OO © 00 N O o B~ WwWDN -

W W W W W N DN N DN DN DN DN N N DN 22 a A a a a a A
A W N =~ O ©W 0 N O O A WO N =~ O ©W 0N O 3 b O DN -

Special Issue: The Multifunctional Fish Gill

Endocrine control of gill ionocyte function in euryhaline fishes

Jason P. Breves"” and Ciaran A. Shaughnessy?

" Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY
12866, USA

2 Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West,
Stillwater, OK 74078, USA

*Author for correspondence:
Jason P. Breves, Ph.D.
Department of Biology

Skidmore College

815 N. Broadway

Saratoga Springs, NY 12866 USA
Phone: +1 518 580-5079

Fax: +1 518 580-5071

Email: joreves@skidmore.edu

ORCID:
J. Breves: 0000-0003-1193-4389
C. Shaughnessy: 0000-0003-2146-9126

Abstract:

The endocrine system is an essential regulator of the osmoregulatory organs that
enable euryhaline fishes to maintain hydromineral balance in a broad range of
environmental salinities. Because branchial ionocytes are the primary site for the active
exchange of Na*, Cl, and Ca?* with the external environment, their functional regulation
is inextricably linked with adaptive responses to changes in salinity. Here, we review the
molecular-level processes that connect osmoregulatory hormones with branchial ion
transport. We focus on how factors such as prolactin, growth hormone, cortisol, and

insulin-like growth-factors operate through their cognate receptors to direct the
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expression of specific ion transporters/channels, Na*/K*-ATPases, tight-junction
proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory
(seawater-type) ionocytes. While these connections have historically been deduced in
teleost models, more recently, increased attention has been given to understanding the
nature of these connections in basal lineages. We conclude our review by proposing
areas for future investigation that aim to fill gaps in the collective understanding of how

hormonal signaling underlies ionocyte-based processes.

Keywords: cortisol; growth hormone; ion transporter; prolactin; receptor; salinity

1. Introduction

Fishes, the most numerous and diverse vertebrates, consist of three major
classes: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes), and
Osteichthyes (bony fishes) (Moyle and Cech 2004). Teleosts (class Osteichthyes;
subclass Actinopterygii; infraclass Neopterygii; division Teleostei) and lampreys
(members of Class Agnatha) typically maintain extracellular fluids between 270 and 400
mOsm/kg, with Na* and CI constituting the major dissolved ions (Hwang and Lin 2014;
Ferreira-Martins et al. 2016). Therefore, when residing in dilute freshwater (FW)
environments, they are at risk for both excessive hydration and salt loss across body
surfaces. To counterbalance this situation, the gill actively absorbs ions (Na*, Cl, and
Ca?*) from the external environment, while the kidney and urinary bladder produce large
volumes of dilute urine (Marshall and Grosell 2006; Kaneko et al. 2008). Lampreys and
teleosts residing in seawater (SW), on the other hand, must excrete ions gained by
passive diffusion from the surrounding environment and replace water that is lost via
osmosis. While multiple segments of the gastrointestinal tract work in concert to promote
solute-linked water absorption (Barany et al. 2020; Takei 2021), the gills and kidney
secrete monovalent (Na*, Cl) and divalent (Mg?*, Ca?*, and SO4%) ions into the external
environment, respectively (Kaneko et al. 2008). Cartilaginous fishes are typically marine
in their distribution and operate as osmoconformers by retaining urea and trimethylamine
oxide while maintaining internal Na* and CI concentrations below those of SW (Hwang
and Lin 2014). Hagfishes (members of Class Agnatha) are marine osmoconformers with
limited capacities to regulate internal ion concentrations.

While most fishes inhabit a single aquatic environment characterized as either

FW (£0.5%o0) or SW (30-40%o), a relatively small percentage of species (~5%) are
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considered “euryhaline” and can withstand both conditions (Schultz and McCormick
2013). Euryhaline species possess the capacity to rapidly modulate ion- and water-
transporting activities within the gill, gastrointestinal tract, kidney, and urinary bladder
following changes in salinity (Takei et al. 2014). In turn, they offer valuable opportunities
to resolve how cellular and molecular processes within osmoregulatory organs enable
fish to transition between environmental salinities. As the branchial exchange of ions
with the external environment is critical for maintaining osmoregulatory balance,
decades of focused investigations have pursued how “ionocytes”, cells specialized for
Na*, Cl, and Ca?* transport, operate in the gills relative to environmental salinity (Evans
et al. 2005; Dymowska et al. 2012).

2. Molecular aspects of ionocyte function in the gills
2.1 Freshwater-type ionocytes in teleosts

Historically, various models have been put forth to explain how the branchial
ionocytes of FW-acclimated fishes actively absorb ions against strong electrochemical
gradients (Hwang and Lin 2014). The contrasting models of FW-type ionocytes reflect, in
part, the evolution of different strategies for Na* and CI- uptake across the teleost lineage
(Dymowska et al. 2012; Takei et al. 2014; Yan and Hwang, 2019). For euryhaline
teleosts, the most comprehensive models of FW-type ionocytes are derived from
rainbow trout (Oncorhyncus mykiss), Mozambique tilapia (Oreochromis mossambicus),
and Japanese medaka (Oryzias latipes) (Dymowska et al. 2012; Hsu et al. 2014;
Inokuchi et al. 2022). For basal fishes, recent progress has been made in the
development of FW-type ionocyte models for sea lamprey (Pefromyzon marinus)
(Ferreira-Martins et al. 2021). Without question, insights into how ionocytes operate in
stenohaline zebrafish (Danio rerio) have supported progress in the euryhaline species
listed above (Guh et al. 2015).

In FW-type ionocyte models for salmonids, largely conceived from findings in
rainbow trout, two distinct subtypes absorb environmental Na*, Cl,, and Ca?*. In one
subtype, termed peanut lectin agglutinin positive (PNA™) cells, Na*/H* exchangers 2 and
3 (Nhe2 and -3; Slc9a2 and -3), epithelial Ca?* channel (ECaC), and an Slc26-family
anion exchanger are expressed in the apical membrane. Na*/K*-ATPase (Nka) mediates
the basolateral movement of Na*, while an uncharacterized pathway allows for the exit
of CI (lvanis et al. 2008; Dymowska et al. 2012). The other ionocyte subtype, termed

PNA-" cells, expresses an apical Na* channel, purported to be acid-sensing ion channel 4



103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

(Asic4), along with apical H*-ATPase. Na*/HCOs™ cotransporter 1 (Nbce1; Slc4a4) and
Nka are also expressed in PNA" cells to mediate the basolateral exit of Na* (Parks et al.
2007; Dymowska et al. 2014).

Like in trout, there are multiple FW-type ionocytes operating within the branchial
epithelium of euryhaline Mozambique tilapia. “Type II” ionocytes express a Na*/CI
cotransporter in the apical membrane to transport Na* and CI- into the cell interior (Hiroi
et al. 2008). This Ncc is denoted Ncc2 (Slc12a10) and is not a member of the
“conventional” Ncc1 (Slc12a3) clade (Motoshima et al. 2023). Nka and Clc family CI-
channel 2c (Clc2c) support the basolateral transport of Na* and CI- from the ionocyte
interior into the blood plasma, respectively (Pérez-Ruis et al. 2015; Wang et al. 2015;
Breves et al. 2017b). While Ncc2-expressing ionocytes operate in euryhaline and
stenohaline species spanning teleost clades (Wang et al. 2009; Hsu et al. 2014; Inokuchi
et al. 2017; Lema et al. 2018), they are conspicuously absent in salmonids (Hiroi and
McCormick 2012). In tilapia, a second type of Na*-absorptive ionocyte which expresses
Nka, coined “Type IlI” ionocytes, is characterized by the apical localization of Nhe3 (Hiroi
et al. 2008). The density of Type Il ionocytes (along with nhe3 expression) increases in

the gills of tilapia exposed to low-Na* conditions (Inokuchi et al. 2008, 2009).

2.2 Freshwater-type ionocytes in basal fishes

In lampreys, two FW-adaptive ionocytes have been proposed to support ion
uptake (Bartels and Potter 2004; Reis-Santos et al. 2008; Ferreira-Martins et al. 2021).
These two ionocytes differ most notably in their expression of Nka and H*-ATPase. A
“larval FW ionocyte” highly expresses H*-ATPase but shows low expression of Nka,
whereas a “FW ionocyte” (observed in larvae as well as post-metamorphic and adult
stages) strongly expresses both H*-ATPase and Nka. H*-ATPase E subunit (atpbvie)
expression markedly decreases in the gills when lamprey acclimate to elevated salinities
(Reis-Santos et al. 2008; Ferreira-Martins et al. 2016). The ionoregulatory role of H*-
ATPase in FW gills typically involves its co-expression with a pathway for the
electrochemically neutral uptake of environmental Na*. The absorption of environmental
Na* by lampreys appears to involve the epithelium Na* channel (ENaC) (Ferreira-Martins
et al. 2016), while Ncc supports both Na* and CI- uptake (Barany et al. 2021b).
Accordingly, both ENaC and Ncc are highly expressed in the gills of FW-acclimated
lamprey and exhibit decreased expression during SW acclimation, although which

particular cell-types express these transporters has not been fully elucidated. The co-
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involvement of an apical carbonic anhydrase-powered CI/HCOs™ exchanger and a
basolateral ClI-channel in CI- uptake has also been proposed, but the molecular
identities of these transporters are unresolved (Bartels and Potter 2004; Ferreira-Martins
et al. 2021).

2.3 Seawater-type ionocytes in teleosts

Within the branchial epithelium of marine/SW-acclimated teleosts, SW-type
ionocytes actively secrete excess Na* and CI into the environment. SW-type ionocytes
express Nka and Na*/K*/2CI cotransporter 1 (Nkcc1; Slc12a2) in the basolateral
membrane to energize and facilitate the Na*- and K*-coupled passage of CI- from blood
plasma into the cell interior (Marshall and Grosell 2006; Kaneko et al. 2008). The
catalytic a-subunit of the Nka enzyme contains binding sites for ATP, Na*, and K*
(Geering 2008). Two distinct isoforms of the a-subunit (a1a and a1b) were identified in
salmonids, first by Richards et al. (2003). In salmonids and cichlids, these isoforms have
functional capacities exclusive to either FW (a1a) or SW (a1b), with branchial expression
“switching” from one to the other during salinity transitions (Bystriansky et al. 2006;
Nilsen et al. 2007; McCormick et al. 2009; Tipsmark et al. 2011; Dalziel et al. 2014).
Apically located cystic fibrosis transmembrane conductance regulator 1 (Cftr1) enables
CI to exit SW-type ionocytes and to enter the external environment (Marshall and
Grosell 2006). With Nkcc1 and Cftr1 forming the pathway for transcellular CI- excretion,
tight-junction complexes composed of claudins (Cldns) between ionocytes and adjacent
accessory cells provide the paracellular route for Na* to exit the gill (Marshall and
Grosell 2006; Tipsmark et al. 2008b; Bui and Kelly 2014). Attendant increases in
branchial Nka, Nkcc1, and Cftr1 expression coincide with SW-acclimation. For this
reason, all three ion transporters are widely used as key markers of branchial ion-

secretory capacity.

2.4 Seawater-type ionocytes in basal fishes

The pathways for branchial CI secretion are far less resolved in basal fishes than
in teleosts. Cftr orthologs are present in the genomes of sturgeon, bichir, and coelacanth
(Shaughnessy and Breves 2021), yet none of these orthologs have been functionally
characterized. A single Cftr ortholog was identified in sea lamprey; however, cftr
expression is low in all larval, juvenile, and adult tissues aside from intestine (Ren et al.

2015). Moreover, compared with human Cftr, lamprey Cftr exhibits limited CI
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conductance and reduced activation by cAMP (Cui et al. 2019). Given the limited CI
conductance of lamprey Cftr and the lack of a cftr transcriptional response to SW
exposure (Shaughnessy et al. unpublished), it is questionable whether Cftr mediates the
secretion of CI- by lamprey ionocytes known to express Nka and Nkcc1 (Shaughnessy
and McCormick 2020). A recent analysis of the updated inshore hagfish (Eptatretus
burgeri) genome assembly (Yu et al. 2023; Marlétaz et al. 2023) indicates that a cftr

ortholog may be absent in hagfishes altogether (Yamaguchi et al. 2023).

3. Hormones and ionocytes

The endocrine system has long been appreciated as a central player in the
homeostatic regulation of salt and water balance in fishes. Perturbations in internal
osmotic and ionic conditions caused by changes in environmental salinity elicit the
secretion of hormones that modulate ion- and water-transport by key osmoregulatory
organs. Because these regulatory connections are indispensable to maintaining
hydromineral balance, there is no shortage of literature that discusses how hormones
impact the osmoregulatory physiology of fishes at the organismal, organ, and cellular
levels (Hirano 1986; McCormick 2001; Manzon 2002; Evans et al. 2005; Sakamoto and
McCormick 2006; Takei and McCormick 2013; Takei et al. 2014). Therefore, in this
review, we do not address all established hormonal actions within the gills of fishes;
rather, we focus on how hormones control the molecular components of ionocytes. We
focus on the regulatory connections identified in euryhaline species but, in several
instances, reference stenohaline zebrafish for added context. An expansive collection of
endocrine factors undeniably contributes to regulating branchial ionocytes (Evans et al.
2005; Takei et al. 2014); however, the identification of molecular endocrine targets is
largely based on studies that focused upon the “classical” FW- and SW-adapting
hormones in fishes, namely prolactin (Prl), growth hormone (Gh), and cortisol. While this
review is heavily weighted toward describing the actions of these three hormones, we
also highlight promising areas for future investigations into how additional endocrine

factors regulate ionocytes.

4. Freshwater-adaptive endocrine control
4.1 Prolactin
Euryhaline models, and most famously, mummichog (Fundulus heteroclitus),

supported the discovery that pituitary hormones are key regulators of osmoregulatory
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organs (Pickford and Atz 1957). Pickford (1953) and Burden (1956) reported that
hypophysectomized mummichogs could not survive in FW, and that pituitary brei
injections rescued them from death. Prl was subsequently identified as the pituitary
factor that enables individuals to reside in dilute environments (Pickford and Phillips
1959). Over the succeeding decades, it was firmly established that through its highly
conserved actions on teleost osmoregulatory organs, Prl stimulates a spectrum of
activities befitting FW-acclimation (Loretz and Bern 1982; Hirano 1986; Manzon 2002;
Sakamoto and McCormick 2006; Breves et al. 2014a, 2020). Accordingly, pituitary pr/
expression and plasma Prl levels rise when fish acclimate to low-salinity conditions (Lee
et al. 2006; Hoshijima and Hirose 2007; Fuentes et al. 2010; Seale et al. 2012). The
notion that ionocytes are targets of Prl signaling was supported decades ago by the
observation that Prl influences ionocyte populations in Mozambique and Nile (O.
niloticus) tilapia (Herndon et al. 1991; Pisam et al. 1993; Flik et al. 1994). With respect to
directing ionoregulatory function, Zhou et al. (2003) showed that exogenous Prl
stimulated ion uptake in rainbow trout branchial epithelium. Patterns of Prl binding and
prl receptor (prir) gene expression reported in both euryhaline and stenohaline FW
species further associated Prl signaling with ionocytes (Dauder et al. 1990; Prunet and
Auperin 1994; Weng et al. 1997; Rouzic et al. 2001; Santos et al. 2001; Lee et al. 2006;
Huang et al. 2007; Fiol et al. 2009; Breves et al. 2013). Furthermore, the Prir was
localized to branchial ionocytes of Mozambique tilapia and sea bream (Sparus aurata)
(Weng et al. 1997; Santos et al. 2001).

Only recently have investigations into the actions of Prl become unencumbered
by a paucity of molecular tools to study FW-type ionocytes. For example, the
characterization of tilapia Type Il ionocytes by Hiroi et al. (2008) provided an opportunity
to link Prl with a specific molecular pathway for ion uptake, particularly Na*/CI
cotransporter 2 (Ncc2; Slc12a10). Prl enables hypophysectomized tilapia to recruit
Ncc2-expressing ionocytes during FW acclimation, an activity that does not require
systemic intermediaries (Breves et al. 2010c; Inokuchi et al. 2015; Watanabe et al. 2016)
(Fig. 1). Prl similarly regulates branchial ncc2 expression in euryhaline mummichog
(Breves et al. 2022) and Japanese medaka (Bossus et al. 2017), as well as in
stenohaline zebrafish (Breves et al. 2013). Activated Prl receptors (Prlrs) can modulate
the transcription of target genes through JAK/STAT and ERK/MAPK signaling (Huang et
al. 2007; Fiol et al. 2009; Chen et al. 2011). In medaka, Prl stimulates ncc2 via STATS
activation rather than through ERK- or AKT-dependent pathways (Bollinger et al. 2018).
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Since Clc2c is expressed within Ncc2-expressing ionocytes to facilitate basolateral CI
movement (Pérez- Ruis et al. 2015; Wang et al. 2015), it is fitting that Prl coordinately
promotes clc2c and ncc2 expression (Breves et al. 2017b; Breves 2019) (Fig. 1). In
contrast, clc3 expression in tilapia ionocytes is not under Prl control (Tang and Lee
2011; Breves et al. 2017b).

The potential for Ncc-dependent pathways to operate in the osmoregulatory
organs of cartilaginous and jawless fishes has recently received increased attention. In
Japanese-banded houndshark (Triakis scyllium), a “conventional”’ ncc1 (slc12a3) is
expressed within a subpopulation of gill ionocytes, termed type-B cells, where its
expression increases upon transfer from full-strength SW to 30% SW (Takabe et al.
2016). Given that elasmobranch genomes are devoid of Ncc2-encoding genes
(Motoshima et al. 2023), Ncc1 may assume a role in branchial Na* and CI- absorption in
elasmobranchs. Similarly, the branchial expression of ncca (ncc1) in sea lamprey is
attenuated during SW acclimation (Ferreira-Martins et al. 2016; Barany et al. 2021b).
Given the expression of the Prir in lamprey qills, the next step is to assess whether the
recently found Prl participates in modulating ncca when lamprey transition between FW
and marine environments (Gong et al. 2020).

In two lampreys (P. marinus and Lethenteron reissneri), the expression of gene
transcripts encoding ENaC subunits increases under low-Na* conditions (Ferreira-
Martins et al. 2016; Tseng et al. 2022). Thus, ENaC may provide a means for lampreys
to absorb Na* from FW; this strategy for Na* absorption is absent in cartilaginous and
ray-finned fishes (Ferreira-Martins et al. 2021). Curiously, branchial gene expression of
an ENaC subunit, scnna, decreases when inshore hagfish experience high-salinity
conditions (Yamaguchi et al. 2023). Despite hagfishes exhibiting ionoconformity, this
response suggests that Na* movement in the gill may be more complex than previously
thought. To our knowledge, endocrine control of ENaC subunit expression has not been
addressed in any cyclostome and, in an analogous fashion as ncca, should be probed
for links to the Prlirs identified in hagfish and lamprey (Gong et al. 2020).

While branchial ionocytes leveraging Ncc operate in species across the three
major fish lineages, they are not found within salmonids (Hiroi and McCormick 2012). In
turn, an apically located CI/HCOs exchanger (Slc26a6) may provide a pathway for CI-
absorption by PNA* ionocytes in rainbow trout and other salmonids (Boyle et al. 2015;
Leguen et al. 2015). Branchial sic26a6aZ2 is elevated in FW- versus SW-acclimated

Atlantic salmon (Takvam et al. 2021) and is a transcriptional target of Prl signaling
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(Breves et al. unpublished). Therefore, Slc26a6a2 may constitute a pathway for Prl-
stimulated CI" uptake in species lacking Ncc-expressing ionocytes (Zhou et al. 2003).
Because Leguen et al. (2015) reported clc2 expression in trout ionocytes (putative PNA*
cells), Prl-based control of salmonid clc2 isoforms also warrants investigation. Studies of
this nature will enable comparisons of Prl-Clc2 connectivity between species that do,
and do not, leverage Ncc2-expressing ionocytes.

Within the PNA" ionocytes of trout, Nbce1 supports the absorption of
environmental Na* by cotransporting Na® and HCOg3™ across the basolateral membrane
(Parks et al. 2007; Leguen et al. 2015). The apical entry of Na* into PNA" cells was
proposed to occur via Asic4 through its electrochemical linkage to H*-ATPase
(Dymowska et al. 2014). Under this scenario, intracellular HCOs is supplied by carbonic
anhydrase (Parks et al. 2007). In tilapia, Nbce1 operates in the basolateral membrane of
Ncc2-expressing ionocytes (Furukawa et al. 2011). To our knowledge, Nbce1, Asic4, H*-
ATPase, and carbonic anhydrase have not been associated with Prl signaling in trout or
tilapia.

In addition to Type Il ionocytes, a second type of Na*-absorptive ionocyte in
tilapia (Type Ill ionocytes) is characterized by the apical expression of Nhe3 (Hiroi et al.
2008). Prl promotes nhe3 gene expression in tilapia gill filaments (Inokuchi et al. 2015;
Watanabe et al. 2016) whereas it has no such effect in mummichog or zebrafish (Breves
et al. 2013, 2022) (Fig. 1). Because salmonids express Nhe2 and -3 within PNA*
ionocytes, they will prove key in resolving the extent to which Prl regulates Nhes across
teleosts (lvanis et al. 2008; Hiroi and McCormick 2012). Unfortunately, the lack of
information on Nhes in lamprey ionocytes precludes consideration of a Prl-Nhe
connection (Ferreira-Martins et al. 2021). Recent pharmacological experiments
performed in zebrafish implicated K*-dependent Na*/Ca?* exchangers (Nckxs) in
mediating Na* absorption (Clifford et al. 2022). Should roles emerge for Nckxs in
supporting Na* uptake by euryhaline species, Nckx isoforms would be additional
candidates for regulation by Prl.

Nka plays a critical role in energizing ion transport by FW- and SW-type
ionocytes, with the reciprocal expression of nka-a1a and -a1b first described in
salmonids transitioning between FW and SW environments (Richards et al. 2003;
Mackie et al. 2005; Bystriansky et al. 2006; Madsen et al. 2009; McCormick et al. 2009;
Dalziel et al. 2014). Tilapia also undergo nka-a1a and -a1b “switching” upon salinity

changes, and Prl stimulates the “FW-inducible” nka-a1a isoform (Tipsmark et al. 2011;
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Breves et al. 2014b; Inokuchi et al. 2015; Watanabe et al. 2016) (Fig. 1). Thus far, the
capacity for Prl to promote nka-a1a expression seems specific to tilapia, as Prl fails to
stimulate nka-a7a in Atlantic salmon (Tipsmark and Madsen 2009; Breves et al.
unpublished). In zebrafish, nka-a1ala.2 is expressed in Ncc2-expressing ionocytes
responsible for CI" uptake (Liao et al. 2009); however, Prl has no effect on branchial nka-
alata.2 expression (Breves 2019). The auxiliary y-subunit of Nka (also called Fxyd)
participates in the regulation of enzymatic activity by associating with the Na*/K* pump
complex (Geering 2008; Pavlovic et al. 2013). Among the Fxyd isoforms identified in
teleosts, Fxyd11 is predominately expressed in the gills where it interacts with Nka
(Tipsmark 2008; Wang et al. 2008; Saito et al. 2010). In tilapia, Prl and cortisol
synergistically promote fxyd11 expression in FW (Tipsmark et al. 2011).

For teleosts residing in FW, greater than 90% of whole-body Ca?* uptake is
mediated by branchial/epidermal ionocytes (Flik et al. 1996; Lin and Hwang 2016).
Transcellular Ca?* uptake entails the apical entry of Ca?* through ECaC (Trpv5/6)
followed by basolateral exit via Ca?*-ATPase 2 (Pmca2) and Na*/Ca?* exchanger 1
(Ncx1) (Flik et al. 1996; Liao et al. 2007). Prl is hypercalcemic in multiple teleosts (Pang
et al. 1978; Fargher and McKeown 1989; Flik et al. 1989, 1994; Kaneko and Hirano
1993; Chakraborti and Mukherjee 1995; Wongdee and Charoenphandhu 2013), at least
in part by stimulating branchial Pmca activity (Flik et al. 1996). Future investigations
employing both euryhaline and stenohaline FW models are needed to determine
whether Prl promotes ECaC and Ncx1 expression in parallel with promoting Pmca
activity to sustain Ca?* uptake.

Aquaporins (Aqps) constitute a superfamily of integral membrane proteins that
facilitate passive movements of water and small non-ionic compounds across cell
membranes (Cerda and Finn 2010). Multiple branchial cell types, including ionocytes,
express a subset of Aqps (Lignot et al. 2002; Hirata et al. 2003; Watanabe et al. 2005;
Tse et al. 2006; Brunelli et al. 2010; Tingaud-Sequeira et al. 2010; Tipsmark et al. 2010;
Jung et al. 2012; Breves et al. 2016; Ruhr et al. 2020). Prl stimulates the expression of
the aquaglyceroporin, Agp3, in Mozambique tilapia (Breves et al. 2016) (Fig. 1),
Japanese medaka (Ellis et al. 2019), and mummichog (Breves et al. 2022). On the other
hand, Prl does not promote branchial agp? expression (Ellis et al. 2019). Although the
Aqp-specific effects of Prl suggest that Aqp3 plays an important role in FW-acclimated
fish, there is still no clear picture of how it underlies adaptive processes. A role for Agp3

in enhancing transepithelial water movement appears unlikely because branchial water

10
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exchange is disadvantageous to systemic hydromineral balance. Alternatively, Aqp3
may render ionocytes osmosensitive to extracellular conditions and/or capable of
efficiently regulating their volume (Cutler and Cramb 2002; Watanabe et al. 2005;
Tipsmark et al. 2010).

Prl has long been recognized for its effects on membrane permeability which
result in a general “tightening” to minimize diffusive ion loss (Potts and Evans 1966;
Hirano 1986). Paracellular solute movements across epithelia are governed in large part
by the barrier properties of tight-junction complexes composed of Cldn and occludin
proteins (Chasiotis et al. 2012). In tilapia and medaka, FW acclimation entails the
increased expression of branchial cldn28a and -28b, respectively (Tipsmark et al. 20083a;
Bossus et al. 2015). In Atlantic salmon and medaka, Prl stimulates c/dn28a and -28b
gene expression (Tipsmark et al. 2009; Bossus et al. 2017). Prl-Cldn28 connectivity thus
provides a means to regulate tight-junction properties for minimizing ion loss in FW.
Occludin expression is also correlated with environmental salinity (Chasiotis et al. 2009;
Kumai et al. 2011; Whitehead et al. 2011), making it a good candidate for regulation by
Prl; however, to our knowledge, this link has yet to be examined.

Teleosts express two separate Prirs, denoted Prir1 (Prira) and -2 (Prirb), that
differ in their responses to salinity changes (Huang et al. 2007; Pierce et al. 2007; Fiol et
al. 2009; Tomy et al. 2009; Rhee et al. 2010; Breves et al. 2011; Chen et al. 2011;
Flores and Shrimpton 2012; Breves et al. 2013). Branchial prir1 has emerged as a
transcriptional target of Prl in tilapia, mummichog, and zebrafish (Inokuchi et al. 2015;
Breves et al. 2013, 2022). In turn, Prl seemingly upregulates the expression of Prir1 to
enhance the sensitivity of ionocytes to circulating hormone during FW acclimation (Weng
et al. 1997). Alternatively, prir2/b is typically insensitive to Prl (Breves et al. 2013, 2022;
Inokuchi et al. 2015), which is not surprising given that its expression is upregulated by
the hyperosmotic extracellular conditions associated with SW acclimation (Fiol et al.
2009; Inokuchi et al. 2015; Seale et al. 2019).

In tandem with initiating active ion uptake, euryhaline species must attenuate
branchial ion secretion when transitioning from SW to FW. While promoting the
recruitment of FW-type ionocytes and the expression of their associated ion
transporters, Prl simultaneously dampens cellular and molecular phenotypes appropriate
for SW conditions. For instance, Herndon et al. (1991) observed that Prl reduced the
size and number of SW-type ionocytes in tilapia. At the molecular level, Prl inhibits the

transcription of nkcc1 and cfir1 within the SW-type ionocytes of medaka and
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mummichog (Tipsmark and Madsen 2009; Bossus et al. 2017; Breves et al. 2022) (Fig.
2). Prl also inhibits branchial Nka activity and nka-a1b expression (Pickford et al. 1970;
Sakamoto et al. 1997; Shrimpton and McCormick 1998; Kelly et al. 1999; Mancera et al.
2002; Tipsmark and Madsen 2009), which, like nkcc1 and cfir1, are elevated in SW to
support ion secretion. Recall that while Cftr1 is the conduit for CI- to exit SW-type
ionocytes, tight junction complexes between ionocytes and accessory cells provide the
paracellular path for Na* to exit the organism. The cation-selective tight-junctions
adjacent to ionocytes are composed of multiple Cldn10 isoforms (Tipsmark et al. 2008b;
Bui and Kelly 2014). Among the four mummichog cldn10 genes (cldn10c, -10d, -10e,
and -10f) upregulated in response to SW (Marshall et al. 2018), cldn10f is the only
transcript downregulated by Prl (Breves et al. 2022) (Fig. 2). Collectively, these nkcc1,
cftr1, and cldn10f responses illustrate the various means by which Prl inhibits branchial

salt secretion.

4.2 Growth hormone and somatolactin

As discussed in Section 5.1, Gh is conventionally regarded as a “SW-adapting
hormone” because it promotes the survival of euryhaline fishes (and especially
salmonids) in hyperosmotic environments (Bjérnsson 1997; McCormick et al. 2002;
Takei et al. 2014). To our knowledge, there is no direct evidence that Gh plays a role in
regulating FW-type ionocytes. Nonetheless, Gh receptors (Ghrs) are expressed in the
gills of euryhaline species regardless of whether they are acclimated to FW or SW
(Pierce et al. 2007; Poppinga et al. 2007; Breves et al. 2011; Link et al. 2010); therefore,
Ghrs are at least present to mediate any direct regulatory connections between
circulating Gh and FW-type ionocytes. It is certainly plausible that Gh may indirectly
regulate FW-type ionocytes through the synthesis of insulin-like growth-factors (Igfs)
(Reinecke et al. 1997; Berishvili et al. 2006; Reindl and Sheridan 2012). In fact, black-
chinned tilapia (Sarotherodon melanotheron) exhibit enhanced ghr and igf1 expression
in the gill during FW acclimation (Link et al. 2010). Similarly, zebrafish exhibit elevated
pituitary gh and branchial ghr (ghra and -b), igf1a, and -2a expression when challenged
with ion-poor conditions (Hoshijima and Hirose 2007; Breves et al. unpublished).
However, whether the Gh/Igf system supports the molecular responses of tilapia and
zebrafish ionocytes to FW/ion-poor conditions has yet to be determined.

Somatolactin (Sl), a member of the Gh/Prl-family of pituitary hormones, is a

putative regulator of various physiological processes in fishes, particularly Ca?*
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homeostasis (Kaneko and Hirano 1993). Rainbow trout transferred to Ca?*-rich FW
exhibit reduced s/ gene expression in the pituitary, a response that is consistent with SI
having hypercalcemic activity (Kakizawa et al. 1993). Given the substantial progress
made toward understanding how ionocytes absorb environmental Ca?* (Lin and Hwang
2016), a reassessment of whether Sl is indeed hypercalcemic is warranted by probing

targets such as ECaC, Pmca2, and Ncx1.

4.3 Cortisol

Cortisol is typically deemed a “SW-adapting hormone” because it directly
stimulates the activities and/or expression of transporters tied to branchial ion-secretion
(Section 5.2). The recognition that cortisol also promotes ion uptake in some teleosts
arrived after its SW-adaptive role was firmly established (McCormick 2001; Takei and
McCormick 2013). Morphological responses to cortisol in the gills of rainbow trout and
American eel (Anguilla rostrata) suggested that FW-type ionocytes are targets of cortisol
signaling (Perry et al. 1992), a notion that would be later supported with the development
of molecular tools to more precisely study FW-type ionocytes. In tilapia, medaka, and
zebrafish, Nhe3 and Ncc2 are expressed in distinct ionocyte subtypes (Hiroi and
McCormick 2012; Hsu et al. 2014; Guh et al. 2015). In zebrafish, cortisol stimulates Na*
uptake in a fashion dependent upon the presence of Nhe3b-expressing ionocytes and
promotes the differentiation of Ncc2-expressing ionocytes from a progenitor population
(Kumai et al. 2012; Cruz et al. 2013a). While cortisol similarly promotes ncc2 expression
in medaka (Bossus et al. 2017; Ellis et al. 2019), this is not the case in tilapia (Breves et
al. 2014b; Watanabe et al. 2016).

The FW-adaptive role of cortisol in zebrafish appears to be mediated solely by
the glucocorticoid receptor (Gr) rather than the mineralocorticoid receptor (Mr) (Cruz et
al. 2013b). The zebrafish Gr is expressed by Nka-rich branchial and epidermal
ionocytes, with knockdown of gr, but not mr, disrupting the development of FW-type
ionocytes through the action of forkheadbox 13 transcription factors (Foxi3a and -b)
(Cruz et al. 2013b). Exogenous cortisol increases nhe3b, H-ATPase a-subunit
(atpbv1a), and ecac expression in zebrafish embryos. In medaka embryos, knockdown
of gr2, but not gr1 or mr, decreases the total number of epidermal ionocytes (Trayer et
al. 2013). Conversely, in FW-acclimated tilapia, it was suggested that the Mr, rather than

the Gr, controls cortisol-mediated development of Nka-rich branchial ionocytes (Wu et al.
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2023). Accordingly, mr expression occurs in ionocyte precursors/epidermal stem cells
(Wu et al., 2023).

In Atlantic salmon, cortisol upregulates gene transcription and protein abundance
of the “FW-inducible” Nka-a1a isoform (Kiilerich et al. 2007b; McCormick et al. 2008,
2012; Tipsmark and Madsen 2009). Cortisol also upregulates the “SW-inducible” Nka-
a1b isoform (Kiilerich et al. 2007b; Tipsmark and Madsen 2009; Breves et al. 2024), and
thus, the capacity of cortisol to increase the expression of both Nka-a1a and -a1b is
indicative of its dual role in promoting FW- and SW-adaptive processes. While cortisol
was shown to stimulate branchial carbonic anhydrase activity in trout (Gilmour et al.
2011), to our knowledge, no ion transporters expressed in salmonid FW-type ionocytes
outside of Nka (e.g., Nhe2, -3, Asic4, ECaC, and Nbce1) have been linked with cortisol.
This is a significant knowledge gap, especially given that cortisol is known to stimulate
Ca?* uptake by ECaC-expressing ionocytes in zebrafish (Lin and Hwang 2016).
Reminiscent of the scenario for Prl (Section 4.1), future work is warranted to resolve
whether cortisol affects Ca?* uptake pathways in euryhaline species.

In addition to promoting key mediators of ion uptake (e.g., Ncc2, Nhe3, and Nka-
ala), cortisol promotes FW acclimation by decreasing the paracellular permeability of
the branchial epithelium (Kelly and Wood 2002; Zhou et al. 2003; Kolosov and Kelly
2017). This important contribution to FW acclimation is achieved through the regulation
of specific tight-junction proteins. For instance, cortisol increases the expression of
cldn8d, -10c, -10d, -10e, -10f, -11a, -27a, -30c, and -33b in various euryhaline species
(Tipsmark et al. 2009; Bui et al. 2010; Bossus et al. 2017; Kolosov and Kelly 2017).
Finally, it certainly must be recognized that cortisol can promote FW acclimation by
acting in concert with Prl (Eckert et al. 2001; McCormick 2001). For instance, from a
molecular perspective, Prl and cortisol act synergistically to promote branchial nka-a1a
and cldn28b expression in tilapia and medaka, respectively (Watanabe et al. 2016;
Bossus et al. 2017).

4.4 Thyroid hormones

Although limited, there is evidence that thyroid hormones are involved in the
control of FW-adaptive branchial processes. Unfortunately, information is particularly
scant regarding plasma thyroxine (T4) and 3-3'-5-triiodothyronine (Ts) levels in
euryhaline species undergoing FW acclimation. In sea bream, plasma T4 levels increase

following transfer from SW to FW (Klaren et al. 2007). Alternatively, Mozambique tilapia
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acclimating to FW exhibit rapid declines in both plasma T4 and T3 (Seale et al. 2021).
While the dynamics of T4 and T3 in tilapia suggest a hyposmotically-induced suppression
of thyroid hormone production at the systemic level, at the level of the gill, these
changes coincide with an increase in the outer-ring deiodination activity of deiodinase 2
(Dio2). As shown in mummichog, Dio2 expression/activity is activated by hyposmotic
stress (L6pez-Bojorquez et al. 2007). Thus, increased branchial Dio2 activity supports
the local production of T3 at a time when the recruitment of ionocytes is activated
following entry into FW (Hiroi et al. 2008; Breves et al. 2021). Accordingly, tilapia treated
with T4 exhibit an increase in the density and size of presumed FW-type ionocytes (Peter
et al. 2000). It remains to be seen whether these cellular responses to T4 manifest

changes in branchial ncc2, nhe3, and clc2c expression.

5. Seawater-adaptive endocrine control
5.1 Growth hormone and insulin-like growth-factors

Although much of the early attention given to the Gh/Igf system in fishes was
driven by its potential application to understanding growth in aquaculture settings, the
osmoregulatory actions of both Gh and Igf1 have emerged as important aspects of the
hormonal control of osmoregulation. In salmonids, Gh is integral to the timing of parr-
smolt transformation and the associated development of SW tolerance (Hoar 1988;
Bjornsson 1997; McCormick 2013), and accordingly, plasma Gh levels increase during
smolting (Boeuf et al. 1989; Prunet et al. 1989; Young et al. 1989; McCormick et al.
2007, 2013; Nilsen et al. 2008). The SW-adaptive role for Gh is not restricted to
salmonids, as in both salmonid and non-salmonid teleost species, exposure to SW
corresponds with elevated plasma Gh levels and increased gh gene expression, Gh
protein content, and somatotroph numbers in the pituitary (Deane and Woo 2009). As
shown in Mozambique tilapia, somatotrophs release Gh in direct response to
hyperosmotic extracellular conditions (Seale et al. 2002). Importantly, treatment with Gh
upregulates branchial Nka activity and improves the SW tolerance of several euryhaline
teleosts (Madsen 1990a, b; McCormick 1996; Xu et al. 1997; Mancera and McCormick
1998; Pelis and McCormick 2001). Intraperitoneal injection with Gh also increases
Nkcc1 protein abundance within SW-type ionocytes (Pelis and McCormick 2001) and
stimulates nka-a1b and nkcc1 expression (Tipsmark and Madsen 2009), although these

effects were most pronounced when Gh was co-administered with cortisol.
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Ghrs are present in teleost gills (Gray et al. 1990; Yao et al. 1991; Sakamoto and
Hirano 1991); however, they have yet to be localized to any discrete branchial cell-types.
It was initially reported that rainbow trout acclimating to SW do not exhibit changes in
branchial Gh binding (Sakamoto and Hirano 1991). More recent molecular analyses
describe variable branchial ghr expression patterns with respect to SW acclimation. In
Atlantic salmon, ghr expression has been seen to increase (Kiilerich et al. 2007a; Nilsen
et al. 2008) or not change at all (Breves et al. 2017a) during smolting. Likewise, there is
little consistency in branchial ghr patterns following SW exposure, with increases,
decreases, and no changes in expression all having been observed across several
species (Kiilerich et al. 2007a; Nilsen et al. 2008; Breves et al. 2010a, b; Flores and
Shrimpton 2012; Einarsdottir et al. 2014; Breves et al. 2017a; Link et al. 2022).
Additionally, Gh-treated gill explants from coho salmon (Oncorhynchus kisutch) and Nile
tilapia did not exhibit changes in Nka activity, or nka-a1b and nkcc1 gene expression
(McCormick et al. 1991; Breves et al. 2014b). Rather than directly regulating the
expression of specific ion-transporters, Gh may exert cytogenic effects that promote the
recruitment of branchial ionocytes (Madsen 1990a, b; Flik et al. 1993; Prunet et al.
1994). For instance, Gh- elicited increases in Nka activity and Nkcc1 in Atlantic salmon
were coincident with an increased abundance of ionocytes (Pelis and McCormick 2001).

Gh is the primary regulator of the production and release of Igf1 and -2 from the
liver (Pierce et al. 2011; Reindl and Sheridan 2012). Branchial igf1 receptor (igf1r)
expression increases during smolting and upon exposure to SW (Nilsen et al. 2008;
Shimomura et al. 2012), and increased circulating Igf1 levels correlate with elevated
branchial Nka activity (Agustsson et al. 2001; McCormick et al. 2007; Shimomura et al.
2012). However, not all studies have observed rises in plasma Igf1 during smolting
(Nilsen et al. 2008; Breves et al. 2017a). Intraperitoneal injection of Atlantic salmon with
Igf1 increases SW tolerance but only marginally impacts gill Nka activity (McCormick
1996) whereas Nkcc1 in isolated Japanese eel (Anguilla japonica) gill cells is stimulated
by Igf1 (Tse et al. 2007). In addition to exerting osmoregulatory actions as endocrine
signals (i.e., secreted from the liver and acting upon ionocytes) (Madsen and Bern
1993), Igf1 and -2 may also operate as autocrine/paracrine signals (i.e., produced by
and acting upon ionocytes) (Berishvili et al. 2006; Tipsmark and Madsen 2009). In
Atlantic salmon, Nilsen et al. (2008) reported increases in gill igf1 and igf1r during

smolting and SW acclimation, even when no increase in circulating Igf1 was detected.
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Similarly, Breves et al. (2017a) observed increases in branchial igf2 and igfira
expression in smolts following SW exposure.

The promotion of SW-adaptive ionoregulatory capacities by Gh may be best
explained by its interaction with cortisol to promote both the proliferation of ionocytes
and their responsiveness to cortisol (McCormick 2013). Studies using salmonids
demonstrated that cortisol interacts with the Gh/Igf system to affect SW-type ionocytes.
The co-administration of cortisol with either Gh or Igf1 increases gill Nka activity to levels
beyond those induced by treatment with either hormone individually (Madsen 1990a, b;
Madsen and Korsgaard 1991; McCormick 1996). Scenarios proposed to underlie the
apparent synergistic actions of cortisol and Gh include, 1) Gh promotes Gr abundance in
ionocytes, thereby increasing the capacity for cortisol to affect ion transporter
expression, and 2) Gh promotes ionocyte proliferation while cortisol promotes the
differentiation of ionocytes (McCormick 2013). Thus, future work should leverage recent
insights into the regulators of ionocyte differentiation, such as forkhead box transcription
factors (Hsiao et al. 2007), to elucidate how Gh and cortisol shape SW-type ionocyte
populations.

Recent studies also describe the potential for Gh and Igf1 to regulate SW-
adaptive branchial processes in lampreys. Kawauchi et al. (2002) were the first to
identify a lamprey Gh capable of stimulating hepatic igf1 expression. Later, Gh-like cells
in the lamprey pituitary were shown to increase in abundance during metamorphosis
(Nozaki et al. 2008). The discovery of Ghr, Prir, and Prl itself in sea lamprey spurred
recent investigations into their regulatory roles (Gong et al. 2022). Although pituitary gh
and prl expression are upregulated during sea lamprey metamorphosis (Gong et al.
2022), it was later shown that gh also increases in the pituitary of non-metamorphosing
larvae over the same period (Ferreira-Martins et al. 2023). Thus, such increases in gh
expression may be seasonal, and it remains unclear whether the same is true for
pituitary prl expression. In any case, branchial ghr and prir gene expression also
increases during metamorphosis (Gong et al. 2020; Ferreira-Martins et al. 2023).
Because similar increases do not occur in non-metamorphosing larval lamprey (Ferreira-
Martins et al. 2023), heightened ghr and prir expression likely underlies developmental
(as opposed to seasonal) processes. Substantial increases in hepatic and branchial igf1
expression also occur throughout metamorphosis, and therefore, endocrine as well as
autocrine/paracrine actions of Igf1 may operate in lamprey (Ferreira-Martins et al. 2023).

Surprisingly, SW exposure does not affect pituitary gh expression, hepatic igf
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expression, or branchial ghr and igf1 expression (Gong et al. 2020, 2022; Ferreira-
Martins et al. 2023) and treatment with recombinant Gh does not affect branchial ion
transporters (Gong et al. 2022). Future studies in lamprey are warranted to assess
whether Gh and Igf1 promote the recruitment of SW-type ionocytes through cytogenic

actions.

5.2 Corticosteroids

In lobe-finned fishes (Sarcopterygii) and tetrapods, cortisol (or, in some cases,
corticosterone) and aldosterone are the products of the corticosteroid biosynthesis
pathway and the predominant circulating hormones. Cortisol and aldosterone separately
regulate carbohydrate metabolism and osmoregulation by interacting with the Gr and Mr,
respectively. In all other fishes, corticosteroids and their receptors mediate both
carbohydrate metabolism and osmoregulation. However, important differences exist
between fish groups, particularly with respect to the milieu of corticosteroids in
circulation and the identity and expression of receptors that mediate the actions of these
steroids. Here, we focus on corticosteroids that are known to directly regulate branchial
processes in fishes.

Non-sarcopterygian fishes lack aldosterone synthase (Cyp11b2) and
consequently the ability to synthesize aldosterone (Baker 2003; Takahashi and
Sakamoto 2013). In actinopterygian fishes, cortisol is the predominant corticosteroid
present in circulation, with 11-deoxycorticosterone and corticosterone present at far
lower concentrations (Prunet et al. 2006). Among the circulating corticosteroids in
actinopterygians, cortisol has both glucocorticoid and mineralocorticoid activity. To a far
lesser extent, 11-deoxycorticosterone also exhibits mineralocorticoid-like actions
(Takahashi and Sakamoto 2013). Chondrichthyan fishes produce a novel steroid
biosynthetic product, 1a-hydroxycorticosterone, which exhibits some mineralocorticoid-
like action (Anderson 2012). However, chondrichthyans do not utilize branchial
processes for bulk ion secretion but rather use the salt-secretory rectal gland (Wright
and Wood 2015); therefore, the potential ionoregulatory actions of 1a-
hydroxycorticosterone will not be discussed here. Lampreys apparently lack 113-
hydroxylase (Cyp11b1) and cannot produce cortisol or corticosterone (Bridgham et al.
2006; Close et al. 2010; Rai et al. 2015). Thus, 11-deoxycortisol and 11-

deoxycorticosterone are the most abundant circulating corticosteroids in lampreys and
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exhibit capacities to regulate branchial ionoregulatory activities (Close et al. 2010;
Shaughnessy et al. 2020).

Chondrichthyan and actinopterygian fishes express both classes of corticosteroid
receptors (Gr and Mr). In actinopterygians, it has long been held that the ionoregulatory
actions of corticosteroids result from cortisol acting through the Gr. While this remains
true, recent discoveries have added some nuance to this perspective. For instance,
particular teleosts express two distinct Gr orthologs (Bury et al. 2003) as well as an Mr
(Colombe et al. 2000). Knowledge of these three corticosteroid receptor subtypes has
motivated investigations into how the actions of cortisol and 11-deoxycorticosterone are
differentially mediated by these receptors (see discussion below). Interestingly, lamprey
do not express Gr or Mr but rather an ancestral “corticoid receptor” (Cr) that facilitates
the osmoregulatory actions of 11-deoxycortisol (Bridgham et al. 2006; Close et al. 2010;
Shaughnessy et al. 2020).

Using adult sea lamprey, Close et al. (2010) demonstrated that 11-deoxycortisol
elicits an increase in branchial Nka activity. Later, Shaughnessy et al. (2020) described
how 11-deoxycortisol supports the acquisition of SW tolerance during metamorphosis.
Plasma 11-deoxycortisol levels and gill Cr abundance both increase during
metamorphosis and are positively correlated with gill Nka activity. Accordingly, the
treatment of mid-metamorphic lamprey with 11-deoxycortisol improves SW tolerance
and increases gill Nka and Nkcc1 protein expression (Shaughnessy et al. 2020; Barany
et al. 2021a). Likewise, 11-deoxycortisol increases the expression of nka and nkcc1
transcripts in lamprey gill explants (Shaughnessy et al. 2020). Interestingly, 11-
deoxycorticosterone can elicit modest increases in branchial nka and nkcc1 expression
but is far less potent than 11-deoxycortisol (Shaughnessy et al. 2020). Future studies
are warranted to further elucidate the ionoregulatory roles of 11-deoxycortisol and 11-
deoxycorticosterone, and particularly whether they interact with Gh and Prl.

Cortisol has long been known to support the acclimation of teleosts to SW.
Multiple lines of evidence have described this role, including early studies demonstrating
that circulating cortisol increases during salmonid parr-smolt transformation and upon
exposure to SW (Fontaine and Hatey 1954; Specker and Schreck 1982; Langhorne and
Simpson 1986; Shrimpton et al. 1994), and that SW tolerance is increased following
cortisol treatment (Bisbal and Specker 1991). Elevations in plasma cortisol following
exposure to SW also occur in numerous non-salmonid species (McCormick 2001). Early

work described the direct action of cortisol to increase gill Nka activity, which correlated
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with the development of SW tolerance during smolting (Langhorne and Simpson 1986;
McCormick and Saunders 1987). Additional studies showed that gill Nka activity can be
impacted in vivo by the administration of cortisol (Pickford et al. 1970; Bisbal and
Specker 1991; McCormick et al. 1991) and in vitro by exposing gill explants to cortisol
(McCormick and Bern 1989).

More recently, cortisol was shown to regulate proteins and gene transcripts
expressed by SW-type ionocytes, such as Nka, Nkcc1, and Cftr (Fig. 3). Atlantic salmon
interperitoneally injected with cortisol increase the expression of nka-a1b (McCormick et
al. 2008; Tipsmark and Madsen 2009; Breves et al. 2020, 2024) and the protein
abundance of Nka and Nkcc1 (Pelis and McCormick 2001). In gill explants from FW- and
SW-acclimated Atlantic salmon, cortisol increases nka-a1b and nkcc1 expression
(Tipsmark et al. 2002; Kiilerich et al. 2007b, 2011a, b, c¢). In vivo treatment with cortisol
increases cftr1 expression in Atlantic salmon parr and smolts (Singer et al. 2003; Breves
et al. 2020, 2024), and in vitro exposure of gill explants to cortisol increases cftr1 and
nkcc1 (Kiilerich et al. 2007b). Likewise, cortisol promotes cftr1 and nkcc1 expression in
the gills of FW-acclimated trout and medaka (Tipsmark et al. 2002; Kiilerich et al. 2011a;
Bossus et al. 2017). In tilapia and striped bass (Morone saxatilis), cortisol similarly
promotes branchial nkcc1 expression (Kiilerich et al. 2011c). Cortisol also promotes
components of SW-type ionocytes in non-teleost models, such as Nka and Nkcc1 in
Atlantic (Acipenser oxyrhynchus) and Persian sturgeon (A. persicus) (Khodabandeh et
al. 2009; McCormick et al. 2020).

Fewer studies have examined the molecular actions of 11-deoxycorticosterone,
as it circulates at far lower concentrations than cortisol. Intraperitoneal injection of 11-
deoxycorticosterone has no effect on SW tolerance or branchial nka-a1a and -a1b
expression in Atlantic salmon (McCormick et al. 2008). The in vitro effects of 11-
deoxycorticosterone vary depending on whether treated filaments are collected from
salmon acclimated to either FW or SW. 11-deoxycorticosterone is more effective in
stimulating nka-a1a versus -a1b expression (Kiilerich et al. 2007b, 2011a, b), although
this effect is generally far less consistent than that of cortisol.

The role of the Gr in mediating the ionoregulatory actions of cortisol in teleosts
has also received considerable attention. Early studies demonstrated that a
corticosteroid receptor expressed in the gills with high binding affinity for cortisol
increases during parr-smolt transformation and SW acclimation (Weisbart et al. 1987;
Maule and Schreck 1990; Shrimpton and Randall 1994; Shrimpton et al. 1994;
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Marsigliante et al. 2000). Moreover, Gr expression is strongly correlated with the
capacity for cortisol to stimulate branchial Nka activity (Shrimpton and McCormick 1999).
Following the discovery of two distinct Grs (Bury et al. 2003) and an Mr (Colombe et al.
2000; Sturm et al. 2005) in teleost fishes, studies using selective receptor antagonists
investigated their individual roles in mediating the actions of cortisol and 11-
deoxycorticosterone. It was proposed that the Gr and Mr underlie the duality of cortisol
operating as a FW- and SW-adapting hormone (Prunet et al. 2006). In support of this,
the upregulation of gr expression occurs in the gills of several species during smolting or
following SW exposure (Mazurais et al. 1998; Mizuno et al. 2001; Kiilerich et al. 20073;
Nilsen et al. 2008; Yada et al. 2014; Bernard et al. 2020), and a potential role for the Mr
in FW ionoregulation has been suggested (Sloman et al. 2001; Scott et al. 2005; Kiilerich
et al. 2011a). The ionoregulatory role of the Mr in FW may entail activation by both
cortisol and 11-deoxycorticosterone, as the Mr is potently activated by both hormones
(Sturm et al. 2005; Katsu et al. 2018). Investigations into the regulation of gr and mr
during smolting or SW acclimation have generally presented mixed results. In some
studies, only gris upregulated during smolting (Kiilerich et al. 2007a, 2011b; Nilsen et al.
2008), and in others, the transcriptional upregulation of both receptors occurred (Yada et
al. 2014; Bernard et al. 2020). Similarly, there seems to be little consistency in how gr
and mr are transcriptionally regulated during SW acclimation in salmonids (Kiilerich et al.
2007b, 2011a; Nilsen et al. 2008; Flores and Shrimpton 2012) as well as non-salmonids
(Aruna et al. 2012a, b).

Several in vivo and in vitro studies have employed receptor blockade
approaches, including the cotreatment of corticosteroids with mammalian Gr and Mr
antagonists (e.g., RU486 and spironolactone, respectively). Cotreatment with RU486
blocks the upregulation of branchial nka-a1a and -a1b by cortisol, whereas cotreatment
with spironolactone has no effect on SW tolerance or nka-a7a and -a1b expression
(McCormick et al. 2008). Kiilerich et al. (2007b) demonstrated using Atlantic salmon gill
explants that both RU486 and spironolactone can block the ability of cortisol to
upregulate nka-a7a, -a1b, and cftr1. However, these results were not consistent across
species or salinities (Kiilerich et al. 2007b, 2011b, c). In teleosts, RU486 antagonizes
both Gr1 and -2, with more potent effects on Gr1 (Bury et al. 2003). On the other hand,
spironolactone is now known to act as an agonist of the fish Mr, activating it with similar
potency to cortisol, 11-deoxycorticosterone, and aldosterone (Sugimoto et al. 2016;

Fuller et al. 2019). Thus, studies which use RU486 and spironolactone to differentially
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block the Mr and Gr should be interpreted with caution. Considering the challenges
associated with pharmacologically targeting the fish Gr and Mr, advanced molecular
approaches using transcriptional knockdown or transgenic knockout have emerged to
investigate the Gr and Mr (Faught and Vijayan 2018; Yan and Hwang 2019). To date,
these approaches have mostly been leveraged to investigate the metabolic,
developmental, and ionoregulatory actions of corticosteroids in zebrafish (Faught and
Vijayan 2018; Yan and Hwang 2019), which cannot tolerate SW. However, Japanese
medaka offer a promising euryhaline model for knockdown or knockout approaches (Yan
and Hwang 2019) and is therefore poised to delineate the Gr- and Mr-mediated actions
of corticosteroids on SW-type ionocytes.

In tetrapods, the interaction of aldosterone with the Mr is facilitated by
coexpression of the Mr with the cortisol-inactivating enzyme, 11f3-hydroxylase 2
(Cyp11b2). Interestingly, a strong transcriptional upregulation of cyp11b2 occurs in the
gills of smolting Atlantic salmon (Kiilerich et al. 2007a; Nilsen et al. 2008). It was also
shown in trout branchial epithelial cells that cortisol increases cyp11b2 expression
(Kolosov and Kelly 2019). These findings suggest the operation of a tissue-level
mechanism to regulate cortisol signaling. A better understanding of which branchial cell-
types specifically express cyp11b2 is needed to assess its role in tuning the actions of
cortisol on ionocytes.

The role of corticosteroids in regulating permeability of the branchial epithelium
has also received considerable attention. This work has largely focused on the FW-
adaptive, rather than the SW-adaptive, roles of corticosteroids, as the increased
expression of tight-junction proteins generally promotes epithelial tightening. However,
“leaky” tight-junction complexes composed of Cldn10s contribute to SW-adaptation by
facilitating the paracellular excretion of Na* (Tipsmark et al. 2008b; Bui and Kelly 2014).
Acclimation to SW increases the expression of cldn10 isoforms in puffer fish (Tetraodon
nigroviridis) (Bui et al. 2010) and exposure of gill explants to cortisol stimulates multiple
cldn10s in medaka (Bossus et al. 2017). Cortisol and 11-deoxycorticosterone generally
upregulate the expression of Cldns through processes mediated by both the Gr and Mr
(Tipsmark et al. 2009; Bui et al. 2010; Chasiotis and Kelly 2011, 2012; Kelly and
Chasiotis 2011; Bossus et al. 2017; Kolosov et al. 2017b; Kolosov and Kelly 2019). In
sea lamprey, multiple claudins have been identified that are expressed in the gill, and
among those investigated, cldn3 and -70 orthologs increase their expression after

exposure to ion-poor water and exhibit decreases during SW acclimation (Kolosov et al.
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2017a, 2020). Future studies in lamprey should seek to address whether 11-
deoxycortisol and 11-deoxycorticosterone control branchial barrier functions via Cldns.
Cortisol was the first hormone linked with the expression of branchial Agps. FW-
acclimated eels infused with cortisol show a marked decrease in the expression of agp3
in the gill (Cutler et al. 2007) (Fig. 3). Choi et al. (2013) subsequently reported that
cortisol diminishes branchial agp3 and -8 expression in sockeye salmon (Oncorhynchus
nerka). These patterns suggest that SW-induced increases in plasma cortisol are
responsible for rapidly attenuating agp3 expression upon entry into hyperosmotic
environments (Cutler and Cramb 2002; Cutler et al. 2007). Furthermore, cortisol blocks
the stimulatory action of Prl on agp3 (Breves et al. 2016). The regulation of branchial
Aqgp3 is a clear example of antagonistic, rather than synergistic, actions of cortisol and

Prl in support of salinity acclimation.

5.3 Thyroid hormones

In addition to supporting FW acclimation (Section 4.4), there is evidence that
thyroid hormones promote SW-adaptive processes by acting directly on ionocytes and
through interactions with the Gh/Igf system (McCormick 2001). For example, coho
salmon and mummichog increase plasma T4 levels in response to SW (Knoeppel et al.
1982; Specker and Kobuke 1987), and Atlantic salmon and summer flounder
(Paralichthys dentatus) treated with T4 or T3 exhibit increased SW tolerance (Refstie
1982; Saunders et al. 1985; Schreiber and Specker 1999). Accordingly, when summer
flounder and mummichog are treated with thiourea (an inhibitor of T4 synthesis), they
exhibit diminished hyposmoregulatory capacities (Knoeppel et al. 1982; Schreiber and
Specker 1999). Thiourea diminishes the SW tolerance of flounder by disrupting the
development of SW-type ionocytes during metamorphosis (Schreiber and Specker
2000). To our knowledge, there has been no direct assessment of whether the rapid
recruitment of SW-type ionocytes that occurs in euryhaline species when they encounter

SW is linked with thyroid hormone signaling.

6. Future perspectives

The availability of genomic resources and molecular tools over the last two
decades has given rise to an increasingly mechanistic understanding of how hormones
regulate ionocytes. This trend will undoubtedly continue with manipulative molecular

tools such as gene editing ushering in new opportunities to link hormones and their
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cognate receptors with specific ion transporters. Zebrafish have already proven to be a
valuable model for this purpose, supporting progress toward understanding the ontogeny
and function of ion-absorptive ionocytes (Chen et al. 2019). Nonetheless, the poor
salinity tolerance of zebrafish precipitates the need for a similarly amenable euryhaline
model, a need that Japanese medaka seem poised to fill (Yan and Hwang 2019). In a
similar vein, refined methods for primary cell culture of the branchial epithelium would
accelerate the use of advanced molecular manipulations; however, progress in this
endeavor has been limited.

The various modes by which endocrine factors can affect branchial processes
deserve continued attention. For example, it is necessary to better resolve the cytogenic
(controlling ionocyte abundance), molecular (controlling the expression of ion
transporters), and physiological (controlling the function of ion transporters) actions of
hormones (Breves et al 2014a; Shir-Mohammadi and Perry 2020). Important in this
endeavor will be the characterization of, 1) the factors influencing the differentiation of
SW-type ionocytes from precursor cells (analogous to how Foxi3a and -b regulate FW-
type ionocyte differentiation in zebrafish), 2) the regulatory elements in the promoters
and distal regulatory regions of genes encoding ion transporters, and 3) the functional
elements of the ion transporters themselves (such as the motifs facilitating ATP binding
and phosphorylation).

Despite the recent progress, there are still many gaps to fill in the collective
understanding of how ionocytes operate — this is especially true for non-teleost fishes.
For example, it stands unresolved whether Sic26-family anion exchangers, Clc family CI
channels, and Cftr sustain CI transport in the ionocytes of lampreys and sturgeons
(Ferreira-Martins et al. 2021; Shaughnessy and Breves 2021). We foresee that some of
these transporters/channels will emerge as hormone targets. The recent expansion of
genomic resources in non-teleosts will certainly support work of this nature (Amemiya et
al. 2013; Smith et al. 2013; Braasch et al. 2016; Vialle et al. 2018; Smith et al. 2018;
Cheng et al. 2019; Du et al. 2020; Yamaguchi et al. 2020; Marlétaz et al. 2023).

Finally, future work should seek to better understand how systemic hormones
interact with the osmotic stress signaling cascades that permit ionocytes to directly
perceive salinity changes (Fiol and Kiiltz 2007). For instance, cortisol promotes the
expression of osmotic stress transcription factor 1 (Ostf1) during the acute phase of SW
acclimation (McGuire et al. 2010). While Prl inhibits the activity of SW-type ionocytes

(Fig. 2), it remains to be seen whether Prl dampens the expression of intracellular and
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paracrine factors that respond to hyperosmotic conditions (e.g., Ostf1, serum- and
glucocorticoid-inducible kinase 1, 14-3-3 proteins, MAPKs, endothelin 1, interleukins,
and tumor necrosis factor a) (Fiol and Kiltz 2007; Notch et al. 2012; Kultz 2015; Lai et
al. 2015). Given the multifactorial nature of intracellular osmotic stress signaling (Fiol
and Kultz 2007), and the myriad hormones that impact branchial processes (Evans et al.
2005; Takei et al. 2014), it will be interesting to learn the extent to which ionocytes are a

hub for interactions between intracellular, paracrine, and systemic signals.
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Figure legends

Figure 1. Schematic diagrams of “Type II” and “Type III” ionocytes in Mozambique
tilapia showing the stimulatory (arrows with a “+”) effects of prolactin (Prl) (see text for
citations). Nka-a1a and Clc2c are included in these models based upon the expression
of their associated gene transcripts; however, they have yet to be definitively assigned to
tilapia ionocytes. Apical and basolateral sides are presented at the top and bottom of
cells, respectively. Abbreviations: Aqp3: aquaporin 3; Clc2c: Clc family ClI- channel 2c;
Ncc2: Na*/Cl cotransporter 2; Nka: Na*/K*-ATPase; Prl: prolactin.

Figure 2. Schematic diagrams of FW (freshwater)- and SW (seawater)-type ionocytes in
mummichogs showing the stimulatory (arrows with a “+”) and inhibitory (blocked lines
with a “-”) effects of prolactin (Prl) (see text for citations). Where CI" transport is indicated
with a question mark, a pathway is presumed to exist but remains uncharacterized.
Apical and basolateral sides are presented at the top and bottom of cells, respectively.
Abbreviations: Aqp3: aquaporin 3; Cftr1: cystic fibrosis transmembrane conductance
regulator 1; Cldn10f: claudin 10f; Ncc2: Na*/CI cotransporter 2; Nka: Na*/K*-ATPase;
Nkcc1: Na*/K*/2ClI" cotransporter 1; Prl: prolactin; TJ: tight-junction. Figure adapted from
Breves et al. (2022).
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Figure 3. Schematic diagram of SW (seawater)-type ionocytes showing the stimulatory
(arrows with a “+”) and inhibitory (blocked lines with a “-”) effects of cortisol (Cort) (see
text for citations). Apical and basolateral sides are presented at the top and bottom of
cells, respectively. Abbreviations: Aqp3: aquaporin 3; Cftr1: cystic fibrosis
transmembrane conductance regulator 1; Cldn10s: claudin 10 isoforms; Cort: cortisol,

Nka: Na*/K*-ATPase; Nkcc1: Na*/K*/2CI cotransporter 1; TJ: tight-junction.
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