr orthologs are present in the genomes of sturgeon, bichir, and coelacanth 166 

(Shaughnessy and Breves 2021), yet none of these orthologs have been functionally 167 

characterized. A single Cftr ortholog was identified in sea lamprey; however, cftr 168 

expression is low in all larval, juvenile, and adult tissues aside from intestine (Ren et al. 169 

2015). Moreover, compared with human Cftr, lamprey Cftr exhibits limited Cl- 170 
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conductance and reduced activation by cAMP (Cui et al. 2019). Given the limited Cl- 171 

conductance of lamprey Cftr and the lack of a cftr transcriptional response to SW 172 

exposure (Shaughnessy et al. unpublished), it is questionable whether Cftr mediates the 173 

secretion of Cl- by lamprey ionocytes known to express Nka and Nkcc1 (Shaughnessy 174 

and McCormick 2020). A recent analysis of the updated inshore hagfish (Eptatretus 175 

burgeri) genome assembly (Yu et al. 2023; Marlétaz et al. 2023) indicates that a cftr 176 

ortholog may be absent in hagfishes altogether (Yamaguchi et al. 2023). 177 

 178 

3. Hormones and ionocytes 179 

The endocrine system has long been appreciated as a central player in the 180 

homeostatic regulation of salt and water balance in fishes. Perturbations in internal 181 

osmotic and ionic conditions caused by changes in environmental salinity elicit the 182 

secretion of hormones that modulate ion- and water-transport by key osmoregulatory 183 

organs. Because these regulatory connections are indispensable to maintaining 184 

hydromineral balance, there is no shortage of literature that discusses how hormones 185 

impact the osmoregulatory physiology of fishes at the organismal, organ, and cellular 186 

levels (Hirano 1986; McCormick 2001; Manzon 2002; Evans et al. 2005; Sakamoto and 187 

McCormick 2006; Takei and McCormick 2013; Takei et al. 2014). Therefore, in this 188 

review, we do not address all established hormonal actions within the gills of fishes; 189 

rather, we focus on how hormones control the molecular components of ionocytes. We 190 

focus on the regulatory connections identified in euryhaline species but, in several 191 

instances, reference stenohaline zebrafish for added context. An expansive collection of 192 

endocrine factors undeniably contributes to regulating branchial ionocytes (Evans et al. 193 

2005; Takei et al. 2014); however, the identification of molecular endocrine targets is 194 

largely based on studies that focused upon the “classical” FW- and SW-adapting 195 

hormones in fishes, namely prolactin (Prl), growth hormone (Gh), and cortisol. While this 196 

review is heavily weighted toward describing the actions of these three hormones, we 197 

also highlight promising areas for future investigations into how additional endocrine 198 

factors regulate ionocytes.  199 

 200 

4. Freshwater-adaptive endocrine control  201 

4.1 Prolactin  202 

Euryhaline models, and most famously, mummichog (Fundulus heteroclitus), 203 

supported the discovery that pituitary hormones are key regulators of osmoregulatory 204 
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organs (Pickford and Atz 1957). Pickford (1953) and Burden (1956) reported that 205 

hypophysectomized mummichogs could not survive in FW, and that pituitary brei 206 

injections rescued them from death. Prl was subsequently identified as the pituitary 207 

factor that enables individuals to reside in dilute environments (Pickford and Phillips 208 

1959). Over the succeeding decades, it was firmly established that through its highly 209 

conserved actions on teleost osmoregulatory organs, Prl stimulates a spectrum of 210 

activities befitting FW-acclimation (Loretz and Bern 1982; Hirano 1986; Manzon 2002; 211 

Sakamoto and McCormick 2006; Breves et al. 2014a, 2020). Accordingly, pituitary prl 212 

expression and plasma Prl levels rise when fish acclimate to low-salinity conditions (Lee 213 

et al. 2006; Hoshijima and Hirose 2007; Fuentes et al. 2010; Seale et al. 2012). The 214 

notion that ionocytes are targets of Prl signaling was supported decades ago by the 215 

observation that Prl influences ionocyte populations in Mozambique and Nile (O. 216 

niloticus) tilapia (Herndon et al. 1991; Pisam et al. 1993; Flik et al. 1994). With respect to 217 

directing ionoregulatory function, Zhou et al. (2003) showed that exogenous Prl 218 

stimulated ion uptake in rainbow trout branchial epithelium. Patterns of Prl binding and 219 

prl receptor (prlr) gene expression reported in both euryhaline and stenohaline FW 220 

species further associated Prl signaling with ionocytes (Dauder et al. 1990; Prunet and 221 

Auperin 1994; Weng et al. 1997; Rouzic et al. 2001; Santos et al. 2001; Lee et al. 2006; 222 

Huang et al. 2007; Fiol et al. 2009; Breves et al. 2013). Furthermore, the Prlr was 223 

localized to branchial ionocytes of Mozambique tilapia and sea bream (Sparus aurata) 224 

(Weng et al. 1997; Santos et al. 2001). 225 

Only recently have investigations into the actions of Prl become unencumbered 226 

by a paucity of molecular tools to study FW-type ionocytes. For example, the 227 

characterization of tilapia Type II ionocytes by Hiroi et al. (2008) provided an opportunity 228 

to link Prl with a specific molecular pathway for ion uptake, particularly Na+/Cl- 229 

cotransporter 2 (Ncc2; Slc12a10). Prl enables hypophysectomized tilapia to recruit 230 

Ncc2-expressing ionocytes during FW acclimation, an activity that does not require 231 

systemic intermediaries (Breves et al. 2010c; Inokuchi et al. 2015; Watanabe et al. 2016) 232 

(Fig. 1). Prl similarly regulates branchial ncc2 expression in euryhaline mummichog 233 

(Breves et al. 2022) and Japanese medaka (Bossus et al. 2017), as well as in 234 

stenohaline zebrafish (Breves et al. 2013). Activated Prl receptors (Prlrs) can modulate 235 

the transcription of target genes through JAK/STAT and ERK/MAPK signaling (Huang et 236 

al. 2007; Fiol et al. 2009; Chen et al. 2011). In medaka, Prl stimulates ncc2 via STAT5 237 

activation rather than through ERK- or AKT-dependent pathways (Bollinger et al. 2018). 238 
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Since Clc2c is expressed within Ncc2-expressing ionocytes to facilitate basolateral Cl- 239 

movement (Pérez- Ruis et al. 2015; Wang et al. 2015), it is fitting that Prl coordinately 240 

promotes clc2c and ncc2 expression (Breves et al. 2017b; Breves 2019) (Fig. 1). In 241 

contrast, clc3 expression in tilapia ionocytes is not under Prl control (Tang and Lee 242 

2011; Breves et al. 2017b). 243 

The potential for Ncc-dependent pathways to operate in the osmoregulatory 244 

organs of cartilaginous and jawless fishes has recently received increased attention. In 245 

Japanese-banded houndshark (Triakis scyllium), a “conventional” ncc1 (slc12a3) is 246 

expressed within a subpopulation of gill ionocytes, termed type-B cells, where its 247 

expression increases upon transfer from full-strength SW to 30% SW (Takabe et al. 248 

2016). Given that elasmobranch genomes are devoid of Ncc2-encoding genes 249 

(Motoshima et al. 2023), Ncc1 may assume a role in branchial Na+ and Cl- absorption in 250 

elasmobranchs. Similarly, the branchial expression of ncca (ncc1) in sea lamprey is 251 

attenuated during SW acclimation (Ferreira-Martins et al. 2016; Barany et al. 2021b). 252 

Given the expression of the Prlr in lamprey gills, the next step is to assess whether the 253 

recently found Prl participates in modulating ncca when lamprey transition between FW 254 

and marine environments (Gong et al. 2020). 255 

In two lampreys (P. marinus and Lethenteron reissneri), the expression of gene 256 

transcripts encoding ENaC subunits increases under low-Na+ conditions (Ferreira-257 

Martins et al. 2016; Tseng et al. 2022). Thus, ENaC may provide a means for lampreys 258 

to absorb Na+ from FW; this strategy for Na+ absorption is absent in cartilaginous and 259 

ray-finned fishes (Ferreira-Martins et al. 2021). Curiously, branchial gene expression of 260 

an ENaC subunit, scnn1a, decreases when inshore hagfish experience high-salinity 261 

conditions (Yamaguchi et al. 2023). Despite hagfishes exhibiting ionoconformity, this 262 

response suggests that Na+ movement in the gill may be more complex than previously 263 

thought. To our knowledge, endocrine control of ENaC subunit expression has not been 264 

addressed in any cyclostome and, in an analogous fashion as ncca, should be probed 265 

for links to the Prlrs identified in hagfish and lamprey (Gong et al. 2020).   266 

While branchial ionocytes leveraging Ncc operate in species across the three 267 

major fish lineages, they are not found within salmonids (Hiroi and McCormick 2012). In 268 

turn, an apically located Cl-/HCO3
- exchanger (Slc26a6) may provide a pathway for Cl- 269 

absorption by PNA+ ionocytes in rainbow trout and other salmonids (Boyle et al. 2015; 270 

Leguen et al. 2015). Branchial slc26a6a2 is elevated in FW- versus SW-acclimated 271 

Atlantic salmon (Takvam et al. 2021) and is a transcriptional target of Prl signaling 272 
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(Breves et al. unpublished). Therefore, Slc26a6a2 may constitute a pathway for Prl-273 

stimulated Cl- uptake in species lacking Ncc-expressing ionocytes (Zhou et al. 2003). 274 

Because Leguen et al. (2015) reported clc2 expression in trout ionocytes (putative PNA+ 275 

cells), Prl-based control of salmonid clc2 isoforms also warrants investigation. Studies of 276 

this nature will enable comparisons of Prl-Clc2 connectivity between species that do, 277 

and do not, leverage Ncc2-expressing ionocytes.  278 

Within the PNA- ionocytes of trout, Nbce1 supports the absorption of 279 

environmental Na+ by cotransporting Na+ and HCO3
- across the basolateral membrane 280 

(Parks et al. 2007; Leguen et al. 2015). The apical entry of Na+ into PNA- cells was 281 

proposed to occur via Asic4 through its electrochemical linkage to H+-ATPase 282 

(Dymowska et al. 2014). Under this scenario, intracellular HCO3
- is supplied by carbonic 283 

anhydrase (Parks et al. 2007). In tilapia, Nbce1 operates in the basolateral membrane of 284 

Ncc2-expressing ionocytes (Furukawa et al. 2011). To our knowledge, Nbce1, Asic4, H+-285 

ATPase, and carbonic anhydrase have not been associated with Prl signaling in trout or 286 

tilapia.  287 

In addition to Type II ionocytes, a second type of Na+-absorptive ionocyte in 288 

tilapia (Type III ionocytes) is characterized by the apical expression of Nhe3 (Hiroi et al. 289 

2008). Prl promotes nhe3 gene expression in tilapia gill filaments (Inokuchi et al. 2015; 290 

Watanabe et al. 2016) whereas it has no such effect in mummichog or zebrafish (Breves 291 

et al. 2013, 2022) (Fig. 1). Because salmonids express Nhe2 and -3 within PNA+ 292 

ionocytes, they will prove key in resolving the extent to which Prl regulates Nhes across 293 

teleosts (Ivanis et al. 2008; Hiroi and McCormick 2012). Unfortunately, the lack of 294 

information on Nhes in lamprey ionocytes precludes consideration of a Prl-Nhe 295 

connection (Ferreira-Martins et al. 2021). Recent pharmacological experiments 296 

performed in zebrafish implicated K+-dependent Na+/Ca2+ exchangers (Nckxs) in 297 

mediating Na+ absorption (Clifford et al. 2022). Should roles emerge for Nckxs in 298 

supporting Na+ uptake by euryhaline species, Nckx isoforms would be additional 299 

candidates for regulation by Prl. 300 

Nka plays a critical role in energizing ion transport by FW- and SW-type 301 

ionocytes, with the reciprocal expression of nka-α1a and -α1b first described in 302 

salmonids transitioning between FW and SW environments (Richards et al. 2003; 303 

Mackie et al. 2005; Bystriansky et al. 2006; Madsen et al. 2009; McCormick et al. 2009; 304 

Dalziel et al. 2014). Tilapia also undergo nka-α1a and -α1b “switching” upon salinity 305 

changes, and Prl stimulates the “FW-inducible” nka-α1a isoform (Tipsmark et al. 2011; 306 
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Breves et al. 2014b; Inokuchi et al. 2015; Watanabe et al. 2016) (Fig. 1). Thus far, the 307 

capacity for Prl to promote nka-α1a expression seems specific to tilapia, as Prl fails to 308 

stimulate nka-α1a in Atlantic salmon (Tipsmark and Madsen 2009; Breves et al. 309 

unpublished). In zebrafish, nka-α1a1a.2 is expressed in Ncc2-expressing ionocytes 310 

responsible for Cl- uptake (Liao et al. 2009); however, Prl has no effect on branchial nka-311 

α1a1a.2 expression (Breves 2019). The auxiliary -subunit of Nka (also called Fxyd) 312 

participates in the regulation of enzymatic activity by associating with the Na+/K+ pump 313 

complex (Geering 2008; Pavlovic et al. 2013). Among the Fxyd isoforms identified in 314 

teleosts, Fxyd11 is predominately expressed in the gills where it interacts with Nka 315 

(Tipsmark 2008; Wang et al. 2008; Saito et al. 2010). In tilapia, Prl and cortisol 316 

synergistically promote fxyd11 expression in FW (Tipsmark et al. 2011). 317 

For teleosts residing in FW, greater than 90% of whole-body Ca2+ uptake is 318 

mediated by branchial/epidermal ionocytes (Flik et al. 1996; Lin and Hwang 2016). 319 

Transcellular Ca2+ uptake entails the apical entry of Ca2+ through ECaC (Trpv5/6) 320 

followed by basolateral exit via Ca2+-ATPase 2 (Pmca2) and Na+/Ca2+ exchanger 1 321 

(Ncx1) (Flik et al. 1996; Liao et al. 2007). Prl is hypercalcemic in multiple teleosts (Pang 322 

et al. 1978; Fargher and McKeown 1989; Flik et al. 1989, 1994; Kaneko and Hirano 323 

1993; Chakraborti and Mukherjee 1995; Wongdee and Charoenphandhu 2013), at least 324 

in part by stimulating branchial Pmca activity (Flik et al. 1996). Future investigations 325 

employing both euryhaline and stenohaline FW models are needed to determine 326 

whether Prl promotes ECaC and Ncx1 expression in parallel with promoting Pmca 327 

activity to sustain Ca2+ uptake.  328 

Aquaporins (Aqps) constitute a superfamily of integral membrane proteins that 329 

facilitate passive movements of water and small non-ionic compounds across cell 330 

membranes (Cerdà and Finn 2010). Multiple branchial cell types, including ionocytes, 331 

express a subset of Aqps (Lignot et al. 2002; Hirata et al. 2003; Watanabe et al. 2005; 332 

Tse et al. 2006; Brunelli et al. 2010; Tingaud-Sequeira et al. 2010; Tipsmark et al. 2010; 333 

Jung et al. 2012; Breves et al. 2016; Ruhr et al. 2020). Prl stimulates the expression of 334 

the aquaglyceroporin, Aqp3, in Mozambique tilapia (Breves et al. 2016) (Fig. 1), 335 

Japanese medaka (Ellis et al. 2019), and mummichog (Breves et al. 2022). On the other 336 

hand, Prl does not promote branchial aqp1 expression (Ellis et al. 2019). Although the 337 

Aqp-specific effects of Prl suggest that Aqp3 plays an important role in FW-acclimated 338 

fish, there is still no clear picture of how it underlies adaptive processes. A role for Aqp3 339 

in enhancing transepithelial water movement appears unlikely because branchial water 340 
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exchange is disadvantageous to systemic hydromineral balance. Alternatively, Aqp3 341 

may render ionocytes osmosensitive to extracellular conditions and/or capable of 342 

efficiently regulating their volume (Cutler and Cramb 2002; Watanabe et al. 2005; 343 

Tipsmark et al. 2010).  344 

Prl has long been recognized for its effects on membrane permeability which 345 

result in a general “tightening” to minimize diffusive ion loss (Potts and Evans 1966; 346 

Hirano 1986). Paracellular solute movements across epithelia are governed in large part 347 

by the barrier properties of tight-junction complexes composed of Cldn and occludin 348 

proteins (Chasiotis et al. 2012). In tilapia and medaka, FW acclimation entails the 349 

increased expression of branchial cldn28a and -28b, respectively (Tipsmark et al. 2008a; 350 

Bossus et al. 2015). In Atlantic salmon and medaka, Prl stimulates cldn28a and -28b 351 

gene expression (Tipsmark et al. 2009; Bossus et al. 2017). Prl-Cldn28 connectivity thus 352 

provides a means to regulate tight-junction properties for minimizing ion loss in FW. 353 

Occludin expression is also correlated with environmental salinity (Chasiotis et al. 2009; 354 

Kumai et al. 2011; Whitehead et al. 2011), making it a good candidate for regulation by 355 

Prl; however, to our knowledge, this link has yet to be examined. 356 

Teleosts express two separate Prlrs, denoted Prlr1 (Prlra) and -2 (Prlrb), that 357 

differ in their responses to salinity changes (Huang et al. 2007; Pierce et al. 2007; Fiol et 358 

al. 2009; Tomy et al. 2009; Rhee et al. 2010; Breves et al. 2011; Chen et al. 2011; 359 

Flores and Shrimpton 2012; Breves et al. 2013). Branchial prlr1 has emerged as a 360 

transcriptional target of Prl in tilapia, mummichog, and zebrafish (Inokuchi et al. 2015; 361 

Breves et al. 2013, 2022). In turn, Prl seemingly upregulates the expression of Prlr1 to 362 

enhance the sensitivity of ionocytes to circulating hormone during FW acclimation (Weng 363 

et al. 1997). Alternatively, prlr2/b is typically insensitive to Prl (Breves et al. 2013, 2022; 364 

Inokuchi et al. 2015), which is not surprising given that its expression is upregulated by 365 

the hyperosmotic extracellular conditions associated with SW acclimation (Fiol et al. 366 

2009; Inokuchi et al. 2015; Seale et al. 2019). 367 

In tandem with initiating active ion uptake, euryhaline species must attenuate 368 

branchial ion secretion when transitioning from SW to FW. While promoting the 369 

recruitment of FW-type ionocytes and the expression of their associated ion 370 

transporters, Prl simultaneously dampens cellular and molecular phenotypes appropriate 371 

for SW conditions. For instance, Herndon et al. (1991) observed that Prl reduced the 372 

size and number of SW-type ionocytes in tilapia. At the molecular level, Prl inhibits the 373 

transcription of nkcc1 and cftr1 within the SW-type ionocytes of medaka and 374 
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mummichog (Tipsmark and Madsen 2009; Bossus et al. 2017; Breves et al. 2022) (Fig. 375 

2). Prl also inhibits branchial Nka activity and nka-1b expression (Pickford et al. 1970; 376 

Sakamoto et al. 1997; Shrimpton and McCormick 1998; Kelly et al. 1999; Mancera et al. 377 

2002; Tipsmark and Madsen 2009), which, like nkcc1 and cftr1, are elevated in SW to 378 

support ion secretion. Recall that while Cftr1 is the conduit for Cl- to exit SW-type 379 

ionocytes, tight junction complexes between ionocytes and accessory cells provide the 380 

paracellular path for Na+ to exit the organism. The cation-selective tight-junctions 381 

adjacent to ionocytes are composed of multiple Cldn10 isoforms (Tipsmark et al. 2008b; 382 

Bui and Kelly 2014). Among the four mummichog cldn10 genes (cldn10c, -10d, -10e, 383 

and -10f) upregulated in response to SW (Marshall et al. 2018), cldn10f is the only 384 

transcript downregulated by Prl (Breves et al. 2022) (Fig. 2). Collectively, these nkcc1, 385 

cftr1, and cldn10f responses illustrate the various means by which Prl inhibits branchial 386 

salt secretion.  387 

 388 

4.2 Growth hormone and somatolactin  389 

As discussed in Section 5.1, Gh is conventionally regarded as a “SW-adapting 390 

hormone” because it promotes the survival of euryhaline fishes (and especially 391 

salmonids) in hyperosmotic environments (Björnsson 1997; McCormick et al. 2002; 392 

Takei et al. 2014). To our knowledge, there is no direct evidence that Gh plays a role in 393 

regulating FW-type ionocytes. Nonetheless, Gh receptors (Ghrs) are expressed in the 394 

gills of euryhaline species regardless of whether they are acclimated to FW or SW 395 

(Pierce et al. 2007; Poppinga et al. 2007; Breves et al. 2011; Link et al. 2010); therefore, 396 

Ghrs are at least present to mediate any direct regulatory connections between 397 

circulating Gh and FW-type ionocytes. It is certainly plausible that Gh may indirectly 398 

regulate FW-type ionocytes through the synthesis of insulin-like growth-factors (Igfs) 399 

(Reinecke et al. 1997; Berishvili et al. 2006; Reindl and Sheridan 2012). In fact, black-400 

chinned tilapia (Sarotherodon melanotheron) exhibit enhanced ghr and igf1 expression 401 

in the gill during FW acclimation (Link et al. 2010). Similarly, zebrafish exhibit elevated 402 

pituitary gh and branchial ghr (ghra and -b), igf1a, and -2a expression when challenged 403 

with ion-poor conditions (Hoshijima and Hirose 2007; Breves et al. unpublished). 404 

However, whether the Gh/Igf system supports the molecular responses of tilapia and 405 

zebrafish ionocytes to FW/ion-poor conditions has yet to be determined. 406 

Somatolactin (Sl), a member of the Gh/Prl-family of pituitary hormones, is a 407 

putative regulator of various physiological processes in fishes, particularly Ca2+ 408 
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homeostasis (Kaneko and Hirano 1993). Rainbow trout transferred to Ca2+-rich FW 409 

exhibit reduced sl gene expression in the pituitary, a response that is consistent with Sl 410 

having hypercalcemic activity (Kakizawa et al. 1993). Given the substantial progress 411 

made toward understanding how ionocytes absorb environmental Ca2+ (Lin and Hwang 412 

2016), a reassessment of whether Sl is indeed hypercalcemic is warranted by probing 413 

targets such as ECaC, Pmca2, and Ncx1.  414 

 415 

4.3 Cortisol  416 

Cortisol is typically deemed a “SW-adapting hormone” because it directly 417 

stimulates the activities and/or expression of transporters tied to branchial ion-secretion 418 

(Section 5.2). The recognition that cortisol also promotes ion uptake in some teleosts 419 

arrived after its SW-adaptive role was firmly established (McCormick 2001; Takei and 420 

McCormick 2013). Morphological responses to cortisol in the gills of rainbow trout and 421 

American eel (Anguilla rostrata) suggested that FW-type ionocytes are targets of cortisol 422 

signaling (Perry et al. 1992), a notion that would be later supported with the development 423 

of molecular tools to more precisely study FW-type ionocytes. In tilapia, medaka, and 424 

zebrafish, Nhe3 and Ncc2 are expressed in distinct ionocyte subtypes (Hiroi and 425 

McCormick 2012; Hsu et al. 2014; Guh et al. 2015). In zebrafish, cortisol stimulates Na+ 426 

uptake in a fashion dependent upon the presence of Nhe3b-expressing ionocytes and 427 

promotes the differentiation of Ncc2-expressing ionocytes from a progenitor population 428 

(Kumai et al. 2012; Cruz et al. 2013a). While cortisol similarly promotes ncc2 expression 429 

in medaka (Bossus et al. 2017; Ellis et al. 2019), this is not the case in tilapia (Breves et 430 

al. 2014b; Watanabe et al. 2016). 431 

The FW-adaptive role of cortisol in zebrafish appears to be mediated solely by 432 

the glucocorticoid receptor (Gr) rather than the mineralocorticoid receptor (Mr) (Cruz et 433 

al. 2013b). The zebrafish Gr is expressed by Nka-rich branchial and epidermal 434 

ionocytes, with knockdown of gr, but not mr, disrupting the development of FW-type 435 

ionocytes through the action of forkheadbox I3 transcription factors (Foxi3a and -b) 436 

(Cruz et al. 2013b). Exogenous cortisol increases nhe3b, H+-ATPase α-subunit 437 

(atp6v1a), and ecac expression in zebrafish embryos. In medaka embryos, knockdown 438 

of gr2, but not gr1 or mr, decreases the total number of epidermal ionocytes (Trayer et 439 

al. 2013). Conversely, in FW-acclimated tilapia, it was suggested that the Mr, rather than 440 

the Gr, controls cortisol-mediated development of Nka-rich branchial ionocytes (Wu et al. 441 
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2023). Accordingly, mr expression occurs in ionocyte precursors/epidermal stem cells 442 

(Wu et al., 2023).  443 

In Atlantic salmon, cortisol upregulates gene transcription and protein abundance 444 

of the “FW-inducible” Nka-α1a isoform (Kiilerich et al. 2007b; McCormick et al. 2008, 445 

2012; Tipsmark and Madsen 2009). Cortisol also upregulates the “SW-inducible” Nka-446 

α1b isoform (Kiilerich et al. 2007b; Tipsmark and Madsen 2009; Breves et al. 2024), and 447 

thus, the capacity of cortisol to increase the expression of both Nka-α1a and -α1b is 448 

indicative of its dual role in promoting FW- and SW-adaptive processes. While cortisol 449 

was shown to stimulate branchial carbonic anhydrase activity in trout (Gilmour et al. 450 

2011), to our knowledge, no ion transporters expressed in salmonid FW-type ionocytes 451 

outside of Nka (e.g., Nhe2, -3, Asic4, ECaC, and Nbce1) have been linked with cortisol. 452 

This is a significant knowledge gap, especially given that cortisol is known to stimulate 453 

Ca2+ uptake by ECaC-expressing ionocytes in zebrafish (Lin and Hwang 2016). 454 

Reminiscent of the scenario for Prl (Section 4.1), future work is warranted to resolve 455 

whether cortisol affects Ca2+ uptake pathways in euryhaline species.  456 

In addition to promoting key mediators of ion uptake (e.g., Ncc2, Nhe3, and Nka-457 

α1a), cortisol promotes FW acclimation by decreasing the paracellular permeability of 458 

the branchial epithelium (Kelly and Wood 2002; Zhou et al. 2003; Kolosov and Kelly 459 

2017). This important contribution to FW acclimation is achieved through the regulation 460 

of specific tight-junction proteins. For instance, cortisol increases the expression of 461 

cldn8d, -10c, -10d, -10e, -10f, -11a, -27a, -30c, and -33b in various euryhaline species 462 

(Tipsmark et al. 2009; Bui et al. 2010; Bossus et al. 2017; Kolosov and Kelly 2017). 463 

Finally, it certainly must be recognized that cortisol can promote FW acclimation by 464 

acting in concert with Prl (Eckert et al. 2001; McCormick 2001). For instance, from a 465 

molecular perspective, Prl and cortisol act synergistically to promote branchial nka-α1a 466 

and cldn28b expression in tilapia and medaka, respectively (Watanabe et al. 2016; 467 

Bossus et al. 2017). 468 

 469 

4.4 Thyroid hormones 470 

Although limited, there is evidence that thyroid hormones are involved in the 471 

control of FW-adaptive branchial processes. Unfortunately, information is particularly 472 

scant regarding plasma thyroxine (T4) and 3-3-5-triiodothyronine (T3) levels in 473 

euryhaline species undergoing FW acclimation. In sea bream, plasma T4 levels increase 474 

following transfer from SW to FW (Klaren et al. 2007). Alternatively, Mozambique tilapia 475 
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acclimating to FW exhibit rapid declines in both plasma T4 and T3 (Seale et al. 2021). 476 

While the dynamics of T4 and T3 in tilapia suggest a hyposmotically-induced suppression 477 

of thyroid hormone production at the systemic level, at the level of the gill, these 478 

changes coincide with an increase in the outer-ring deiodination activity of deiodinase 2 479 

(Dio2). As shown in mummichog, Dio2 expression/activity is activated by hyposmotic 480 

stress (López-Bojórquez et al. 2007). Thus, increased branchial Dio2 activity supports 481 

the local production of T3 at a time when the recruitment of ionocytes is activated 482 

following entry into FW (Hiroi et al. 2008; Breves et al. 2021). Accordingly, tilapia treated 483 

with T4 exhibit an increase in the density and size of presumed FW-type ionocytes (Peter 484 

et al. 2000). It remains to be seen whether these cellular responses to T4 manifest 485 

changes in branchial ncc2, nhe3, and clc2c expression. 486 

 487 

5. Seawater-adaptive endocrine control   488 

5.1 Growth hormone and insulin-like growth-factors 489 

Although much of the early attention given to the Gh/Igf system in fishes was 490 

driven by its potential application to understanding growth in aquaculture settings, the 491 

osmoregulatory actions of both Gh and Igf1 have emerged as important aspects of the 492 

hormonal control of osmoregulation. In salmonids, Gh is integral to the timing of parr-493 

smolt transformation and the associated development of SW tolerance (Hoar 1988; 494 

Björnsson 1997; McCormick 2013), and accordingly, plasma Gh levels increase during 495 

smolting (Boeuf et al. 1989; Prunet et al. 1989; Young et al. 1989; McCormick et al. 496 

2007, 2013; Nilsen et al. 2008). The SW-adaptive role for Gh is not restricted to 497 

salmonids, as in both salmonid and non-salmonid teleost species, exposure to SW 498 

corresponds with elevated plasma Gh levels and increased gh gene expression, Gh 499 

protein content, and somatotroph numbers in the pituitary (Deane and Woo 2009). As 500 

shown in Mozambique tilapia, somatotrophs release Gh in direct response to 501 

hyperosmotic extracellular conditions (Seale et al. 2002). Importantly, treatment with Gh 502 

upregulates branchial Nka activity and improves the SW tolerance of several euryhaline 503 

teleosts (Madsen 1990a, b; McCormick 1996; Xu et al. 1997; Mancera and McCormick 504 

1998; Pelis and McCormick 2001). Intraperitoneal injection with Gh also increases 505 

Nkcc1 protein abundance within SW-type ionocytes (Pelis and McCormick 2001) and 506 

stimulates nka-α1b and nkcc1 expression (Tipsmark and Madsen 2009), although these 507 

effects were most pronounced when Gh was co-administered with cortisol. 508 
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Ghrs are present in teleost gills (Gray et al. 1990; Yao et al. 1991; Sakamoto and 509 

Hirano 1991); however, they have yet to be localized to any discrete branchial cell-types. 510 

It was initially reported that rainbow trout acclimating to SW do not exhibit changes in 511 

branchial Gh binding (Sakamoto and Hirano 1991). More recent molecular analyses 512 

describe variable branchial ghr expression patterns with respect to SW acclimation. In 513 

Atlantic salmon, ghr expression has been seen to increase (Kiilerich et al. 2007a; Nilsen 514 

et al. 2008) or not change at all (Breves et al. 2017a) during smolting. Likewise, there is 515 

little consistency in branchial ghr patterns following SW exposure, with increases, 516 

decreases, and no changes in expression all having been observed across several 517 

species (Kiilerich et al. 2007a; Nilsen et al. 2008; Breves et al. 2010a, b; Flores and 518 

Shrimpton 2012; Einarsdóttir et al. 2014; Breves et al. 2017a; Link et al. 2022). 519 

Additionally, Gh-treated gill explants from coho salmon (Oncorhynchus kisutch) and Nile 520 

tilapia did not exhibit changes in Nka activity, or nka-α1b and nkcc1 gene expression 521 

(McCormick et al. 1991; Breves et al. 2014b). Rather than directly regulating the 522 

expression of specific ion-transporters, Gh may exert cytogenic effects that promote the 523 

recruitment of branchial ionocytes (Madsen 1990a, b; Flik et al. 1993; Prunet et al. 524 

1994). For instance, Gh- elicited increases in Nka activity and Nkcc1 in Atlantic salmon 525 

were coincident with an increased abundance of ionocytes (Pelis and McCormick 2001).  526 

Gh is the primary regulator of the production and release of Igf1 and -2 from the 527 

liver (Pierce et al. 2011; Reindl and Sheridan 2012). Branchial igf1 receptor (igf1r) 528 

expression increases during smolting and upon exposure to SW (Nilsen et al. 2008; 529 

Shimomura et al. 2012), and increased circulating Igf1 levels correlate with elevated 530 

branchial Nka activity (Agustsson et al. 2001; McCormick et al. 2007; Shimomura et al. 531 

2012). However, not all studies have observed rises in plasma Igf1 during smolting 532 

(Nilsen et al. 2008; Breves et al. 2017a). Intraperitoneal injection of Atlantic salmon with 533 

Igf1 increases SW tolerance but only marginally impacts gill Nka activity (McCormick 534 

1996) whereas Nkcc1 in isolated Japanese eel (Anguilla japonica) gill cells is stimulated 535 

by Igf1 (Tse et al. 2007). In addition to exerting osmoregulatory actions as endocrine 536 

signals (i.e., secreted from the liver and acting upon ionocytes) (Madsen and Bern 537 

1993), Igf1 and -2 may also operate as autocrine/paracrine signals (i.e., produced by 538 

and acting upon ionocytes) (Berishvili et al. 2006; Tipsmark and Madsen 2009). In 539 

Atlantic salmon, Nilsen et al. (2008) reported increases in gill igf1 and igf1r during 540 

smolting and SW acclimation, even when no increase in circulating Igf1 was detected. 541 
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Similarly, Breves et al. (2017a) observed increases in branchial igf2 and igf1ra 542 

expression in smolts following SW exposure.  543 

The promotion of SW-adaptive ionoregulatory capacities by Gh may be best 544 

explained by its interaction with cortisol to promote both the proliferation of ionocytes 545 

and their responsiveness to cortisol (McCormick 2013). Studies using salmonids 546 

demonstrated that cortisol interacts with the Gh/Igf system to affect SW-type ionocytes. 547 

The co-administration of cortisol with either Gh or Igf1 increases gill Nka activity to levels 548 

beyond those induced by treatment with either hormone individually (Madsen 1990a, b; 549 

Madsen and Korsgaard 1991; McCormick 1996). Scenarios proposed to underlie the 550 

apparent synergistic actions of cortisol and Gh include, 1) Gh promotes Gr abundance in 551 

ionocytes, thereby increasing the capacity for cortisol to affect ion transporter 552 

expression, and 2) Gh promotes ionocyte proliferation while cortisol promotes the 553 

differentiation of ionocytes (McCormick 2013). Thus, future work should leverage recent 554 

insights into the regulators of ionocyte differentiation, such as forkhead box transcription 555 

factors (Hsiao et al. 2007), to elucidate how Gh and cortisol shape SW-type ionocyte 556 

populations. 557 

Recent studies also describe the potential for Gh and Igf1 to regulate SW-558 

adaptive branchial processes in lampreys. Kawauchi et al. (2002) were the first to 559 

identify a lamprey Gh capable of stimulating hepatic igf1 expression. Later, Gh-like cells 560 

in the lamprey pituitary were shown to increase in abundance during metamorphosis 561 

(Nozaki et al. 2008). The discovery of Ghr, Prlr, and Prl itself in sea lamprey spurred 562 

recent investigations into their regulatory roles (Gong et al. 2022). Although pituitary gh 563 

and prl expression are upregulated during sea lamprey metamorphosis (Gong et al. 564 

2022), it was later shown that gh also increases in the pituitary of non-metamorphosing 565 

larvae over the same period (Ferreira-Martins et al. 2023). Thus, such increases in gh 566 

expression may be seasonal, and it remains unclear whether the same is true for 567 

pituitary prl expression. In any case, branchial ghr and prlr gene expression also 568 

increases during metamorphosis (Gong et al. 2020; Ferreira-Martins et al. 2023). 569 

Because similar increases do not occur in non-metamorphosing larval lamprey (Ferreira-570 

Martins et al. 2023), heightened ghr and prlr expression likely underlies developmental 571 

(as opposed to seasonal) processes. Substantial increases in hepatic and branchial igf1 572 

expression also occur throughout metamorphosis, and therefore, endocrine as well as 573 

autocrine/paracrine actions of Igf1 may operate in lamprey (Ferreira-Martins et al. 2023). 574 

Surprisingly, SW exposure does not affect pituitary gh expression, hepatic igf 575 
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expression, or branchial ghr and igf1 expression (Gong et al. 2020, 2022; Ferreira-576 

Martins et al. 2023) and treatment with recombinant Gh does not affect branchial ion 577 

transporters (Gong et al. 2022). Future studies in lamprey are warranted to assess 578 

whether Gh and Igf1 promote the recruitment of SW-type ionocytes through cytogenic 579 

actions. 580 

 581 

5.2 Corticosteroids 582 

In lobe-finned fishes (Sarcopterygii) and tetrapods, cortisol (or, in some cases, 583 

corticosterone) and aldosterone are the products of the corticosteroid biosynthesis 584 

pathway and the predominant circulating hormones. Cortisol and aldosterone separately 585 

regulate carbohydrate metabolism and osmoregulation by interacting with the Gr and Mr, 586 

respectively. In all other fishes, corticosteroids and their receptors mediate both 587 

carbohydrate metabolism and osmoregulation. However, important differences exist 588 

between fish groups, particularly with respect to the milieu of corticosteroids in 589 

circulation and the identity and expression of receptors that mediate the actions of these 590 

steroids. Here, we focus on corticosteroids that are known to directly regulate branchial 591 

processes in fishes. 592 

Non-sarcopterygian fishes lack aldosterone synthase (Cyp11b2) and 593 

consequently the ability to synthesize aldosterone (Baker 2003; Takahashi and 594 

Sakamoto 2013). In actinopterygian fishes, cortisol is the predominant corticosteroid 595 

present in circulation, with 11-deoxycorticosterone and corticosterone present at far 596 

lower concentrations (Prunet et al. 2006). Among the circulating corticosteroids in 597 

actinopterygians, cortisol has both glucocorticoid and mineralocorticoid activity. To a far 598 

lesser extent, 11-deoxycorticosterone also exhibits mineralocorticoid-like actions 599 

(Takahashi and Sakamoto 2013). Chondrichthyan fishes produce a novel steroid 600 

biosynthetic product, 1α-hydroxycorticosterone, which exhibits some mineralocorticoid-601 

like action (Anderson 2012). However, chondrichthyans do not utilize branchial 602 

processes for bulk ion secretion but rather use the salt-secretory rectal gland (Wright 603 

and Wood 2015); therefore, the potential ionoregulatory actions of 1α-604 

hydroxycorticosterone will not be discussed here. Lampreys apparently lack 11β-605 

hydroxylase (Cyp11b1) and cannot produce cortisol or corticosterone (Bridgham et al. 606 

2006; Close et al. 2010; Rai et al. 2015). Thus, 11-deoxycortisol and 11-607 

deoxycorticosterone are the most abundant circulating corticosteroids in lampreys and 608 
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exhibit capacities to regulate branchial ionoregulatory activities (Close et al. 2010; 609 

Shaughnessy et al. 2020). 610 

Chondrichthyan and actinopterygian fishes express both classes of corticosteroid 611 

receptors (Gr and Mr). In actinopterygians, it has long been held that the ionoregulatory 612 

actions of corticosteroids result from cortisol acting through the Gr. While this remains 613 

true, recent discoveries have added some nuance to this perspective. For instance, 614 

particular teleosts express two distinct Gr orthologs (Bury et al. 2003) as well as an Mr 615 

(Colombe et al. 2000). Knowledge of these three corticosteroid receptor subtypes has 616 

motivated investigations into how the actions of cortisol and 11-deoxycorticosterone are 617 

differentially mediated by these receptors (see discussion below). Interestingly, lamprey 618 

do not express Gr or Mr but rather an ancestral “corticoid receptor” (Cr) that facilitates 619 

the osmoregulatory actions of 11-deoxycortisol (Bridgham et al. 2006; Close et al. 2010; 620 

Shaughnessy et al. 2020). 621 

Using adult sea lamprey, Close et al. (2010) demonstrated that 11-deoxycortisol 622 

elicits an increase in branchial Nka activity. Later, Shaughnessy et al. (2020) described 623 

how 11-deoxycortisol supports the acquisition of SW tolerance during metamorphosis. 624 

Plasma 11-deoxycortisol levels and gill Cr abundance both increase during 625 

metamorphosis and are positively correlated with gill Nka activity. Accordingly, the 626 

treatment of mid-metamorphic lamprey with 11-deoxycortisol improves SW tolerance 627 

and increases gill Nka and Nkcc1 protein expression (Shaughnessy et al. 2020; Barany 628 

et al. 2021a). Likewise, 11-deoxycortisol increases the expression of nka and nkcc1 629 

transcripts in lamprey gill explants (Shaughnessy et al. 2020). Interestingly, 11-630 

deoxycorticosterone can elicit modest increases in branchial nka and nkcc1 expression 631 

but is far less potent than 11-deoxycortisol (Shaughnessy et al. 2020). Future studies 632 

are warranted to further elucidate the ionoregulatory roles of 11-deoxycortisol and 11-633 

deoxycorticosterone, and particularly whether they interact with Gh and Prl. 634 

Cortisol has long been known to support the acclimation of teleosts to SW. 635 

Multiple lines of evidence have described this role, including early studies demonstrating 636 

that circulating cortisol increases during salmonid parr-smolt transformation and upon 637 

exposure to SW (Fontaine and Hatey 1954; Specker and Schreck 1982; Langhorne and 638 

Simpson 1986; Shrimpton et al. 1994), and that SW tolerance is increased following 639 

cortisol treatment (Bisbal and Specker 1991). Elevations in plasma cortisol following 640 

exposure to SW also occur in numerous non-salmonid species (McCormick 2001). Early 641 

work described the direct action of cortisol to increase gill Nka activity, which correlated 642 
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with the development of SW tolerance during smolting (Langhorne and Simpson 1986; 643 

McCormick and Saunders 1987). Additional studies showed that gill Nka activity can be 644 

impacted in vivo by the administration of cortisol (Pickford et al. 1970; Bisbal and 645 

Specker 1991; McCormick et al. 1991) and in vitro by exposing gill explants to cortisol 646 

(McCormick and Bern 1989). 647 

More recently, cortisol was shown to regulate proteins and gene transcripts 648 

expressed by SW-type ionocytes, such as Nka, Nkcc1, and Cftr (Fig. 3). Atlantic salmon 649 

interperitoneally injected with cortisol increase the expression of nka-α1b (McCormick et 650 

al. 2008; Tipsmark and Madsen 2009; Breves et al. 2020, 2024) and the protein 651 

abundance of Nka and Nkcc1 (Pelis and McCormick 2001). In gill explants from FW- and 652 

SW-acclimated Atlantic salmon, cortisol increases nka-α1b and nkcc1 expression 653 

(Tipsmark et al. 2002; Kiilerich et al. 2007b, 2011a, b, c). In vivo treatment with cortisol 654 

increases cftr1 expression in Atlantic salmon parr and smolts (Singer et al. 2003; Breves 655 

et al. 2020, 2024), and in vitro exposure of gill explants to cortisol increases cftr1 and 656 

nkcc1 (Kiilerich et al. 2007b). Likewise, cortisol promotes cftr1 and nkcc1 expression in 657 

the gills of FW-acclimated trout and medaka (Tipsmark et al. 2002; Kiilerich et al. 2011a; 658 

Bossus et al. 2017). In tilapia and striped bass (Morone saxatilis), cortisol similarly 659 

promotes branchial nkcc1 expression (Kiilerich et al. 2011c). Cortisol also promotes 660 

components of SW-type ionocytes in non-teleost models, such as Nka and Nkcc1 in 661 

Atlantic (Acipenser oxyrhynchus) and Persian sturgeon (A. persicus) (Khodabandeh et 662 

al. 2009; McCormick et al. 2020). 663 

Fewer studies have examined the molecular actions of 11-deoxycorticosterone, 664 

as it circulates at far lower concentrations than cortisol. Intraperitoneal injection of 11-665 

deoxycorticosterone has no effect on SW tolerance or branchial nka-α1a and -α1b 666 

expression in Atlantic salmon (McCormick et al. 2008). The in vitro effects of 11-667 

deoxycorticosterone vary depending on whether treated filaments are collected from 668 

salmon acclimated to either FW or SW. 11-deoxycorticosterone is more effective in 669 

stimulating nka-α1a versus -α1b expression (Kiilerich et al. 2007b, 2011a, b), although 670 

this effect is generally far less consistent than that of cortisol. 671 

The role of the Gr in mediating the ionoregulatory actions of cortisol in teleosts 672 

has also received considerable attention. Early studies demonstrated that a 673 

corticosteroid receptor expressed in the gills with high binding affinity for cortisol 674 

increases during parr-smolt transformation and SW acclimation (Weisbart et al. 1987; 675 

Maule and Schreck 1990; Shrimpton and Randall 1994; Shrimpton et al. 1994; 676 
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Marsigliante et al. 2000). Moreover, Gr expression is strongly correlated with the 677 

capacity for cortisol to stimulate branchial Nka activity (Shrimpton and McCormick 1999). 678 

Following the discovery of two distinct Grs (Bury et al. 2003) and an Mr (Colombe et al. 679 

2000; Sturm et al. 2005) in teleost fishes, studies using selective receptor antagonists 680 

investigated their individual roles in mediating the actions of cortisol and 11-681 

deoxycorticosterone. It was proposed that the Gr and Mr underlie the duality of cortisol 682 

operating as a FW- and SW-adapting hormone (Prunet et al. 2006). In support of this, 683 

the upregulation of gr expression occurs in the gills of several species during smolting or 684 

following SW exposure (Mazurais et al. 1998; Mizuno et al. 2001; Kiilerich et al. 2007a; 685 

Nilsen et al. 2008; Yada et al. 2014; Bernard et al. 2020), and a potential role for the Mr 686 

in FW ionoregulation has been suggested (Sloman et al. 2001; Scott et al. 2005; Kiilerich 687 

et al. 2011a). The ionoregulatory role of the Mr in FW may entail activation by both 688 

cortisol and 11-deoxycorticosterone, as the Mr is potently activated by both hormones 689 

(Sturm et al. 2005; Katsu et al. 2018). Investigations into the regulation of gr and mr 690 

during smolting or SW acclimation have generally presented mixed results. In some 691 

studies, only gr is upregulated during smolting (Kiilerich et al. 2007a, 2011b; Nilsen et al. 692 

2008), and in others, the transcriptional upregulation of both receptors occurred (Yada et 693 

al. 2014; Bernard et al. 2020). Similarly, there seems to be little consistency in how gr 694 

and mr are transcriptionally regulated during SW acclimation in salmonids (Kiilerich et al. 695 

2007b, 2011a; Nilsen et al. 2008; Flores and Shrimpton 2012) as well as non-salmonids 696 

(Aruna et al. 2012a, b). 697 

Several in vivo and in vitro studies have employed receptor blockade 698 

approaches, including the cotreatment of corticosteroids with mammalian Gr and Mr 699 

antagonists (e.g., RU486 and spironolactone, respectively). Cotreatment with RU486 700 

blocks the upregulation of branchial nka-α1a and -α1b by cortisol, whereas cotreatment 701 

with spironolactone has no effect on SW tolerance or nka-α1a and -α1b expression 702 

(McCormick et al. 2008). Kiilerich et al. (2007b) demonstrated using Atlantic salmon gill 703 

explants that both RU486 and spironolactone can block the ability of cortisol to 704 

upregulate nka-α1a, -α1b, and cftr1. However, these results were not consistent across 705 

species or salinities (Kiilerich et al. 2007b, 2011b, c). In teleosts, RU486 antagonizes 706 

both Gr1 and -2, with more potent effects on Gr1 (Bury et al. 2003). On the other hand, 707 

spironolactone is now known to act as an agonist of the fish Mr, activating it with similar 708 

potency to cortisol, 11-deoxycorticosterone, and aldosterone (Sugimoto et al. 2016; 709 

Fuller et al. 2019). Thus, studies which use RU486 and spironolactone to differentially 710 
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block the Mr and Gr should be interpreted with caution. Considering the challenges 711 

associated with pharmacologically targeting the fish Gr and Mr, advanced molecular 712 

approaches using transcriptional knockdown or transgenic knockout have emerged to 713 

investigate the Gr and Mr (Faught and Vijayan 2018; Yan and Hwang 2019). To date, 714 

these approaches have mostly been leveraged to investigate the metabolic, 715 

developmental, and ionoregulatory actions of corticosteroids in zebrafish (Faught and 716 

Vijayan 2018; Yan and Hwang 2019), which cannot tolerate SW. However, Japanese 717 

medaka offer a promising euryhaline model for knockdown or knockout approaches (Yan 718 

and Hwang 2019) and is therefore poised to delineate the Gr- and Mr-mediated actions 719 

of corticosteroids on SW-type ionocytes. 720 

In tetrapods, the interaction of aldosterone with the Mr is facilitated by 721 

coexpression of the Mr with the cortisol-inactivating enzyme, 11β-hydroxylase 2 722 

(Cyp11b2). Interestingly, a strong transcriptional upregulation of cyp11b2 occurs in the 723 

gills of smolting Atlantic salmon (Kiilerich et al. 2007a; Nilsen et al. 2008). It was also 724 

shown in trout branchial epithelial cells that cortisol increases cyp11b2 expression 725 

(Kolosov and Kelly 2019). These findings suggest the operation of a tissue-level 726 

mechanism to regulate cortisol signaling. A better understanding of which branchial cell-727 

types specifically express cyp11b2 is needed to assess its role in tuning the actions of 728 

cortisol on ionocytes. 729 

The role of corticosteroids in regulating permeability of the branchial epithelium 730 

has also received considerable attention. This work has largely focused on the FW-731 

adaptive, rather than the SW-adaptive, roles of corticosteroids, as the increased 732 

expression of tight-junction proteins generally promotes epithelial tightening. However, 733 

“leaky” tight-junction complexes composed of Cldn10s contribute to SW-adaptation by 734 

facilitating the paracellular excretion of Na+ (Tipsmark et al. 2008b; Bui and Kelly 2014). 735 

Acclimation to SW increases the expression of cldn10 isoforms in puffer fish (Tetraodon 736 

nigroviridis) (Bui et al. 2010) and exposure of gill explants to cortisol stimulates multiple 737 

cldn10s in medaka (Bossus et al. 2017). Cortisol and 11-deoxycorticosterone generally 738 

upregulate the expression of Cldns through processes mediated by both the Gr and Mr 739 

(Tipsmark et al. 2009; Bui et al. 2010; Chasiotis and Kelly 2011, 2012; Kelly and 740 

Chasiotis 2011; Bossus et al. 2017; Kolosov et al. 2017b; Kolosov and Kelly 2019). In 741 

sea lamprey, multiple claudins have been identified that are expressed in the gill, and 742 

among those investigated, cldn3 and -10 orthologs increase their expression after 743 

exposure to ion-poor water and exhibit decreases during SW acclimation (Kolosov et al. 744 
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2017a, 2020). Future studies in lamprey should seek to address whether 11-745 

deoxycortisol and 11-deoxycorticosterone control branchial barrier functions via Cldns. 746 

Cortisol was the first hormone linked with the expression of branchial Aqps. FW-747 

acclimated eels infused with cortisol show a marked decrease in the expression of aqp3 748 

in the gill (Cutler et al. 2007) (Fig. 3). Choi et al. (2013) subsequently reported that 749 

cortisol diminishes branchial aqp3 and -8 expression in sockeye salmon (Oncorhynchus 750 

nerka). These patterns suggest that SW-induced increases in plasma cortisol are 751 

responsible for rapidly attenuating aqp3 expression upon entry into hyperosmotic 752 

environments (Cutler and Cramb 2002; Cutler et al. 2007). Furthermore, cortisol blocks 753 

the stimulatory action of Prl on aqp3 (Breves et al. 2016). The regulation of branchial 754 

Aqp3 is a clear example of antagonistic, rather than synergistic, actions of cortisol and 755 

Prl in support of salinity acclimation.  756 

  757 

5.3 Thyroid hormones 758 

 In addition to supporting FW acclimation (Section 4.4), there is evidence that 759 

thyroid hormones promote SW-adaptive processes by acting directly on ionocytes and 760 

through interactions with the Gh/Igf system (McCormick 2001). For example, coho 761 

salmon and mummichog increase plasma T4 levels in response to SW (Knoeppel et al. 762 

1982; Specker and Kobuke 1987), and Atlantic salmon and summer flounder 763 

(Paralichthys dentatus) treated with T4 or T3 exhibit increased SW tolerance (Refstie 764 

1982; Saunders et al. 1985; Schreiber and Specker 1999). Accordingly, when summer 765 

flounder and mummichog are treated with thiourea (an inhibitor of T4 synthesis), they 766 

exhibit diminished hyposmoregulatory capacities (Knoeppel et al. 1982; Schreiber and 767 

Specker 1999). Thiourea diminishes the SW tolerance of flounder by disrupting the 768 

development of SW-type ionocytes during metamorphosis (Schreiber and Specker 769 

2000). To our knowledge, there has been no direct assessment of whether the rapid 770 

recruitment of SW-type ionocytes that occurs in euryhaline species when they encounter 771 

SW is linked with thyroid hormone signaling. 772 

 773 

6. Future perspectives 774 

The availability of genomic resources and molecular tools over the last two 775 

decades has given rise to an increasingly mechanistic understanding of how hormones 776 

regulate ionocytes. This trend will undoubtedly continue with manipulative molecular 777 

tools such as gene editing ushering in new opportunities to link hormones and their 778 
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cognate receptors with specific ion transporters. Zebrafish have already proven to be a 779 

valuable model for this purpose, supporting progress toward understanding the ontogeny 780 

and function of ion-absorptive ionocytes (Chen et al. 2019). Nonetheless, the poor 781 

salinity tolerance of zebrafish precipitates the need for a similarly amenable euryhaline 782 

model, a need that Japanese medaka seem poised to fill (Yan and Hwang 2019). In a 783 

similar vein, refined methods for primary cell culture of the branchial epithelium would 784 

accelerate the use of advanced molecular manipulations; however, progress in this 785 

endeavor has been limited. 786 

The various modes by which endocrine factors can affect branchial processes 787 

deserve continued attention. For example, it is necessary to better resolve the cytogenic 788 

(controlling ionocyte abundance), molecular (controlling the expression of ion 789 

transporters), and physiological (controlling the function of ion transporters) actions of 790 

hormones (Breves et al 2014a; Shir-Mohammadi and Perry 2020). Important in this 791 

endeavor will be the characterization of, 1) the factors influencing the differentiation of 792 

SW-type ionocytes from precursor cells (analogous to how Foxi3a and -b regulate FW-793 

type ionocyte differentiation in zebrafish), 2) the regulatory elements in the promoters 794 

and distal regulatory regions of genes encoding ion transporters, and 3) the functional 795 

elements of the ion transporters themselves (such as the motifs facilitating ATP binding 796 

and phosphorylation).  797 

Despite the recent progress, there are still many gaps to fill in the collective 798 

understanding of how ionocytes operate − this is especially true for non-teleost fishes. 799 

For example, it stands unresolved whether Slc26-family anion exchangers, Clc family Cl- 800 

channels, and Cftr sustain Cl- transport in the ionocytes of lampreys and sturgeons 801 

(Ferreira-Martins et al. 2021; Shaughnessy and Breves 2021). We foresee that some of 802 

these transporters/channels will emerge as hormone targets. The recent expansion of 803 

genomic resources in non-teleosts will certainly support work of this nature (Amemiya et 804 

al. 2013; Smith et al. 2013; Braasch et al. 2016; Vialle et al. 2018; Smith et al. 2018; 805 

Cheng et al. 2019; Du et al. 2020; Yamaguchi et al. 2020; Marlétaz et al. 2023). 806 

Finally, future work should seek to better understand how systemic hormones 807 

interact with the osmotic stress signaling cascades that permit ionocytes to directly 808 

perceive salinity changes (Fiol and Kültz 2007). For instance, cortisol promotes the 809 

expression of osmotic stress transcription factor 1 (Ostf1) during the acute phase of SW 810 

acclimation (McGuire et al. 2010). While Prl inhibits the activity of SW-type ionocytes 811 

(Fig. 2), it remains to be seen whether Prl dampens the expression of intracellular and 812 
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paracrine factors that respond to hyperosmotic conditions (e.g., Ostf1, serum- and 813 

glucocorticoid-inducible kinase 1, 14-3-3 proteins, MAPKs, endothelin 1, interleukins, 814 

and tumor necrosis factor α) (Fiol and Kültz 2007; Notch et al. 2012; Kültz 2015; Lai et 815 

al. 2015). Given the multifactorial nature of intracellular osmotic stress signaling (Fiol 816 

and Kültz 2007), and the myriad hormones that impact branchial processes (Evans et al. 817 

2005; Takei et al. 2014), it will be interesting to learn the extent to which ionocytes are a 818 

hub for interactions between intracellular, paracrine, and systemic signals.  819 
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Figure legends 1799 

Figure 1. Schematic diagrams of “Type II” and “Type III” ionocytes in Mozambique 1800 

tilapia showing the stimulatory (arrows with a “+”) effects of prolactin (Prl) (see text for 1801 

citations). Nka-1a and Clc2c are included in these models based upon the expression 1802 

of their associated gene transcripts; however, they have yet to be definitively assigned to 1803 

tilapia ionocytes. Apical and basolateral sides are presented at the top and bottom of 1804 

cells, respectively. Abbreviations: Aqp3: aquaporin 3; Clc2c: Clc family Cl- channel 2c; 1805 

Ncc2: Na+/Cl- cotransporter 2; Nka: Na+/K+-ATPase; Prl: prolactin. 1806 

 1807 

Figure 2. Schematic diagrams of FW (freshwater)- and SW (seawater)-type ionocytes in 1808 

mummichogs showing the stimulatory (arrows with a “+”) and inhibitory (blocked lines 1809 

with a “-”) effects of prolactin (Prl) (see text for citations). Where Cl- transport is indicated 1810 

with a question mark, a pathway is presumed to exist but remains uncharacterized. 1811 

Apical and basolateral sides are presented at the top and bottom of cells, respectively. 1812 

Abbreviations: Aqp3: aquaporin 3; Cftr1: cystic fibrosis transmembrane conductance 1813 

regulator 1; Cldn10f: claudin 10f; Ncc2: Na+/Cl- cotransporter 2; Nka: Na+/K+-ATPase; 1814 

Nkcc1: Na+/K+/2Cl- cotransporter 1; Prl: prolactin; TJ: tight-junction. Figure adapted from 1815 

Breves et al. (2022). 1816 

 1817 



 40 

Figure 3. Schematic diagram of SW (seawater)-type ionocytes showing the stimulatory 1818 

(arrows with a “+”) and inhibitory (blocked lines with a “-”) effects of cortisol (Cort) (see 1819 

text for citations). Apical and basolateral sides are presented at the top and bottom of 1820 

cells, respectively. Abbreviations: Aqp3: aquaporin 3; Cftr1: cystic fibrosis 1821 

transmembrane conductance regulator 1; Cldn10s: claudin 10 isoforms; Cort: cortisol; 1822 

Nka: Na+/K+-ATPase; Nkcc1: Na+/K+/2Cl- cotransporter 1; TJ: tight-junction.  1823 


