SOLITON RESOLUTION FOR ENERGY-CRITICAL WAVE MAPS
IN THE EQUIVARIANT CASE

JACEK JENDREJ AND ANDREW LAWRIE

ABSTRACT. We consider the equivariant wave maps equation R'*? — S2, in all equivariance
classes k € N. We prove that every finite energy solution resolves, continuously in time, into a
superposition of asymptotically decoupling harmonic maps and free radiation.
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1. INTRODUCTION

1.1. Setting of the problem. We study wave maps from the Minkowski space R%;Q into the

two-sphere S?, under k-equivariant symmetry. These are formal critical points of the Lagrangian
action,

1
2@ =3 [[ ool + veeop)
2 RI+2
restricted to the class of maps W : R,};Q — §? C R? that take the form,

W(t,re?) = (sinu(t, ) cos k@, sinu(t,r) sin k6, cosu(t,r)) € S* € R?,

for some fixed k € {1,2,...}. Above u is the colatitude measured from the north pole, the metric
on S? is ds? = du? + sin? w dw?, and (r,6) are polar coordinates on R2.

The general S2-valued wave maps equation in two space dimensions is called the O(3) sigma
model in high energy physics literature. It is a canonical example of a geometric wave equation
as it generalizes the free scalar wave equation to the setting of manifold-valued maps. The static
solutions given by finite energy harmonic maps are amongst the simplest examples of topological
solitons as they admit Bogomol’nyi structure [2]; other examples include kinks in scalar field the-
ories on the line, vortices in Ginzburg-Landau equations, magnetic monopoles, Skyrmions, and
Yang-Mills instantons; see [50] for an extensive treatment of field theories admitting topological
solitons from the point of view of mathematical physics.

Our interest in k-equivariant wave maps stems from the richness of their nonlinear dynamics
in the relatively simple setting of the geometrically natural scalar semilinear wave equation,

k2 sin 2u(t, r)
72 2
which is the Euler-Lagrange equation associated to -Z(¥) under the k-equivariant symmetry

reduction. Here A := 92 + 7710, is the radial Laplacian in 2-dimensions. The conserved energy
for (1.1)) is given by

Ofu(t,r) — Aul(t,r) + =0, (t,r)€Rx (0,00), (1.1)

osin? u(t,r)

E(u, du)(t) = 2 /0 h %((atu(t, )2 + (Bru(t,r)? + k ) rdr. (1.2)

r2

We will often write pairs of functions using boldface, v = (v,v), noting that the notation ¢ will
not, in general, refer to a time derivative of v but rather just to the second component of v.
With this notation the Cauchy problem for ([1.1]) can be rephrased as the Hamiltonian system

Ou(t) = J o DE(u(t)), u(Th) = uy, (1.3)

g_(0 1 DE(u(t)) — —Au(t)+I<:2rf22flsin(2u(t)) '
(5 0). pEey=( i) )

where

-1 0
Both (1.2) and (|1.3) are invariant under the scaling
(’LL(t, T)a atu(ta T)) = (u(t/)‘7 7/‘/)‘)a A_latu(t/)H T//\))a A > Oa
and thus (1.1]) is called energy-critical.
The natural setting in which to consider the Cauchy problem for (1.1 is the space of initial

data uo with finite energy, E(ug) < 0o. The set of finite energy data is split into disjoint sectors,
Evm, which for £,m € Z, are defined by

Evm = {(uo,ug) | E(ug, o) < oo, limug(r)=~4r, lim ug(r) = mw}.
’ r—0 T—00
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These sectors, which are preserved by the flow, are related to the topological degree of the full
map g : R? — S2: if m — £ is even and (ug, 0) € E¢m, then the corresponding map ¥ with polar
angle ug is topologically trivial, whereas for odd m — ¢ the map has degree k.

The sets &, are affine spaces, parallel to the linear space £ = &9 = H X L?, which we
endow with the norm,

Juoll o= ol + ol o= [ ((Ga(r))? + Orua(r))? + 122200 s,

The linearization of ([1.1)) about the zero solution is given by

k2
O%v — Av + 2v= 0, (1.4)

and the flow for (1.4) preserves the & norm.
The unique k-equivariant harmonic map is given explicitly by

Q(r) =2 arctan(rk).

Here uniqueness means up to scaling, sign change, and adding a multiple of =, i.e., every finite
energy stationary solution to takes the form Quom(r) = mm 4+ ocQ(r/p) for some p €
(0,00),0 € {0,—1,1} and m € Z. The pair Q) := (Q»,0) and its rescaled versions Q,(r) :=
(QA(r),0) :== Q(A\~1r) for A > 0, are minimizers of the energy E within the class & 1; in fact,
E(Q,) = 4mk. We denote, 7 := (m,0).

1.2. Statement of the results. Our main result is formulated as follows.

Theorem 1 (Soliton Resolution). Let k € N, let {,m € Z, and let u(t) be a finite energy
solution to with initial data w(0) = wy € Epp, defined on its mazimal forward interval of
existence [0,T4).

(Global solution) If Ty = oo, there exist a time Ty > 0, a solution u;(t) € £ to the linear
wave equation (L.4), an integer N > 0, continuous functions A (t),...,An(t) € CY([Tp,0)),
signs t1, ...,y € {—1,1}, and g(t) € € defined by

N
w(t) =mm+ > 1;(Qy0) — ™) + ui(t) +g(1),
j=1

such that

(1)
llg(t)|le + J —0 as t — oo,
j; Ajr1(t)

where above we use the convention that Ay11(t) = t.

(Blow-up solution) If T} < oo, there exist a time Ty < T4, integers Mmoo, ma, a mapping
ul € Eoma,, an integer N > 1, continuous functions Ai(t),...,An(t) € C°([To,T4)), signs
t,...,tny €{=1,1}, and g(t) € € defined by

N
w(t) =mam+ Y 1;(Qx, ) — ™) +uy + g(t),
j=1
such that

()
llg(t)]le + J —0 as t— Ty,
j; Aj+1(t) "

where above we use the convention that Ay11(t) = T4 — t.
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Analogous statements hold for the backwards-in-time evolution.

Remark 1.1. This type of behavior is referred to as soliton resolution. A recent preprint by
Duyckaerts, Kenig, Martel, and Merle proved Theorem [1|in the case £ = 1 using the method
of energy channels; see [18|. Roughly, energy channels refer to measurements of the portion of
energy that a linear or nonlinear wave radiates outside fattened light cones. Such exterior energy
estimates were introduced by Duyckaerts, Kenig, and Merle [24] in their proof of the soliton
resolution conjecture for the radial energy critical NLW in 3 space dimensions; see also [25-27]
for the treatment of all odd dimensions. The approach we take to prove Theorem I]is independent
of the method of energy channels.

Remark 1.2. The soliton resolution problem is inspired by the theory of completely integrable
systems, e.g., [30,67,/68], motivated by numerical simulations, [3180], and by the bubbling theory
of harmonic maps in the elliptic and parabolic settings [60L|61},72,(78}/79]; see also |16}/18,127] for
discussions on the history of the problem.

Remark 1.3. Our method establishes the exact analog of Theorem [1|in the case of the equi-
variant Yang-Mills equation, by making the usual analogy between equivariant Yang-Mills and
k = 2-equivariant wave maps; see Cazenave, Shatah, and Tahvildar-Zadeh [4] for the formula-
tion. There, the harmonic map is replaced by the first instanton.

Remark 1.4. The Cauchy problem for energy-critical wave maps restricted to radially sym-
metric initial data (which is distinct from the k-equivariant symmetry reduction considered here
as there are no radially symmetric nontrivial harmonic maps) was understood in classic works
by Christodoulou and Tahvildar-Zadeh [7,8], Struwe [74,|75], extended by Nahas in [56], and
settled definitively by Chiodaroli, Krieger, and Lithrmann [5], who developed a concentration
compactness theory in that setting.

Remark 1.5. Theorem|l]is a qualitative description of the dynamics of all finite energy solutions
to . A natural, challenging question is to ask which types of configurations of solitons
and radiation are realized in solutions. The first results of this nature were constructions of
solutions blowing up in finite time by bubbling off a single harmonic map by Krieger, Schlag,
and Tataru [46], Rodnianski and Sterbenz [64], and Raphaél and Rodnianski [62]. In [36],
the first author constructed a solution exhibiting more than one bubble in the decomposition,
showing the existence of a solution that forms a 2-bubble in infinite time with zero radiation in
equivariance classes k > 2. In [65] Rodriguez showed that no such 2-bubble occurs in the case
k =1, proving that the only non-scattering solution with energy = 2F(Q) blows up by bubbling
of a single harmonic map in finite time, while radiating ug = —Q. It is not known if there are
any solutions with more than one bubble in the decomposition when k& = 1. As a consequence
of our analysis, we prove that such a solution would necessarily have non-zero radiation, thus
extending the result of Rodriguez to any number of bubbles (see Proposition below).

It is natural to ask about the fate of solutions with more than one bubble in the decomposition
in the opposite time direction. An answer to this question was given by the authors in [41] for the
2-bubble solution wu(y)(t) constructed by the first author in [36]. We showed that any 2-bubble
in forward time must scatter freely in backwards time. When the scales of the bubbles become
comparable, this collision completely annihilates the 2-bubble structure and the entire solution
becomes free radiation, i.e., the collision is inelastic. Viewing the evolution of ws)(t) in forward
time, this means that the 2-soliton structure emerges from pure radiation, and constitutes an
orbit connecting two different dynamical behaviors. We later showed in [38,40] that w(s)(t) is
the unique 2-bubble solution up to sign, translation, and scaling in equivariance classes k > 4.

Crucial to the proof of scattering after the collision in the case of two bubbles is the fact that
the 2-bubble configurations considered in [41] are minimal in the sense that any solution in &g
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with energy < 2E(Q) must scatter (see |11]). While inelasticity of collisions is still expected in
the case of solutions with more than two bubbles in one time direction, such a solution can still
exhibit bubbling behavior even after a collision that produces radiation — for example a solution
in &1 with three bubbles and no radiation in one direction could have one bubble with non-zero
radiation in the other direction. While we do not consider such refined two-directional analysis
here, a relatively straightforward corollary of the proof of Theorem [1]is that there can be no
elastic collisions of pure multi-bubbles, which we formulate as a proposition below.

Definition 1.6. With the notations from the statement of Theorem [1| we say that u is a pure
multi-bubble in the forward time direction if uf = 0 in the case T, = +o0, and u{ = 0 in the
case Tly < 4o00.

We say that u is a pure multi-bubble in the backward time direction if ¢ — w(—t) is a pure
multi-bubble in the forward time direction.

Proposition 1.7. Stationary solutions are the only pure multi-bubbles in both time directions.
In the special case of equivariance class k = 1, the following much stronger result holds.

Proposition 1.8. If k = 1, then stationary solutions are the only pure multi-bubbles in forward
(or backward) time.

Remark 1.9. We note that Proposition was also proved in the case k£ = 1 for in the
recent preprint [18], as well as for the energy critical focusing NLW under radial symmetry and
in odd space dimensions in [24}27], all via a different approach based on energy channels. As
mentioned above, the case of N = 2 bubbles was already considered in [41]. See [51-53] for more
regarding the inelastic soliton collision problem for non-integrable PDEs.

1.3. History of progress on the problem. Our proof of Theorem [1]is built on top of two
significant partial results, namely (1) that the radiation term, wu; in the global case and uj
in the blow-up setting, can be identified continuously in time, and (2) that the resolution is
known to hold along a well-chosen sequence of times. The result (1) was established in [10-
12, 142] as a consequence of the classical work of Shatah and Tahvildar-Zadeh [70], and we
make explicit use of this fact. The latter result (2) was proved by Cote [10] and Jia and
Kenig [42] using Struwe’s classical bubbling analysis |73], many ideas from Duyckaerts, Kenig,
and Merle’s seminal works [21}23], and several new insights particular to (L.I). While the
sequential resolution certainly inspires part of our argument, we cannot use it simply as a black
box, but rather we revisit the proof and derive more precise information from the analysis of
Cote, and Jia and Kenig as we explain in the next section.

We discuss these prior results in more detail. To unify the blow-up and global-in-time settings
we make the following conventions. Consider a finite energy wave map u(t) € & ,,. We assume
that either w(t) blows up in backwards time at 7_ = 0 and is defined on an interval I, := (0, Tp],
or u(t) is global in forward time and defined on the interval I, := [Tp, c0) where in both cases
To > 0. We let Ty := 0 in the blow-up case and T} := oo in the global case.

Extraction of the radiation. Below we will use the notation £(r1,72) to denote the local
energy norm

2 " +\2 2 k2 2
ol = [ (0 + 00+ J507) r.

By convention, E(rg) := E(rg, o0) for rg > 0. The local nonlinear energy is denoted E(wg;r1,72).
We adopt similar conventions as for £ regarding the omission of ro, or both r; and rs.

Theorem 1.10 (Identification of the radiation). [10, Propositions 5.1, 5.2] Let u(t) € &, be a
finite energy wave map on an interval I, as above. Then, the limit tZ > mam := limy_,7, u(t, %t)
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exists, and there is an integer moo € Z, a finite energy wave map uw*(t) € Eym., called the
radiation, and a function p : I, — (0,00) that satisfies,
. k * 2 _
Jim ((p(0)/0)" + [[u(t) = w*(6) = maml 3 = 0. (1.5)
Moroever, for any a € (0,1),
E(u*(t);0,at) -0 as t — Tk. (1.6)

Remark 1.11. In the global setting, i.e., I, = [Tp,00) we must have ms = 0 and the linear
wave u’(t) € £ that appears in Theorem [l|is the unique solution to the linear equation (|1.4))
satisfying,

lu*(t) —ur(t)||e = 0 as t — oo,

which one obtains via the existence of wave operators; see Lemma[2.8] In the finite time blow-up
setting the radiation u§ € &, that appears in Theorem (1] is initial data for w*(t), i.e., the
radiation w*(¢) in Theorem [1.10]satisfies w(t,r) = mam +u*(¢,7) for r > t. With this definition
and energy conservation, Theorem implies the energy identity,

E(u) = NE(Q) + E(u"). (1.7)

We remark that in the case T, = oo uses the estimates for the even dimensional free scalar
wave equation proved by Cote, Kenig, and Schlag in [15].

The identification of w*(t) and the vanishing uses fundamental technique of Shatah and
Tahvildar-Zadeh [70] (see also Christodoulou and Tahvildar-Zadeh [7] for the case of spherically
symmetric wave maps); in |70] it is proved that every singular wave map has asymptotically no
energy in the self-similar region of the cone, i.e.,

E(u(t);at,t) -0 as t — T,

for each o € (0, 1) in the case Ty = 0, and
lim limsup E(u(t),at,t —A) =0

A—o0 t;)T*
in the case Ty = oo. Note that the latter refined estimate for globally defined wave maps was
proved in [12] using methods from [7,70].

Remark 1.12. The radiation field can be identified in several other contexts and by different
means. For example, Tao accomplished this in [77] for certain high dimensional NLS. For critical
nonlinear waves with power-type nonlinearities, the radiation field can be identified even outside
radial symmetry; see the work of Duyckaerts, Kenig, and Merle [20].

Sequential soliton resolution. The first result in this direction was Struwe’s bubbling
theorem [73], which showed that any smooth solution to that develops a singularity in
finite time must do so by bubbling off at least one harmonic map, locally in space, along some
sequence of times.

A deep insight of Duyckaerts, Kenig, and Merle, proved in |22] for the energy critical NLW, is
that once the linear radiation is subtracted from the solution, the entire remainder should exhibit
strong sequential compactness — it decomposes into a finite sum of asymptotically decoupled
elliptic objects, in our case these are stationary harmonic maps, along at least one time sequence,
up to an error that vanishes in the energy space. A crucial tool in proving such a compactness
statement is the remarkable theory of profile decompositions for dispersive equations developed
by Bahouri and Gérard [1]. However, after finding the profiles and their space-time concentration
properties (in our case their scales) via the main result in [1], one must identify them as elliptic
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objects (solitons) by some means, and then prove that the error vanishes in the sense of energy,
rather than the weaker form of compactness (vanishing in the sense of a Strichartz norm) given
by [1]. In the wave map case, this program was carried out by Cote, Kenig, the second author,
and Schlag [11,/12] (using the even dimensional exterior energy estimates proved by Cote, Kenig,
and Schlag in |15]) for solutions to with k = 1in & ; with E < 3E(Q). The latter condition
restricted the number of possible configurations to those with a single bubble, and in this special
case the sequential resolution could easily be upgraded to a continuous one using the variational
characterization of @ and the coercivity of the energy functional.

In our setting, the sequential resolution was proved by Cote [10] in the case k = 1, and Jia
and Kenig [42] in the case k = 2, namely that Theorem [1] holds along a well-chosen sequence of
times. These works used the bubbling theory of Struwe [73] to identify the profiles as harmonic
maps, and in the latter paper the authors used a novel nonlinear multiplier identity to obtain
the convergence of the error in the energy space — in fact, we make use of this same identity in
this work, see Section [3l A minor technical observation, which we explain in Remark yields
their result in all equivariance classes k € N. Before stating it, we introduce some notation.

Definition 1.13 (Multi-bubble configuration). Given M € {0,1,...}, m € Z, I'= (t1,...,tm) €
{~1,1} and an increasing sequence A = (A1, ..., \y) € (0,00)M, a multi-bubble configuration
is defined by the formula

M
Q(m, 7, X;r) :=mm + Z L (QAJ, (r) —m).
j=1

Remark 1.14. If M = 0, it should be understood that Q(m,, X; r) = mm for all r € (0, 00),

where 7and X are O-element sequences, that is the unique functions ) — {—1,1} and ) — (0, o),
respectively.

We state the main theorems from Cote [10] and Jia, Kenig [42] using this notation.

Theorem 1.15 (Sequential soliton resolution). |10, Theorem 1.1], [42, Theorem 1.2] Let k € N,
{,m € Z, and let u(t) € & ,m be a finite energy wave map on an interval I, as above. Let
ma, Moo € Z, and the radiation u*(t) € &y m., be as in Theorem @ Then, there exists an
integer N > 0, a sequence of times t, — Ty, signs i, € {—1, 1}N, and scales Xn € (0, oo)N such
that,

i (Jfu(t) = (1) = Q(m, 7, Hs+Z ) =0

where above we use the convention Ay, N41 := ty.

Remark 1.16. The Duyckaerts, Kenig, and Merle approach from [22] to sequential soliton
resolution has been successful in other settings. The same authors with Jia proved the sequential
decomposition for the full energy critical NLW (i.e., not assuming radial symmetry) in [16] and
for wave maps outside equivariant symmetry for data with energy slightly above the ground
state [17], where the perturbative regularity theory of Tao [76] could be used; see also the
bubbling theory of Grinis [34]. See also [13] for the radially symmetric energy critical NLW in
four space dimensions, and [66] for the same equation in odd space dimensions.

1.4. Summary of the proof: collision intervals and no-return analysis. The challenging
nature of bridging the gap between Theorem which is the resolution along one sequence
of times, and Theorem [1| is apparent from the following consideration. The sequence ¢, — T
in Theorem gives no relationship between the lengths of the time intervals [t,,t,+1] and
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the concentration scales Xn of the various harmonic maps in the decomposition. One immediate
enemy is then the possibility of elastic collisions. If colliding solitons could recover their shape
after a collision, then one could potentially encounter the following scenario: the solution ap-
proaches a multi-soliton configuration for a sequence of times, but in between infinitely many
collisions take place, so that there is no soliton resolution in continuous time.

We describe our approach. Fix u(t) € &,,, a finite energy solution to on the time
interval I, as defined above. Let N > 0, ms, ma € Z, and the radiation u*(t) € & m., be as in
Theorem We define a multi-bubble proximity function at each t € I, by

d(t) == IMOWU w(t) = Qma, 2. X) m+§j@+))l (18)

oA

where 7:= (11,...,tn) € {=1, 1}, X:= (A1,..., An) € (0,00)", and Ay41 :=t. We note that
d(t) is a continuous function on I,.

With this notation, we see that Theorem [1.15] gives a monotone sequence of times t,, — T
such that,

lim d(¢,) = 0.
n—oo

Theorem [1]is an immediate consequence of showing that lim;,7, d(¢t) = 0. We argue by contra-
diction, assuming that limsup, .7 d(¢) > 0. This means that there is some sequence of times
where u(t) — u*(t) approaches an N-bubble and another sequence of times for which it stays
bounded away from N-bubble configurations. It is natural to rule out this behavior by proving
what is called a mo-return lemma. In this generality, our approach is inspired by no-return
results for one soliton by Duyckaerts and Merle [28,29], Nakanishi and Schlag [57, /58], and
Krieger, Nakanishi and Schlag [44,45]. The exponential instability considered in those works is
absent here, but is replaced by attractive nonlinear interactions between the solitons. This latter
consideration, and indeed the overall scheme of the proof is based on our previous work [41],
where modulation analysis of bubble interactions was used for the first time in the context of
the soliton resolution problem (in fact, we recently showed that the collision analysis in [41]
yielded a quick proof of Theorem |1]in the special cases when at most two bubbles appear in the
decomposition; see [39]).

The basic tool we use is the standard virial functional

t) :/ Opu(t)roru(t)x o) rdr,
0

where the cut-off x is placed along a Lipschitz curve r = p(¢) that will be carefully chosen (note
that a time-dependent cut-off of the virial functional was also used in [57,[58]). Differentiating
v(t) in time we have,

ﬂﬂ=—émmw@ﬂFMmmrw+QmmW», (1.9)

where (2, ( (t)) is the error created by the cut-off. Importantly, this error has structure, see
Lemmas 2 4] and [4.18] and satisfies the estimates,

Dy (u(t) < (1+ |p'(1)]) min{ E(u(t); p(t), 2p(t)), d(t)}.

Roughly, this allows us to think of v(¢) as a Lyapunov functional for our problem, localized to
scale p(t), with “almost” critical points given by multi-bubbles Q(m, 7, A). Indeed, if w(t) is
close to a multi-bubble up to scale p(t), and |p'(¢)| < 1, then |o'(¢)] < d(?).
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Our first result is a localized compactness lemma. In Section [3| we prove the following: given
a sequence of wave maps u,(t) € &, on time intervals [0, 7,] with bounded energy, and a
sequence R,, — oo such that

1 Tn Rynmn
lim / / Byt (t,7)|* 7 drdt = 0,
o Jo

n—00 T,

one can find a new sequence 1 < r, < R, and a sequence of times s, € [0, 7,], so that up to
passing to a subsequence of the w,, we have lim,, o0 0y, 7, (Un(sn)) = 0. Here dg(u) is a local
(up to scale R) version of the distance function d. We note that the sequential decomposition
Theorem is an almost immediate consequence of the localized compactness lemma along
with the Shatah and Tahvildar-Zadeh theory; see Remark The proof of the compactness
lemma is very similar in spirit to the analysis of Cote [10] and Jia and Kenig [42].

We give a caricature of the no-return analysis, pointing the reader to the technical arguments
in Sections for the actual arguments. We would like to integrate ([1.9) over intervals [a,, by,
with ay, by, — T4 such that d(a,),d(b,) < 1 but contain some subinterval [c,, d,| C [an, b,] on
which d(¢) ~ 1; such intervals exist under the contradiction hypothesis. From we obtain,

bn p(t) bn,
L[ ot rardt < plan)aten) + pibd) + [0 we)] . (110)

We consider the choice of p(t). One can use the sequential compactness lemma so that choosing
p(t)/(dn — ) > 1 we have,

dn  rp(t) 9
/ / |Ocu(t, r)|” rdrdt 2 dn — cp, (1.11)
cn 0

and one can expect that the integral of the error f(i” Q) (w(t))| dt < |dn — cn| is absorbed
into the left-hand side by choosing p(t) to lie in a region where u(t) has negligible energy.

To complete the proof one would need to show that the error generated on the intervals
[an, cn] and [dy,b,] can also be absorbed into the left-hand side, and moreover that the terms
plan)d(ay), p(by)d(b,) < d,, — ¢y To accomplish this, we require a more careful choice of
the intervals [a,, b,] and placement of the cut-off p(t), which motivates the notion of collision
intervals introduced in Section [4.1] These allow us to distinguish between “interior” bubbles
that come into collision, and “exterior” bubbles, which stay coherent throughout the intervals
[an, by, and to ensure we place the cutoff in the region between the interior and exterior bubbles.

Given K € {1,...,N}, we say that an interval [a,b] is a collision interval with parameters
0 < e <nand N — K exterior bubbles for some 1 < K < N, if d(a),d(b) < e, there exists
a c € [a,b] with d(¢) > n, and a curve r = pg(t) outside of which w(t) — w*(t) is within €
of an N — K-bubble in the sense of (a localized version of d(t)); see Defintion We
now define K to be the smallest non-negative integer for which there exists n > 0, a sequence
en — 0, and sequences ay, b, — Tk, so that [a,, b,] are collision intervals with parameters €,,n
and N — K exterior bubbles, and we write [ay, b,] € Cx(€,,7); see Section for the proof that
K is well-defined and > 1, under the contradiction hypothesis.

We revisit on a sequence of collision intervals [ay,, by] € Cx(€n,n). Near the endpoints
Ap, by, w(t) —u*(t) is close to an N-bubble configuration and we denote the interior scales, which
will come into collision, by X = (A,..., k) and the exterior scales, which stay coherent, by
i = (fig41,---,jin). We assume for simplicity in this discussion that the collision intervals have
only a single subinterval [c,,d,] as above, and that d(¢) is sufficiently small on the intervals
[an, cn] and [d,,, b,] so that the interior scales are well defined (via modulation theory) there.
We call [ay, ¢,], [dn, by] modulation intervals and [cy,, d,] compactness intervals.
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The scale of the Kth bubble A\x (¢) plays an important role and must be carefully tracked. We
will need to also make sense of this scale on the compactness intervals, where the bubble itself
may lose its shape from time to time. We do this by energy considerations; see Definition
Crucially, the minimality of K can be used to ensure that the intervals [c,, d,]| as above satisfy
dp — ¢ ~ max{Ag(cn), Ak (dy)}; see Lemma Thus the first terms on the right-hand-side
of can be absorbed using by ensuring p(a,) = o(e; DAk (an), p(bn) = o(e; DAk (br)
if we can additionally prove that the scale Ax(t) does not change much on the modulation
intervals. Note that our choice of cut-off will satisfy Ak (t) < p(t) < pr+1(t).

We must also absorb the errors ([ + [")|Q (u(t))|dt S (f;" + [;")d(t) dt on the modu-
lation intervals. Here we perform a refined modulation analysis on the interior bubbles, which
allows us to track the growth of d(¢) through a collision of (possibly) many bubbles. Roughly,
up to scale p(t), u(t) looks like a K-bubble, and using the implicit function theorem we define
modulation parameters z, X(t), and error g(t) with

u(t,r) = Q(my, LX) r) +g(t,r), if r<p(t), (AQyq |9(t)) =0, for j=1,... K,

where A := r0, is the generator of the H-invariant scaling (note that for £ = 1,2 the decompo-
sition is slightly different due to the slow decay of AQ) and

(¢ |g):= /000 o(r)g(r) rdr, for ¢,g:(0,00) = R. (1.12)

The orthogonality conditions and an expansion of the nonlinear energy of w(t) up to scale p(t)
lead to the coercivity estimate,

A (t)
lg(®)lle +; G4m)

where A={jel,...,K—1: 1 # 1.1} captures the alternating bubbles (which experience
an attractive interaction force) and the o,(1) term comes from errors due to the presence of
the radiation w* in the region r < p(f) < t. In fact, since d(¢) grows out of the modulation
intervals we can absorb these errors into d(¢) by enlarging the parameter €, and requiring the
lower bound d(t) > €, on the modulation intervals.

The growth of d(¢) is then captured by the dynamics of the alternating bubbles, which,
since is second order, enter at the level of /\;-’ (t). However, it is not clear how to derive
useful estimates from the equation for \”(¢) obtained by twice differentiating the orthogonality
conditions. To cancel terms with critical size, but indeterminate sign, we introduce a localized
virial correction to \} ~ —LjHAQHZQQ)\j_%AQ)\j | g), defining

Bi(t) = 4 IAQIE(AQx, ) | 9(1)) — IIAQIIZE (AN (1)g(t) | 9(2)) .

k
2

Xit) \ 3 -
< max (Ml(t)) +on(1) ~ d(t) + on(1),

where A()) is a truncated (to scale \) version of A = A+1, the generator of L? scaling. Roughly,
we show in Sections and that if the distance d(¢) is dominated at a local minimal point
tp by the ratio between the j-th bubble and its larger neighbor with opposite sign, then we
can control dynamics of 3;(t) near ty, showing that d(t) grows in a controlled way until some
other bubble ratio becomes dominant, and so on, until we exit the modulation interval. All the
while we can ensure that the Kth scale does not move much, and we obtain bounds of the form
(faC: + [yd(t)dt S d(cn)%)\K(an) + d(dn)%)\K(bn) (see the “ejection” Lemma . Thus the
errors can be absorbed into the left-hand side of and we obtain a contradiction.

A similar, but simpler refined modulation analysis was performed in [41]. The use of such
refinements to modulation parameters to obtain dynamical control was introduced by the first
author in the context of a two-bubble construction for NLS in [35]. The notion of localized
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virial corrections in the context of energy/Morawetz-type estimates was developed by Raphaél
and Szeftel in [63].

1.5. Notational conventions. The energy is denoted E, £ is the energy space, &, are the
finite energy sectors.

Given a function ¢(r) and A > 0, we denote by ¢x(r) = ¢(r/A), the H-invariant re-scaling,
and by ¢, (r) = A1¢(r/)) the L%-invariant re-scaling. We denote by A := 79, and A := rdr + 1
the infinitesimal generators of these scalings. We denote (- | -) the radial L?(R?) inner product
given by .

We denote k the equivariance degree and f(u) := %sin 2u the nonlinearity in . We let x
be a smooth cut-off function, supported in r < 2 and equal 1 for r < 1.

The general rules we follow giving names to various objects are:

e index of an infinite sequence: n

e sequences of small numbers: ~,6,¢,(,n, 0

e scales of bubbles and quantities describing the spatial scales: A, u, v, &, p; in general we
call A the scale of the interior bubbles and p the exterior ones (once these notions are
defined)

moment in time: t,s,7,a,b,¢,d, e, f

indices in summations: 1, j, £

time intervals: I, .J

number of bubbles: K, M, N

signs are denoted ¢ and o

boldface is used for pairs of elements related to the Hamiltonian structure; an arrow is
used for vectors (finite sequences) in other contexts.

We call a “constant” a number which depends only on the equivariance degree k and the number
of bubbles N. Constants are denoted C, Cy, C1, ¢, co,c1. We write A S Bif A< CBand A2 B
if A>cB. We write A < B if lim,,_,oc A/B = 0.

For any sets X,Y, Z we identify ZX*Y with (Z¥)X, which means that if ¢ : X x Y — Z is a
function, then for any x € X we can view ¢(x) as a function Y — Z given by (¢(z))(y) := ¢(z,y).

2. PRELIMINARIES

2.1. Basic properties of finite energy maps. We aggregate here several well known results.

Lemma 2.1. Fix integers £,m. For every ¢ > 0 and Rg > 1, there exists a § > 0 with the
following property. Let 0 < R; < Ry < oo with Ry/R1 > Ry, and u € &, be such that
E((u,0); R1,Re) < 6. Then, there exists by € Z such that |u(r) — bom| < € for almost all
re (Rl, Rg).

Moreover, there exist constants C = C(Rp),a = a(Ry) > 0 such that if E((u,0); R1, R2) < a,
then

lw— Lo le(r, o) < CE(u; Ry, Ra). (2.1)

Proof. By an approximation argument we can assume (u,0) € &, is smooth. First, we show
that for any €p > 0, there exists g € [Ri, Ra] such that |u(rg) — lom| < €p for some ¢y € Z
as long as E((u,0); Ry, R2) is sufficiently small. If not, one could find ¢4 > 0, 0 < R; <
Ry, and a sequence (uy,0) € &, so that E((uy,0); R1;R2) — 0 as n — oo but such that
inf,.¢(R, Ry ez [un(r) — €m| > €1. The latter condition gives a constant c(e1) > 0 such that
inf,.c(r,,ro] | SIN(un(r))| = c(€1). But then

2 (e dr _ k?
E((un,0); R1; Ra) > 2/ sin (up (1)) - > ?c(el)Qlog(Rg/Rl),
Ry
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which is a contradiction. Next define the function, G(u) = [;' [sin p| dp, and for r1 € (Ry, Ry)
note the inequality,

u(ro)

Glutro) = Glutr)l = | [ psingl dp] = | [ simutrl0.ur)] dr| £ Bl 05 1, o).

(r1)

We conclude using that G is continuous and increasing that |u(r) — fgm| < € for all r € (R, R2).
Aslong as € > 0 is small enough we see that in fact, sin?(u(r)) > 1|u(r)—£or|? for all € (Ry, Ro)

and follows. O
We have the following version of the principle of finite speed of propagation.
Lemma 2.2. Let u(t) be a solution to on the time interval [0,T]. Then
E(u(T);0,R—T) < E(u(0);0,R), for all R>T.

Proof. 1t suffices to consider the case of a smooth solution and then approximate a finite energy
solution by smooth ones. For a proof in the smooth case, see |70, Section 2]. O

Remark 2.3. The energy conservation yields the following equivalent formulation:
Eu(T);R+T) < E(u(0); R), for all R > 0. (2.2)
We have the following virial identity.

Lemma 2.4 (Virial identity). Let u(t) be a solution to (1.1)) on an open time interval I and
p: I — (0,00) a Lipschitz function. Then for almost allt € I,

% <8tu(t) | Xi(t) rﬁru(t)> _ /[)Oo(atu(t,r)xp(t)(r))Q rdr + Q) (u(t)),

Qo (u(t)) == — 2/;((;) /0 Ou(t, 7)roru(t, )X oty (1) Ax p(ey (1) Tdr

sin® u t,r
2_ k27( ))Xp(t) (1)AX p(p) (1) rdr.

r2

_ /OO ((8tu(t,r))2 + (Oru(t,r))
0

Proof. The proof is a direct computation along with an approximation argument for fixed t € I,
assuming p is differentiable at . ([

2.2. Local Cauchy theory. The following theorem was proved by Shatah and Tahvildar-Zadeh
in [70,/71].

Lemma 2.5 (Local well-posedness). [71, Theorem 1.1], [69, Theorem 8.1] [70] Let ¢,m € Z and
let ugp € &. Then, there exist a maximal time interval of existence (T—,T}) = Imax(uo) 2 0
on which admits a unique solution u(t) in the space C°(Imax; Evm) with u(0) = uy.

In fact, there exists g > 0 with the following property. Let ug € £y, T > 0 and suppose the
solution u(t) to with data w(0) = wyg is defined on the interval [0,7), i.e., in C°([0,7); Epm)-
Suppose that there exists a time 0 <t < 7 and a number R > 7 —t such that,

E(u(t),0; R) < €.

Then, Ty (u) > T.
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See Struwe |73} p. 817] for the continuation criterion in the second paragraph of Lemma
in the case of smooth initial data, and see |69, Theorem 8.1] for the global well-posedness
theorem for energy class equivariant wave maps with sufficiently small energy. Key to the proof
are Strichartz estimates for the wave equation (see, e.g., Lindblad, Sogge [47], and Ginibre,
Velo [33]), after noticing that the linearization of about the zero solution is equivalent,
in the energy space, to the free scalar wave equation in dimension d = 2k + 2. Indeed, the
linearization of about the zero solution is given by the linear wave equation,

2 o 1 k?
Oyv — ;v — —0rv+ —Zv=0. (2.3)
r T

We will sometimes use the notation v, (t) = Si.(t)vo as the unique solution to (2.3]) with initial
data vy (0) = vg € €. The mapping £ 3 v(t) — W(t) € (H' x L?);0q(R**2) defined by

W (t,r) := (r~Fo(t,r), r*ow(t,r))

satisfies [[v(t)lle ~ W)l 1412y, w2r+2) and v(t) € &€ solves (2.3) if and only if W (t) €
(H 1'% L?),aq solves

OPW — Agp oW =0, (2.4)

where Agyyo = 02 + Lﬁ'l@r is the radial Laplacian in dimension d = 2k + 2.

For equivariance classes k > 2, this leads to a spatial dimension d > 6 and inconvenient
technical complications. However, we observed in [41] that one may give a unified local Cauchy
theory for for all equivariance classes k € N based on Strichartz estimates for linear waves
with a critical repulsive potential proved by Planchon, Stalker, Tahvildar-Zadeh [59]. For this
purpose, consider the mapping,

vo(r) = Vo(r) :=r " eo(r),  do(r) = Vo(r) :=r~op(r). (2.5)
We see that v(t) = (v(t), Ov(t)) solves if and only if V' (t) = (v(¢), Opv(t)) solves
2
-1
fV—£V—§av+kﬂ V=o. (2.6)

For each k > 1, define the norm H,, for radially symmetric functions V on R* by
VI, e = /Ooo [(@vf + (’“ij)v? S dr.
Solutions V() to conserve the Hj, x L? norm and by Hardy’s inequality we have
IV sy = IVl
Thus the mapping satisfies
(Vo Vol g1 2ty = 1 (Vos Vo)l 22y = 1l (00, 90) | 22 (ge2)-

We conclude that the Cauchy problem for (2.6) with initial data in H' x L?(R*) is equivalent to
the Cauchy problem for ([2.3]) for initial data (vg, 70) € H x L2. As a consequence, Strichartz esti-
mates for solutions to re inherited from Strichartz estimates for proved by Planchon,
Stalker, and Tahvildar-Zadeh [59].

Lemma 2.6 (Strichartz estimates for (2.6)). [59, Corollary 3.9] Fiz k > 1 and let V(t) be a
radial solution to the linear equation

k2 -1
%V—ﬁV—gav+

V =F(tr), V(0)=(Vy,WV)eH"x L*R").

r2



14 JACEK JENDREJ AND ANDREW LAWRIE

Then, for any time interval 0 € I C R we have
||V|‘(L§LgngI)(1xR4) + Stlelll? VOl g rzway S NV O s r2ray + 122 L2 (1xm2)
where the implicit constant above is independent of I.

We define the Strichartz norm,
_3 _2
[vllsy = IIr 5UHL§’T(I) +Ir 30l Lars

and recall that the notation LY refers to the Lebesgue space on (0,00) with respect to the
measure 7 dr.

Corollary 2.7 (Strichartz estimates for (2.3)). Fiz k > 1 and let v(t) be a radial solution to
the linear equation
2

1 k
0Pv — 9% — ;&v + F(t,r), v(0)= (vo,0) € & =H x L.

2V
Then, for any time interval 0 € I C R we have

[vllsn + ||'U(t)||L,?°(H><L2)(I) S o(0)|[ <2 + ||F||Lng(1),
where the implicit constant above is independent of I.

Writing the Cauchy problem for (1.1)) in the class € = &y as

2 2

OPu — Au + au= 27«2(2u — sin 2u)

w(0) = (up,u1) € E = H x L*.
a standard argument based on the contraction mapping principle yields the following result; see
for example [14].

(2.7)

Lemma 2.8 (Cauchy theory in &y ). There exist 5o > 0 and a functions C : [0,00) — (0, 00)
with the following properties. Let A > 0 and let wg = (uo,u1) € € with ||uglle < A. Let I 50 be
an open interval such that

1SL(t)uollsr) =0 < do.
Then there exists a unique solution u(t) to [2.7) in the space CO(I;€) N S(I) with initial data
u(0) = ug. Moreover, u(t) satisfies the bounds |lulls) < C(A)d, and ||| pse(r,ey < C(A). To
each solution u(t) to (2.7) we can associate a mazimal interval of existence Imax(w) such that
for each compact subinterval I' C Iax we have |Jul| sy < oc.

Moreover, small data scattering holds: there exists €9 small enough so that if ug € € satisfies
E(up) < €, the solution u(t) given above is defined globally in time, satisfies the bound,

sup [lu(t)lle + [[ullsm®) < lluolle
teR

and scatters in the following sense: there exist solutions u®(t) € £ to ([2.3)) such that
|u —uE(t)]le =0 as t — +oo (2.8)

Conversely, the existence of wave operators holds, i.e., for any solution v (t) € € to the linear
equation (2.3)), there exists a unique, global-in-forward time solution u(t) € & to (2.7) such
that (2.8) holds as t — co. An analogous statement holds for negative times.

We make note of the following estimate proved in [10], which is relevant for the vanishing of
the error in the linear profile decomposition stated in the next section.
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Lemma 2.9. [10, Lemma 2.11] There exists a uniform constant C > 0 such that every solution
v(t) € € to (2.3) satisfies,

5
8
-

3. _3
o)l zzs gy < ClOOIF I 3ell5y g

2.3. Profile decomposition. Bahouri-Gérard-type linear profile decompositions |1] are an es-
sential ingredient in the study of solutions to ; see also [3,321|48,49,54]. We make explicit
use of a version adapted to sequences of functions in the affine spaces & ,, proved by Jia and
Kenig in [42], which synthesized Cote’s analysis in [10]; see also [11] which treats sequences in
&0,0-

Lemma 2.10 (Linear profile decomposition). [42, Lemma 5.5] [1] Let £,m € Z and let w,, be a
sequence in &y, with limsup,,_, . E(u,) < 0o. Then, there exists Ko € {0,1,2,...}, sequences
Anj € (0,00) for j e {1,..., Ko}, oni € (0,00), and t,,; € R, as well as mappings Pl e Eo;m;
with E(zpj) < oo and finite energy solutions v! to such that for each J > 1,

Ko S 1 .. .
wn =t ()5~ () - mem)
j=1 n, n, n,

J
i —tni 1 B
+ ( i ﬂ7 7 Ot ﬂ,i )+ J o
iZ:; 'UL( On,i O-n,z') Oni tUL( Oni O-nﬂj) wn70< )

where, denoting by w;, | (t) the solution to the linear wave equation (2.3) with initial data 'wi’o,
the following hold:

o the parameters Ay, j satisfy

Mg L Ao L K Ay gy A8 N — 00;

and for each j one of A\, ; — 0, A j =1 for alln, or A\, ; — 0o as n — oo, holds;

. . —tn .

e for each i, either t,; =0 for all n or lim, , —* = £oo. Either 0,; — 0, oy =1 for
all n, or op; — 00 as n — 0o

e for each i € N,

An,j 4 Oni |t il

Oni  Anj  Any

)

— o0 as n—oo Vj=1,...,Kp;

e the scales oy, ; and times t,; satisfy,

Oni Oni! ‘tni —tnif
— 4+ — 4 — — 00 as n — oo;
On,i On,i On,i

e the integers {; and m; satisfy, |{; —m;| > 1, and,
Ko

C=m+ Y (6 —my);
j=1
e the error term 'w;{ satisfies,
(W o(Anj*)s Anjtin o(Anj)) =0 EE as n— oo
(w;{’L(tn,i, Onit)s an,iatw;{,L(tm, oni) ~0€€& as n— oo

for each J > 1, each j=1,...,Ko, and i € N, and vanishes strongly in the sense that

tim Tim sup ([l llnge ) + lwnsllsce) ) = 0
J—=00 n—oo ’
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o the following pythagorean decomposition of the nonlinear energy holds: for each J > 1,

KO J . .
E(un) =Y BW!) + Y E((vl(~tn,i/0ni), 0l (~tni/oni))) + E(w;) +oa(1)  (2.9)
j=1 i=1

as n — o0.

Remark 2.11. The pythagorean expansion of the nonlinear energy in the case Ky = 0 was
treated in [11, Lemma 2.16]. The case with Ky > 1 was treated in the recent preprint [18|
Appendix B.2].

Remark 2.12. We call the pairs (’l,bj,)\n,j) and the triplets (v!,0y,4,tn.:) profiles. Following
Bahouri and Gérard [1] we refer to the profiles (v, An,;) and the profiles (v, 0y, 0) as centered,
to the profiles (v!, 0y tn;) With —t,;/0n; — 00 as n — oo as outgoing, and those with
—tn,i/Oni — —00 as incoming.

In Section [3| we will need to evolve the linear profiles via the flow for in the special
case when all of the centered profiles are given by harmonic maps. In this setting we define
nonlinear profiles as follows. Given a profile (v¢,0p,t5,:) as in Lemma we define the
corresponding nonlinear profile, (v%,,0p.i,tn) as the unique solution to such that for all
_tn,i/o'n,i S Imax(vNL) we have,

. i tn,i ; tn,i
lim oy (——=) —vi(——=)lle =0
n—oo On,i n,i

The existence of nonlinear profiles follows from the local Cauchy theory in Lemma in the
case of a centered linear profile, i.e., ¢, ; = 0, and from the existence of wave operators statement
in Lemma, in the case of outgoing/incoming profiles, i.e., —t, ;/on; — Fo0.

Lemma 2.13 (Nonlinear profile decomposition). Let {,m € Z and let u, be a sequence in
Evm with limsup,,_, o E(u,) < co. Assume the linear profile decomposition for w, given by the

Lemma [2.10 takes the form

il . 4 i (— tn,i : 1 i (— In,i :
un:mﬂ'+Z((Q(>\j),0)7T)+Z<vi(at’, ), — i ( ni, )) +w; (),
j=1 e i=1

ng Oni  Ong Oni On,

that is, all of the profiles (47, Anj) for 1 < j < Kqy as in Lemma |2.10 are given by harmonic
maps (Q, An ;). There exists a constant 6y > 0 sufficiently small with the following properties.
Let ig € N, 19 > 0 and assume that for each i € N, and for each 1 < j < K,

T0O0n,ig — tny i . i
) <T4i(vy), limsup ||UNL||S((_ tn,i TO"n,io_tn,i)) < o0,
O—TL,Z n—oo (Tn,i’ On,i (2 10)
O s
and T0 .0 < 50,
n,J

for alln. Then for each n sufficiently large, the wave map evolution w,(t) of the data u,(0) = u,
is defined on the interval [0, T00m.4,] and the following nonlinear profile decomposition holds: for
each t € [0, T00n,i,] the sequence 2z (t) defined by

, —))
n,i Oni  Ony Oni Ong

)

X : L b=t 1., t—tn
un(t) =+ 3 ((@Q(5 )0 = m) + 3 (v ), — ok
j=1 s i=1

+w;  (t) + 2 (1),
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satisfies,

fim timsup ( sup |27 (0)lle + 127107000 ) = O

J=00 n—oo N i€[0,mo0m,4,]

Remark 2.14. We note that the harmonic maps in the nonlinear profile decomposition are
static solutions to , but their presence in a linear profile decomposition may lead to eventual
singularities in the nonlinear flow. This leads us to the hypothesis in the second line of ,
which ensures that we are only considering the nonlinear evolution of w,(t) on time intervals
shorter than the length scales of the harmonic maps, thus avoiding the possibility of a singularity.

The key ingredient in the proof of Lemma [2.13] is the following modification of the now
standard nonlinear perturbation lemma [43, Theorem 2.20]; see also |1, Section IV].

Lemma 2.15 (Nonlinear perturbation lemma). Fiz integers £, m. There are continuous func-
tions €y, Co : (0,00) — (0,00) with the following properties. Let I be an open interval and let
u,v € CUI; & m) such that for some A >0,

_2
lw = vl Lserey + [Ir™ 2 sinv|[3g06) < A
and
lea(w)ll L2y + llea(v)ll i rr2) + llwollsy < € < €(A)

where eq(u) := O2u—Au+k2r2f(u) in the sense of distributions, and wo(t) := S, (t—to)(u(to)—
v(tg)) is the linear evolution of the difference, i.e., the solution to (2.3)), where to € I is arbitrary,
but fized, and where S (t)v := (Sy(t)v,dS.(t)v). Then,
w(t) —v(t) — wo(t)|lpe(re) + llu —vllsay < Co(A)e.

Proof of Lemma|[2.15. Let X (I) denote the space L(I; L%) in this proof. Define w(t) := u(t) —
v(t) and let e := O2u— Au+k?r=2sin(u) cos(u) — (02v— Av+k?r =2 sin(v) cos(v)) = eq(u) —eq(v).
Let tg € I, fix a small constant dg to be determined below and partition the right-half of I as
follows,

to <t <tg <<ty <00, Ij = (tj,tj+1), Iﬂ(to,oo):(tg,tn),
2, .
lr=3 sinv||p3(g,;06) < 60 for j=0,....,n =1, and n < C(4;d).
We omit the estimate on I N (—oo,ty) since it is the same by symmetry. Let w;(t) := Si.(t —

tj)w(t;) for all 0 < j < n, where S, is the linear propagator for (2.3). Then

w(t) =wo(t) + [ Su(t—s)(0,e— E*r2(f(v+w) — f(v) — w))(s)ds,

to
which implies that, for some absolute constant Cy > 1,

lw = wollx (1) S lle = K272 (f (v +w) = f(v) = w)llLiL2(z)
< Cre+ C1(85 + wllX ) 1wl x (15)-

In the second estimate above we have used the expansion,

(2.11)

flo4+w)— flv)—w= %(sin(% + 2w) — sin 2v — 2w)

2

= —2wsin? v — 2sinw cos vsin? w + O(|w|?),

to estimate the terms on the right. Note that in (2.11) we are using in an essential way the
divisibility of the X (I) norm. Note that [|wl||x(z,) < oo provided Iy is a finite interval. If I is
half-infinite, then we first need to replace it with an interval of the form [ty, N), and let N — oo
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after performing estimates which are uniform in N. Now assume that 0168 < % and fix dp in
this fashion. By means of the continuity method, (2.11) implies that ||wl|x,) < 8Cre. Next,
Duhamel’s formula gives

t1

wi(t) —wo(t) = Su(t—s)(0,e — K*r?(f(v+w) — f(v) —w))(s)ds

to

from which we obtain
t1
w1 —wollx®) S / (e = E*r2(f(v+w) — f(v) — w))(s)|l2ds
to

which is estimated as in (2.11). We conclude that ||w1[|x @) < 8Cie. In a similar fashion one
verifies that for all 0 < j <n

lw = willx ;) + lwjrn = willx@) S lle = kr72(f (v +w) = f(v) = w)|lLir2ey)

) \ (2.12)
< Cre+ C1(d5 + ||wHX(1j))HwHX(Ij)

where C7 > 1 is as above. By induction in j we have
lwllx ) + lwillx® < C)e V1<j<n.

This requires that € < €y(n) which can be achieved as long as ey(A) is chosen small enough.
Repeating the estimate (2.12)), but with the full S(I) norm and the energy piece L{°E included
on the left-hand side completes the proof. O

Sketch of the proof of Lemma[2.13. The proof is very similar to [21 Proof of Proposition 2.8]
or [11, Proof of Proposition 2.17] and we give a brief sketch below, mainly to address how the
nonlinear profiles given by harmonic maps are handled.

Let I, = [0,7,) C [0,700n,i,] be any half-open subinterval on which the wave map evolution
Uy, (t) is defined. By @, the sequence

t—1tny

1 ot —1tn
)7 atUIZ\]L( : ) ))

)
On,i Oni  Ony n,i Onyi

Ko . J )
vl (1) = mm+>_(Q(5—),0) = m) + D (vl
j=1 ] i=1

is well defined on the time intervals [0, 7007y,,i,]. The idea is to apply Lemma|2.15/to the sequences
u, and v on I, for large n and so we need to check that the hypothesis of Lemma [2.15 are
satisfied. First, u,(t) solves (|1.1)) so eq(u,) = 0. Next we claim that

nh_{{.lo HQQ(%)||Lng([o,Togn,io}) =0 (2.13)
for any fized J. Denoting vf, ,(t) := ng(t;fl”i’i, ﬁ) we have,
12 Ko J '
lea(u)(t)| = 53 sin(2v) (1)) — > _sin2Qn, , — > _sin2(vl, ,(t))|.
j=1 i=1

And hence ([2.13) follows from an argument based the pseudo-orthogonality of the parameters,
the hypothesis (2.10), and repeated use of the identity,

sin(A + B) —sin A — sin B = —2sin Asin?(B/2) — 2sin Bsin?(A/2).
Next, note that the last condition in (2.10) implies that

. _2 .
lim sup ||7~ 3 sin Q)\n,jHL?([O,ToUn,iO];L?) <1,
n—o0
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for each j € 1,..., Ky. In fact, is crucial that,

lim sup [lr~5 sin(v;) | £or,) < 1
n—oo
uniformly in J. This is possible thanks to the small data theory from Lemma together

with the pythagorean expansion of the energy (2.9). Indeed, there exists J; such that for
each @ > Ji, we must have limsup, . E(v{,(0)) < € where ¢ is as in Lemma and
vim(t) = vﬁ(t;z’zl, ﬁ) Using again the pseudo-orthogonality of the parameters and (2.10)

along with Lemma [2.8| we obtain,

. _2 . ; . _2 4

limsup |75 sin( ) vgn)7ap0(,) S Hmsup Y 17505 750,
t 7’( ) t 7"( n)

n—oo i>J n—oo i>J1

Slimsup Y [lof 1 < oo,

where the last inequality implicitly uses the fact that for all v € £ with E(v) < e sufficiently
small we have ||v||g ~ E(v). One may now apply Lemma and conclude, for instance, that

lim sup sup ||w,(t) — vi(t) - wL‘]’n(t)Hg =0, (2.14)

n—oo tel,

for each interval I,, C [0, To0y,i,] on which wy,(t) is defined. In fact, by Lemma [2.5|this is sufficient
to deduce that T’y (wy,) > 100y, 4, for all sufficiently large n as long as dp as in (2.10) is chosen small
enough. To see this, suppose for contradiction there is some subsequence u,(t) and a sequence
Tn, — 0 for which w,,(t) has maximal forward interval existence given by I, = [0, 7,0 4,). Fix
J > ip and let € > 0 be a constant to be determined below. Since each of the profiles is
well-defined up till time 790y, ;,, and using crucially the second line in (in particular that
Anj 2 On,i, for each j), we can find A, = A, (e) > 0 such that

Ko J
Z E(an,ﬁoa An) + Z E(”%\IL,n(Tnan,io); 0, 4,) + E(wg,n(TnUn,io)§ 0,A,) <e
j=1 i=1

and such that s, := 7,04, — % > 0. By finite speed of propagation and the above we have

J

Ko
S E(Qr, 10, 40/2) + 3 B(vly (50):0, A /2) + E(w, (50);0, An/2) < c.
j=1 i=1

Combing the above with (2.14), we obtain,
E(un(sn); 0, An/2) S €

as long as n is taken sufficiently large. Since 7,05, — sp = An/4 < Ay /2, we see by Lemma
that 7,0, cannot be a maximal time for u, as long as € > 0 is chosen small enough, a
contradiction. This completes the proof. O

In Section [3] we need an additional fact about profile decompositions satisfying additional
hypothesis proved in |19]. First, a preliminary lemma.

Lemma 2.16. [19, Claim 2] Let (fn,gn) € € be a sequence of functions, bounded in € and
assume that there exists a sequence oy, > 0 of positive numbers such that

lgnllL2(r>a,) — 0 as n — oo.
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Let {s,} C R be any sequence such that lim,_,« |Sy| /o, = 00, and denote by vy = (vg, vg) € €
the following weak limit,

—

Si(—=5n)(frn,gn) = vo € E.
Then, Si(sn)(fnr gn) = (v0, —i0) € E, where Sy()(f,9) = (S.(t)(f,9), DSe(t)(f,9))-
As a consequence one has the following lemma.

Lemma 2.17. [19, Claim 3] Let £,m € Z and let u,, be a sequence in & ,, with limsup,,_, . E(u,) <
0o. Assume the sequence u, admits a profile decomposition of the form,

Ko J
. i —tn,i ’ 1 i _tn,i .
u”:m”""Z(Q(T)’O)_ﬂ)+z<vi(f’7)’ 8tUL( e ) )) +w7{,0(’)7
j=1 ] i=1

ng Oni  Ong n,ig Ong

that is, all of the profiles (47, Anj) for 1 < j < Kq as in Lemma |2.10 are given by harmonic
maps (Q, \n,j). Assume in addition that,

|tnl|lrz — 0 as n — oco.
Then, after passing to a subsequence, for each profile (vi,am,tn?i) we can ensure that either,
thi=0Yn and 9. (0)=0
or,

tn,i

On,i

— 400 and i’ # i such that v’ (t) = v’ (—t) Vi, tni = —tni Oni = —0pi VN.

2.4. Multi-bubble configurations. In this section we study properties of finite energy maps
near a multi-bubble configuration.

The operator Lg obtained by linearization of (1.1]) about an M-bubble configuration Q(m, r, \)
is given by,

>

B K2 B
‘CQg = D2 EP(Q(maZ;)‘))g - _Ag + ﬁf (Q(m7L7 ))ga

where f/(z) = cos2z and Ej}, is the potential energy,
_ [T1 2 2sin® (r)
o) = [ 5 (@) + =T rar.
Given g = (,9) € €,

- 00 2 .
<D2 E(Q(m, 5 \))g | g> = /0 <9(7")2 + (9rg(r))* + %f/(QOn, 5 A\)g(r)? >rdr.

An important instance of the operator Lg is given by linearizing (1.1]) about a single harmonic
map Q(m, M,7; A) = Q. In this case we use the short-hand notation,

2 2
Lri= (CA+ )+ (@)~ ).

We write £ := L. For each k > 1,

k
AQ(r) :==10,Q(r) = ksin@Q = Qkﬁ.
When k£ > 2, AQ is a zero energy eigenfunction for L, i.e.,

LAQ =0, and AQ € L?,(R?).



SOLITON RESOLUTION FOR WAVE MAPS 21

When k£ = 1, LAQ = 0 holds but AQ ¢ L? due to slow decay as r — oo and 0 is called a
threshold resonance. Indeed, for R > 0,

2

R
/ (AQ(r))*rdr = —ﬁRRQ +2log(1+ R*) =4log R+ O(1) as R —oo.  (2.15)
0

On the other hand when k£ = 1, AAQ has an important cancellation which leads to improved
decay,
4r

AAQ = A+ (2.16)
so AAQ € L' N L™ and (AAQ | AQ) = 2, whereas for k > 2, (AAQ | AQ) = 0.
We define a smooth non-negative function Z € C°°(0,00) N L((0, 00),rdr) by
Z(r) = X(T‘)AQ.(T) if k=1,2 (2.17)
AQ(r) if >3
and note that
(Z]AQ) >0. (2.18)

In fact the precise form of Z is not so important, rather only that it is not perpendicular to AQ
and has sufficient decay and regularity. We fix it as above because of the convenience of setting
Z = AQ if k > 3. We record the following localized coercivity lemma proved in [36].

Lemma 2.18 (Localized coercivity for £). [36, Lemma 5.4] Fiz k > 1. There exist uniform
constants ¢ < 1/2,C > 0 with the following properties. Let g € H. Then,

(Lg | g) = clgliy —C (2] 9)*
If R > 0 is large enough then,

f 2 292 > 2 292 K
(1— 20)/0 <((3r9) +k ﬁ) rdr + C/R ((&g) +k ﬁ) rdr + <r—2(f (Q)—1)g|g)
> -C(Z]9)°.
If r > 0 us small enough, then
o] 2 T 2
(1 —2¢) /T ((&ng)2 + k2%> rdr + C/o ((8719)2 + k2%> rdr + (

>-C(Z]g)".

k2
7 (f(Q) =g lg)

r

As a consequence, (see for example [37, Proof of Lemma 2.4] for an analogous argument) one
obtains the following coercivity property of the operator Lg.

Lemma 2.19. Fiz k> 1, M € N. There exist n,co > 0 with the following properties. Consider
the subset of M-bubble configurations Q(m, 7, \) for '€ {—1,1}M X € (0,00)M such that,

Aj \k 2
— <9 .
()\- ) =1 (2.19)
Let g € H be such that
0= <ZAj \g> for j=1,...M.

for some X as in (2.19). Then,
(D? Ey(Qm, 2. X)g | 9) = collglly-
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The following technical lemma is useful when computing interactions between bubbles at
different scales.

Lemma 2.20. For any A < p and o, 8 > 0 with o # B the following bound holds:

/000 max (1,§>7amax (1 ;) »3(17" <o (Z)min(aﬁ).

For any o > 0 the following bound holds:

& - d A
/ max (1, 1) : max (1, B) o <a (—)a log (H)
0 A r r L A
Proof. This is a straightforward computation, considering separately the regions 0 < r < A,
AZ<r<pu, and r > u. O
Using the above, along with the formula for Z in (2.17) we obtain the following.
Corollary 2.21. Let Z be as in (2.17) and suppose that A\, u > 0 satisfy A\/p < 1. Then,
M) if k=12 1 if k=1
(2210 s $ VT ERCAPCNER SN
B) S\ )Rt if k=3 2 1 if k> 2
Lemma is also used to prove the following two lemmas. The first gives leading order

terms in an expansion of the nonlinear energy functional about an M-bubble configuration.

Lemma 2.22. Fiz k > 1, M € N. For any 6 > 0, there exists n > 0 with the following property.
Consider the subset of M-bubble Q(m,t,\) configurations such that

M—-1

Then,
M-

(E(g(m,aX))—ME(Q)—mmZ LMH( ) ) Z ( ]+1> . (2.20)

Moreover, there exists a uniform constant C > 0 such that for any g € H,

‘<DEP(Q(m,F,X)) | g>‘ < CHgHHé (/\?il)k (2.21)

The next lemma gives the nonlinear interaction force between bubbles, which we introduce
notation for below. Given an M-bubble configuration, Q(m,r, \) we set

— - 2 - M
film. 7. %) = ~DE(Q(m.7.X) = — 5 (1(Qm. 23) = 3 5(@y).  (222)

j=1
Lemma 2.23. Let k> 1, M € N. For any 6 > 0 there exists n > 0 with the following property.
Let Q(m, 7, A) be an M-bubble configuration with

]Z;( )Sn,

)\]+1

under the convention that \g = 0, Ayr11 = 0o. Then, we have,

[ (8@ |t 20)) + 508 (32) = st (P0) ] <0((351) + (7))
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-

where here fi(m, 7, \) is defined in (2.22)).

Proof of Lemma|2.22. To prove ([2.20]) we proceed iteratively, singling out first the contributions
to the leading order from the first bubble ¢1Q)),, writing,

1

5 (B(Q(m, %) - MEQ))

L[ L, 0sin? Q(m, T N) ~1 [ o, o8 Qy
_/0 ((@Q(m,L,)\)) +k ﬂ)rdr—;Z/O ((&«Q)\j) + k T)Tdr

2
§ : M sin?
/ LitjOr Q) 0r Q) ?”dr-i-/ sin® (5 s 1LZQ}‘> i=1 51 Q)‘der

1<i<j<M

(2.23)

M - M . , o
o) ki2 o) 2 Mo, N — 2 . 9 Mo v
/ L18TQ,\1 E L]8 Q)\ rdr+ ? i Sin (Zz—l L Q)w) SlnTQQ)q sin (22_2 L Q)\Z)rdr

0 =2

2
+ Z / LitjOr @, 0r Q) 7“d1“+li sin’ (0705 1iQx,) — Yitgsin Q) e dr

2 r2
2<i<j<M 0

M—-1 )\j k
j=1 (AjH)
by taking n small. We expand further the second term on the right above using the identity,
sin?(A+ B) —sin®? A —sin? B = sm 2Asin 2B — 2sin? Asin? B, obtaining,

We will call a term in the expansion negligible if it can be made small relative to )

M M M
SiHQ(Z LiQy,) —sin® Qy, — sinz(z 1iQy,;) = 115in2Qy, Z LiQx;

— — —
% =2 7j=2 (224)
M M M
- sin2Q>\1(ZL]Q>\ sm (2 LjQx;) ) —QSinz(ZLjQ,\j)Sian)\l.
j=2 j=2 j=2

The last term above satisfies the bound

M M
sin®() " 1;Qn,) sin® Qi | S (AQx,)?D (AQ,)?
j=2 7=2

and using Lemma [2.20 we see that its contribution is negligible. The first term on the right is
integrated by parts, using the identity 10, (r0,Q) = k*r=227!sin 2Q yielding,

k2o sin2Qy, S0, 1Q), o0 M
L 12l Lrdr = —/ 10 Qx Y 10,Qx,rdr,
j=2

2
2 0 r 0

which exactly cancels the first term on the right of the last equality in (2.23). The second term
on the right in (2.24) contributes the leading order term involving A;. We integrate by parts
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and use the identity AQ = ksin Q) to obtain,

12 /oo 11 8in 2Qy, (Zj\i2 L@y, — & sin(2 E]J\iQ LJ'Q)\].)>
=y

rdr

r2

dr
=L1/ AQMZLJAQA 1—COS2ZLJQ)\
0

M

. d
L1L2 / AQ)\I AQ)\2) — +2L1L2/ AQ)\lAQ,\2<s1n (Z LjQ)\j) —51112 Q)\2) 7T
j=2
M M dr
+2L1/ AQ,\lz;LJAQ,\ sin (Z;L]Q)\j)r
J J=

The last two terms above are negligible due to Lemma with smallness coming from the fact
that every term involves the bubble at scale A1 and at least one bubble at scale \; with j > 3.
The first term on the right is of leading order and satisfies,

niags [ AQu(AQu) S = niask($) (14 00 /20

and we refer the reader to [41, Proof of (3.18) p. 1285] where the above is proved.

To complete the proof of we iterate the exact analysis as above with the last line
in (2.23), noting that it is of the exact same form as the expression in the previous equality
of , only with the bubbles from 2 < j < M.

To prove (2.21) we use (2.22) and note that for £ =m — sz\i1 t; we have

-

1 M 1 M
F(Q(m, 7, X)) = 5 sin(2em + 2 D L@y = 5 sin(2 > Q)
=1 =1

Expanding, we obtain the expression,

2

3 DEp(Q(m, ;%) = J sin(2 Z LQ, + 21Qx,) - Z 1isin2Q),
M M
= —sin (2 Z LiQ)\i) sin? Qx, — U sin? Z LZQ)\ sin 2Q) ,
i=2 1=2
1 M 1 M
+§sin( ZLZQ)\ ) — ZLlSIH2Q>\
1=2 =2

Iterating this expansion in the last line above and using the identity ksin @ = AQ we obtain
the pointwise estimates,

DE(Qm NS 5 Y AQyAQyAQ),

1,7,¢ not all equal

Using Lemma ([2.20) we then have,
M M

[{pEo(@m.7 ) 1) 5 lollax 3= (2) S ol 3= (5727)

j=1 j=1 It

which completes the proof. 0
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Proof of Lemma[2.25. Fixing j € {1,..., M}, we expand, isolating the terms that are quadratic
in sin@y; = E1AQ »;» and interacting with only its nearest neighboring bubbles @, ; and

Q/\j+1 ’

M

1
fsm 221,2@)\ +245Qy;) — ZL, sin 2Q»,

1#] i=1
= —sin (2 Z LiQ)\i) sin? Q,\j — sin? (Z LZ'Q)\Z.) sin 2Q>\j
1#] i#]
1 1
+§sin( ZLZQ)\) ZLﬁanQ,\
i#] 175]
= —tj+18in2Q), sin? Qx; — Lj—18In2Qx,;_, sin? Q)
+ 2sin(2Lj_1Q>\j_1) sin® ( Z LiQ)\i) sin? QA]. (2.25)
i#i—1.j
+ 28in(26+1Qx;4,) sin? ( Z LiQ)\Z) sin? Q)
+2sin2( Y0 6@y, ) sinQn,  sin? Qy,
i1
— siDQ(ZLiQA )stQA + = (sm ZLzQA ZLisinQQ)\z)
i#] i#] i#]
= —1j418I02Q),,, sin® Q, — ¢j_15in2Qx,_, sin® Qx, + V;(7; \;)

where the error term W, (&, X]) satisfies,

ViR S (A0 (400 30 (AQ+ (A0, 3D AQy)

+(AQN)AQN,, Y. (AQN) +AQ D (AQy)%
i#j—1.4,j+1 i#j

Using the pointwise bound above along with Lemma the function W;(4, X]) satisfies,

(aay 12w i) [ <om((50) + (55) )

where 6(n) > 0 is a function that tends to zero as n — 0. It follows that

(AQx, | ilm. X)) = 41 (r2(AQ, ) | sin2Qs, ) + 151 (r2(AQw,)* [ sin2Q), )
=01 (72 (AQu, 1,0 [502Q) 150 (12 (AQx, 1, ) 5in2Q)

“ 7

where “~” above means up to negligible terms. Note that,

k 1—T2k

S11 2Q = 4r m

=4+ 0(3F) if r< 1

= —4rF L O3 if r> 1.
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Via residue calculus we compute,

o0 3 kdr_ 3 [ r dr_ 9
/O(AQ(r» 4r 7’_32k/0 =k

_kdr 3 [ rk g_ 9
[T Qe s [T s

rk +r=k)3 g

And thus,
Ak A\
-2 30w 2( N j
- AQx ), 2>—~8k< )’<9< )
’L]-l-l <7’ (AQx; /2;4,)7 |8I02Q ) — 11 ) 1S (n) N
_ . Ai—1\F N1\
11 (P72 AQu pa, ) [ sin2Q) + 11882 ()| < () (1)
J J
where 6(n) — 0 as n — 0, which completes the proof; see [41, Proof of Claim 3.14] for more
details of this computation. O

The following modulation lemma plays an important role in our analysis. Before stating
it, we define a proximity function to M-bubble configurations. Fixing m, M we observe that
Q(m, 7, \;7) is an element of & ,,,, where

M
C=1{(m,M,7) ::m—ZLj (2.26)
j=1
Definition 2.24. Fix m, M as in Definition and let v € Sg m for some ¢ € Z. Define,
1
d(v) = dpn,ar(v) = inf (JJo — Q(m, )| + ( ) )%
" X ¢ Z Aj+1
where the infimum is taken over all vectors X = (A1, ..., Ayr) € (0,00)M and all = {¢1,..., 1} €

{—1,1}M satisfying (2.26).

Lemma 2.25 (Static modulation lemma). Fiz k > 1 and M € N. There exists n,C > 0 with
the following properties. Let m be as in Definition |1.15 and d, ar as in Definition |2.24. Let
0>0,0€Z, and let v € &y, be such that

dp(v) <n, and E(v) < ME(Q) + 62, (2.27)

Then, there exists a unique choice ofX = (A,..., ) € (0,000M, 7€ {~1,1}M, and g € H,
such that setting g = (g,v), we have

= 9(m, ;X)) + g,
(2.28)
< > LM
along with the estimates,
M—1
it (0)2 < [lgll? + ( ) < Cdy i ()2, (2.29)
j=1
and,
VIR A \k
Hg"‘9+§4<)\]+1) = %%(AM) 7 (2-30)

where A:={j e {1l,..., M —1} : 1 # tj41}.
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Remark 2.26. We use the following, less standard, version of the implicit function theorem in

the proof of Lemma

Let X,Y,Z be Banach spaces, (xo,y0) € X XY, and 61,02 > 0. Consider a mapping G :
B(z0,61) % B(yo,82) — Z, continuous in z and C' iny. Assume G(zo,y0) = 0, (DyG)(z0,y0) =:
Lo has bounded inverse Lgl, and

1

Lo — DyG(z, )l eviz) £ 57—
v O = 3105 M ez

92
3L Ml ezyy

(2.31)
1G(z,m0)llz <

for all ||x — zol|x < 61 and ||y — wol|ly < d2. Then, there exists a continuous function s :
B(xo,61) — B(yo,02) such that for all x € B(xo,01), y = <(z) is the unique solution of
G(z,s(z)) =0 in B(yo, d2).

This is proved in the same way as the usual implicit function theorem, see, e.g., |6, Section
2.2]. The essential point is that the bounds give uniform control on the size of the open
set where the Banach contraction mapping theorem is applied.

Proof of Lemma[2.25. The argument is very similar to |41, Proof of Lemma 3.1] and we only
give a brief sketch. Let 19 := dy, a(v). By (2.27) there exists some choice of '€ {—1,1}™ and
X € (0,00)M such that
o Mooy
g:=v—Q(m,r,)\) satisfies 7 < ||g||% + <~ J > < 4n}
j=1 J+1

Define F' : H x (0,00)™ — H, by

—
— ~

F(g,X) := g+ Q(m, 5, \) — Q(m, T, X)

—

Note that, F'(0,\) = 0 and
M s
1P Xl < gl + 3|5~ 1] (2.32)
j=1 "\

Next, define G : H x (0,00)™ — RM by,

Glg, %) = (All (23, | F(g,X)>,...,)iw (20 | F0. )

note that G(0,\) = 0, and we record the computation,

70, G300 = =3 ([ + )2l | Flo. X)) — 5 (2] AQ)

iy (2.33)
N Gi(9:8) = —1i5" (2, 1 AQu,) if i
A\ 2n

-

At this point, it is convenient to change variables, letting ¢; := log A\; and é(g,ﬂ_j = G(g, ).
Note that dp; = A;0,;. From (2.32) we see that G(-,-) is continuous near 0 € H in the first slot

and is C! near ¢ = (log .- ,log XM) in the last M variables. We compute,

LO = D€1,..A€M é(ga Z)TQZO,Z:?: (AZJ)1§Z7JSM
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where (A;;) is the M x M matrix with entries,
Aj o
Ajj == (Z1AQ), Ay = -3 (2, 10Qy,) if i#) (2.34)

which one may check, using (2.18) and Corollary [2.21 is invertible and ||Lg||~* = O(1). The
conditions in (2.31) are readily verified, and one may take 6; = Cyn and d2 = Cyn in the notation
of Remark in that case for uniform constants C4,Cs. Indeed,

G (g, DI < Nlglla
and thus the second condition in (2.31) is verified. One may verify the first condition in (2.31)
using (2.33) and ([2.34).
An application of Remark [2.26 yields a continuous mapping ¢ : By (0;61) — Bgam (0;62) such
that

=

é(go,f) =0 (= s(90)-
We define

9:="F@Gs@), =)
Setting \; = eli, and g = (g,7), by construction we then have,

-

v=09(m, 5\ +g,

and g satisfies (2.28) and ([2.29).
To prove the remaining estimates we expand the nonlinear energy of v,

ME(Q) +6*> > E(v) = E(Q(m,T,X) + g)
N N 1 N
= B(Q(m.7, X)) + (D B(Q(m,7. X)) | g) + 5 (D* B(Q(m.7: X))g | g ) + Ollg2)
and apply the conclusions of Lemma and Lemma This completes the proof. O

Lemma 2.27. Let k > 1. There exists 1 > 0 sufficiently small with the following property. Let
m,l €Z, ML eN, re {-1,1}M 7 e {-1,1}, X € (0,00)™, ji € (0,00)", and w be such that
Ep(w) < 0o and,

- A \k
lw — Q(m, Z M1 + ) <, (2.35)
i ; (Aj+1>
L—1 1 k
lo - Q.a M+ () <n (2.36)
= Hj+1

Then, m =£, M = L, = &. Moreover, for every 8 > 0 the number n > 0 above can be chosen
small enough so that

s
‘max |~L —1|<0. (2.37)
j=1,..M i

Proof of Lemma[2.27. From we see that lim, o w(r) = mm, and from we see that
lim, oo w(r) = ¢w. Hence, m = /.

Next, let gy := w— Q(m, 7, X) and g :=w—Q(¢,7,[i). By expanding the nonlinear potential
energy we have,

Ep(w) = Bp(Q(m.7; X)) + ( DEp(Q(m, 2:X)) | g2 ) + Olllgal).
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Choosing 1 > 0 small enough so that Lemma applies, we see that
ME(Q) — Cn < Ep(w) < ME(Q) + Ch,
for some C' > 0. By an identical argument,
LE(Q) — Cn < Ep(w) < LE(Q) + Cn.

It follows that M = L. Next, we prove that n > 0 can be chosen small enough to ensure
that &= &. Suppose not, then we can find a sequence w, with Ey(w,) < C, and sequences

—

s G Ans fin 50 that,

N Anj \F
wn — Q(m, Ty, M) |15 + </\ L ) =o,(1) as n — oo,
j=1 n,j+1
M1\
lwn = Q(m, G, )% + 3 (%) = 0a(1) as n = ox,
= Hn,j+1

but with z;, # &), for every n. We may assume without loss of generality that
0 = lim wy(r) = lim Q(m, Ty, Ap;7) = lim Q(m, G, fin;T)
r—0 r—0 r—0

and we note that above limits agree mean that we must have Z;‘il lnj = Z;‘il op,; for each n.
Passing to a subsequence we may assume that there exists an index jo > 1 such that ¢j, = 0j,
for every j < jo and every n and vj, , # 0j,n for every n. We have,

—

1Q(m, iy An) — Q(m, G, fin) || 1
< Nlwn — Q(m, 1, Xn)HH + |lwn — Q(m, G, fin) | 5 = 0n(1).

First we show that jo > 1 Assume for contradiction that jo = 1. Then, we may assume that
tng1 =1, 0n1=—1and A\, 1 < pp,1 for all n. It follows that

(2.38)

Q(m, Ty, An) — Q(m, G, fin) > % Vr € Pns 22n1),

for all n large enough. But then,
2Xn,1

1Q0m 7 o) = QoG = [ (w47
)\n,l
for all sufficiently large n, which contradicts (2.38). So ¢1, = oy for all n. Thus jo > 1. But
then by a nearly identical argument we can show that we must have A\, ; ~ pu, ; uniformly in
n for all j < jo. Again we may assume (after passing to a subsequence) that A, j, < finj,- It
follows again that for all sufficiently large n we have,

1Qm, 7, Xa) = Qm, G, fin)

which again yields a contradiction. Hence we must have ©'= &.

Finally, we prove (2.37). Suppose (2.37)) fails. Then there exists 6y > 0 and sequences X, fin
such that

> (/a2 1og2,
:

™
2 Z VT S [)\n,joa 2)\n7j0]7

—

HQ(mv Z'na )\n) - Q<m7 Znyﬁn)HH = On(1>7
but

Ani i—1>0
FslupM‘ nj/ Fn. | > 6o, (2.39)
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for all n. Following the same logic as before we note that we must have A, ; ~ p, ; uniformly
in n. But then we have,

M
”Q(m’ L_;"w )‘TL) - Q(m7 L_;M ﬁn)”%—] = Z HQ)\n,j - Qun,j ”%—I + On(l)’

j=1
which implies that [|Qx, ; — Qp, ,|lz = 0n(1) for every j, yielding a contradiction with (2.39).
This completes the proof. ]

3. LOCALIZED SEQUENTIAL BUBBLING

The goal of this section is to prove a localized sequential bubbling lemma for sequences of
wave maps with vanishing averaged kinetic energy on an expanding region of space. The main
result, and the arguments used to prove it are in the spirit of the main theorems in Céte [10]
and Jia and Kenig [42], and also use many ideas from Struwe |73] and Duyckaerts, Kenig, and

Merle [22].
To state the compactness lemma, we define a localized distance function,

M 1
- A \k\ 3
orp(u) := inf u— Q(m, I, \ QHT + ||la)|? +§ J . 3.1
R( ) m,M,T,X (H ( )H (r<R) H HLQ(TSR) = ()\j+1) ) ( )

where the infimum above is taken over all m € Z, M € {0,1,2,...}, and all vectors ¢’ €
{—1,1}M X € (0,00)™, and here we use the convention that the last scale Ay11 = R.

Lemma 3.1 (Compactness Lemma). Let {,m € Z. Let p, > 0 be a sequence of positive
numbers and let u,(t) € &, be a sequence of wave maps on the time intervals [0, p,] such that
limsup,,_, . F(uy) < co.

Suppose there exists a sequence R,, — oo such that,

1 Pn ann 9
lim / / |Ogun (t,7)|” rdrdt = 0.
o Jo

n—oo pTL

Then, up to passing to a subsequence of the w,, there ezists a time sequence t,, € [0, p,] and a
sequence r, < R, with r,, — 0o such that

lim 8., ., (tn(ty)) = 0.

n—o0

Remark 3.2. We note that Theorem in the blow-up case is a quick consequence of
Lemma together with the fundamental result of Shatah and Tahvildar-Zadeh [70], that
for wave map developing a singularity at 7_ = 0 one has,

1 t T
lim — / / |Bgu(r,r)|* rdrdt = 0.
0 JO

t—0 t

In the global case T’y = 0o one uses,

1 T t—A
lim limsup — / / |Bgu(t, r)|* rdrdt =0,
A Jo

A—=0o Tyoe T

proved in [12] using the analysis of [70].
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3.1. Prior results on bubbling. The proof of Lemma|[3.1|requires several preliminary lemmas,
including two Real Analysis results, which we address first.

Lemma 3.3. If a;, are positive numbers such that lim, .o ag, = oo for all k € N, then there
exists a sequence of positive numbers by, such that limy, o by, = 00 and lim, o aj 5, /by = 00 for

all k € N.

Proof. For each k and each n define @y, = min{aip,...,ary,}. Then the sequences ay, — oo
as n — oo for each k, but also satisfy ay, < ax, for each k,n, as well as a;j,, < agp if 7 > k.
Next, choose a strictly increasing sequence {ny}, C N such that ay, > k? as long as n > ny.
For n large enough, let b,, € N be determined by the condition n,, <n < np, 1. Observe that
b, — o0 as n — oco. Now fix any ¢ € N and let n be such that b, > £. We then have

Ay n > Z’:Z,n > abn,n > bq21 > by,
Thus the sequence b,, has the desired properties. ]

If f:1]0,1] — [0, +o0] is a measurable function, we denote by
1
Mf(r):= sup /f(t) dt
I>7;1C[0,1] |I| 1

its Hardy-Littlewood maximal function. Recall the weak-L' boundedness estimate
3 rl
H{r €[0,1] : Mf(7) > a}| < / f(t)dt, for all & > 0, (3.2)
@ Jo

see |55, Section 2.3].

Lemma 3.4. Let f,, be a sequence of continuous positive functions defined on [0,1] such that
limy, 00 fol fn(t)dt = 0 and let g, be a uniformly bounded sequence of real-valued continuous

functions on [0,1] such that limsup,,_, fol gn(t)dt < 0. Then there exists a sequence ty, € [0, 1]
such that

lim Mf,(t,) =0, lim f,(t,) =0, and limsup g,(t,) <DO0.

n—00 n—00

n—oo

Proof. Let oy, be a sequence such that fol fa(t)dt < oy, < 1. Let A, :={t € [0,1] : M f,(t) +
fu(t) < ap}. By (3.2) and Tchebychev’s inequality lim,, o |A,| = 1. Since g, is uniformly
bounded, we have

/ lgn(D)dt < 1[0, 1]\ An| > 0,
[0,1\An
which implies

limsup/ gn(t)dt < 0.
An

n—0o0

It suffices to take t, € A, such that g, (t,) < [An|™" [, gn(t)dt. O

A key ingredient of the proof of Lemma is a Struwe-type bubbling lemma [73]. We require
the version proved in [10/42].

Lemma 3.5 (Bubbling). [73], |10, Proposition 3.1], |42, Lemma 5.6] Let o > 0 and let o, — 0
and B, — oo be two sequences. Let v, be a sequence of wave maps, i.e., solutions to (1.1, on
the time interval [0, 0] such that limsup,,_, o F(vy) < co. Suppose that

1 4 Bn
lim / / Dvn(t,7) 2 rdrdt = 0.
0 an
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Then, there exists an integer my, 1o € {—1,0,+1}, and a scale \g > 0 such that, up to passing
to a subsequence, we have

vy — meT + 0@y,

in the space (LE(€))i0c([0,0] x (0,00)). In addition v, — mom + 0@, locally uniformly in
[0,0] x (0,00). And finally, v,(0) = mom™ + 0@, in the space Eoc((0,00)).

The lengthy proof of the Lemma will consist of several steps, which are designed to reduce
the proof to the exact scenarios already considered by Céte in [10, Proof of Lemma 3.5] and then
by Jia-Kenig in [42, Proof of Theorem 3.2]. In particular, we will seek to apply the following
result from [42].

Lemma 3.6. [42| Theorem 3.2] Let v, be a sequence of wave maps, i.e., solutions to (1.1)), on
the time interval [0, 1] such that limsup,,_,., E(v,) < co. Suppose that there exists a sequence
tn € 10,1], and integer Ko > 0, and scales Ap1 < -+ < Ay i, S 1 such that

Ko
U (tn) = mim + Z Lj((Q(f),O) — ) + Wy 0,
=1 "

where ||wpo|lpoxrz — 0 and Hwn70H5(r>T;1) — 0 as n — oo for some sequence r, — 0.

Suppose in addition that, |wnollga-1x,<r<ar,) — 0 as n — oo for any sequence \p, S 1 and
any A > 1, and finally, that

] % / ,sin?(2u,(tn)) 9 )
lim sup/O <k —————= 4+ (Orvn(ty)) 2005(21@(%))) rdr <0. (3.3)

n—00 272

Then,

lwnolle =0 as n — oo.

Remark 3.7. Lemma is not stated in [42] exactly as given above. However, an examination
of [42, Proof of Theorem 3.2] shows that this is precisely what is established. The heart of the
matter lies in the fact that the Jia-Kenig virial functional (3.3) vanishes at @, i.e.,
00 202 2
/ (kQSm(Q) +(0,Q)*2 COS(QQ)) rdr =0,
0

2r2
but gives coercive control of the energy in regions where v, (t, ) is near integer multiples of 7.

3.2. Proof of the compactness lemma.

Proof of Lemma(3.1] Rescaling we may assume that p, = 1 for each n.
Step 1. We claim that there exist o, € [0, 3], 7, € [3, 1], such that
T 00 102
n 2 1
lim / / (kQSm(Qun)X — (0% + —0ruy) sin(2un)x> rdrdt = 0, (3.4)
n—=oo fo o Jo 2r r
where  is a smooth cut-off function equal 1 on [0, ], with support in [0, 1]. Here and later in
the argument the second term in the integrand in (3.4) is to be interpreted as the expression
obtained after integration by parts, which is well defined due to the finiteness of the energy.

Since
5 R 1 Ry
lim/ / (Oyup)?rdrdt =0 and  lim /2/ (Oyup)? rdrdt = 0
o Jo 2 Jo

n—oo n—0o0
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there exist oy, € [0, 3], 7 € [2,1] such that,

R, Ry,
lim (Opun(0p))?rdr =0 and  lim (Dpuun () rdr = 0. (3.5)
For t € [0y, 7], we have the following Jia-Kenig virial identity; see [42, Lemma 3.5 and Lemma
3.10].

d [e.e] oo

T / Oy sin(2uy, ) x rdr = / 2 cos(2uy, ) (Byuy ) x rdr

’ ! 1 sin(2uy,) (36)
+ /0 (8,2,un + ;&un — k2T2n) sin(2uy, ) x rdr.

By the Cauchy-Schwarz inequality, the boundedness of the nonlinear energy and (3.5), we see

that

o

lim (|0sun () || sin(2un (0))| + [Opun (70| sin(2un (74))|) x rdr = 0.

n—o0 0

Integrating (3.6 between o, and 7, and using the above, we obtain (3.4]).
Step 2. We rescale again so that [0y, 7,] becomes [0, 1]. We apply Lemma to

Ry
fu(t) ::/0 |Byun (t, )] 7 dr,

[e’e) 2
. osin”(2uy,) 9 1 .
gn(t) := /0 <k 5z (O uy, + ;(‘Lun) sin(2uy,) | x rdr

(integrating by parts the second term in g,, we see that this is a uniformly bounded sequence
of continuous functions) and we find a sequence {t,} € [0, 1] such that we have vanishing of the
maximal function of the local kinetic energy,

1 fin
lim sup — // |0 (t,7)|* 7 dr dt = 0,
o 11 Jo

N=00 I5¢,,1C
Ry
and lim |0tn (tn, r)|* 7 dr dt = 0,

n—oo 0

(3.7)

and also pointwise vanishing of a localized Jia-Kenig virial functional,

i - 28in2(2un(tn))— 2 1 U sin(2u rdr
hmsup/o <k: B ))  (@un(tn) + ~Oeun(tn) sin2 n(tn))>x ar<0. (38

n—00 272

We emphasize the conclusion from the first steps is the existence of the sequence t,, such that
and hold.

Step 3. Now that we have chosen the sequence ¢, € [0,1], we may, after passing to a
subsequence, assume that ¢, — ty € [0, 1].

We apply Lemmato the sequence u,,(t,), obtaining profiles (7, Anj) and (Vi tn i, 0n4),
and 'wio, so that, using the notation,

Wl = (g NS (P Ang)) 0 (0) i= (v (0, ), o (T ),

Ong On, Onig On,i
we have
Ko J
Un(tn) = mom + Y (W, —mym) + Y v} ,(0) + w g (3.9)

j=1 i=1
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satisfying the conclusions of Lemma @ We refer to the profiles (17, An ;) as well as the profiles
(vi(0), tni, 0ni) With t,,; = 0 for all n as centered profiles (here the subscript ,, on v! is super-
fluous). We refer to the profiles (v (0),tp.i,0n;) With —t, /0, — F00 as outgoing/incoming
profiles.

Step 4.(Centered profiles at large scales) At each step, we will impose conditions on the
choice of the ultimate choice of sequence r, — co. Consider the sets of indices

jc,oo, = {j S {]., c ,Ko} ’ nh—>rgo>\n’j = OO}
Ic,oo = {l eN ‘ tn,i =0 Vn, and li)m Oni = oo}

Using Lemma we choose a sequence 7q, — 00 so that 1o, < Ry, A, j, 0n, for each A, ; with
J € Je,0o and each o, ; with i € Z, .. We note that by construction we have,

E(4);0,70,) — 0 as n — oo, (3.10)
E((v(0,-/opns), J;;i)i(o, /0ni));0,70n) = 0 as n — oo, '

for any of the indices j € Jc o0,% € Z¢oo-
Step 5.(Centered profiles at bounded scales) Consider the sets of indices

jc,O = {.] € {1a .. '7K0} | nh—>Hc}o )\”7.7 < OO}

Teo:={ieN|t,; =0Vn, and lim o,; < oo}
n—o0o

We use Lemma to show that each of the associated profiles must be a harmonic map.
Consider first the case of a profile (¢7, Ay, ;) with j € J.o. Define,

u%(t,r) = (u%(t,r),@tuzl(t,r)) = (un(tn + it AngT)s AnjOrun(tn + Anjt, )\nJT))

and note that u, is a wave map on the interval t € [—t, /A j, (p — tn)/An j]. Consider the case
tn — to < 1, (the other possible limits have nearly identical arguments). Recall that we have
the weak convergence uj,(0) — 7. Moreover,

1 [° Ai"v . 1 [° %
/ / N lﬁtu%(t,r)IQrdrdt: / / N ])\nvjatun(tn+)\n,jt,/\n7jr)]2rdrdt
gJo Jo gJo Jo
1 tn+An, o pRy
= / / |0yun(s,y)?ydyds = 0 as n — oo
0—)\7747.7 tn 0

where the last line follows from (3.7)) after fixing ¢ > 0 small enough so that ¢, + A, jo < 1
for all n large enough. Thus by Lemma we conclude that there exists mj,¢;, Ao j so that
P =mym+5Q), - ‘

The cases of profiles (v} (0), ¢y, 0n,i) With ¢ € Z. ¢ are completely analogous. And we conclude
that each of these profiles must satisfy

v (0,7) = (0,0).

since each v¢(0) € £ and thus can only be a constant harmonic map. ‘
Step 6.(Incoming/outgoing profiles with lim,, o |t,,i| = 00) We next treat profiles (v}, ty i, 0n.i)
that satisfy,

tn,i

— +o00.

On,i
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Up to passing to a subsequence of u,,(t,) we may assume that —t, ; — to € [—00, 00]. Consider
the set of indices,

t .
Tioo :i={i EN| =" — +o0 and |t,;| — oo}.

n,t

We impose additional restrictions on the sequence r,,. We require that r,, < % |tn,qi| for sufficiently
large n, for each sequence t,; in Z; . So at this stage, we again use Lemma to choose a
sequence 71, — oo such that 1, < ro, and 1, < %]tm| for sufficiently large n, for each
sequence tp ; in Ji oo-

Since v’ is a solution to we know that it asymptotically concentrates all of its energy
near the light-cone. In fact, a direct consequence of [15, Theorem 4] is that

. ) =
im g (s)llgr< sy = 0-

Thus, if ¢ € Z;, o, and as long as 71, < % |tn,i| for n large enough, we see that 0;%7“17” < %O’;} [tn,il
and thus
Hvi(_tnvi/anvi)HS(TSrl,na';li) — 0 as n — oc. (3.11)
by the above and we conclude that any such profile does not contribute to the asymptotic size
of &y, (un(tn))-
Step 7.(Incoming/outgoing profiles with lim, , [tyi] < o0) Next, we consider profiles
(vi,tni,0n,) such that
t .
- 5400 and — tni = teoi €R
On,i
and we denote by 7, o the set indices labeling all such profiles, and note that o, ; — 0 as n — oo
for each i € Z; o. We claim that any such profile must satisfy v; = 0. The argument we use
follows closely the argument given in |19, Erratum]. As there are few technical changes due to
setting of the current problem, we reproduce the argument here.
We claim that there exists a new sequence /71, < 12, < r1, such that

lim sup E(un(t);A;1T27n,AnT2,n) =0 (3.12)
N0 4el0,1]
for some 1 < A,, < 12,,. By the finite speed of propagation, it suffices to have
lim E(un(O);AJITQ,n,AnTZn) =0,
n—oo
and then replace A, by its half, for example.
Let A, be the largest integer such that A?LA" < /T Obviously, 1 « A, <« /r1,,. For
le€{0,1,..., A, — 1}, set Rg) = Afll, /T1n, SO that AgleH) = AnRgll), thus
An—1

> Eun(0): A7 RY, Ay RY) < E(un(0)).
=0
Since all the terms of the sum are positive, there exists lp € {0,1,..., A, — 1} such that ry,, :=
,(fo) satisfies

E(u,(0); A,‘Llrgyn, Apran) < A;lE(un(O)) — 0,
proving (3-12).
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Next, using the finite speed of propagation along with (3.12), we pass to a new sequence of
maps u, with vanishing average kinetic energy on the whole space. To see this, first we use
Lemma to find a sequence y,, € [2rp, 472 ,] and integers m,, € Z such that

|un (0, yn) — mpm| — 0 as n — oco.

Since ¢, m are fixed and limsup,,_, . F(u,) < oo, the integers m,, € [—L, L] for all n for some
L > 0. Hence, after passing to a subsequence, we may assume that m, = m; is a fixed integer
for each n. We define a sequence of truncated initial data u,, as follows,

Un (tn,7) = Xarg,, (M) Un(tn, 1) + (1 = Xary,, (1)) . (3.13)

Using , we have E(u,(ty); éT‘27n,87‘2,n) — 0 as n — oo. Let u,(t) denote the wave map
evolution of the data w,(t,), which we observe, using the vanishing of the energy of the data on
the region [ry,,/8,8r2 ] is well defined on the interval [0, 1] for large n. In fact, using the finite
speed of propagation and the monotonicity of the energy on truncated cones, we see that u,(t)
satisfies,

up(t,r) =up(t,r) if r<roy,, and sup E(u,(t);ran,00) =0 as n — oo. (3.14)
te(0,1] :

Next, from the decomposition (3.9) we have,

Un(tn) = mam + Z (%Q(r)ao) —m)+ Z vi,n(o) + X27"2,n'w7{,0
j€Je0 ™ i<J, i€Zio

- X2T2,nm1ﬂ- + X2T2,7Lm07r + (X27'2,n - 1) Z ([’]Q(T)’O) - 77) (315)

jEJC,O ™
+ (XQTQ,n - 1) Z ’Ui,n(o) + X27’2,n Z "p"ZL
74§J7 iGIL,O jEJC,oo

where above we have allowed the abuse of notation, A\, ; <+ A, j)o,j, for the profiles with indices
in J.0. Using the same logic used to deduce (3.10) and (3.11) we have,

E(Qx, ;5m2n,00) = 0 as n — oo, H’Ui(_tn’i/o—nvi)HS(rng’na;l) —0 as n— o0

for any fixed j € J.0 or i € Z; 9. Thus, using (2.9)) and the above along with (3.10) and (3.11])
we see that the last three lines in (3.15)) can effectively be absorbed into the error and writing

W (1) = Xara,, (1) w;o(r) + 0n(1)

we obtain the decomposition,

Up(tn) =mam+ Y Lj((Q(f)yo)—ﬂ')Jr > v (0) + W (3.16)

JE€Te0 Tl i<J, €0

The above is a profile decomposition for w,(t,) in the sense of Lemma @ — the vanishing
properties of the error ﬁ;{,o are inherited from the corresposnding vanishing properties of wio
using e.g., [15, Lemmas 10 and 11] after noting the correspondence between the linear wave
equation and the 2k + 2-dimensional radially symmetric free wave equation (see also |21}
Claim A.1 and Claim 2.11] for the treatment of the wave equation in odd dimensions).
Assume for the sake of contradiction that there exists a nonzero profile (vio, Onigs tniig) With
index ig € Z; 0, and assume without loss of generality that
_tn,io

— 400 as n — oQ.
Un7i0
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Using (3.7) and ( we have

1 o~
lim  sup // |0yt (¢, 7)[> r drr dt = 0,
=0 5¢,.:1C[0,1] | J1 Jo (3.17)
|10kt (t) || 2 — 0 as n — oo,

and we can apply (after passing to a subsequence) Lemma to deduce the existence of a
matching profile (v, 0y, tn,4,) such that for all s € R,

i1 I 1 _ _
vit(s) = v°(=s), Oni; = Onig, and tni = —tni, Vn.

After relabeling we may assume that i3 = i + 1.
We claim that there exists 79 > 0 so that, in addition to (3.17), we also have,

nh_{go [0tn (tn + Toon o) || 22 = 0. (3.18)

To see this, assume for simplicity that ¢, — to < 1 (the other possible scenarios are similar).
Passing to a subsequence, we may assume that

2724 > gup // |0 (t, ) 2rdrdt,
I>t,;1C[0,1] !I\

and define sets E,, (for all large n) via,
E, :={r€[0,1] : [|0n(tn + Tonio) |32 > 27" 2}
Thus,

o 1 tn+0n,i0 _ 1 _ o
272t > / 185t (1)]17 2 df:/ 10¢tn (t + TOn,io) |72 AT > |En] 2772
tn 0

Unzio

which means that |E,| < 27772 for all n large enough. Hence |U,>0E,| < 3, and thus any

70 € [0, 1] \ Up>0E), satisfies .

Next, we will need to evolve the profiles for time = 790y, ;. To get in the setting of Lemma [2.13]
we first need to truncate the sequence again, removing all profiles concentrating at a scales
< 0Opi,- To this end, and following [19, Erratum|, we denote by K = K.o U Ky, where
Keo C Jep is the set of indices j such that,

ECj > 0 such that )\nd' < Cjan,ioa
and letting €y > 0 be as in Lemma[2.8) K0 C Ty is the set of indices i such that both
E(vi,) > e and 3C; >0 such that max(on,|tni|) < Cioni-

Observe that ip,i9 + 1 € K; 0 and that by the pythagorean expansion of the nonlinear energy,
K is a finite set.

Since oy, <K |tn,i,| We can, arguing as in , find a scale o, such that oy, 5, < 0, < |t |
and such that E(u,;o0,/4,40,) — 0 as n — oo. Using Lemma and arguing as above,
after passing to a subsequence we can find a sequence y,, € [%an, 70n] and an integer ¢; with
|ty (tn, yn) — L17| = 0. We then define a sequence @, (t,) € &, m, by

U (tn) := Xo, 017 + (1 — X0, )Un(tn).

It follows that for any J > max(i;i € K1) + 1 we have

Un(tn) =mim+ Y Lj((Q(f),O)—nH > v} ,(0) + ;) o + 0n(1)

§€Te.0\Ke,0 J i<J, i€J.0\Kv0
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where we define 11);{70( )= (1= X0, )W) o(r). We need to justify the 0, (1) term above. First, it is

clear the harmonic maps with 1ndlces j € e o satisty ||(1 Xo-n/Q)(L]Q( ),0) = m)|le = on(1)
n,j
since j € K¢ implies A\, ; < Cjoy i, < 0y, Next for those indices 7 € Kp o we claim that,

10~ X 22 (i ifom)lle S 10—t i/on)lerstonsmy = 0D (3.19)
To prove the last inequality above note that since ¢ € K o we have

1 op :} Tn_Onjiy 1 oy |t

20n; 2006 oni 20 0pniy Oni

and now ([3.19) follows from [15, Lemma 9] after noting again that o, /0y, — 00 as n — oo,
and using the equivalence between (2.3)) and (2.4) outlined in Section
Note that

ﬁn(tnar) = ﬂ'n(tnvr) = ’U,n(tn,T’) if 40, <r < T2n

and thus, denoting by i, (t) the wave map evolution of 4, we have by finite speed of propagation
that for s > 0,

Up(ty + 8,7) = Up(tn + 8,7) = up(tn +s,7) if 4oy +5 <71 <rg,—s. (3.20)

The point of these truncations is that we can now apply the nonlinear profile decomposition
Lemma to 4,(0) up to time 790, ;,, obtaining an error term z;(¢) satisfying for all s €
[0, 700,405

dlta+s) =mm+ Y Q)0 —m+ Y vhals) +bi(s) +2106)

§€Te,0\Ke,0 J i<J, i€Z:,0\Kv0

lim limsup ( sup (|2 (0)lle + 1221507000 ) = O

J—=00 n—oo t€[0,700m, 4

Next observe that plugging in s = 190y, i, above gives rise to linear profile decomposition for
Tty + TO0n, i) in the sense of Lemma [2.10, where the profiles are given by (Q,\,;) and
(iﬁj s &n s tn z) (Ui, On,iy tn,i - TOUn,iO)'
We apply Lemma to the sequence,
(fm gn) = (’l]n (tn + T00n,ig» Onsig ')7 On,ig Oy, (tn + T00n,ig» Un,io'))

—miT — Z (%Q(%.),O)—ﬂ')

. n,
J EJC,O\ICC,O J

with o, = 4 "’? + 70 and s, = 2 . By (3.20) and (3.18)) we have ||gn|[12(r>q,) — 0 as n — oo.

Since oy, < |tp, 20’ we also have |S”‘ — 00 as n — 0o0. Hence we may apply Lemma b.16. 16 On the

one hand, by the way the proﬁles are obtained,

gL(Sn)(fn,gn) SL( Enig )(fmgn) = gL(TO)gL( o )(fn»gn) (Ull;o (7—0)7 atv]io (TO)) €&

On,ig On,ig
but on the other hand, since t,y+1 = —tniy — T00n,i, and since o, iy = Onig+1 = Onig+1 We
have
- - tn.i
_ 520
SL(_STL)(fmgn) - SL(_ )(fnvgn)
On,ig

= §.(r0)8u(— 2L (£, ) = (09 (m0), B0 () = (110 (— 7o), ~Dpvi® (—70)) € E.

Jn,io-{—l
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An application of Lemma m then gives v/°(7p) = vfo(—To) and 9,0 (r0) = Ao (—1p), or in
other words v/ (t) = v/ (t + 279), is periodic with period 27y, which is impossible since v (t) is
a finite energy solution to , unless 'vio = 0, which contradicts our assumption. Thus, there
are no nonzero profiles with indices in the set Z; .

Step 8.(Vanishing properties of the error w;{,o) We summarize where the argument stands
after all of the previous steps. With u,, defined in , we may relabel the indices in 7. ¢, so
that Xy = (A1, .- Ank,) With 0 < Ko < K7, and with Ay < Ao < -+ < Ak, S 1 and
signs U= (t1,...,LK,), so that

Un(tn) =mym+ Y Lj((Q(ﬁj),o) — ) + Wno,

where we have removed the index J in @i,o using the previous step since there are no nonzero
outgoing/incoming profiles relevant to the region r < 15 ,. To conclude the proof, it will suffice to
show the existence of a sequence 7, — oo, with r,, <7y, so that after passing to a subsequence,

Hﬁ}”@”f(rﬁrn) —0 as n — oo.

Using the pythagorean expansion of the energy with (3.17), and the seventh bullet point in
Lemma we have

||7i3n,0|\L2 + |WnollLe — 0 as n — oco. (3.21)

After passing to a subsequence of the u,, we claim there is a sequence r, — oo with the
properties,

1<y <rop, ”an,OHg(ér;lgrggrn) —0 as n— oco. (3.22)

The existence of such a sequence follows from the following property about w,, o: for any sequence
An S 1 and any A > 1 we have,

HIBH,OHS(AnA*STS)\nA) — 0 as n — oc. (3.23)

The property (3.23)) was proved in |10, Step 2., p.1973-1975, Proof of Theorem 3.5] and |42, Proof
of (5.29) in Theorem 5.1] and we refer the reader to those works for details of the argument.
The intuition is that at any scale A, < 1 at which u,, carries energy we have already extracted a

profile @y, ; with A, j >~ A,,. To prove we consider the case \,, = 1 in , and passing
to a subsequence of the wu,,, we obtain a sequence as in .

We truncate to the region r < r,, following the same procedure used to define u,, in ,
using now r, in place of 7. Indeed, set

U (tn, 1) = Xor, (U (t,r) + (1 — x2p, (1))my .

Defining @y, o := X2r, (r)Wn,0 + (X2r, (1) — 1) Z]K:OI LJ((Q(E) ,0) — ) and using that A\, g, S1
along with (3.21) and (3.22)) we see that,

Ko
iy (th) :mlﬂ'—i-zbj((Q(ﬁ),O) — ) + Wy, and
= n,j (3.24)

i (In,0ll gy r<oc) + I ollz2 + lnolli< ) = 0.
Moreover, by (13.23) we see that for any sequence A, < 1 and any A > 1 that,

Jim {[y,0][e(r, -1 <r<n,4) = 0- (3.25)
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Letting ,,(t) denote the wave map evolution of ., (t,) we see from (3.14) that
Up(t,r) = up(t,r) if r<r, (3.26)
and from (3.17)) that

1 oo
lim sup — // |Oyttn, (t,7) > drr dt = 0,
o 1 JrJo

n—=o0 r>5¢, IC

|Ogtin,(tn)]| 2 — 0 as n — oc.

(3.27)

It remains to prove the vanishing lim,, . ||y, o| g(rersl) = 0 and it is at this final step where
we employ the Jia-Kenig virial functional. We see from (3.8]) and (3.26)) that @, satisfies

> in? (24, (t, 1
lim sup / (kQW — (D2 (tn) + ~Oriin (tn)) sin(2zin(tn))>xrdr <0. (3.28)
n—oo 0 2r T
In addition to the above, after possibly passing to a subsequence of the ,, we claim that
> in?(21l, (t, 1
lim <k2sm(“()) — (DRita(tn) + ~Oriin(t2)) sin(Qﬂn(tn))> (1 - x)rdr = 0.(3.29)
0

n—00 212

The cases lim;,, o0 Ap K, = 0 and lim,, o0 A\p x, > 0 require slightly different arguments and we
consider these separately. First, if lim,, oo Ap k, = 0, then from ([3.24) we have,

Jim E(@,(2,); 1/2,00) = 0. (3.30)
Using the above the first term in the integrand satisfies,

[e's) a2 2vn tn
/ k2sn1(2u2())<1 —x)rdr < E(t,(t,);1/2,00) =+ 0 as n — oo.
0 r

Integration by parts in the second term gives,

o0

e 1

—/ (0%, 4+ —Opily) sin(20, ) (1 — x) rdr = / (Dt )22 cos(21i, ) (1 — x) 7 dr

0 r 0

(o]
— / Oty sin(211,) X 7 dr.
0
The terms on the right above satisfy,
o0 o0
/ (Ot )?2 cos(2i, ) (1 — x) rdr / Oty SN (20, )X 7 dr
0 0

and thus vanish as n — oo by (3.30), proving (3.29) in the case lim, 00 Ap x, = 0.
Next suppose lim,, .o, A\p K, > 0. Note that in this case,

+ S E(tn(tn); 1/2,00)

nh_)nolo E(ti,(t,) — LKo (Q)‘n,Ko —m);1/2,00) =0, (3-31)

which follows from (3.24). To ease notation let v, := U, (t,) — LKO(Q)\n,KO —m) and ¢, =
Lo (Q),, Ky 7). Expanding sin(2u,(t,)) = sin 2, cos 2¢, + sin 2¢,,(cos 2, — 1) + sin 2¢,

and using the pointwise vanishing of 92¢,, + %arqbn — % sin2¢,, = 0, we rewrite the term in
parenthesis in (3.29) as,
. 2 9
sin® (2uy, (ty)) . 1, . on
kQ# — (afun(tn) + ;&un(tn)) sin (2, (t,))

= sin(24,(t K gin2 2 K gin? 6, sin2 02 Lo
= sin(21,( n))<ﬁsm Wy, COS qﬁn—ﬁsm Wy, sin 2¢, — ( Twn—i—; szn)).
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The contributions of the first two terms above satisfy

2
‘/ sin(2y, (ty,) )<;251n2¢ncos2¢n— k—sm ¢n31n2¢n)(1— rdr‘ SVE(@,;1/2,00)

and thus vanish as n — oo by (3.31)). Integrating by parts, the third term satisfies,
RS 1 o o
—/ sin 24, (t,) (0%, + ;37«1%)(1 —x)rdr = —/ Opthy sin (2, ()X rdr
0 0

+2 /OO Or Oyt (tn,) cos(2ty, (tr,)) (1 — x) rdr.
0

By Cauchy Schwarz,
‘ / Orhp, sin (211, (tn)) X rdr‘ + ’ / O Op i, (ty,) cOS(21y, (t5) ) (1 — X) rdr’
0 0

SVE@,;1/2,00) =0 as n — oo,
by (3.31), proving (3 in the case lim,_o0 Ap k, > 0. Combining (3.28) and (| gives

& 20y, (T
lim sup/ k2w — (D%, (t) + farﬂn(tn)) sin(21iy,(t,)) | rdr < 0.
n—o0 0 2r r
The above together with (| -, -, and (3.27)) yield all of the hypothesis of Lemma (3.6 E 6| for
the sequence w,(t,). An application of Lemma E gives limy,_,o ||Wn0lle = 0. It follows that
that doo(Uy(ty)) — 0 as n —> oo. By (3.26) we in fact have proved that 9, (u,(t,)) — 0 as
n — oo, (note that A\, g, < 1 and r,, — oo ensures that the final ratio A\, x, /A ko+1 — 0,
where A\, g,+1 := 7p), completing the proof. O

4. DECOMPOSITION OF THE SOLUTION AND COLLISION INTERVALS

In the final two sections we prove Theorem (1| for equivariance classes k > 2. We reserve the
case k = 1 for the appendix.

4.1. Proximity to a multi-bubble and collisions. For the remainder of the paper we fix a
solution w(t) € & of (L.1), defined on the time interval I, = (0,7p] in the blow-up case and on
I, = [T, o) in the global case, for some T > 0. We set T := oo in the global case and T} := 0
in the blow-up case. Let u*(t) be the radiation as defined in Theorem More precisely, we
let ma = lim;_ 7, u(t, %t) € Z and shift the radiation so that u*(t) € &, for some mq € Z,
and for r 2 t, u(t,r) ~ mam + u*(t,7). Note that my, = 0 if T, = 00

It is a crucial insight of [9,11,|{12] that w*(¢) is given for continuous time. Recall that Theo-
rem [1.10] gives a function p : I, — (0, 00) such that

hm (( (O/1)* + [[u(t) — u*(t) - mAﬂ'HZ(p(t),oo)) =0, (4.1)
and that for any a € (0,1) we have
tlig E(u*(t);0,at) = 0. (4.2)

By Theorem there exists a time sequence ¢, — T, and an integer N > 0, which we
now fix, such that w(t,) — u*(¢,) approaches an N-bubble as n — oo. Roughly, our goal is to
show that on the region r € (0, p(t)), the solution u(t) approaches a continuously modulated
N-bubble, noting that the radiation w*(¢) is negligible in this region. By convention, we will
set An41(t) :=t to be the “scale” of the radiation and Ag(t) := 0. Our argument requires the
following localized version of the distance function to a multi-bubble.
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Definition 4.1 (Proximity to a multi-bubble). For all ¢t € I, p € (0,00), and K € {0,1,..., N},
we define the localized multi-bubble proximity function as

N }
dx(t; p) = inf <||u<t>—u*<t>—9<m 5 o0 + Z( m) )

ix e

where 7 := (txi1,...,tn) € {—1, 1}V, X o= Akt1s-- A ~N) € (0,00)N K N := p and
AN41 = t.
The multi-bubble prozimity function is defined by d(t) := do(t;0).

Remark 4.2. We emphasize that if dg(¢; p) is small, this means that w(t) — u*(¢) is close to
N — K bubbles in the exterior region r € (p, 00).

We can now rephrase Theorem in this notation: there exists a monotone sequence t,, — T}
such that

nl;rgo d(t,) =0. (4.3)

Even though this fact is certainly a starting point of our analysis, it will turn out that we cannot
use it as a black box. Rather, we need to examine the proof and use more precise information
provided by the analysis in [10,42]; see Section

We state and prove some simple consequences of the set-up above. We always assume N > 1,
since the pure radiation case N = 0 (in fact, also the case N = 1) is already settled by Cote’s
and Jia’s and Kenig’s work [10}/42].

First, a direct consequence of is that w(t) — u*(t) always approaches a 0-bubble in some
exterior region. With pn(t) = p(t) given by the function in Theorem the following lemma
is immediate from the conventions of Definition [4.1]

Lemma 4.3. There exists a function pn : I — (0,00) such that

lim dn(¢; pn(t)) = 0. (4.4)
t—T
Theorem (1] will be a quick consequence of showing that, in fact,
g 400 = )

The approach which we adopt in order to prove (4.5) is to study colliding bubbles. A collision
is defined as follows.

Definition 4.4 (Collision interval). Let K € {0,1,..., N}. A compact time interval [a,b] C I,
is a collision interval with parameters 0 < ¢ < and N — K exterior bubbles if

e d(a) <eand d(b) <e

e there exists ¢ € (a, b) such that d(c) > n,

o there exists a function px : [a,b] — (0,00) such that dx (¢; px(t)) < € for all ¢t € [a, b].

In this case, we write [a,b] € Cx(€,n).

Definition 4.5 (Choice of K). We define K as the smallest nonnegative integer having the
following property. There exist n > 0, a decreasing sequence €, — 0 and sequences (a,), (by)
such that [ay, b,] € Cx(€en,n) for all n € {1 2,...}.

Lemma 4.6 (Existence of K > 1). If (4.5)) is false, then K is well defined and K € {1,...,N}.

Remark 4.7. The fact that K > 1 means that at least one bubble must lose its shape if (4.5 @
is false.
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Proof of Lemma[{.0. Assume (4.5) does not hold, so that there exist n > 0 and a monotone
sequence s,, — Ty such that
d(s,) > n, for all n.

We claim that there exist sequences (€y,), (an), (bn) such that [a,,b,] € Cn(€n,n). Indeed,
implies that there exist €, — 0, a,, < s,, and b,, > s,, such that d(a,) < €, and d(b,) < €,. Note
that a, — T and b, — Ty. Let py : [an,by] — (0,00) be the function given by Lemma
restricted to the time interval [ay, b,]. Then yields

lim sup dp(¢pn(t)) =0.

n—00 t€[an,bn]
Upon adjusting the sequence ¢,, we obtain that all the requirements of Definition are satisfied
for K =N.

We now prove that K > 1. Suppose K = 0. By Definition of a collision interval, there
exist > 0, and sequences ¢, € [ay,by] and po(cy,) > 0 such that do(cn; po(cn)) < €, and at the
same time d(c,) > 1. We show that this is impossible.

Define v,, := u(c,) — u*(c,). Since do(cn; po(cn)) < €, we can find parameters, po(cy) <

—

An K - < Ay v and signs ¢, such that defining g,, = v, — Q(ma, in, An) we have

N
A \F
do(cn; po(cn)) = ||gn”§(p0(cn)7oo) + Z (L) S e (4.6)
=0 )\n7.7+1
With p(t) as in (4.1 we see that we must have A\, y < p(c,) < ¢y, and thus using (4.1) along
with (4.6) and Lemma [2.22 we have

E(u(cn); po(cn), 00) = E(gy, +u"(cn) + Q(ma, tn; An); po(cn), p(cn))
+ E(g, +u'(cn) + Q(ma, i, Xn)v p(cn), 00)
= NE(Q)+ E(u*) + 0,(1)
Since by we know that F(u(c,)) = NE(Q) + E(u*(c,)), we conclude from the previous
line that,

E(u(cy);0,p0(cn)) = on(1) as n — oo.

Using (4.2)) and the fact that po(c,) < p(cp) it follows that E(v,;0, po(cn)) = on(1), and hence
by (2.1)) we conclude that

[on = €7l g0,p0(cn)) S E(vn; 0, p0(cn)) = on(1) as n — oo
Thus, combining the above with (4.6) we have d(c,) = 0,(1) as n — oo, a contradiction. O

In the remaining part of the paper, we argue by contradiction, fixing K to be the number
provided by Lemma We also let 7, €,,a, and b, be some choice of objects satisfying the
requirements of Definition We fix choices of signs and scales for the N — K “exterior”
bubbles provided by Definition in the following lemma.

Remark 4.8. For each collision interval there exists a time ¢, € [a,,b,] with d(c,) > n and
we may assume without loss of generality that d(a,) = d(b,) = €, and d(t) > ¢, for each
t € [an,by]. Indeed, given some initial choice of [ay,b,] € Cx(n,€,), we can find a, < a, < ¢,
and ¢, < Zn < b, so that d(a,) = d(b,) = €, and d(t) > €, for each ¢t € [5n,gn]. Just set
an < an = 1inf{t < ¢, | d(t) > €,} and similarly for b,,.

Similarly, given some initial choice €, — 0,17 > 0 and intervals [a,, b,] € Cx (7, €,) we are free
to “enlarge” €, by choosing some other sequence €, < ¢, — 0, and new collision subintervals
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[@n, bn] C [an, bn] N Cx (1, &) as in the previous paragraph. We will enlarge our initial choice of
€, in this fashion several times over the course of the proof.

Lemma 4.9. Let K > 1 be the number given by Lemma[4.6, and let 1, €y, a, and b, be some
choice of objects satisfying the requirements of Definition [4.5. Then there exist a sequence
Gn € {—1,1}N"K q function i = (i1, -, pun) € CH(Unenlan, bnl; (0,00)V =), a sequence
vp, — 0, and a sequence my, € Z, so that defining the function,

v UneN[anv bn] - (07 OO), V(t) = VnNK+1(t)7 for te [an’ bn]a (47)

we have,

lim sup (i (t0(0) + B(u(t), v(t), 20(1) ) =0, (4.8)
n—00 t€lan,bn]
and defining w(t), h(t) for t € Up[an, by] by
N

w(t) = (1= X)) (W(t) — (1) + Xoyma®™ =mam+ > 0nj Q1) — ™) + h(t), (4.9)
j=K+1

we have, w(t) € Em,.ma, h(t) € E, and

lim  sup <||h(t)||§+(/”i(rt))k+ ZN: (“’J(t)))k)zo (4.10)
j=K+1

n=% telan bal 1(t) pj+1(t
with the convention that puy+1(t) =t. Finally, v(t) satisfies the estimate,
lim sup |V/(t)| =0. (4.11)

n—o0 t€[an,bn)
Remark 4.10. One should think of v(t) as the scale that separates the N — K “exterior”
bubbles, which are defined continuously on the union of the collision intervals [a,,b,] from
the K “interior” bubbles that are coherent at the endpoints of [a,,b,], but come into collision
somewhere inside the interval and lose their shape. In the case K = N, there are no exterior

bubbles, pux+1(t) =t and v, — 0 is chosen using (4.1]).

Proof. By Definition {4.1| for each n we can find scales px (t) < pr+1(t) < -+ < pn(t) < t and
signs &(t) € {—1, 1} for t € [ay, by), such that defining h, . (t) for r € (px(t),00) by

u(t) — ut(t) = Q(ma, @(t), i(t)) + hyy (t)

we have,

A(t: prc (1)) = s ()1 )00 +Z( )Sei, (4.12)

i1 (t

keeping the convention fix(t) := pk(t), in+1(t) := t. Using limy, o0 SUpsefqp) dic (t; prc(t)) = 0
and the fact that
lim sup E(Q(mAa E(t)7 ﬁ(t))a anﬁK+1(t)7 Bn/jK—H(t)) = 07

n—00 te [an 7bn}

for any two sequence o, < B, < 1, we can choose a sequence v, — 0 with

- : N S ~
pi(t) S vpjig+1(t), and  lim  sup  E(u(t) — w'(t); S vnfik+1(1), ntir+1(t) = 0.

n—00 te[anybn] 4
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Defining v(t) = vppix+1(t), it follows from Lemma [2.1] that we can find integers m,, € Z, which
are independent of ¢ € [ay, by] due to continuity of the flow so that

lim  sup sup lu(t,r) —u*(t,r) — mymw| =0,
n—00 te[anabn] TG(%VnﬁK+1 (t),4l/nﬁK+1(t))
- ) (4.13)
7g&mﬁiﬂwﬂ—u@%ﬂ%ﬂh@%wﬂwwmmwnzo
Thus, defining w(t) € &, m, and, h(t) € € for t € Uy[an, by, by
w(t) := (1 = Xp()) (w(t) — (1) + Xo mn™
N N N
= (1= xsw)mam+xs Y. oi(OT+xsmmam+ Y 05(t)(Qz,) — 7) + h(t)
J=K+1 j=K+1 (4.14)
N ~
=mam+ Y 0;()(Qp,) — ™) + (D)
j=K+1
we have using (4.12),
- () \F
sup h(t)||* + L <62 4.15
o (A0 + 3 () ) (41

for some sequence 6, — 0. We note that the last equality in (4.14) follows from the observation
that we must have,

N
ma— Y oj(t) =my, (4.16)
j=K+1
for any t € [ap, by]. We invoke Lemma and continuity of the flow to conclude that for each
n, the sign vector &'(t) = &, is independent of t € [a,, b,], and the functions fig+1(t),. .., un(t)

can be adjusted to be continuous functions of {. However, in the next sections we require
differentiability of the function fig41(t), so we must modify it slightly.
Given a vector ji(t) = (ug+1(t),...un(t)), set,

w(t7ﬂ(t)) = (1 - XunuK+1(t))(u(t) - u*(t)) + Xvnpr i1 () TnT

Fixing ¢ and suppressing it in the notation, and setting up for an argument as in the proof of

Lemma [2.25] define
F(h, fi) = h— (w(-, i) — Q(ma,Fn, 1)) + w(-, i) — Q(ma, Gn, 1)

and note that F'(0, ﬁ) = 0. Moreover,

N

. 1y
WEG Dl < Il + 3 |2 - \
j=K+1'"
Define,
. 1 . 1 .
Gl i) = (o (Bsees | FOu)) o Zy | FO D) )

and thus G(O,ﬁ = (0,...,0). Following the same scheme as the proof of LemmaMwe obtain
via Remark a mapping < : By (0; Cobp) — (0,00)V =K such that for each h € By (0; Cob,,)
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we have
[ (h) /1y =11 'S On
and such that
G, i) = 0 <= fi = <(h)
Using we define
hi= F(hs(R), i = s(h)
By construction we then have,
w(t, () = (1 = Xow) (w(t) = w* (1) + Xp(@ymnm
= Q(ma, G, fi(t)) + h(t)
for v(t) := vpur+1(t), and for each j = K +1,...,

LN,
h(t)|? (L) <02, 0={(z, | h 417
Lo (ot 32 (25)) 56 0= (20 110) (117)

Note that (4.8)) follows from the above and from (4.1)). The point is that we can now use
orthogonality conditions above to deduce the differentiability of x(¢). Indeed, noting the identity,

Oph(t) = dw(t, fi(t)) — 0 Q(ma, In, filt))

= VnH/KH(t)AX@(U(t) —u*(t) — mym) + h(t Z Oty (t AQ#]
j=K+1

differentiation of the jth orthogonality condition for h(t) gives for each j = K +1,...,N

gty (Z 1 AQ) + 3" o an(t <Zﬁj(t)|AQL(t)>
i#]

bt 1 (8) (Zy0) | Mo (w(t) = w*(8) = mm) ) = 5 (8) ([PA 2]y | 7' 1)

which is a diagonally dominant first order differential system for fi(¢). To see this, write the
above system as

(4.18)

N

where,
Ari1k401 = 01 (2 | AQ) + i Zupe s | Axugey (w = u* = mam)) = ([PAZ] e, [ 771)
Ajj=0n;i (Z1AQ) = ([rAZ],, | r'h) if j=K+2,...,N,
Ajrcrr = on g1 (B, | AQuy) + vn{ By | Aoy (u—w —mnm)), if j#K+1
oy <zﬁj | AQﬂ>j 40 (£K+1

Using that <Z ] AQ> > (0 along with and we see that the diagonal terms are all
O(1), whereas the off-diagonal terms are all small by (4.13), Corollary [2.21] and (4.17).

Next, fix any tg € Uylay, b, so that holds at the initial data fi(tp). The existence
and uniqueness theorem gives a unique solution jioge € C(J) for J > to a sufficiently small
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neighborhood. As the scales were uniquely defined using the implicit function theorem at each
fixed ¢ and the solution of the ODE preserves the orthogonality conditions, we must have fi(t) =
flode(t) must agree. Hence ji(t) € C'. Finally, inverting (4.18) we obtain the estimates,

15| < NRllze S 6n

Using the above with j = K + 1 yields (4.11). This completes the proof. O

4.2. Basic modulation. On some subintervals of the collision interval [a,, b,], mutual inter-
actions between the bubbles dominate the evolution of the solution. We justify the modulation
inequalities allowing to obtain explicit information on the solution on such time intervals. We
stress that in our current approach the modulation concerns only the bubbles from 1 to K.

Lemma 4.11 (Basic modulation, k > 2). There exist Cy,n9 > 0 and a sequence (, — 0 such
that the following is true.

Let n € N and J C [an,by,] be an open time interval such that d(t) < no for allt € J. Then,
there exist ' € {—1,1}X (independent of t € J), modulation parameters X € C1(J;(0,00)%),
and g(t) € & satisfying, for all t € J,

Xotlt) + (1= o) = Qmy, £X(1) + g (1), (419)
0=(Zp0 | (1), (4:20)
where v(t) is as in and my, is as in Lemma[{.9. The estimates,
cia — o< 1ol + Y (29 < chaw + 6o (421)
2\
and
laole+ 3 (220)" < coma (2209) 4. (422)
hold, where
A={je{l,...., K -1} # tj11}. (4.23)
Moreover, for all j € {1,...,K} andt € J,
X0 < Collae) 22 + o (424)
Ifj e {l,...,K} we have
SN0+ 5 Rgr (Enn | 90)]
< allstl? +Co( (55205) + () )10l + 6., (429

where, by convention, Ao(t) = 0, \x4+1(t) = oo for allt € J.

We observe that Lemma 4.11 is sufficient to reduce to the case K > 2. More precisely, under
the contradiction assumption that (4.5)) fails, the set A as defined in (4.23) is non-empty.

Lemma 4.12. If (4.5) is false, then both N, K > 2 and the set A defined in (4.23) is non-empty.
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Proof. Assume is false and A is empty. For n large, we have d(a,) = €, < np as in
Lemma [4.11. Define e, := sup{t € [an,b,] : d(7) < o VT € [an,t)}. Since A is empty, we
see from (4.21) and that d(t) < ¢, < 1 for all ¢t € [ay,e,) and thus e, = by, for large
n. But this is a contradiction, as [an, by] € Cx (7, €,) means there must be a ¢, € [an, by] with
d(cy,) > n > 0. Since A being empty is impossible, this implies that N, K > 2 in the event
that is false. O

Proof of Lemmal[{.11. Step 1:(The decomposition (4.19) and the estimates (4.21) and (4.22))
First, observe that by Lemma

lim sup |E(u(t);v(t),o0) — E(u*)— (N - K)E(Q)|=0.
Jim s [Bu():(),00) - Bw) ~ (N~ K)B(Q) (1.26)
Since E(u) = E(u*) + NE(Q) it follows from the above along with (4.8)) that
lim sup |E(u(t);0,2v(t)) — KE(Q)| =0.
Jim s [B((t):0,200) ~ KE(@) (4.27)

Using continuity of the flow, the fact that d(¢) <79 on J, Lemma and by taking ng > 0

small enough, we obtain continuous functions A(£) = (A1 (¢), ..., An(t)) and signs 7 independent
of t € J, so that

and,

N -
A(t)? < ’@*Z( )) < 4d(t). (4.28)

o A(t)

with as usual the convention that A N+1(t) = t. Tt follows from (4.26) and ( - 4.27) that,

sup [(Xf(g))k + (X;(:)(t)>k] <d()? +on(1) as n — oo, (4.29)

which means, roughly speaking, that there are K bubbles to the left of the curve v(t) and N — K
bubbles to the right of the curve v(t). Above, and in the rest of the proof, the notation o,(1) is
used to denote a quantity tending to 0 with n that is independent of the subinterval J € [ay,, by,].
In all instances where 0,(1) appears in the proof it arises from quantities that are estimated
uniformly in ¢ € [ay, by].
For the purposes of this argument we denote by

v(t) == u()xu(r) + (1 = Xp())mnT,

w(t) := (u(t) —u™ (1)) (1 = Xur)) + XuyMnT
Noting that Lemma together with (4.29) imply the identity,

N

(ma — Z Lj)T = myT,

j=K+1

(4.30)

we may express v(t) on J C [an, b,] as follows,

K
v(t) = m,m + Z Lj(QXj(t) — )
j=1
K N
1 — Xv(t) Z LJ + Xv(t) Z LJQ)\ + Xv(t)UW (t> + Xu(t)g(w'
j=1 j=K+1
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Using (4.1)) along with (4.28) and (4.29) we see that,

K
lo(t) = mnm =3 15(Q5 ) — ||g+z( ) < d(t)? +0a(1) as n— oo,
j=1 Aj+

1(
This means that

dp, .k (v(t)) SdA(t) +0n(1) as n— o0

in the notation of Lemma By taking 19 > 0 small enough, and n large enough, we may
apply Lemma[2.25] (as well as Lemma which ensures the signs 7'stays fixed) at each ¢ € J,
to obtain unique g(t) € £, A(t) € (0,00)% so that

v(t) = Q(mn, &A1) + g(1),

0=(Zy0l9®), Yi=1.. K, (4.31)

where in this formula 7, X are K-vectors, i.e., ©'= (i1, ...,tx), AMt) = (A1 (1), ..., A (t)). We note
the estimate,

K-1
du, (0n(8) < g2+ 3 ( ) () S o) + a2 + o)
Jj=1 .

5 d(t)Q + On(1)7
as n — oo. Next, using (4.27) we see that
E(v) < KE(Q) + on(1).

Therefore, the estimate (2.30) from Lemma applied here yields,

o)1 < sup (222) "+ 1)

jeA NAj11(t)

where A= {j e {1,..., K —1} : ¢; # tj11}, proving (4.22).

Next, we prove the lower bound in (4.21). Note the identity,
u(t) —u'(t) = v(t) — mpm +w(t) — xyyu'(t)

K N
7j=1 j=K+1

+9(t) + h(t) = xppu'(t)

which follows from (4.30), (4.9) and (4.16).

First we prove that (tx41,...,tn) = (0K+1,-..,0n). From and (| we see that

)~ s > 0y @y~ + (40 )k+ iv: (’”(t) ) <a
: j=K+1UW w0 7 Nk (t) j=K+1 pj+1(t) S €

On the other hand, we see from (4.29) that,

N

o) —mam— 3 1@ -+ (20 4 3 (L) Saw? 4 o)

j=K+1 Ak41(t)
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Hence, using Lemma we see that for any 6y > 0 we may take 1y > 0 small enough so that
(tk4+1s-+-3tN) = (0K+1,--.,0nN), and in addition we have

i (t
‘ i) —1‘590 Vji=K+1,...,N.
Nn,j(t)

The above, together with (4.10]) implies that
N

> () 2

j=K+1 Aj1(t

We may thus rewrite (4.33) as

K N
u(t) —u(t) =mam+ > (@ — ™+ >, 4(Quu — )
i=1 j=K+1

+g(t) + h(t) — xpyu'(t)
Noting that

sup [lu*(t) Xy lle = 0n(1) as n — oo,
tE€lan,bn)

the previous line together with (4.32) and (4.10) imply that,

K-1

d(t)’ < du, i (0(1)” + 0a(1) 5 g (t) Z(

> +o,(1) as n — oo,
J+1
which proves the lower bound in (4.21).

Step 2:(The dynamical estimates (4.24) and (4.25)) Momentarily assuming that X € C*(J)
(we will justify this assumption below) we record the computations,

K
) V(t -
0uv(t) = 3(6) + (mm = ) vy Qs K(0) = = D (01AQ 0,
j=1
Differentiating in time the first line in and using the above lead to the expression,
X V'(t)
dg(t) ) + Z LA BAQx, 0 + (mnT — u(t))~ © AXo(r)- (4.34)
7j=1

We differentiate the orthogonality conditions (4.20) for each j =1,..., K,

0= —f\\i<AZAj | 9>+<Zﬁ | 8tg>

N K .
- —/\—j. <AZ>\j ’ g> + <Z>\j | g> + ZLM@ <Z>\j | AQ&> + > <Z,\j | (mpm — u)AXl,> ,
J o o =1 - -
which we rearrange into the system,

X ((214Q) = XHAZ, [ 9)) + DN (2, | AQu,)
i#]

/

- <zﬁ | g> - ”; <zﬁ | (mnm — u)AX,,> . (4.35)
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This is a diagonally dominant system, hence invertible, and we arrive at the estimate,
(N[ S lgllzz +on(1) j=1,..., K, (4.36)

after noting the estimates,
(2, 18)| S lgllze

V' (t Ajoo_
S0 (23, 1 mam = )] S 12 = )l = 0a 1)
where the last line follows from (f.11). Lastly, we note that the system (4.35) implies that X(¢)
is a C! function on J. Indeed, arguing as in the end of the proof of Lemma let tg € J
be any time and let A(¢9p) be defined as in (4.31). Using the smallness (4.32)) at time to, the
system (4.35)) admits a unique C'' solution Aoqe(#) in a neighborhood of ¢y. Due to the way the
system (4.35) was derived, the orthogonality conditions in (4.31) hold with Ayge(t). Since A(t)
was obtained uniquely via the implicit function theorem, we must have A(t) = Aoge(t), which
means that A(t) is C?.

Lastly, the estimates (4.25)) are immediate from (4.35) using (4.36)) along with the estimates,

N\ k+1
(%) if j<i
k—1
(%) if >
AT (A2, 19) | S Nl

This completes the proof. ]

<Zﬁ | AQ&> S

4.3. Refined modulation. Next, our goal is to gain precise dynamical control of the modu-
lation parameters in the spirit of [35,/41]. The idea is to construct a virial correction to the
modulation parameters; see . We start by finding suitable truncation of the function %7“2,
similar to |36, Lemma 4.6]. Since here we may have arbitrary number of bubbles, we need to
localize this function both away from r = 0 and away from r = co. To make the exposition as
uniform as possible, we restrict to equivariance classes k > 2 in this section, saving case k = 1,
which introduces additional technical complications, for the appendix.

Lemma 4.13. For any ¢ > 0 and R > 1 there exists a function ¢ = q.r € C*((0,00)) having
the following properties:

(P1) q(r) = 3r? for allr € [R™1, R),
(P2) there exists R > 0 (depending on ¢ and R) such that q(r) = const for r > R and
q(r) = const forr < R7!,
(P3) |¢'(r)| S and |¢"(r)] S 1 for all r > 0, with constants independent of ¢ and R,
(P4) q"(r) > —c and Lq'(r) > —c for allr > 0,
2 _
(P5) ’(é% + %%) q(r)’ <ecr~2 for all r > 0,
(P6) ‘(@),’ <ecrt for all v > 0.
Proof. Step 1: We construct a function ¢(r) satisfying the desired properties for all » > 1. In
this step, without loss of generality we can assume R = 1. Let ¢; > 0 be small, to be chosen

later and set
) gr2 if r<1
r) =
o %TQ —o(r) if r>1
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where 1,(r) = %T‘Q logr + {/;0(7”) and {/;o(r) is any smooth function satisfying,
- - 1 ~ - -
Fo()=0, d)=-5, =2 W=-1, FI0)=1,

G| £ vr>1, =01, .4

which ensures 0 = (1) = ¥.(1) = ¥ (1) = ¢J(1) = w(()4)(1). To construct such a function it
suffices to take a suitable linear combination of negative powers of r, for example. Set Ry :=
exp(1/c1). We check all the properties for 1 < r < Ry. We have, ¢/(r) = 7(1 —c1logr)+ O(cyr)
and ¢/(r) = (1 — c¢1logr) + O(c1), so (P4) holds. Also,

K%(T))’

+0(r ) =0

r

1
(log r + 5)/

for an absolute constant, implying (P6). (P5) follows from A2(r?logr) = 0, with all the
remaining terms estimated brutally. We now truncate at Ry, setting e;(r) := %'N x(r) for
j=1,...,4 and defining,

Go(r) if 7 < Ry
q(r) := 4 ) Je |
Go(Ro) + >25-1 45 (Ro)Ryej (=1 +r/Ro), if r > Ry

Noting that ’qgj)(Rg)‘ S clRS_j for j = 1,...,4, we see that ¢(r) inherits all the desired

properties from ¢,(r) and is constant after 3Ry; see |36, Lemma 4.6] for additional details.
Step 2: We next find a function ¢(r) with all the desired properties for r < 1. As above, we
may assume here that R = 1. Let ¢; > 0 be small, to be chosen later, and set

) gr2 if r>1
i(r) = .
a %73 + cai(r) if <1

where 1;(r) = 3r2logr + ¢i(r) and ¥;(r) is any smooth function satisfying,
B)=0, F0)=—5 FO)=-5 FW=-1, §)=1,
W s w1, =014

which ensures 0 = (1) = /(1) = (1) = ¢"(1) = wi(4)(1). To obtain such a function it
suffices to take a suitable linear combination of positive powers of r, for example. Set R, .=
exp(—é). One can check, as in Step 1, that all the properties hold for Ry < p <1, using that
1+cilogr > 0 in this regime. Then truncate as in Step 1 to obtain the truncated function g(r).

Step 3: The final function ¢(r) is obtained by gluing together the two functions called ¢

obtained in Steps 1, 2. O
Definition 4.14 (Localized virial operator). For each A\ > 0 we set
T
ANg(r) :=d'(3) - Drg(r), (4.37)
(Lt Lo (.
ANg(r) = (534" (5) + 5.4 () 9(r) + () - Frg(r). (4.38)

These operators depend on ¢ and R as in Lemma |4.13

Note the similarity between A and %A and between A and %A. For technical reasons we
introduce the space

X::{geng,argeH}.
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Lemma 4.15 (Localized virial estimates). [36, Lemma 5.5] For any co > 0 there exist c1, Ry >

0, so that for all ¢, R as Lemma[{.13 with ¢ < c1, R > Ry the operators A(X) and A()) defined

n and have the following properties:

o the families {A(X) : A > 0}, {A(N) : A > 0}, {AO\A(N) : A > 0} and {NO\A(N) : A > 0} are
bounded in £ (H; L?), with the bound depending only on the choice of the function q(r),

o Let g1 = Q(m, 7, X) be an M-bubble configuration and let g € X. Then, for all A > 0,

(4001 | 57001+ 92) — 10 — Fla)an))

+ (A2 | (o +92) — Flan) ~ a) )| < Dl (429

e For all g € X we have

(AW)g | Log) = ~ Lol + 5 /R Rl (0r0)? + 5567 o (4.40)
e For A\, u > 0 with either \/pu < 1 or p/\ < 1,
[AAQN — A(N)AQA| 2 < co, (4.41)
H(%A —AN)@xllz~ < %0 (4.42)
Al + IANQul % 5 minf(3/m)*, (/X)) (4.43)
JANQullzz + 1AM Qullze S min{(A/w)*, (/1)) (4.44)

o Lastly, the following localized coercivity estimate holds. Fiz any smooth function Z € L> N X
such that (Z | AQ) > 0. For any g € H A\ > 0 with (g | Z)) =0,
N L 1, ry XA, r k2

- - v d - — M VY S v !/ _ 1 2 d

§ 0k a5 [T G () + 5 () 5@ — g rar

R-1) (4.45)

C(] 2
> = )
=7 ”9||H

Proof. See [36, Lemmas 4.7 and 5.5] for the proof in the cases k > 2 and [65, Lemma 3.7 and
Remark 3.8] for modifications to handle the case k = 1. O

The modulation parameters X(t) defined in Lemma are imprecise proxies for the dynamics
in the case k = 2 (and also k = 1; see the appendix) due to the fact that the orthogonality
conditions were imposed relative to Z # AQ. Indeed, we use primarily to ensure coercivity,
and thus the estimate , as well as the differentiability of X(t) To access the dynamics
of we introduce a correction £(t) defined as follows. For each t € J C [an,by] as in

Lemma |4.11] set,
£() Aj(t) if >3 (4.46)

i(t) = i . .

J Aj(t) — ”Aéi]”z?@mj(t)/\@xj(t) |g(t)) if k=2
foreach j =1,..., K—1, and where L > 0 is a large constant to be determined below. (Note that
for j = K we only require the brutal estimate (4.24))). We require yet another modification, since
the dynamics of ([I.1)) truly enter after taking two derivatives of the modulation parameters and it
is not clear how to derive useful estimates from the expression for £J/(t). So we introduce a refined
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modulation parameter, which we view as a subtle correction to % (t). For each t € J C [ap, by)
as in Lemma and for each j € {1,..., K} define,

Bi(t) = — A (AQx, iy | §(1)) —
LQ

(A ()g(t) [ 9(1)) - (4.47)

1
IAQIIZ
Note that (;(¢) is similar to the function called b(¢) in [41].

Lemma 4.16 (Refined modulation). Let k > 2 and ¢y € (0,1). There exist no > 0,L > 0,¢ >
0,R>1,Cp > 0 and a decreasing sequence d, — 0 so that the following is true. Let J C [an,by]
be an open time interval with

d(t) <no and max (\(t)/Aip1(1)? > 6, (4.48)

€A

forallt € J, where A:={j e {l,..., K —1}|tj # tj+1}. Then, for allt e J,

Hgm+§ 0/ 241 (0)"* < Comax (Ai(t) /A (1), (4.49)
and,
Cfod(t) < max ((0)/Ai1(5)"7? < Cod (1), (4.50)
Moreover, for all j € {1,...,K —1} and t € J,
&5()/ A () = 1] < co, (4.51)
, , Ni(t) \"?
600~ (0] < comax (240) (1.52)
and,

ﬁ;(t) > (—ijj+1w2 — CO) Ajl(t) (A?i%)) + (ijj—1w2 _ CO) )\]1( 5 <)\§\] ét()t)>
k

_conmx<Axﬂ
Aj(t) ieAd \ Aita(t)
where, by convention, A\o(t) = 0, \x11(t) = oo for all t € J, and w? > 0 is defined by
w? = W(k) = 8]<:2||AQ||]T422 = 4k*zr tsin(n/k) > 0.
Remark 4.17. By , without loss of generality (upon enlarging €,,), we can assume that
M= d(t) > e implies max (\(t)/Ai1 (1) = 5,

so that Lemma can always be applied on the time intervals J C [a,, b,] as long as d(t) < g
on J.

Before beginning the proof of Lemma we record the equation satisfied by g(t). Observe
the identity,

o~

AQ(my, 5 X) = QEijQA
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and hence,

2 — v A
(OFu)x = ol — 5 Flu)xe
2
= A(UXV +(1 - Xl/)mnﬂ') - %f(uxu + (1 - XV)mnﬂ'))
1 k>
- 78 UAXV (mnﬂ' - u)(r AX) + ﬁ (f(U’XU + (1 - Xu)mnﬂ-)) - f(u)Xu)
2 - X
=Ag- (f(Q(mn, LX) +9) =D ufQy))
j=1
1 5 k2
— 78 ulN Y, + (mnTr —u)(rcAx), + T—Q(f(uxy +(1- x,,)mnﬂ)) — f(u)x,,).

Recalling (4.34), we are led to the System of equations,

rg(t) +ZLJ HAQ, 1) + d(u(t), v(1)) (450
ey (t) = —£Qg+f1<mn,L N) + fa(ma, T, X, g) + d(ult), v(1)),
where,
$(u,v) = (mam 1)L A,
Su,v) = —fa by + — Ll —u) (P AX), (4.55)

2 /
2 (ot @ = x)mam) — F) — Lo

which we note are supported in r € (v,00), and

NS k2 o K
filmn, T, X) == —ﬁ(f(Q(mn, nX) — ZLjf(QA]-))
j=1
N k2 . , s
falma, 7%, 9) 1= =5 (£(QUma ) + ) = £(Qma, 7)) = /(.7 X)) ).
The subscript i above stands for “interaction” and q stands for “quadratic.” In particular,
fq(mn, 0, A, g) satisfies,

1 fa(man, T X, 9)llr S gl (4.56)

In one instance it will be convenient to rewrite the right-hand side of the equation for ¢ as
follows,

00y = —Log + fi(mn, 1, X) + fq(mn, T, X, 9) + d(u, x0), (4.57)
where ﬁl(mn, 7, X, g) is defined by the formula,
~ - k2 - -
fq(mn7 L, >‘7 g) = _T72 (f(Q(mna 2 A) + g) - f(Q(mn7 2 A)) - g) . (458)

Proof of Lemmal[{.16 . First, we prove the estimates (4.49) and (4.50). Let ¢, be the sequence
given by Lemma and let §, be any sequence such that (,/d, — 0 as n — oo. Using

Lemma estimate (4.49) follows from (4.22) and the estimate (4.50) follows from (4.21).
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Note also that with this choice of §,, and , the estimate leads to,
RGPS max ()\i(t)/)\i+1(t))k/2- (4.59)
Next, we treat , which is only relevant in the case k = 2. From we see that,
€5/ =11 = IAQILEA; H{xea,AQy, | 9))|
S llgllze<( 1+/ AQ(r)rdr) S (1 +log(L))llgllm < co

using (4.49) and (4.50) in the last line. Next we compute (t).
For k = 2, from (4.46) we have

&=\ — WO@AMQ& | &:9)
/ (4.60)
iy )\j oA
FIRQIE. 3, X ACw 9]+ g, b )

We examine each of the terms on the right above. The last two terms are negligible. Indeed,

using ||gl|z= < |l9]lH,
/

N 2L
0, AQ, [9)] $ il ol [ aQE)rar
J x i
< lgll.

and,

N oL
000, A0y, 1) 5 gl Ll [ AQE) P < (14 ToB(L) gl
j A

which is small relative to ||g||s because of (4.49). Using (4.54) in the second term in (4.60) gives

K
Li Li . Ui
-t <XL,\J-AQ£ | Og) = _7]2<XLAJ~AQ£ | g) — 732<XL/\J-AQ£ \ Z LNAQ), )
IAQ% - 1AQI7 2 IAQI5 - po
L
- m@(mﬂ&@ﬁ | ¢(u,v)).

The first term on the right satisfies,

ol AO. | L o 1
TaQIE, YA 19 = HAQIP (AQx; 19)+ g, (1~ Xea)AQa, 19)
- HAQH2 (AQx, 1 9) +or(D)llglle-

where the o7 (1) term can be made as small as we like by taking L > 0 large. Using (4.59)), the
second term yields,

K
s
- W@CWAQM | ZW\;AQQ ==
L2 = 1
Lili A
Z”AJQHQ XA, AQy, | QA>+HAQH2< = X1, AQy, [ AQy,)

= =X+ O((Aj-1/A) + N/ Aj) + 01(1) max (Ni/Ain) 2.
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Finally, the third term vanishes due to the fact that for each j < K, L\; < Ag < v, and hence
(X2, AQy, | ¢(u,v)) =0.
Plugging all of this back into (4.60) we obtain,

k/2

L(t) + (A Qx ]g>‘ < ¢ max (Ni/ i)™ (4.61)

HAQH2

for k = 2, after fixing L > 0 sufficiently large. The same estimate for k£ > 3, i.e., when
§;(t) = N;(t), is immediate from (4.25) since in this case we take Z = AQ. Thus (4.61)) holds
for all £ > 2. The estimate (4.52) is then immediate from (4.61), the definition of §;, and the
estimate,

< 2
‘HAQII A(Nj)g | g) ‘ Slalle,

which follows from the first bullet point in Lemma [4.15.
We prove (4.53). We compute,

i = L] )\7; AAQN. | § A 0,6
1 A;. 1 . ) (@
3, W AN | §) — T (AN | 9:)
" TAQIE: 3, AC 1s- TR0 A2 |9)~ T (A0)g | 2)

Using (4.54) we arrive at the expression,

~(AQy, | 84d) = (AQx, | (Lo~ £,)9) — (AQ, | filmn, 1. )
— (AQy, | falmon75.0)) — (AQs, | 9u.r))

where in the first term on the right we used that £, AQ,; = 0. Using (4.54) we obtain,

— (A9 | 9) =~ (A | 9) ZLM DAQ, | 9) = (A)o(w.v) | 9)

= 1% (A)AQy, | g> SN, <7 )AQ, | 9) = (A)o(u,v) | 4)
i#]

where we used that (A()\;)¢g | g) = 0. Finally, using (4.57) we have,

— (A9 | 9g) = (A9 | Log) = (AN)g | fi(mas e, X))
— (A9 | Talmn, 7.3, 9)) = (A9 | dlu,v))
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Plugging these back into (4.62) and rearranging we have,

I1AQIE5; = —5 <AQA Ifl(mn,u)\)> (A(A\)g | Log)
+((A) = A9 | falmn, X, 9))
N
<AQ,\ | (Lo —Ly)g >+Ljfj (%A—A(A]’))AQ,\J \g>
J J

) , (4.63)
+ 1 <(A()\J) — TA)Q)" ] fq(mn,b,)\,g)> - <)\]8,\JA()\])9 | g>
J
+ > u (AN, | falma, X, g))
i#]
=N (AOAQ), 1§) — (A9 | filma, e, X))
1#]

We examine each of the terms on the right-hand side above. The leading order contribution
comes from the first term, i.e., by Lemma [2.23

9 o Lili+1 [ Aj \F 9 o Lili—1 [ Aj—1\F
“STAGTE (AQy [ ilmases X)) = —(w? + OGN L () 4 7 + 06D T ()

The second and third terms together will have a sign, up to an acceptable error. First, us-

ing (4.40) we have,
o 1 RX; k2
(A)g | Lag) = =lally+ 3 [ (00 + 557 rar
)\J )\] R_l)\j T
To treat the third term, we start by using the definition (4.58) to observe the identity,

};(mn,f,x,g) = *7(]0/(@)\]-) - 1) - 7(f,(Q(mn’ LJ7 _, )) f (Q)x )) (4.64)

Next, by definition,

1,1 r A,
AN) —AN))g = =)+ ¢ (—
(A(N) — AN))g A],(2@1 (Aj)+2rq(Aj))g
The contributions of the second two terms in (4.64) yield acceptable errors. Indeed,

2

{(AK) — Ao | (7 (Q0m,15.5) ~ 7(@3,))9)]

1 RAJ - dT g )
= /~ 9 | (Q(mn, 75, Aj)) — f’(Q)\j))‘ - Com
>\.7 R_l)\j r A]
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with R as in Lemma [4.13, and by (4.56]) and the definition of ¢ from Lemma m

. 1 gll?
((A0) = A9 | Jalma 7 X,9))] S - lglle gl < CO”)\”-H
] J

Putting this together we obtain,

~ o 1 [>*,1, i, I
‘<(A(>‘j) — A9 | fa(mn, T, X, 9)) —/\j/o (2q (;j) +ﬁq ()\Lj))ﬁ(f (Qx,) — 1)g*rdr
<COHngq
~Y )\] N

We show that the remaining terms contribute acceptable errors. For the fourth term a direct
calculation gives,

1 _ _
(4Qx, | (Lo = £3)9)| < -9l D (I~ AQxAGR 12 + 7™ AQ3, AQx 1)
! i#]

1 Ai \F Ai—1\F
< 3 2=
e ((5) + ()
By along with we have,
N1
52 (A= A0)AQy, 1) £ 2l
j j

J

For the sixth term on the right-hand side of (4.63) we note that

K
(M) Y 1iQx, = AN)Q(ma, T, X),
=1

-

and hence we may apply (4.39) with g1 = Q(my,, 2} A) and go = g to conclude that

K
(A09) Do | falomn, 75 9)) + (A9 | Falrmns 5K 9)) | < Sl

i=1
which takes care of the sixth and seventh terms. By (4.42) and (4.56) we see that,

((40) = 500, | fam73.))| 5 Lol

J
Using the first bullet point in Lemma |4.15 and (4.24) we estimate the eighth term as follows,

N co
;’, (v0n A)a | 3)] 5 -1l < Slal
.]

Next, using (4.43)) and ( we have,

\ZM Q| famas 23.9)) | £ 3l
i#]

An application of (4.44) and (4.24) gives

> (a0nax 19)] < gl
i#] J
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Next, consider the twelfth term. Using the first bullet point in Lemma [4.15, and in particular
the spatlal localization of A(\;) we obtain

(A | filmns 1, X)) S gl fiCmans 1 Dl -1y, < in,

Using the expansion (2.25) from Lemma we have the pointwise estimate,

v —2 2
fi(m’R7L7}\)‘ S./ r ;AQ)\ZAQ)\Z (465)

It follows that

- 1 A \F 1 /7Xi_1\Fk
s N o iy S (20 )+ (221
Hf(m 2 )HL2(R IX;<r<RA;) ~ )\j ()\j+1) + A ( /\j )

> 1 Ak 1 ANk
AN (M, 1, A ‘<7 ((73 7<37 .
(400 1 5ma, 3] < ol ((55) "+ 3 (54))
Finally, we treat the last line of (£.63)). First, using Lemma [4.9{ and the definition of ¢ in (£.55)

we have

We obtain

. 1 /Aj\Fk On
(40, 1w x))| £ - (2) Blult):ve).2v) < 3 (4.66)

—_ yi 14 )\j
for some sequence 0, — 0 as n — oco. The last two terms in (4.63) vanish due to the support

properties of A();), é(u, ), d(u, ) and the fact that A; < A\jx < v.
Combining these estimates in (4.63) we obtain the inequality,

IWE'RY IIOYERN
"> (—rjaw? —c <J> + (etjo1w* — ¢ <J)
B - ( A 0) )\j )‘j—i-l (j i1 0) )‘j )\j

1[N 2]{: "01,,7" )\3,7“ k2 9
+)\j/RI)\j ((&g) TdT‘F/ 2’/“q (/\J)) (f (Q)\ )*1)9 rdr

2 )

_COHQHS ey,
Aj Aj

where to obtain cgd, in the last term we enlarged §, so as to ensure 0, > 6, in the esti-

mate (4.66). Finally, we use (4.45) on the second line above followed by (4.49) and (4.48) to
O

conclude the proof.

Finally, we prove that, again by enlarging ¢,, we can control the error in the virial identity,
see Lemma by d

Lemma 4.18. There exist Cy,n9 > 0 depending only on k and N and a decreasing sequence
€, — 0 such that

€20 (u(t))] < Cod(?)
for all t € [an,by] such that €, < d(t) < no, p(t) < v(t) and |p'(t)| < 1.

Proof. Since limp, 00 SUPseiq,, b, 101 lle(w (1), 20(1)) = 0, Lemma yields

lu(t) = @(mn, &A1) = g()leaviy = 0, asn — oo,

Using Remark [4.17, (4.49) and (4.50) we have ||g(t)||le < d(t), hence, after choosing €, — 0
sufficiently large, it suffices to check that

190 (Q(m, T X(2)))] < Cod(t),
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which in turn will follow from
© —
| [(0rQtma. 22 ~ &
0

Recall that AQ) = r0.Q» = ksinQ), so it suffices to estimate the cross terms. It is easy to

check that
‘sin2 (Zai) — z:sin2 ai| < 42 | sin ;|| sina;|.

i#]

osin? Q(my,, 7, X(t))

r2

‘rdr < Cod(t).

Invoking the bound
o0 dr
| AumAQunISE < (w

from [41, p. 1277], we obtain the claim. O

5. CONCLUSION OF THE PROOF

5.1. The scale of the K-th bubble. As mentioned in the Introduction, the K-th bubble is of
particular importance. We introduce below a function p which is well-defined on every [a,, b,],
and close to Ax on time intervals where the solution approaches a multi-bubble configuration.

Definition 5.1 (The scale of the K-th bubble). For all ¢t € I, we set
p(t) :==sup {r: E(u(t);r) = (N — K + 1/2)E(Q) + E(u*)}.

Note that K > 0 implies 0 < (N -K+1/2)E(Q)+ E(u*) < E(u), hence p(t) is a well-defined
finite positive number for all ¢ € I. By Lemma 4.9
lim  sup | Eu(t)u(t) — (N — K)E(Q) - Eu")| =0,
n—ro0 tE€lan,bn)
which implies u(t) < v(t) for all n large enough and t € [ay,, by], thus u(t) < pr41(t) as n — oo.

In the next lemma, we relate the localized distance function g, defined by (3.1), computed
at any scale R > pu(t), with the global distance function d(t).

Lemma 5.2. The function p defined above has the following properties:

(i) its Lipschitz constant is < 1,

(ii) for any e > 0 there exist 0 < § < ng and ng € N such that t € [ay,b,] with n > ng and
d(t) <6 imply |pu(t)/ Ak (t) — 1] < €, where Ak (t) is the modulation parameter defined in
Lemmal[4.11,

(113) if (tn)n and (rn)n are any sequences such that t, € [ap,by] for all n, 1 < r, <
prc1(tn)/p(tn) and limy, o0 6, u2,) (tn) = 0, then limy, o0 d(t,) = 0.

Proof. Let s,t € I. We prove that |u(s) — p(t)| < |s — t|. Assume, without loss of generality,
w(t) > u(s). Of course, we can also assume pu(t) > |s —t|. By (2.2),

E(u(s); u(t) —[s —t]) = E(u(t); p(t)) = (N — K + 1/2) E(Q) + E(u”),
which implies p(s) > u(t) — |s — t|.
In order to prove (ii), it suffices to check that
E(u(t); (1+€)Ax(t) < (N - K +1/2)E(Q) + E(u’),
E(u(t);(1—e)Ak(t)) > (N -K+1/2)E(Q) + E(u").
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By , this will follow from
E(u(t); (1 +€)Ax (1), v(t) < E(Q)/2,
E(u(t); (1 — Ak (1), v(t)) > E(Q)/2.
We use ([4.19). By ([4.21), ||lgll¢ < 1 when § < 1 and ng >> 1. Thus, it suffices to see that
E(Q(mn, 7 X); (1+ Ak (1), v(t) < B(Q)/2,
E(Q(mn, 7, N); (1 — ) Ak (1), (1) > E(Q)/2

whenever ZJKZI Aj(t)/Aj+1(t) < 1, which is obtained directly from the definition of Q.
We now prove (iii). Let R,, be a sequence such that r,u(t,) < R, < pr+1(tn). Without loss
of generality, we can assume R,, > v(t,), since it suffices to replace R, by v(t,) for all n such

that R, < v(t,). Let M,,my,, iy, Xn be parameters such that

lu(tn) = Q(mm, Ty A [Frr<rapatta) + 18 T2ty + Z ( +1) =0, (5.1)
74]
which exist by the definition of the localized distance function ({3.1] . Since

(5 - %)E(Q) < liminf E(u(ty): 0, rppu(tn)) < limsup E(w(ty); 0, rpultn)) < KE(Q),

n—oo n—oo

we have M,, = K for n large enough. We set A, ; := p;(t,) and ¢y, j := o for j > K. We claim
that

Tim (yu(t)_u*(t) Q(ma, Tny An |yg+z( m+1) >—o.

By the definition of d, the proof will be finished. First, we observe that A\, x < rpu(ty), so
A,k /An,k+1 — 0. In the region r < r,u(t,), convergence follows from , since the energy
of the exterior bubbles asymptotically vanishes there. In the region r > R,,, the energy of the
interior bubbles vanishes, hence it suffices to apply Lemma and recall that R, > v(t,). In
particular

lim E(u(t,);0,rpu(t,)) = KE(Q), lim E(u(ty);R,) = (N — K)E(Q) + E(u"),

n—oo n—0o0
which implies
lim B (u(tn); rnpt(tn), Bn) = 0,
n—oo

and (2.1)) yields convergence of the error also in the region r,u(t,) <r < R,. O

Our next goal is to prove that the minimality of K (see Definition implies a lower bound
on the length of the collision intervals. First, we have the following fact.

Lemma 5.3. If m, € Z, 1, € {—-1,1}, 0 < rpy < iy K Ry, 0 < tp, € pp, and uy, a sequence of
solutions of (1.1)) such that w,(t) is defined fort € [0,t,] and

nll{go Hu”(o) - (mnﬂ- + LnQﬂn)Hg(ran’ﬂ) = 0’

then

Jim. S [wn(t) = (M7 + 0@y, e+t 7,—1) = 0-

Proof. Without loss of generality, we can assume m, = 0, ¢, = 1 and pu, = 1. After these
reductions, the conclusion directly follows from [9, Lemma 3.4]. O
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(0,m] there exist € € (0,1) and Cy, >0
67

Lemma 5.4. Ifn > 0 is small enough, then for anyn 1
d(d) < € and there exists ty € [c,d]

S
having the following property. If [c,d] C [an,by], d(c) <
such that d(to) >, then

d—c> Oy max(u(c), p(d)).

Proof. We argue by contradiction. If the statement is false, then there exist n > 0, a de-
creasing sequence (€,) tending to 0, an increasing sequence (C,) tending to co and intervals
[en,dn] C lan,by] (up to passing to a subsequence in the sequence of the collision intervals
[an,by]) such that d(c,) < €, d(dn) < €, there exists t, € [cn,d,] such that d(t,) > n
and d,, — ¢, < Cytmax(u(ey,), u(dn)). We will check that, up to adjusting the sequence e,
[en,dn] € Ck—1(€n,n) for all n, contradicting Definition

The first and second requirement in Definition [4.4]are clearly satisfied. It remains to construct
a function pg_1 : [en, dy] — [0,00) such that

lim sup dg_1(t;pr-1(t)) = 0. (5.2)

n—00 te[Cnydn}

Assume pu(cy) > p(dy) (the proof in the opposite case is very similar). Let r, be a sequence
such that \x_1(c,) < 1, < Ag(ey) (recall that Ag(cy,) is at main order equal to u(c,) and
that Ag(t) = 0 by convention). Set px_1(t) := ry + (t — ¢p) for t € [cp,dy]. Recall that
Gn € {—1,1}¥"K and ji(t) € (0,00)¥~K are defined in Lemma Let ¢, be the sign of
the K-th bubble at time ¢,, and set & := (1,,, ) € {—1,1}¥~E=1D and Ji(t) == (u(cn), fi(t)) €
(0, oo)N_(K_l). Let R,, be a sequence such that v,(c,) < R, < pryi1(c,). Applying Lemmah
with these sequences 7y, R, and u,(t) := u(c, +t), we obtain

lim  sup [lu(t) — Q(ma, T, (1) lle(pr_1(),00) = 0

n—00 te [Cn,dn}

implying (5.2) O

Remark 5.5. We denote the constant C,, to stress that it depends on the solution w and is
obtained in a non-constructive way as a consequence of the assumption that « does not satisfy
the continuous time soliton resolution.

5.2. Demolition of the multi-bubble. Recall the following notion from Real Analysis. If
XCR, U: X —- RU{+o0} and ty € X, we say that to is a local minimal point from the right
if there exists t; > to such that U(tg) < U(t) for all ¢ € X N (tp,t1). Similarly, we say that
to is a local minimal point from the left if there exists t; < to such that U(tg) < U(t) for all
t e X N(t,to).

Definition 5.6 (Weighted interaction energy). On each collision interval [an, b,], we define the
function U : [an, b,] — R4 as follows:
o if d(t) > 1o, then U(t) := +o0.
o if d(¢) < no, then U(t) := max;ea (2_i§,~(t)/)\i+1(t))k, where A1 and & are the modu-
lation parameter and its refinement defined above, see Lemma [4.16.

Remark 5.7. Continuity of d, & and \; implies that U is finite and continuous in a neighborhood
of any point where it is finite. Moreover, applying (4.51) and (4.50), we obtain that there exists
C1 > 0 such that

d(t) <no implies C;'d(t)? <U(t) < C1d(t)>. (5.3)
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Lemma 5.8. Let k > 2. If ny is small enough, then there exists Cy > 0 depending only on k
and N such that the following is true. If tg is a local minimal point from the right of U such
that U(to) < 400 and t« > tg is such that U(t) < oo for all t € [to,t.], then

ZAK(to) < Mg (t) < gAK(to), (5-4)
/ - d(t)dt < Cod(t,) % Ak (to). (5.5)
to

An analogous statement is true if ty is a local minimal point from the left.

Remark 5.9. Since d(tp) < no and d(t.) < no are small, \x differs from p by a small relative
error, so in the formulation of the lemma we could just as well write y instead of A

Proof of Lemmal5.8 Step 1. We can assume ¢, > to. For j € A, denote gj(t) =279 (t) /A1 (t)
and let

Ao :={j € A: Ulto) = &(to)"} = {j € A: §(to) = maxfz(to)}
./10 ={jeAy: g}-(to) >0}.

Since tg is a local minimal point from the right of U, .Zo # (). Let jo := min ./10 e A.

We now define by induction a sequence of times ty < t; < ... < ¢, = t. and a sequence of
elements of A, jo > j1 > ... > j,_1, in the following way. Assume to < ¢t; < ... < ;1 and
jo > j1 > ... > ji_1 are already defined. We set

t; := sup {t € [ti—1,ts] : fj( T) < é}l_l(r) for all 7 € [t;_1,t) and j € A such that j < jl_l}.

If t; = t,, then we set [, := [ and terminate the procedure. If not, let

A={jeA:j<ji_iand §(t) =&, (4)}.

By the definition of ¢; and continuity, A; # (). We set j; := min A;.
Step 2. We check that t; > t;_; for i =1,...,1,.

In order to prove that t; > ¢, we need to show that there exists ¢ > ¢y such that SJ(T) < Ejo (1)
for all 7 € [tg,t) and j € A such that j < jp. Since A is a finite set, it suffices to check this
separately for each j € A. If j ¢ Ao, the claim is clear, by continuity. If j € Ay \ Ay, then
gj(tg) = gjo (to), Eg(to) < 0 and E;O (to) > 0, again implying the claim.

For [ > 1, the definition of j; implies that gj(tl) < Ejl (t;) for all j < j;. Writing [ — 1 instead
of I, we get gj(tl_l) < EjH(tl_l) for all j < 5;_1, whenever [ > 2. Thus, by continuity, t; > t;_1.
Step 3. By induction with respect to I, we show that there exists a constant Cy depending only
on k and N such that for all [ € {1,...,[,} we have

/tl d(t)dt < Cod(t)ENj,_, 41(ti-1), (5.6)

ti—1

= 1~ L
&, () > 553-(75), for all t € (t;—1,%;) and j > ji_1.
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Suppose (5.6) is proved for [ € {1,...,lp} and let Ty € (t,,t;,+1] be the largest number such
that

To
[l < 200d () ) (5.7)

th

~ 1~ . .
gjlo (t) > ij(?f), for all t € (th,T()) and j > o> (5.8)

3
gjlo (t) > Zgjlo (tlo)7 for all t € (tloa TO)'

It suffices to prove that

To
[ it < (@) Exs at,), (5.9)
th
- 1~ L
&, (1) = §§j(t), for all t € (¢;,,70) and j > ji,, (5.10)
7
&, (1) > gfﬂo (t,), for all t € (t,,T0). (5.11)

It will be convenient to assume Ty = ¢, = ¢;,41, which is allowed. Also, in order to simplify the
notation, we write [ instead of [y in the induction step which follows.

The first observation is that if j; < j < jj_1, then A;(¢) is “almost constant” on the time
interval (¢;,t;41). More precisely, we claim that

’)\j(t)/)\j(tl) — 1‘ < cp, lfj > 7 and t > 1, (5.12)
where ¢y can be made arbitrarily small by taking 7o small enough. Indeed, |\;(t)| < d(?), so

(5.7) implies the claim (we stress again that Cy will not depend on 7).
The definition of ¢;4; implies

& (t) > &(t),  forallte (t,t)and j < ji, (5.13)
so ((5.8) yields
m%g(t) <E,(t),  forallt e (t,t141). (5.14)
1€

The bound (4.53) yields for all t € (¢;,¢;41)

X (085, (1) 2 (=i’ = c0) (27, (1)) + (1t -10% — o) (2 71€5,-1(2))
iz ok
- 2' i(t )
Co Il.fgji(( &i( ))
with the convention &y(t) = 0. By (5.13)), 27071¢;,_1(t) < £27:¢;,(t). Taking co small enough and
applying (5.14), we obtain
2 L~ . t)k—l
ML) = (2, 0) = gz e 5.15
(05, = = (26(1) Bt 2 eyt (5.15)

where ¢; > 0 depends only on k and N, and in the last step we used ([5.12)).
With ¢y > 0 to be determined, consider the auxiliary function

O(t) = B, (1) + ea(€,(0) /N (1))

k

The Chain Rule gives

k; k k
(1) = B, (1) + cag Xjva ()72, (t)271E ().
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k
2

We have |§§-l )] < e3(&,(t)/ Aj+1(t))
. k-1 C 2k—2
(z)/(t) 2 C3 ( é.]l (t) )) Z )\74¢(t)T7

A1 (t) \ Aj1(f g (te)
with co, c3, ¢4 depending only on k and N. The last inequality yields

, with c3 depending only on k£ and N, hence (5.15) implies

(607 200 = [ S0 S s D602 S At} A (0.
" (5.16)
If we consider ¢(t) := B, (t) + 2 (& (t)//\jlﬂ(tl))% instead of ¢, then the computation above
shows that ¢ is increasing. From (5.19), we have ¢(t;) > 0, so ¢(t) > 0 for all t € (¢, t41),

implying d(t) < ¢(t). Thus, (5.16) yields (5.9) if Cy is sufficiently large (but depending on k
and N only).

We now prove (5.11). By the definition of #; and the fact that j; < j;_1, we have §jl (1) <
&, , (1) for all 7 € [t;_;,t;). By the definition of j;, &;,(t;) = &;,_,(t;), in particular we have

&,(t) > &, (1). (5.17)
Recalling that gj(t) = 277€;(t)/Nj11(t), we find
Q*ﬁﬂ _ *jzw > Q*jl—lﬂ _ 2*]%1gjl—l(tl)/\;’z_1+1(tl) (5.18)
Aj+1(t) N1 (t)? -~ Aji+1(t) Aji_q+1(f)?

Since )‘jz+1(tl)//\jl—1+1 (tl) + 5]'1 (tl)//\jl+1(tl) + fjl_l (tl)/)\jl_l_H (tl) is small when 7 is small and,
see Lemma [4.16),

N ()] 151 @)+ 1N, ()] S I}g}(fi/)\iﬂ)km,
we obtain
&, (1) = —comax(&i/Aig1)*?, (5.19)

where ¢y can be made arbitrarily small upon taking 7y small.

By (]519D and (|4.52D, we have 5]'1 (tl) > —C()(fjl (tl)/)\jl-i-l(tl))
as needed, and

k
2, where ¢y can be made as small

B . tl)k‘—l
(1) > (3/4) e S
Pilt) = (3/4) 1>‘jz+1(tl)k
We deduce that & (t) > 0 provided

2co

(436715, () (€, (01) /A (0)) 3.

t—t > —
c1
But, if the opposite inequality is satisfied, the bound [€ (t)| < (&}, (tl)/)\jl+1(tl))§ yields (5.11])),
if ¢o is small enough. In fact, the argument gives the bound with % replaced by 1 — ¢y, where
co > 0 is as small as we want. Combining this with (5.12), we obtain in particular

& (tir1) = (1— )&, (1), (5.20)

with cg > 0 arbitrarily small.
Finally, we prove (5.10). By (5.11) and (5.12), it suffices to show that

~ 3~ ‘ ‘
gjl (tl) > ij(tl), for all j > j;.
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Let I’ <1 be such that jy < j < jy_1. The definition of j; yields §jl, (ty) > gj(tl/), so it suffices
to check that B - B

fjr(t'f) > (3/4>?§j7_1(t7_1), for all I,
with ¢y > 0 small, and use this inequality [ — I’ times. The last inequality follows from

and (5.20).

Step 4. Taking the sum over [ of (5.9), we get (5.5). The bound (5.4) follows from (5.12). O

Starting from now, 79 > 0 is fixed so that Lemma [5.§ holds and Lemma [5.4] can be applied
with n = n9. We also fix € > 0 to be the value given by Lemma for n = ng. Recall that
d(a,) = d(b,) = €, and d(t) > ¢, for all ¢ € [ay, by).

Lemma 5.10. There exists 0y > 0 such that for any sequence satisfying €, < 0, < 6y and for
all n large enough there exist N,, € N* and a partition of the interval [ay, by,]

_ L R R R R L L L L R _
an = en,O < 6n,O < Cn,(] < dn,() < fn,(] < fn,l < dn,l < Cn,l < en,l <. < en,Nn - bn?
having the following properties.

(1) For allm € {0,1,...,N,} and t € [ek,.,eR 1, d(t) < no, and

nm7 nm

R

[ e < ot min(u(et ) el ) (5.21)
efm
where Co > 0 depends only on k and N.
(2) For all m € {O, L te 7N7l - 1} and t € [eTIL%mﬂ nm] [fn m nm—‘,—l] U [Cﬁ,m—i-l?erLL,m—i-l]f
d(t) > 0,.

(8) For allm € {0,1,...,N, — 1} and t € [cﬁm,ffm] Ul #mﬂ, {?m+1] d(t) >e.
(4) For allm € {0,1,...,N,, — 1}, d(df,) > no and d(dn,m+1) > .
(5) For allm € {0,1,...,N, — 1}, d(cf,) =d(ck,..)) =€
(6) For all m € {0,1,..., N, — 1}, either d(t) > € for all t € [}, ck 1], or d(fF,) =
d(qu,m-s-l) =€
(7) For allm € {0,1,...,N, — 1},
swp  u(t)/  inf () <2,

teleL ekl telel il ml
sup wu(t)/ 3 inf R wu(t) < 2.
tE[CL el ] tele 1,€ 1]
n,m+1"n,m+1 n,m+ n,m+

Remark 5.11. The purpose of the Lemma above is to partition any collision interval
[an, by] into subintervals, depending on the values of d(¢). On the intervals [eX 2 €n ]] the bound
(5.21) will always be invoked. Outside of these intervals, the lower bounds on d(t), combined
with a more or less direct application of Lemma [3.1] will be used. Of special importance are the
intervals [cZ 1 ] and [fF since they allow to apply Lemma M, leading to the crucial
bound ((5.32).

Lemma [5.4| could not be applied directly on the intervals [eZ v Cnj +1]
uniform (independent of n) lower bound on d(t) on these intervals, unless 6,, 2 1. But, in our
application of in the proof of Theorem |1} it Will be necessary to have 6, —> 0, see
For this reason, the Contribution of the intervals [ef? €n i n]] [fE i fijﬂ] and [cL Crij41s £g+1} 11

be estimated differently, see 75.31.

The intervals [c£ s fE ;] and [ fa js ¢ ;] correspond to what were called “compactness intervals”
L R

[cn, dy] in the summary of the proof in Section (1.4} whereas [e;, ;, e, ;] correspond to the “mod-

ulation intervals”. For simplicity, we have not mentioned the remaining intervals in Section

o
n,j’ n]

because there is no
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They are the “intermediate intervals,” on which we will use both Lemma [3.1] and estimates of
the modulation parameters leading to the property (7) above.

A part of Lemma[5.10]will also play a role in the construction of an appropriate time-dependent
cut-off radius for the virial identity, in Lemma below.

Proof of Lemma[5.10. For all ty € [ayn, by,] such that U(ty) < oo, let J(tg) C [an, by| be the union
of all the open (relatively in [ay, by]) intervals containing ¢ty on which U is finite. Equivalently,
we have one of the following three cases:

o J(to) = (Gin, bn), to € (G, bn), d(@n) = d(bn) = o and d(t) < 1o for all t € (an, by),
o J(ty) = [an,bn), to € [an,by), d(b,) = no and d(t) < no for all ¢ € [ay, by,),
o J(ty) = (an, by, to € (an, by, d(a,) =no and d(t) < ng for all t € (ay, by].

Note that 6,, > €, implies a,, > a, and gn < by. Clearly, any two such intervals are either equal
or disjoint.
Consider the set
A:={t €lan, by : d(t) <6,}.

Observe that {a,,b,} € A. Since A is a compact set, there exist IV, € N and a sequence

an < Sp0 < Sp1 <...<8pnN, Jby
such that

Nn,
S €A, AC | J(snm)- (5.22)
m=0
Without loss of generality, we can assume J(Sp m) N J(Spm) = 0 whenever m # m/ (it suffices to
remove certain elements from the sequence). We choose 6y < 7, where 7 is given by Deﬁnition
Then Definition implies that [ay,,b,] # A, thus N,, > 0.

Observe, using (5.3), that U(sym) < Cd(spm)? = on(1), whereas U(a,) > Cy'd(a,)? >
Ccy 177(2) and similarly U (gn) > Cy 177(2], which for n large enough implies that U, restricted to
J(sp,m), attains its global minimum. Let ¢, ,, € J(spm) be one of the points where this global
minimum is attained, in particular we have J(tp n) = J(sp,m) and one of the following three
cases:

® tym € (an,by) is a local minimal point of U,
® tym = ap is a local minimal point from the right of U,
® t,m = by is a local minimal point from the left of U.

Note also that, again by ([5.3)),
d(tn,m) < \/CIU(tn,m) < \/ClU(Sn,m) < Cld(sn,m) < Clena (523)

where the last inequlity follows since s, , € A.

We set efw = a, and eﬁNn :=by. Let m € {0,1,..., N, —1}. Since J(tpm) N J(tnms1) =0,
there exists t € (fn,m., tn,m+1) such that U(t) = co. Let df,, be the smallest such ¢, and dimﬂ
the largest one. Let c,’im be the smallest number such that d(t) > e for all t € (c?, , d® ).

n,m>’ “n,m

Similarly, let %, .| be the biggest number such that d(t) > e for all t € (d5 ., ¢5 1)) Next,

n

let eﬁm be the smallest number such that d(t) > 2C16, for all t € (eff  cE ). If we take

n,m> ~“n,m

On < b0 < 36, then we have efim < cﬁm. It follows from (5.23) that eﬁm > ty.m. Similarly,
let ef . .1 be the biggest number such that d(t) > 2C16, for all t € (¢}, 1,€5 1) (again,
it follows that efhmﬂ < tpm+1). Finally, if d(t) > € for all ¢t € (dﬁm,dimﬂ), we set fI
and f,ﬁm+1 arbitrarily, for example ffm = dﬁm and frﬁm—&-l = dﬁ’mﬂ. If, on the contrary,
there exists t € (df d1LL,m+1) such that d(t) < e, we let ffl'_fm be the biggest number such that

n,m’
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d(t) > e for all t € (df,,, f1,), and fémﬂ be the smallest number such that d(t) > e for all

te ( nm+17d1[1/m+1)
We check all the desired properties. For all n € {0,1,..., N,}, we have e m S tpm < e

By the definition of d?, , for alln € {0,1,..., N, —1} we have U(t) < oo for all telt mm,dﬁm),

n,m?

in particular for all t € [ty m, eX,,]. Similarly, U(t) < oo for all ¢ € [ef m+1> tnm+1]. We also have
an € J(tn0), which implies U(t) < oo for all ¢ € [an, ty, 0] e ﬁo,t o]- Slmilarly, U(t) < oo for
all t € [tnn,,e? enn,)s thus U(t) < oo for all n € {0,1,..., Ny} and t € ek ., el,,]. Moreover, if

tnm = eim (which can only happen for m = 0), then tn m 18 a local minimal point from the right
of U, and if tppm = €ff,, (Whlch can only happen for m = N,,), then ¢, ,,, is a local minimal point
from the left of U. Since d(ek, ) < 2C160, and d(e? ) < 2C16,, the property [(1)| follows from

(5.5). The properties|(3) -, and @ follow d1rectly from the construction. The property [(2) -

is now equlvalent to the followmg statement: if d(top) < 60,,, then there exists m € {0,1,..., N,}
such that to € [e},,,ef,,]. But (5.22) implies that tg € J(spm) = J(tnm) for some m and by
construction, d(t) > 8, for all t € J(tpm) \ [ek,,,ef,,], so we obtain t € [ek, e, 1. Finally,
using again Lemma ut on the time intervals [tp m,ck,,] and [ck m+1> tnmt1], we deduce

the property from (5.4]). O

5.3. End of the proof: virial inequality with a cut-off. In this section, we conclude the
proof, by integrating the virial identity on the time interval [ay, b,]. The radius where the cut-off
is imposed has to be carefully chosen, which is the object of the next lemma.

Lemma 5.12. There exist 6y > 0 and a locally Lipschitz function p @ U2 [an, by] — (0, 00)
having the following properties:

(1) max(p (an)llc'?tU(an)HLz P( n)[|0ru(bn) || 22) < max(u(an), 1(bn)) as n — oo,

(2) Timy, o0 infyefa,, 1,) (2(0)/11(t)) = 00 and limp,_o0 SUPye(q,, 1) (0(1)/ 1K1 (1)) =0,
(3) if d(tp) < 190, then |p/ ( )| <1 for almost all t in a neighborhood of t,

(4) iy, ;00 SUPtea,, b,] [2pee) (w(t))] = 0.

Proof. We will define two functions p(®, p(®) and then set p := min(p(®, p® v). First, we let
P(a) (an) :=min(Rpu(an), v(an)),

where 1 < R, < [|0yu(an)|| 2. Consider an auxiliary sequence

on = sup [[w(t)llg(min(p(@ (an)-+t—amw(t):20(t)-
t€lan,bn]

We have lim,,_, o, d, = 0. Indeed, we see from the finite speed of propagation that

timsup B(u(t); /) (an) + ¢~ an,00) < () + (N ~ K)E(Q).

This and Lemma [4.9] yield
li_>m E(u(t); min(p (a,) +t — an, v(t)); 20(t)) = 0,

thus Lemma [2.1] implies §,, — 0.

Let 6p > 0 be given by Lemma (assuming without loss of generality that 6y < €), and
divide [ay,, by,] into subintervals applying this lemma for the constant sequence 6, = 6y. We let
p'@ be the piecewise affine function such that

< C o) =
Note that if ¢ € [an, bs] and ¢ & [ef,,, ek, ] for all m, then d(t) > 6.

D=

Pt):=1ift ek eR]

€1 m> En.m otherwise.
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We check that limy, o0 infiefq, b, (p9(t)/u(t)) = co. First, suppose that ¢ € el ., eﬁmﬂ]
1
and t—ef!, > p(el,). Then u(t) < p(el, )+ (t—el,) St—el,, and p@(t) > 6,2 (t—e€f,,),

nm ~ n,m
s0 @ (t) > u(t).

By Lemma €£,m+1 — eﬁm > C’uu(eﬁm), so in particular we obtain p(“)(eﬁ?mﬂ) >
,u(efl’mH) for all m € {0,1,...,N, — 1}. Note that we also have p(“)(eﬁjo) = p\D(a,) >
wlan) = u(eﬁyo), by the choice of p(®(a,). Since, by the property (7) in Lemmam7 @ changes

at most by a factor 2 on [eL el

s €nom] and p\@ is increasing, we have p(® (eff ) > p(el,,).
Finally, if t — eff,, < p(el,,), then p(t) < 2u(ef,,), which again implies P () > p(t).
The function p® is defined similarly, but integrating from b, backwards. Properties (1), (2),
(3) are clear. By the expression for Q,(u(t)), see Lemma we have

1200 @) S (L + [ OD®) 20200 S Vn =0,

which proves the property (4).

We need one more elementary result.

Lemma 5.13. Ifa,b € R, a <b, p: [a,b] = (0,00) is a 1-Lipschitz function and b—a > tpu(a),
then there exist | € N and a sequence a = ag < a1 < ... < a; < aj+1 = b such that

1 3
Z,u(ai) <aip1—a; < Zu(ai), foralli e {0,1,...,1}. (5.24)

Proof. We set ag := a and define inductively a;11 := a; + i,u,(ai), as long as b — a; > %u(ai). If
b—a; < %u(ai), then we set | := i, a;y1 := b and terminate the procedure. Since a;+1 — a; >
%minte[a’b} w(t) > 0 for all 4, this is achieved in a finite number of steps. We have a;y; — a; =
11(a;) for all i < I, thus holds for all i < I. By the definition of [, we have b—a; < 3u(q;),
and we only need to prove that b — a; > 1u(ap).

If I = 0, then the assumptions of the lemma yield b —ag = b —a > u(a) = u(ag). If 1 > 0,
then, by the definition of [, we have b — a;_1 > %,u(al,l). Since p is 1-Lipschitz, we also have

u(ar) = plaiy + plai_1)/4) < plarr) + plar1)/4 = u(ay), thus

waroy) > 2 pla) > ~ular).

1 3
b—aj=b—ar1 — —plag—1) > Tp(a—1) — 16

4 4

o

1
4
n

Remark 5.14. Note that (5.24) and the fact that p is 1-Lipschitz imply infyc(q, o,,,) 0(t) >

1
- sup p(t) <ajpr —a; <3 inf  p(t),
tE[ai,ai+1] tE[ai,ai+1]

in other words the length of each subinterval is comparable with both the smallest and the
largest value of p on this subinterval.

Lemma 5.15. Let p be the function given by Lemma|5.12 and set

o(t) := /OOO Oru(t)roru(t)x o) rdr- (5.25)
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1. There exists a sequence 6, — 0 such that the following is true. If [an,Zn] C [an,by] is
such that

bn_anz

wlan) and d(t) > 6, for allt € [ay,by),

|

then

v(bn) < 0(an). (5.26)

2. For any ¢,0 > 0 there exists 6 > 0 such that if n is large enough, [an,by] C [an, by,
ciu(@n) < by —an  and d(t) >0 for all t € [an, byl
then

U(En) - U(an) < —0 sup /"(t)' (5'27)
tE[Gn ,bn]

Proof. By the virial identity, we obtain

o'(t) = — /Ooo(atu(t))QXp(t) rdr + op(1). (5.28)

We argue by contradiction. If the claim is false, then there exists # > 0 and an infinite sequence

[an, bn] C [an, by] (as usual, we pass to a subsequence in n without changing the notation) such
that

bn_anz

p(ay,) and d(t) >0 for all t € [ay, by],

e

and

v(bn) — v(an) > 0.
We claim that there exists a subinterval of [dy, by, which we will still denote [y, by], such that
1 ~ 3 ~

Z,u(?in) <b,—a, < Z,u(an) and v(b,) —v(a,) > 0.

Indeed, by Lemma [5.13, there exist I, € N and a,, = anp < ap,1 < ... < Gpi,41 = gn such that
1 ~ ~ 3 .
Zu(am) < Uil — Apyi < Z,u(am-), for all i € {0,1,...,1,}.

If we had v(ay i+1) —v(an,;) <O0foralli e {0,1,...,1,}, then summation with respect to ¢ would
yield v(b,) — v(a,) < 0. Hence, there exists ¢ € {0,1,...,1,} such that v(a,,i+1) — v(an;) >0,
and [y, i, Gn,i+1] is the subinterval of [ay, b,] whose existence we claimed.

Let py, := inf, = 3 p(t). From (j5.28), we have

1 ‘Bn %ﬁn 9

lim — / / (Oyu())? rdr = 0.
n—=o0 b —ay Ja, Jo

By Lemma , inf,z 7 pr+1(t) > pp > inf, iz 5] u(t) ~ SUD, 7 ) u(t), so Lemma

yields sequences t,, € [En,gn] and 1 < ry, < pg+1(tn)/u(ty) such that

nlggo Oty (ultn)) =0,
which is impossible by Lemma (iii). The first part of the lemma is proved.

In the second part, we can assume without loss of generality b, — @, < %,u(?in). Indeed, in
the opposite case, we apply Lemma and keep only one of the subintervals where p attains
its supremum, and on the remaining subintervals we use (5.26)).
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After this preliminary reduction, we argue again by contradiction. If the claim is false, then
there exist ¢,0 > 0, a sequence d,, — 0 and a sequence [ay, b,] C [an, by] (after extraction of a
subsequence) such that

c(dn) < bp —an < “p(@,) and d(t) > 6 for all t € [an, by,

W

and
0(bn) = 0(@n) > ~0np(an)
(we use the fact that p(a,) is comparable to SUDyc 7 5] u(t), see Remark .
Let py, := infte[‘dn,'én] p(t). From (5.28), we have

by [ipn
lim = / / (Opu(t) rdr =0.
n—o0 b _ an

We now conclude as in the first part. O

Proof of Theorem[1. Let 6,, be the sequence given by Lemma [5.15] part 1. We partition [ay,, by,]
applying Lemma [5.10 for this sequence 6,,. Note that this partition is different than the one
used in the proof of Lemma We claim that for all m € {0,1,...,N,, — 1}

v(cf,,) —v(ef,,) < on(Du(ck,,), (5.29)
0(frmi1) = 0(fan) < on(V)u(fE,), (5.30)
v(ep mi1) — 0(ch 1) < on(Dpulel ). (5.31)

Here, 0,(1) denotes a sequence of positive numbers converging to 0 when n —> oco. In order to
prove the first inequality, we observe that if cﬁm — eﬁm > iu(ef’m), then applies and
yields v(cf,,) —v(ef,) < 0. We can thus assume ¢, —ef, < %u(e,’im) < 2,u( k), where
the last inequality follows from Lemma property But then again implies the
required bound. The proofs of the second and third bound are analogous

We now analyse the compactness intervals [cZ o RJ] and [fL 415 Cnr L 1]. We claim that there
exists 0 > 0 such that for all n large enough and m € {0,1,..., N, }

0(crmi1) = (e ) < —0max(u(cy ), M(Cimﬂ))- (5.32)

We consider separately the two cases mentioned in Lemma 5.10, property @ If d(t) > e for all
te[ch,,, ck m+1] then Lemma yields cﬁ}mﬂ B >Cy ,u( ck..), so we can apply (6-27),

which proves . If d( ff’m) = ¢, then we apply the same argument on the time interval
[cR R and obtain

0(faim) = 0(crm) < —dmax(u(cn ), 1(faim)),

and similarly
U(Cﬁ,mﬂ) - U(f#m+1) < 5max(u(c£vm+1), :u(fr%,erl))'

The bound ((5.30) yields (5.32).

Finally, on the intervals [eZ, el 1 for n large enough Lemma yields |p/(t)] < 1 for

n,m’ “n,m

almost all ¢, and Lemma implies |v'(t)| < d(¢). By Lemma properties and we
obtain

D(eR’ ) —o(el, ) <on(Du(ck,), for all m € {0,1,...,N,, — 1},

v(el ) —v(ek ) <on(Du(ck,), forallme {1,...,N, — 1, N,}. (5.33)
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Taking the sum in m of (5.29)), (5.31), (5.32) and (5.33), we deduce that there exists 6 > 0
and n arbitrarily large such that

0(bn) — v(an) < —dmax(u(eyy), uley n,))-

But a, = 6570 and b, = efiNn, hence property (7) in Lemma yields p(a,) < 2/1(030) and
1(by) < QN(CrLL,Nn)a thus

v(bn) — v(an) < —gmax(u(an),u(bn)).
Lemma [5.12] (1) and yield
[o(an)| < plan), — |obn)] < pulba),

a contradiction which finishes the proof. O

5.4. Absence of elastic collisions. This section is devoted to proving Proposition Our
proof closely follows Step 3 in our proof of [41, Theorem 1.6].

Proof of Proposition[1.7. Suppose that a solution of (1.1]), u, defined on its maximal time of ex-
istence t € (T—, T4 ), is a pure multi-bubble in both time directions in the sense of Definition
in other words

lim d(t) =0, and lim d(t) =0,

t—Ty t—T_
and the radiation u* = u} or u* = wg in both time directions satisfies u* = 0. In this proof,
all the N bubbles can be thought of as “interior” bubbles thus, whenever we invoke the results
from the preceding sections, it should always be understood that K = N. Applying Lemma [2.25
with § = 0 and M = N, we obtain from (2.30) and (2.29) that

A\ 5
d(t) SC’max( 1 )2.
JjeA )\j+1
Let n > 0 be a small number to be chosen later and ¢4 be such that d(t) < n forallt > ¢,. If n
is sufficiently small, then the modulation parameters are well-defined for ¢ > ¢, so we can set

U(#) := max (27&(1) i), forallt >ty
1€

cf. Definition Since U is a positive continuous function and lim; .7, U(t) = 0, there exists
an increasing sequence t, — T such that ¢, is a local minimal point from the left of U. Thus,
Lemma [5.8 yields

/ " d(t)dt < Cod(t) An(ty),

Ly
and passing to the limit n — 400 we get

Ty
/ d(t)dt < Cod(t,)E Ay (ts). (5.34)
t4
By inspecting the proof of Lemma [4.11] one finds that in the present case it holds with ¢, = 0, in
particular we have |\ (¢)| < d(¢). This bound, together with (5.34), implies that lim;_.7, Ay (t)
is a finite positive number, thus 7'y = 4o00.

Analogously, T = —oo and limy—, o, AN () € (0, +00) exists.

The remaining part of the argument is exactly the same as in [41], but we reproduce it here
for the reader’s convenience.
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Let 0 > 0 be arbitrary. Inspecting the proof of Lemma we see that in the present case
it holds with €, = 0, thus for any R > 0 we have |Qr(u(t))| < Cod(t). From this bound and
the estimates above, we obtain existence of 177,75 € R such that

T 1
| iontuia < 30

oo )
/ Qp(u(t)|dt < 6
T 3

for any R > 0. On the other hand, because of the bound [Qg(u(t))| < CoE(u(t); R,2R) and
since [T, T5] is a finite time interval, for all R sufficiently large we have

T 1
| 19t < 30
7 3

in other words
/ Qn(u()|dt < 6.
R

Integrating the virial identity from Lemma with p(t) = R over the real line, we obtain

/+OO /Ooo(atu(t,r)XR(r))Q rdrdt < 6.

By letting R — +00, we get

—+o00 0
/ / (6tu(t,r))2 rdrdt < 6,
—00 0

which implies the wu is stationary since ¢ is arbitrary. O

APPENDIX A. MODIFICATIONS TO THE ARGUMENT IN THE CASE k = 1

In this section we outline the changes to the arguments in Section [4| and Section [5| needed to
prove Theorem (1| for the equivariance class k = 1.

A.1. Modulation and refined modulation. The set-up in Sections holds without mod-
ification for £k = 1. To be precise the number K > 1 is defined as in Lemma the collision
intervals [ay, by] € Cx (1, €,,) are as in Deﬁnition and the sequences of signs 7, € {—1, 1}V =K,
scales ji(t) € (0,00)Y K and integers m,, € Z associated to the exterior bubbles, and the se-
quence v, — 0 and the function v(t) = vpux4+1(t) are as in Lemma

Lemma also holds without modification. Let J C [an, b,] be any time interval on which
d(t) < no, where 79 is as in Lemma Let 7€ {~1,1},X(t) € (0,00)K, and g(t) € € be
as in the statement of Lemma[4.11. Let L > 0 be a parameter to be fixed below and define for
each j € {1,..., K — 1},

&) = N(1) = —— (0, A |90 + D 6(Qup — ™).
210g(ijT) N i<j
and,
Bi(8) = =t (x, e A | 90) — (A ®)g(8) | §(1)) (A1)

Proposition A.1 (Refined modulation, k& = 1). Let ¢g € (0,1) and ¢; > 0. There exists
constants Ly = Lo(co,c1) > 0, no = no(co,c1), as well as ¢ = ¢(cg,c1) and R = R(cp,c1) > 1 as
in Lemma[{.13, a constant Cy > 0, and a decreasing sequence €, — 0 so that the following is
true.
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Suppose L > Lo and J C [ay,by] is an open time interval with e, < d(t) < ng for allt € J,

where A:={j e {l,...,K —1} | tj # tj41}. Then, for allt € J,
1
o0l + SO0/ Near ()} < max(n0) s ()2

€A

and,

COd( ) < max((t)/Aiaa (1))7 < Cod(2),

&(t) Aj(t) )S cod(t)2.

Aj+1(t)  Aja(t)
Moreover, let j € A be such that for allt € J

Then for allt € J,

J
i (t) Ai(t
021080 — 80| < Gl 5

and,

__“« max Ai(t)

)\j(t) €A )\i+1(t)‘
where, by convention, Ao(t) = 0, \g4+1(t) = oo for allt € J.

(A.2)

(A.3)

(A4)

(A.6)

(A7)

(A.8)

Proof. The estimates ([A.2) and (A.3]) follow as in the proofs of the corresponding estimates in

Lemma 4.16, We next prove (|A.4). From the definition of £;(¢),
J

fj )‘j < -1
PYIFREDVITE b ’10g J+1))\j+1<XL' O | g}‘
1 —1
* ‘log( a+1)/\j+1<XLvAJ‘AJ'+1AQﬁ | ;(QM - W)>‘
i<j

For the first term on the right we have,
‘ 1
1) A
log( ﬂ\

)

J

Next, for any i < j we have,

Aj L(Aj+1/X5)
Nl @y 1@y =)l Se / AQ(r) |@xi/a, (1) =

Aj+1
Aj A

<, D92y A
SE o og(Nj+1/A5)

A O Ay | 9) 1NL gl A/ A1)
)\
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and hence,
‘log(lﬁl ]+1<XLm Qx; |§QA —) ‘SL 3+1§>\
and follows.
Next using and for each j, we have
%] S max(u(e) A (). (A9)
We show that in fact f;- satisfies the improved estimate . We compute,
£§»=/\’~—#(&— ) <me Qx, |9+ 6@y, — 7))

1<J
/

/
Lj Vi
+ (= + A + ; -
Tog5) (8, 3y ey @y L9 3 (@ =)

1<J

)\/
+WA (i AAQy, g+ (@ =) (A.10)
Aj i<j

—_— 0
2log( J+1)< Ly/3hi1 QA | t9>

LiLj

! ; 2 log( 7+1)Ai<XLWAM @, | AQx)

i<y

The second, third, and fourth terms on the right above contribute acceptable errors. Indeed,
X N

Ly

‘ 2(log( ”1))2 A Aj+1 i<
L. . /
J +

/
Y g B
’410g( J+1)()\j ]+1)<AXLm Q)\ ‘g""ZLZ i 7'(> <

1<j
/
Lj )\

‘QIOg( J+1) )\ 1<J

]+1)<XL\//\ X1 QA ‘Q—FZM Q», —7r)> < maxjeA(Ai(t) /i1 (¢ ))

c1(log(%£))?

< masieAQu(t) i ¢ )2
c1 log( 7+1)

X, )\/\H— AQ, \Q+ZLZ n—m) S maxie A(Ai(t)/Ait1(t))

log( J“)

with the gain in the last line arising from the fact that AAQ € L'; see (2.16). The leading order
comes from the second to last term in (A.10). Using (4.54) gives

by by

5 X AQy [ Oig) = — ;
2log<*;;l>< e A T

Aj

_)\' 1

Lj

72 log(

<XL\/>\j/\j+1 AQ’\ij | g>

<XLm Qx| AQy,)

~ 2log(%)

Lj

<XL\/,\jAj+1AQﬁ | ZLZ’)‘;AQﬁ>

i#]

2log( A1

<XL\/>\J./\J.+1AQ£ | d)(u? V)>

We estimate the contribution of each of the terms on the right above to (A.10). The last term
above vanishes due to the support properties of ¢(u,v). Using (2.15), (A.9)) on the second term



SOLITON RESOLUTION FOR WAVE MAPS 7

above, gives

/ 1 / maXZGA( ( )/)‘H-l( ))%
— )\‘ A M <
7 210g( 24+ by <XL\/A @y [ AQy) + X515 log(LQl*)

which means this terms cancels the term A on the right-hand side of (A.10) up to an acceptable
error. Next we write,

Lil;
]H <XL./>\ SV AQy, | ZLZ)‘ AQy,) Z X ;<XL,/A1,\j+1AQﬁ | AQx,)

210g oy i=; 2log( J“)
LZL]
- Z JH <XL\/,\J-AJ-+1AQQ | AQ»,)
z>_7

The first term cancels the last term in (A.10). For the second term we estimate, if i > j,
(XL @y [ AQ)] S A/ A

and thus, using (A.9)) the second term in the previous equation contributes an acceptable error.
Plugging all of these estimates back into (A.10) gives the estimate,

_ maxica(i(t)/ iy (1))
c1 log( ”1)

&+ (A.11)

Ly '
2log(A;j)<XL\/AjAj+1AQM 19)] =

Using (A.2) and ||XLmAQ>‘ llr2 < (log( 7“))%, we deduce the estimate,

o _ maxica(Ni(t)/Aig1 (1))

(G Ay 1 9)] S
2log<Xj>< /@ 1) (log(%:1))?

which completes the proof of (A.6).
Next we compare §; and 253 log(Aj+1/A;). Using (A.1) we have,

AN E)9(®) [ 9(0) | £ llglE S max(h/ Ao,
We also note the estimate
: 1
’<(XL,/A,AH1 - XLm)AQﬁ \ 9>‘ < riré%i((/\i/)‘i+l>2'

which is a consequence of (A.4)). Using (A.11) the estimate (A.7) follows.
Finally, the proof of the estimate (A.8]) is nearly identical to the argument used to prove (4.53)),
differing only in a few places where the cut-off x NGrem is involved. Arguing as in the proof
77
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of (4.53) we arrive at the formula,
Lj - ~ Lo

8; = =2 (AQx, | filmn, 1, X)) + (A9 | Lag) + ((AN) = AN))g | Talma 72X, 9))
]

(Ale—A(Aj))AQAj | g>

M
<XL\/§>\7+1 Q| (Lo —Ly)yg >+LJ/\j<

+¢ <(A(Aj)—¥XLm )Qx; | fq(mn X g

+ 36w (A0, | falma,7 X)) - Z H{A( AQA 1) = (A9 | fi(mn,1. X))
i#j
)9

()
— 45 (X0 e T AQ | B ) — (Ao v) | ) = (AN)g | dlu,v) )
+ ;\Jj <(1 - XLm)AQAj | fi(mn7b>x)> — i; <( XL\/m) AQy, | 9>

(5/ )‘;—H

+ </~',\j (XLmAQﬁ) \ 9> 2 g, + ?)<AXL\/MAQﬁ | 9)

All but the last four terms above are treated exactly as in the proof of (4.53). For the fourth-
to-last term a direct computation using the estimate (4.65) gives,

Lj N 1 )\j )\j—l
’)\j <(1 - XLm)AQAj | fi(mmba)‘)> ’ < /\j<>\j+1 + )\j)-
For the third-to-last term, we use that AAQ € L%, (A.9), and (A.2) to deduce that,
N 1
J
‘Lj)\j <( = Xy ea AAG, | 9> ‘ < )\*]maX(A i/ i),

The size of the constant L > 0 becomes relevant only in the second-to-last term. Indeed, since
LAQ = 0, we have,

1 1 1
. AQy.) = ———(A AQy. +2 ! A?
£, 0 a7 A0 L2£j/\j+1( Xren Ay + L\/§iNj+1 XLy /Exsrr A
And therefore, using (A.2)) and (A.4) we obtain the estimate,

‘ <£AJ'(XLMA%> 9) ! < %% max(Ai/Ai+1)

for a uniform constant, independent of L. Taking L > 1 large enough relative to ¢y makes this an
acceptable error. Finally, for the last term we use the improved estimate (A.6|) for f; and (A.4)
to obtain,

! /
3 i )‘j+1
&G Al ™

1 1 1
)T(’fa’Jr ’)‘ +1’)<<)\]Héax()\ [Ait1)2,
and hence,

g N

1
P AQu, | 9)] < 3 max(n/ M),
‘ (€J+ ]+1)< XL /€ Qﬁ’g> <<)\j Ifle%i(( [Ait1)
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This completes the proof. ]
We note that Lemma 4.18|and its proof remain valid for k = 1.

A.2. Demolition of the multi-bubble. We define the weighted interaction energy in the same
way as for k > 2, see Definition

Lemma A.2. If ¢y in Proposition [A.1 is taken sufficiently small, then there exists a constant
C1 > 0 such that
d(t) <no implies C7'd(t)? < U(t) < Cid(t)*

Remark A.3. In the case k > 2 the corresponding estimate (5.3)) follows immediately from
(4.51). For k = 1, since the bound (A.4) does not imply that &;(t) ~ X;(t) for all j € A.

Proof. Let t be such that d(¢) < 1o, and let jy € A be such that
Ao ()/ Ajo+1(8) = max Ai(t) /i1 (¢)-
Then we deduce from that
&io 1)/ Xo+1(t) Z Xjo (1) /Xjo+1(t) Z A(t)?,
which yields the required lower bound on U (t).

The upper bound follows directly from (A.4) and the fact that A;(£)/Aj41(t) < d(¢)? for all
jeA. O

The analog of Lemma [5.8| for £ = 1 is formulated as follows.

Lemma A.4. If ng is small enough, then there exists Cy > 0 depending only on k and N such
that the following is true. Ifty is a local minimal point from the right of U such that U(ty) < 400
and ts > to is such that U(t) < oo for all t € [to,ts], then

3 4
Z)\K(tO) <Ak (ts) < g/\K(tO)»

/ " d(t)dt < Cod(t)2 v/~ Tog At Ak (f0).

to
An analogous statement is true if t, is a local minimal point from the left.

Proof. Steps 1 and 2 are similar as for k£ > 2. Step 3 differs significantly, so let us indicate the

necessary changes. First, the modulation estimates , and only hold under the
assumption . However, note that in Step 3 this last assumption is satisfied on the time
interval (t;,,70), on which the modulation estimates are used, see (5.14).

Instead of , we claim that

&, (t)\/ —log &, (t) ~ & (tl)\/— log(&,(t1)/Xji+1(t)) 2 —comax v/ &(t)/ A (tr),  (A.12)

where ¢y can be made arbitrarily small upon taking ng small. Indeed, recalling that gj(t) =

277€;(1)/ A (1), yields

&(t) 2 —&, ()N ()] —

)\‘l 3 / = /
22O (6 00+ Gy (0 a0

Since §jl (t;) is small when 7 is small, (A.9)) yields
. (t1)y = log & ()| 1 (t0)] < comax V& (1) /i (B).
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Since &j,(tr) = &, (t1), (A.6) yields

V= log & (g, ()| < max V/&(0)/ Ay (1),

For the same reason, and using again ({A.9)),

Ingjl (tl)gjz 1<tl)‘)‘]1 1+1(tl)| S maX gz(tl)/)‘z-i-l(tl)

Since ji < ji—1, Nj+1(t1)/Nji_,+1(t:) is small when ng is small, so we get (A.12).
In (5.6), (5.7) and (5.9), we replace d(t)¥/2 by d(t)?/—d(t). Next, we introduce the auxiliary
function ®(z) := /—xlogx for 0 < x < 1. Note that
®(z)// —log ®(x),

¥ (z) = VQXI/C’;“”’J

With ¢z > 0 to be determined, consider the auxiliary function

O(t) 1= By, () + ca® (& () /s (1))

+ O((—zlogz)™%) > 0.

The Chain Rule gives

¢'(t) = B),(t) + c2 (1) @’( Agﬁ(t) )).

Ajrr(tr) NNt
By " and ‘ , we have |§/ (t)| < CB(&jz (t)/)‘jlﬁ-l(tl))% 10g(_£jl (t)/)‘jz—i-l(tl))_l/ga with Cj
depending only on N, hence (A.8)) implies

, 4
¢ (t) > )\jl+1(tl)7

provided ¢y is taken small enough (depending only on N). If we consider ¢(t) := Bj,(t) +

(A.13)

%@(fﬁ (t)/)\jl+1(il)) instead o£ ¢, then the computation above shows that ¢ is increasing. From
(A.12), we have ¢(t;) > 0, so ¢(t) > 0 for all ¢t € (t;,;41), implying

d(t) S /& (0)/ X1 (t) S o)/ —log 6(t). (A.14)
The bound yields

(N1 (t)o()? [/ log o(1)) 2 ¢(t)/+/—log 6(t).
We observe that |¢(t)| < ®(d(¢)?), hence ¢(t) /\/W t)2/—logd(t) and
| otV =TordEt S Ay (o) Tog ) d(tm)wm A (t0).

Thus, yields (5.9) (with d(t)2\/—1logd(t) instead of d(t)*/*) if Cy is sufficiently large
(but depending on k and N only).

We now prove - By (A.12) and (A7), we have f3j,(t;) = —co®(&;,(t:)/Aji+1(t1)), where

cp can be made as small as needed, and

B, () = e1/ Mg ().
We deduce that & (t) > 0 provided

2c 2
t—t = CTO)\sz(tl) (&0 Aja (t)) = =2 \/fﬂ RVERIC)) \/— log (&5, (t1) /Ag+1(t)-
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But, if the opposite inequality is satisfied, the bound

€, S /& )/ N1 () /]~ To8(E(01)/ X1 (1)

yields (5.11)), if ¢ is small enough.
The proof is then finished as for k£ > 2. ]

The remaining arguments of Section 5 apply without major changes. In (5.21), one should
replace 03/’“ by 62/~ log .

A.3. Absence of pure multi-bubbles with N > 2 when k = 1. This section is devoted to
proving Proposition which follows quickly from Lemma

Proof of Proposition[1.8. Suppose that N > 2 and w is a pure N-bubble in the future time
direction and let Ty € R U {oo} be its final time of existence. Let Ty < T be such that
d(t) < no for all t € [Tp, T ), so that U(t) < oo, where U is the weighted interaction energy
from Definition Since we assume N > 2, we have U(t) > 0 for all ¢.

We have limy 7, U (t) = 0, thus there exists a sequence ¢, — T4 such that ¢, is a local
minimal point from the left of U. By Lemma[A.4] for all n and ¢ € [Ty, t,) we have

3 4
Z)\N(tn) < An(t) < g)\N(tn)7
thus for all ¢ € [Ty, T4)
9 16
TGAN(TO) < An(t) < g)\N(TO)a

which implies that we cannot have lim;_,7, Ay (t) = 0, in particular T = oo.
Again by Lemma for all t € [Tp,t,) we have

/ttn d(7)dr < Cod(t)?\/—logd(t)An(tn) < gCod(t)Q\/—log d(t) A (To),

and letting n — oo we obtain
/ d(r)dr < gCod(t)Q\/—logd(t)AN(To) < d(t)2An(To),
t

where the last bound is justified by taking 7y small enough. The Chain Rule yields

([ ) ) = Ly

for all ¢t > Ty, which is impossible. ([l
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