
SOLITON RESOLUTION FOR ENERGY-CRITICAL WAVE MAPS
IN THE EQUIVARIANT CASE

JACEK JENDREJ AND ANDREW LAWRIE

Abstract. We consider the equivariant wave maps equation R1+2 ! S2, in all equivariance
classes k 2 N. We prove that every finite energy solution resolves, continuously in time, into a
superposition of asymptotically decoupling harmonic maps and free radiation.
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1. Introduction

1.1. Setting of the problem. We study wave maps from the Minkowski space R1+2

t,x
into the

two-sphere S2, under k-equivariant symmetry. These are formal critical points of the Lagrangian
action,

L ( ) =
1

2

ZZ

R1+2
t,x

�
�|@t (t, x)|2 + |r (t, x)|2

�
dxdt,

restricted to the class of maps  : R1+2

t,x
! S2 ⇢ R3 that take the form,

 (t, rei✓) = (sinu(t, r) cos k✓, sinu(t, r) sin k✓, cosu(t, r)) 2 S2 ⇢ R3,

for some fixed k 2 {1, 2, . . .}. Above u is the colatitude measured from the north pole, the metric
on S2 is ds2 = du2 + sin2 u d!2, and (r, ✓) are polar coordinates on R2.

The general S2-valued wave maps equation in two space dimensions is called the O(3) sigma
model in high energy physics literature. It is a canonical example of a geometric wave equation
as it generalizes the free scalar wave equation to the setting of manifold-valued maps. The static
solutions given by finite energy harmonic maps are amongst the simplest examples of topological
solitons as they admit Bogomol’nyi structure [2]; other examples include kinks in scalar field the-
ories on the line, vortices in Ginzburg-Landau equations, magnetic monopoles, Skyrmions, and
Yang-Mills instantons; see [50] for an extensive treatment of field theories admitting topological
solitons from the point of view of mathematical physics.

Our interest in k-equivariant wave maps stems from the richness of their nonlinear dynamics
in the relatively simple setting of the geometrically natural scalar semilinear wave equation,

@2t u(t, r)��u(t, r) +
k2

r2
sin 2u(t, r)

2
= 0, (t, r) 2 R⇥ (0,1), (1.1)

which is the Euler-Lagrange equation associated to L ( ) under the k-equivariant symmetry
reduction. Here � := @2r + r�1@r is the radial Laplacian in 2-dimensions. The conserved energy
for (1.1) is given by

E(u, @tu)(t) := 2⇡

Z 1

0

1

2

⇣
(@tu(t, r))

2 + (@ru(t, r))
2 + k2

sin2 u(t, r)

r2

⌘
rdr. (1.2)

We will often write pairs of functions using boldface, v = (v, v̇), noting that the notation v̇ will
not, in general, refer to a time derivative of v but rather just to the second component of v.
With this notation the Cauchy problem for (1.1) can be rephrased as the Hamiltonian system

@tu(t) = J �DE(u(t)), u(T0) = u0, (1.3)

where

J =

✓
0 1
�1 0

◆
, DE(u(t)) =

✓
��u(t) + k2r�22�1 sin(2u(t))

u̇(t)

◆
.

Both (1.2) and (1.3) are invariant under the scaling

(u(t, r), @tu(t, r)) 7!
�
u(t/�, r/�),��1@tu(t/�, r/�)

�
, � > 0,

and thus (1.1) is called energy-critical.
The natural setting in which to consider the Cauchy problem for (1.1) is the space of initial

data u0 with finite energy, E(u0) < 1. The set of finite energy data is split into disjoint sectors,
E`,m, which for `,m 2 Z, are defined by

E`,m :=
�
(u0, u̇0) | E(u0, u̇0) < 1, lim

r!0
u0(r) = `⇡, lim

r!1
u0(r) = m⇡

 
.
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These sectors, which are preserved by the flow, are related to the topological degree of the full
map  0 : R2 ! S2: if m� ` is even and (u0, 0) 2 E`,m, then the corresponding map  with polar
angle u0 is topologically trivial, whereas for odd m� ` the map has degree k.

The sets E`,m are a�ne spaces, parallel to the linear space E := E0,0 = H ⇥ L2, which we
endow with the norm,

ku0k2E := ku̇0k2L2 + ku0k2H :=

Z 1

0

⇣
(u̇0(r))

2 + (@ru0(r))
2 + k2

(u0(r))2

r2

⌘
rdr.

The linearization of (1.1) about the zero solution is given by

@2t v ��v +
k2

r2
v = 0, (1.4)

and the flow for (1.4) preserves the E norm.
The unique k-equivariant harmonic map is given explicitly by

Q(r) := 2 arctan(rk).

Here uniqueness means up to scaling, sign change, and adding a multiple of ⇡, i.e., every finite
energy stationary solution to (1.1) takes the form Qµ,�,m(r) = m⇡ + �Q(r/µ) for some µ 2
(0,1),� 2 {0,�1, 1} and m 2 Z. The pair Q� := (Q�, 0) and its rescaled versions Q�(r) :=
(Q�(r), 0) := Q(��1r) for � > 0, are minimizers of the energy E within the class E0,1; in fact,
E(Q�) = 4⇡k. We denote, ⇡ := (⇡, 0).

1.2. Statement of the results. Our main result is formulated as follows.

Theorem 1 (Soliton Resolution). Let k 2 N, let `,m 2 Z, and let u(t) be a finite energy
solution to (1.1) with initial data u(0) = u0 2 E`,m, defined on its maximal forward interval of
existence [0, T+).

(Global solution) If T+ = 1, there exist a time T0 > 0, a solution u⇤
l(t) 2 E to the linear

wave equation (1.4), an integer N � 0, continuous functions �1(t), . . . ,�N (t) 2 C0([T0,1)),
signs ◆1, . . . , ◆N 2 {�1, 1}, and g(t) 2 E defined by

u(t) = m⇡ +
NX

j=1

◆j(Q�j(t)
� ⇡) + u⇤

l(t) + g(t),

such that

kg(t)kE +
NX

j=1

�j(t)

�j+1(t)
! 0 as t ! 1,

where above we use the convention that �N+1(t) = t.
(Blow-up solution) If T+ < 1, there exist a time T0 < T+, integers m1,m�, a mapping

u⇤
0
2 E0,m1, an integer N � 1, continuous functions �1(t), . . . ,�N (t) 2 C0([T0, T+)), signs

◆1, . . . , ◆N 2 {�1, 1}, and g(t) 2 E defined by

u(t) = m�⇡ +
NX

j=1

◆j(Q�j(t)
� ⇡) + u⇤

0 + g(t),

such that

kg(t)kE +
NX

j=1

�j(t)

�j+1(t)
! 0 as t ! T+,

where above we use the convention that �N+1(t) = T+ � t.
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Analogous statements hold for the backwards-in-time evolution.

Remark 1.1. This type of behavior is referred to as soliton resolution. A recent preprint by
Duyckaerts, Kenig, Martel, and Merle proved Theorem 1 in the case k = 1 using the method
of energy channels; see [18]. Roughly, energy channels refer to measurements of the portion of
energy that a linear or nonlinear wave radiates outside fattened light cones. Such exterior energy
estimates were introduced by Duyckaerts, Kenig, and Merle [24] in their proof of the soliton
resolution conjecture for the radial energy critical NLW in 3 space dimensions; see also [25–27]
for the treatment of all odd dimensions. The approach we take to prove Theorem 1 is independent
of the method of energy channels.

Remark 1.2. The soliton resolution problem is inspired by the theory of completely integrable
systems, e.g., [30,67,68], motivated by numerical simulations, [31,80], and by the bubbling theory
of harmonic maps in the elliptic and parabolic settings [60,61,72,78,79]; see also [16,18,27] for
discussions on the history of the problem.

Remark 1.3. Our method establishes the exact analog of Theorem 1 in the case of the equi-
variant Yang-Mills equation, by making the usual analogy between equivariant Yang-Mills and
k = 2-equivariant wave maps; see Cazenave, Shatah, and Tahvildar-Zadeh [4] for the formula-
tion. There, the harmonic map is replaced by the first instanton.

Remark 1.4. The Cauchy problem for energy-critical wave maps restricted to radially sym-
metric initial data (which is distinct from the k-equivariant symmetry reduction considered here
as there are no radially symmetric nontrivial harmonic maps) was understood in classic works
by Christodoulou and Tahvildar-Zadeh [7, 8], Struwe [74, 75], extended by Nahas in [56], and
settled definitively by Chiodaroli, Krieger, and Lührmann [5], who developed a concentration
compactness theory in that setting.

Remark 1.5. Theorem 1 is a qualitative description of the dynamics of all finite energy solutions
to (1.1). A natural, challenging question is to ask which types of configurations of solitons
and radiation are realized in solutions. The first results of this nature were constructions of
solutions blowing up in finite time by bubbling o↵ a single harmonic map by Krieger, Schlag,
and Tataru [46], Rodnianski and Sterbenz [64], and Raphaël and Rodnianski [62]. In [36],
the first author constructed a solution exhibiting more than one bubble in the decomposition,
showing the existence of a solution that forms a 2-bubble in infinite time with zero radiation in
equivariance classes k � 2. In [65] Rodriguez showed that no such 2-bubble occurs in the case
k = 1, proving that the only non-scattering solution with energy = 2E(Q) blows up by bubbling
of a single harmonic map in finite time, while radiating u⇤

0
= �Q. It is not known if there are

any solutions with more than one bubble in the decomposition when k = 1. As a consequence
of our analysis, we prove that such a solution would necessarily have non-zero radiation, thus
extending the result of Rodriguez to any number of bubbles (see Proposition 1.8 below).

It is natural to ask about the fate of solutions with more than one bubble in the decomposition
in the opposite time direction. An answer to this question was given by the authors in [41] for the
2-bubble solution u(2)(t) constructed by the first author in [36]. We showed that any 2-bubble
in forward time must scatter freely in backwards time. When the scales of the bubbles become
comparable, this collision completely annihilates the 2-bubble structure and the entire solution
becomes free radiation, i.e., the collision is inelastic. Viewing the evolution of u(2)(t) in forward
time, this means that the 2-soliton structure emerges from pure radiation, and constitutes an
orbit connecting two di↵erent dynamical behaviors. We later showed in [38, 40] that u(2)(t) is
the unique 2-bubble solution up to sign, translation, and scaling in equivariance classes k � 4.

Crucial to the proof of scattering after the collision in the case of two bubbles is the fact that
the 2-bubble configurations considered in [41] are minimal in the sense that any solution in E0,0
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with energy < 2E(Q) must scatter (see [11]). While inelasticity of collisions is still expected in
the case of solutions with more than two bubbles in one time direction, such a solution can still
exhibit bubbling behavior even after a collision that produces radiation – for example a solution
in E0,1 with three bubbles and no radiation in one direction could have one bubble with non-zero
radiation in the other direction. While we do not consider such refined two-directional analysis
here, a relatively straightforward corollary of the proof of Theorem 1 is that there can be no
elastic collisions of pure multi-bubbles, which we formulate as a proposition below.

Definition 1.6. With the notations from the statement of Theorem 1, we say that u is a pure
multi-bubble in the forward time direction if u⇤

l = 0 in the case T+ = +1, and u⇤
0
= 0 in the

case T+ < +1.
We say that u is a pure multi-bubble in the backward time direction if t 7! u(�t) is a pure

multi-bubble in the forward time direction.

Proposition 1.7. Stationary solutions are the only pure multi-bubbles in both time directions.

In the special case of equivariance class k = 1, the following much stronger result holds.

Proposition 1.8. If k = 1, then stationary solutions are the only pure multi-bubbles in forward
(or backward) time.

Remark 1.9. We note that Proposition 1.7 was also proved in the case k = 1 for (1.1) in the
recent preprint [18], as well as for the energy critical focusing NLW under radial symmetry and
in odd space dimensions in [24, 27], all via a di↵erent approach based on energy channels. As
mentioned above, the case of N = 2 bubbles was already considered in [41]. See [51–53] for more
regarding the inelastic soliton collision problem for non-integrable PDEs.

1.3. History of progress on the problem. Our proof of Theorem 1 is built on top of two
significant partial results, namely (1) that the radiation term, u⇤

l in the global case and u⇤
0

in the blow-up setting, can be identified continuously in time, and (2) that the resolution is
known to hold along a well-chosen sequence of times. The result (1) was established in [10–
12, 42] as a consequence of the classical work of Shatah and Tahvildar-Zadeh [70], and we
make explicit use of this fact. The latter result (2) was proved by Côte [10] and Jia and
Kenig [42] using Struwe’s classical bubbling analysis [73], many ideas from Duyckaerts, Kenig,
and Merle’s seminal works [21–23], and several new insights particular to (1.1). While the
sequential resolution certainly inspires part of our argument, we cannot use it simply as a black
box, but rather we revisit the proof and derive more precise information from the analysis of
Côte, and Jia and Kenig as we explain in the next section.

We discuss these prior results in more detail. To unify the blow-up and global-in-time settings
we make the following conventions. Consider a finite energy wave map u(t) 2 E`,m. We assume
that either u(t) blows up in backwards time at T� = 0 and is defined on an interval I⇤ := (0, T0],
or u(t) is global in forward time and defined on the interval I⇤ := [T0,1) where in both cases
T0 > 0. We let T⇤ := 0 in the blow-up case and T⇤ := 1 in the global case.

Extraction of the radiation. Below we will use the notation E(r1, r2) to denote the local
energy norm

kgk2E(r1,r2) :=
Z

r2

r1

⇣
(ġ)2 + (@rg)

2 +
k2

r2
g2
⌘
rdr,

By convention, E(r0) := E(r0,1) for r0 > 0. The local nonlinear energy is denoted E(u0; r1, r2).
We adopt similar conventions as for E regarding the omission of r2, or both r1 and r2.

Theorem 1.10 (Identification of the radiation). [10, Propositions 5.1, 5.2] Let u(t) 2 E`,m be a
finite energy wave map on an interval I⇤ as above. Then, the limit ⇡Z 3 m�⇡ := limt!T⇤ u(t,

1

2
t)
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exists, and there is an integer m1 2 Z, a finite energy wave map u⇤(t) 2 E0,m1 called the
radiation, and a function ⇢ : I⇤ ! (0,1) that satisfies,

lim
t!T⇤

�
(⇢(t)/t)k + ku(t)� u⇤(t)�m�⇡k2E(⇢(t))

�
= 0. (1.5)

Moroever, for any ↵ 2 (0, 1),

E(u⇤(t); 0,↵t) ! 0 as t ! T⇤. (1.6)

Remark 1.11. In the global setting, i.e., I⇤ = [T0,1) we must have m1 = 0 and the linear
wave u⇤

l(t) 2 E that appears in Theorem 1 is the unique solution to the linear equation (1.4)
satisfying,

ku⇤(t)� u⇤
l(t)kE ! 0 as t ! 1,

which one obtains via the existence of wave operators; see Lemma 2.8. In the finite time blow-up
setting the radiation u⇤

0
2 E0,m1 that appears in Theorem 1 is initial data for u⇤(t), i.e., the

radiation u⇤(t) in Theorem 1.10 satisfies u(t, r) = m�⇡+u⇤(t, r) for r > t. With this definition
and energy conservation, Theorem 1.15 implies the energy identity,

E(u) = NE(Q) + E(u⇤). (1.7)

We remark that (1.6) in the case T⇤ = 1 uses the estimates for the even dimensional free scalar
wave equation proved by Côte, Kenig, and Schlag in [15].

The identification of u⇤(t) and the vanishing (1.5) uses fundamental technique of Shatah and
Tahvildar-Zadeh [70] (see also Christodoulou and Tahvildar-Zadeh [7] for the case of spherically
symmetric wave maps); in [70] it is proved that every singular wave map has asymptotically no
energy in the self-similar region of the cone, i.e.,

E(u(t);↵t, t) ! 0 as t ! T⇤

for each ↵ 2 (0, 1) in the case T⇤ = 0, and

lim
A!1

lim sup
t!T⇤

E(u(t),↵t, t�A) = 0

in the case T⇤ = 1. Note that the latter refined estimate for globally defined wave maps was
proved in [12] using methods from [7,70].

Remark 1.12. The radiation field can be identified in several other contexts and by di↵erent
means. For example, Tao accomplished this in [77] for certain high dimensional NLS. For critical
nonlinear waves with power-type nonlinearities, the radiation field can be identified even outside
radial symmetry; see the work of Duyckaerts, Kenig, and Merle [20].

Sequential soliton resolution. The first result in this direction was Struwe’s bubbling
theorem [73], which showed that any smooth solution to (1.1) that develops a singularity in
finite time must do so by bubbling o↵ at least one harmonic map, locally in space, along some
sequence of times.

A deep insight of Duyckaerts, Kenig, and Merle, proved in [22] for the energy critical NLW, is
that once the linear radiation is subtracted from the solution, the entire remainder should exhibit
strong sequential compactness – it decomposes into a finite sum of asymptotically decoupled
elliptic objects, in our case these are stationary harmonic maps, along at least one time sequence,
up to an error that vanishes in the energy space. A crucial tool in proving such a compactness
statement is the remarkable theory of profile decompositions for dispersive equations developed
by Bahouri and Gérard [1]. However, after finding the profiles and their space-time concentration
properties (in our case their scales) via the main result in [1], one must identify them as elliptic
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objects (solitons) by some means, and then prove that the error vanishes in the sense of energy,
rather than the weaker form of compactness (vanishing in the sense of a Strichartz norm) given
by [1]. In the wave map case, this program was carried out by Côte, Kenig, the second author,
and Schlag [11,12] (using the even dimensional exterior energy estimates proved by Côte, Kenig,
and Schlag in [15]) for solutions to (1.1) with k = 1 in E0,1 with E < 3E(Q). The latter condition
restricted the number of possible configurations to those with a single bubble, and in this special
case the sequential resolution could easily be upgraded to a continuous one using the variational
characterization of Q and the coercivity of the energy functional.

In our setting, the sequential resolution was proved by Côte [10] in the case k = 1, and Jia
and Kenig [42] in the case k = 2, namely that Theorem 1 holds along a well-chosen sequence of
times. These works used the bubbling theory of Struwe [73] to identify the profiles as harmonic
maps, and in the latter paper the authors used a novel nonlinear multiplier identity to obtain
the convergence of the error in the energy space – in fact, we make use of this same identity in
this work, see Section 3. A minor technical observation, which we explain in Remark 3.2, yields
their result in all equivariance classes k 2 N. Before stating it, we introduce some notation.

Definition 1.13 (Multi-bubble configuration). Given M 2 {0, 1, . . .}, m 2 Z, ~◆ = (◆1, . . . , ◆M ) 2
{�1, 1}M and an increasing sequence ~� = (�1, . . . ,�M ) 2 (0,1)M , a multi-bubble configuration
is defined by the formula

Q(m,~◆,~�; r) := m⇡ +
MX

j=1

◆j
�
Q�j

(r)� ⇡
�
.

Remark 1.14. If M = 0, it should be understood that Q(m,~◆,~�; r) = m⇡ for all r 2 (0,1),
where ~◆ and ~� are 0-element sequences, that is the unique functions ; ! {�1, 1} and ; ! (0,1),
respectively.

We state the main theorems from Côte [10] and Jia, Kenig [42] using this notation.

Theorem 1.15 (Sequential soliton resolution). [10, Theorem 1.1], [42, Theorem 1.2] Let k 2 N,
`,m 2 Z, and let u(t) 2 E`,m be a finite energy wave map on an interval I⇤ as above. Let
m�,m1 2 Z, and the radiation u⇤(t) 2 E0,m1 be as in Theorem 1.10. Then, there exists an

integer N � 0, a sequence of times tn ! T⇤, signs ~◆n 2 {�1, 1}N , and scales ~�n 2 (0,1)N such
that,

lim
n!1

⇣
ku(tn)� u⇤(tn)�Q(m,~◆n,~�n)kE +

NX

j=1

�n,j
�n,j+1

⌘
= 0,

where above we use the convention �n,N+1 := tn.

Remark 1.16. The Duyckaerts, Kenig, and Merle approach from [22] to sequential soliton
resolution has been successful in other settings. The same authors with Jia proved the sequential
decomposition for the full energy critical NLW (i.e., not assuming radial symmetry) in [16] and
for wave maps outside equivariant symmetry for data with energy slightly above the ground
state [17], where the perturbative regularity theory of Tao [76] could be used; see also the
bubbling theory of Grinis [34]. See also [13] for the radially symmetric energy critical NLW in
four space dimensions, and [66] for the same equation in odd space dimensions.

1.4. Summary of the proof: collision intervals and no-return analysis. The challenging
nature of bridging the gap between Theorem 1.15, which is the resolution along one sequence
of times, and Theorem 1 is apparent from the following consideration. The sequence tn ! T⇤
in Theorem 1.15 gives no relationship between the lengths of the time intervals [tn, tn+1] and
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the concentration scales ~�n of the various harmonic maps in the decomposition. One immediate
enemy is then the possibility of elastic collisions. If colliding solitons could recover their shape
after a collision, then one could potentially encounter the following scenario: the solution ap-
proaches a multi-soliton configuration for a sequence of times, but in between infinitely many
collisions take place, so that there is no soliton resolution in continuous time.

We describe our approach. Fix u(t) 2 E`,m, a finite energy solution to (1.1) on the time
interval I⇤ as defined above. Let N � 0, m1,m� 2 Z, and the radiation u⇤(t) 2 E0,m1 be as in
Theorem 1.15. We define a multi-bubble proximity function at each t 2 I⇤ by

d(t) := inf
~◆,~�

✓
ku(t)� u⇤(t)�Q(m�,~◆,~�)k2E +

NX

j=1

⇣ �j
�j+1

⌘
k
◆ 1

2

, (1.8)

where ~◆ := (◆1, . . . , ◆N ) 2 {�1, 1}N , ~� := (�1, . . . ,�N ) 2 (0,1)N , and �N+1 := t. We note that
d(t) is a continuous function on I⇤.

With this notation, we see that Theorem 1.15 gives a monotone sequence of times tn ! T⇤
such that,

lim
n!1

d(tn) = 0.

Theorem 1 is an immediate consequence of showing that limt!T⇤ d(t) = 0. We argue by contra-
diction, assuming that lim supt!T⇤ d(t) > 0. This means that there is some sequence of times
where u(t) � u⇤(t) approaches an N -bubble and another sequence of times for which it stays
bounded away from N -bubble configurations. It is natural to rule out this behavior by proving
what is called a no-return lemma. In this generality, our approach is inspired by no-return
results for one soliton by Duyckaerts and Merle [28, 29], Nakanishi and Schlag [57, 58], and
Krieger, Nakanishi and Schlag [44, 45]. The exponential instability considered in those works is
absent here, but is replaced by attractive nonlinear interactions between the solitons. This latter
consideration, and indeed the overall scheme of the proof is based on our previous work [41],
where modulation analysis of bubble interactions was used for the first time in the context of
the soliton resolution problem (in fact, we recently showed that the collision analysis in [41]
yielded a quick proof of Theorem 1 in the special cases when at most two bubbles appear in the
decomposition; see [39]).

The basic tool we use is the standard virial functional

v(t) :=

Z 1

0

@tu(t)r@ru(t)�⇢(t) rdr,

where the cut-o↵ � is placed along a Lipschitz curve r = ⇢(t) that will be carefully chosen (note
that a time-dependent cut-o↵ of the virial functional was also used in [57, 58]). Di↵erentiating
v(t) in time we have,

v0(t) = �
Z 1

0

|@tu(t, r)|2 �⇢(t)(r) rdr + ⌦⇢(t)(u(t)), (1.9)

where ⌦⇢(t)(u(t)) is the error created by the cut-o↵. Importantly, this error has structure, see
Lemmas 2.4 and 4.18, and satisfies the estimates,

⌦⇢(t)(u(t)) . (1 +
��⇢0(t)

��)min{E(u(t); ⇢(t), 2⇢(t)),d(t)}.

Roughly, this allows us to think of v(t) as a Lyapunov functional for our problem, localized to
scale ⇢(t), with “almost” critical points given by multi-bubbles Q(m,~◆,~�). Indeed, if u(t) is
close to a multi-bubble up to scale ⇢(t), and |⇢0(t)| . 1, then |v0(t)| . d(t).
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Our first result is a localized compactness lemma. In Section 3 we prove the following: given
a sequence of wave maps un(t) 2 E`,m on time intervals [0, ⌧n] with bounded energy, and a
sequence Rn ! 1 such that

lim
n!1

1

⌧n

Z
⌧n

0

Z
Rn⌧n

0

|@tun(t, r)|2 r dr dt = 0,

one can find a new sequence 1 ⌧ rn ⌧ Rn and a sequence of times sn 2 [0, ⌧n], so that up to
passing to a subsequence of the un, we have limn!1 �rn⌧n(un(sn)) = 0. Here �R(u) is a local
(up to scale R) version of the distance function d. We note that the sequential decomposition
Theorem 1.15 is an almost immediate consequence of the localized compactness lemma along
with the Shatah and Tahvildar-Zadeh theory; see Remark 3.2. The proof of the compactness
lemma is very similar in spirit to the analysis of Côte [10] and Jia and Kenig [42].

We give a caricature of the no-return analysis, pointing the reader to the technical arguments
in Sections 4, 5 for the actual arguments. We would like to integrate (1.9) over intervals [an, bn]
with an, bn ! T⇤ such that d(an),d(bn) ⌧ 1 but contain some subinterval [cn, dn] ⇢ [an, bn] on
which d(t) ' 1; such intervals exist under the contradiction hypothesis. From (1.9) we obtain,

Z
bn

an

Z
⇢(t)

0

|@tu(t, r)|2 rdr dt . ⇢(an)d(an) + ⇢(bn)d(bn) +

Z
bn

an

��⌦⇢(t)(u(t))
�� dt. (1.10)

We consider the choice of ⇢(t). One can use the sequential compactness lemma so that choosing
⇢(t)/(dn � cn) � 1 we have,

Z
dn

cn

Z
⇢(t)

0

|@tu(t, r)|2 rdr dt & dn � cn, (1.11)

and one can expect that the integral of the error
R
dn

cn

��⌦⇢(t)(u(t))
�� dt ⌧ |dn � cn| is absorbed

into the left-hand side by choosing ⇢(t) to lie in a region where u(t) has negligible energy.
To complete the proof one would need to show that the error generated on the intervals

[an, cn] and [dn, bn] can also be absorbed into the left-hand side, and moreover that the terms
⇢(an)d(an), ⇢(bn)d(bn) ⌧ dn � cn. To accomplish this, we require a more careful choice of
the intervals [an, bn] and placement of the cut-o↵ ⇢(t), which motivates the notion of collision
intervals introduced in Section 4.1. These allow us to distinguish between “interior” bubbles
that come into collision, and “exterior” bubbles, which stay coherent throughout the intervals
[an, bn], and to ensure we place the cuto↵ in the region between the interior and exterior bubbles.

Given K 2 {1, . . . , N}, we say that an interval [a, b] is a collision interval with parameters
0 < ✏ < ⌘ and N � K exterior bubbles for some 1  K  N , if d(a),d(b)  ✏, there exists
a c 2 [a, b] with d(c) � ⌘, and a curve r = ⇢K(t) outside of which u(t) � u⇤(t) is within ✏
of an N � K-bubble in the sense of (1.8) (a localized version of d(t)); see Defintion 4.4. We
now define K to be the smallest non-negative integer for which there exists ⌘ > 0, a sequence
✏n ! 0, and sequences an, bn ! T⇤, so that [an, bn] are collision intervals with parameters ✏n, ⌘
and N �K exterior bubbles, and we write [an, bn] 2 CK(✏n, ⌘); see Section 4.1 for the proof that
K is well-defined and � 1, under the contradiction hypothesis.

We revisit (1.10) on a sequence of collision intervals [an, bn] 2 CK(✏n, ⌘). Near the endpoints
an, bn, u(t)�u⇤(t) is close to an N -bubble configuration and we denote the interior scales, which
will come into collision, by ~� = (�1, . . . ,�K) and the exterior scales, which stay coherent, by
~µ = (~µK+1, . . . , ~µN ). We assume for simplicity in this discussion that the collision intervals have
only a single subinterval [cn, dn] as above, and that d(t) is su�ciently small on the intervals
[an, cn] and [dn, bn] so that the interior scales are well defined (via modulation theory) there.
We call [an, cn], [dn, bn] modulation intervals and [cn, dn] compactness intervals.
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The scale of the Kth bubble �K(t) plays an important role and must be carefully tracked. We
will need to also make sense of this scale on the compactness intervals, where the bubble itself
may lose its shape from time to time. We do this by energy considerations; see Definition 5.1.
Crucially, the minimality of K can be used to ensure that the intervals [cn, dn] as above satisfy
dn � cn ' max{�K(cn),�K(dn)}; see Lemma 5.4. Thus the first terms on the right-hand-side
of (1.10) can be absorbed using (1.11) by ensuring ⇢(an) = o(✏�1

n )�K(an), ⇢(bn) = o(✏�1
n )�K(bn)

if we can additionally prove that the scale �K(t) does not change much on the modulation
intervals. Note that our choice of cut-o↵ will satisfy �K(t) ⌧ ⇢(t) ⌧ µK+1(t).

We must also absorb the errors (
R
cn

an
+
R
bn

dn
)|⌦⇢(t)(u(t))| dt . (

R
cn

an
+
R
bn

dn
)d(t) dt on the modu-

lation intervals. Here we perform a refined modulation analysis on the interior bubbles, which
allows us to track the growth of d(t) through a collision of (possibly) many bubbles. Roughly,
up to scale ⇢(t), u(t) looks like a K-bubble, and using the implicit function theorem we define
modulation parameters ~◆, ~�(t), and error g(t) with

u(t, r) = Q(mn,~◆,~�(t); r) + g(t, r), if r  ⇢(t),
⌦
⇤Q�j(t)

| g(t)
↵
= 0, for j = 1, . . . ,K,

where ⇤ := r@r is the generator of the H-invariant scaling (note that for k = 1, 2 the decompo-
sition is slightly di↵erent due to the slow decay of ⇤Q) and

h� | gi :=
Z 1

0

�(r)g(r) rdr, for �, g : (0,1) ! R. (1.12)

The orthogonality conditions and an expansion of the nonlinear energy of u(t) up to scale ⇢(t)
lead to the coercivity estimate,

kg(t)kE +
X

j 62A

⇣ �j(t)

�j+1(t)

⌘ k
2 . max

i2A

⇣ �i(t)

�i+1(t)

⌘ k
2
+ on(1) ' d(t) + on(1),

where A = {j 2 1, . . . ,K � 1 : ◆j 6= ◆j+1} captures the alternating bubbles (which experience
an attractive interaction force) and the on(1) term comes from errors due to the presence of
the radiation u⇤ in the region r . ⇢(t) ⌧ t. In fact, since d(t) grows out of the modulation
intervals we can absorb these errors into d(t) by enlarging the parameter ✏n and requiring the
lower bound d(t) � ✏n on the modulation intervals.

The growth of d(t) is then captured by the dynamics of the alternating bubbles, which,
since (1.1) is second order, enter at the level of �00

j
(t). However, it is not clear how to derive

useful estimates from the equation for �00(t) obtained by twice di↵erentiating the orthogonality
conditions. To cancel terms with critical size, but indeterminate sign, we introduce a localized
virial correction to �0

j
' �◆jk⇤Qk�2

L2�
�1

j

⌦
⇤Q�j | ġ

↵
, defining

�j(t) = �◆jk⇤Qk�2

L2

⌦
⇤Q�j(t)

| ġ(t)
↵
� k⇤Qk�2

L2 hA(�j(t))g(t) | ġ(t)i ,

where A(�) is a truncated (to scale �) version of ⇤ = ⇤+1, the generator of L2 scaling. Roughly,
we show in Sections 4.3 and 5.2, that if the distance d(t) is dominated at a local minimal point
t0 by the ratio between the j-th bubble and its larger neighbor with opposite sign, then we
can control dynamics of �j(t) near t0, showing that d(t) grows in a controlled way until some
other bubble ratio becomes dominant, and so on, until we exit the modulation interval. All the
while we can ensure that the Kth scale does not move much, and we obtain bounds of the form

(
R
cn

an
+
R
bn

dn
)d(t) dt . d(cn)

2
k�K(an) + d(dn)

2
k�K(bn) (see the “ejection” Lemma 5.8). Thus the

errors can be absorbed into the left-hand side of (1.10) and we obtain a contradiction.
A similar, but simpler refined modulation analysis was performed in [41]. The use of such

refinements to modulation parameters to obtain dynamical control was introduced by the first
author in the context of a two-bubble construction for NLS in [35]. The notion of localized
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virial corrections in the context of energy/Morawetz-type estimates was developed by Raphaël
and Szeftel in [63].

1.5. Notational conventions. The energy is denoted E, E is the energy space, E`,m are the
finite energy sectors.

Given a function �(r) and � > 0, we denote by ��(r) = �(r/�), the H-invariant re-scaling,
and by ��(r) = ��1�(r/�) the L2-invariant re-scaling. We denote by ⇤ := r@r and ⇤ := r@r+1
the infinitesimal generators of these scalings. We denote h· | ·i the radial L2(R2) inner product
given by (1.12).

We denote k the equivariance degree and f(u) := 1

2
sin 2u the nonlinearity in (1.1). We let �

be a smooth cut-o↵ function, supported in r  2 and equal 1 for r  1.
The general rules we follow giving names to various objects are:

• index of an infinite sequence: n
• sequences of small numbers: �, �, ✏, ⇣, ⌘, ✓
• scales of bubbles and quantities describing the spatial scales: �, µ, ⌫, ⇠, ⇢; in general we
call � the scale of the interior bubbles and µ the exterior ones (once these notions are
defined)

• moment in time: t, s, ⌧, a, b, c, d, e, f
• indices in summations: i, j, `
• time intervals: I, J
• number of bubbles: K,M,N
• signs are denoted ◆ and �
• boldface is used for pairs of elements related to the Hamiltonian structure; an arrow is
used for vectors (finite sequences) in other contexts.

We call a “constant” a number which depends only on the equivariance degree k and the number
of bubbles N . Constants are denoted C,C0, C1, c, c0, c1. We write A . B if A  CB and A & B
if A � cB. We write A ⌧ B if limn!1A/B = 0.

For any sets X,Y, Z we identify ZX⇥Y with (ZY )X , which means that if � : X ⇥ Y ! Z is a
function, then for any x 2 X we can view �(x) as a function Y ! Z given by (�(x))(y) := �(x, y).

2. Preliminaries

2.1. Basic properties of finite energy maps. We aggregate here several well known results.

Lemma 2.1. Fix integers `,m. For every ✏ > 0 and R0 > 1, there exists a � > 0 with the
following property. Let 0  R1 < R2  1 with R2/R1 � R0, and u 2 E`,m be such that
E((u, 0);R1, R2) < �. Then, there exists `0 2 Z such that |u(r) � `0⇡| < ✏ for almost all
r 2 (R1, R2).

Moreover, there exist constants C = C(R0),↵ = ↵(R0) > 0 such that if E((u, 0);R1, R2) < ↵,
then

ku� `0⇡kE(R1,R2)
 CE(u;R1, R2). (2.1)

Proof. By an approximation argument we can assume (u, 0) 2 E`,m is smooth. First, we show
that for any ✏0 > 0, there exists r0 2 [R1, R2] such that |u(r0) � `0⇡| < ✏0 for some `0 2 Z
as long as E((u, 0);R1, R2) is su�ciently small. If not, one could find ✏1 > 0, 0 < R1 <
R2, and a sequence (un, 0) 2 E`,m so that E((un, 0);R1;R2) ! 0 as n ! 1 but such that
infr2[R1,R2],`2Z |un(r) � `⇡| � ✏1. The latter condition gives a constant c(✏1) > 0 such that
infr2[R1,R2]

| sin(un(r))| � c(✏1). But then

E((un, 0);R1;R2) �
k2

2

Z
R2

R1

sin2(un(r))
dr

r
� k2

2
c(✏1)

2 log(R2/R1),
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which is a contradiction. Next define the function, G(u) =
R
u

0
|sin ⇢| d⇢, and for r1 2 (R1, R2)

note the inequality,

|G(u(r0))�G(u(r1))| =
���
Z

u(r0)

u(r1)

|sin ⇢| d⇢
��� =

���
Z

r0

r1

|sinu(r)| |@ru(r)| dr
��� . E((u, 0);R1, R2).

We conclude using that G is continuous and increasing that |u(r)� `0⇡| < ✏ for all r 2 (R1, R2).
As long as ✏ > 0 is small enough we see that in fact, sin2(u(r)) � 1

2
|u(r)�`0⇡|2 for all r 2 (R1, R2)

and (2.1) follows. ⇤

We have the following version of the principle of finite speed of propagation.

Lemma 2.2. Let u(t) be a solution to (1.1) on the time interval [0, T ]. Then

E(u(T ); 0, R� T )  E(u(0); 0, R), for all R � T.

Proof. It su�ces to consider the case of a smooth solution and then approximate a finite energy
solution by smooth ones. For a proof in the smooth case, see [70, Section 2]. ⇤

Remark 2.3. The energy conservation yields the following equivalent formulation:

E(u(T );R+ T )  E(u(0);R), for all R � 0. (2.2)

We have the following virial identity.

Lemma 2.4 (Virial identity). Let u(t) be a solution to (1.1) on an open time interval I and
⇢ : I ! (0,1) a Lipschitz function. Then for almost all t 2 I,

d

dt

D
@tu(t) | �2

⇢(t)
r@ru(t)

E
= �

Z 1

0

(@tu(t, r)�⇢(t)(r))
2 rdr + ⌦⇢(t)(u(t)),

where

⌦⇢(t)(u(t)) :=� 2
⇢0(t)

⇢(t)

Z 1

0

@tu(t, r)r@ru(t, r)�⇢(t)(r)⇤�⇢(t)(r) rdr

�
Z 1

0

⇣
(@tu(t, r))

2 + (@ru(t, r))
2 � k2

sin2 u(t, r)

r2

⌘
�⇢(t)(r)⇤�⇢(t)(r) rdr.

Proof. The proof is a direct computation along with an approximation argument for fixed t 2 I,
assuming ⇢ is di↵erentiable at t. ⇤

2.2. Local Cauchy theory. The following theorem was proved by Shatah and Tahvildar-Zadeh
in [70,71].

Lemma 2.5 (Local well-posedness). [71, Theorem 1.1], [69, Theorem 8.1] [70] Let `,m 2 Z and
let u0 2 E`,m. Then, there exist a maximal time interval of existence (T�, T+) = Imax(u0) 3 0
on which (1.1) admits a unique solution u(t) in the space C0(Imax; E`,m) with u(0) = u0.

In fact, there exists ✏0 > 0 with the following property. Let u0 2 E`,m, ⌧ > 0 and suppose the
solution u(t) to (1.1) with data u(0) = u0 is defined on the interval [0, ⌧), i.e., in C0([0, ⌧); E`,m).
Suppose that there exists a time 0  t < ⌧ and a number R > ⌧ � t such that,

E(u(t), 0;R) < ✏0.

Then, T+(u) > ⌧ .
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See Struwe [73, p. 817] for the continuation criterion in the second paragraph of Lemma 2.5
in the case of smooth initial data, and see [69, Theorem 8.1] for the global well-posedness
theorem for energy class equivariant wave maps with su�ciently small energy. Key to the proof
are Strichartz estimates for the wave equation (see, e.g., Lindblad, Sogge [47], and Ginibre,
Velo [33]), after noticing that the linearization of (1.1) about the zero solution is equivalent,
in the energy space, to the free scalar wave equation in dimension d = 2k + 2. Indeed, the
linearization of (1.1) about the zero solution is given by the linear wave equation,

@2t v � @2rv �
1

r
@rv +

k2

r2
v = 0. (2.3)

We will sometimes use the notation vl(t) = Sl(t)v0 as the unique solution to (2.3) with initial
data vl(0) = v0 2 E . The mapping E 3 v(t) 7! W (t) 2 (Ḣ1 ⇥ L2)rad(R2k+2) defined by

W (t, r) := (r�kv(t, r), r�k@tv(t, r))

satisfies kv(t)kE ' kW (t)k
(Ḣ1⇥L2)rad(R2k+2)

and v(t) 2 E solves (2.3) if and only if W (t) 2
(Ḣ1 ⇥ L2)rad solves

@2tW ��2k+2W = 0, (2.4)

where �2k+2 = @2r +
2k+1

r
@r is the radial Laplacian in dimension d = 2k + 2.

For equivariance classes k > 2, this leads to a spatial dimension d > 6 and inconvenient
technical complications. However, we observed in [41] that one may give a unified local Cauchy
theory for (1.1) for all equivariance classes k 2 N based on Strichartz estimates for linear waves
with a critical repulsive potential proved by Planchon, Stalker, Tahvildar-Zadeh [59]. For this
purpose, consider the mapping,

v0(r) 7! V0(r) := r�1v0(r), v̇0(r) 7! V̇0(r) := r�1v̇0(r). (2.5)

We see that v(t) = (v(t), @tv(t)) solves (2.3) if and only if V (t) = (v(t), @tv(t)) solves

@2t V � @2rV � 3

r
@rV +

k2 � 1

r2
V = 0. (2.6)

For each k � 1, define the norm Hk for radially symmetric functions V on R4 by

kV k2
Hk(R4)

:=

Z 1

0


(@rV )2 +

(k2 � 1)

r2
V 2

�
r3 dr.

Solutions V (t) to (2.6) conserve the Hk ⇥ L2 norm and by Hardy’s inequality we have

kV kHk(R4) ' kV k
Ḣ1(R4)

.

Thus the mapping (2.5) satisfies

k(V0, V̇0)kḢ1⇥L2(R4)
' k(V0, V̇0)kHk⇥L2(R4) = k(v0, v̇0)kH⇥L2(R2).

We conclude that the Cauchy problem for (2.6) with initial data in Ḣ1⇥L2(R4) is equivalent to
the Cauchy problem for (2.3) for initial data (v0, v̇0) 2 H⇥L2. As a consequence, Strichartz esti-
mates for solutions to (2.3) are inherited from Strichartz estimates for (2.6) proved by Planchon,
Stalker, and Tahvildar-Zadeh [59].

Lemma 2.6 (Strichartz estimates for (2.6)). [59, Corollary 3.9] Fix k � 1 and let V (t) be a
radial solution to the linear equation

@2t V � @2rV � 3

r
@rV +

k2 � 1

r2
V = F (t, r), V (0) = (V0, V̇0) 2 Ḣ1 ⇥ L2(R4).
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Then, for any time interval 0 2 I ⇢ R we have

kV k
(L3

tL
6
x\L5

t,x)(I⇥R4) + sup
t2I

kV (t)k
Ḣ1⇥L2(R4)

. kV (0)k
Ḣ1⇥L2(R4)

+ kFk
L
1
tL

2
x(I⇥R4),

where the implicit constant above is independent of I.

We define the Strichartz norm,

kvkS(I) := kr�
3
5 vk

L
5
t,r(I)

+ kr�
2
3 vk

L
3
tL

6
r(I)

and recall that the notation Lp
r refers to the Lebesgue space on (0,1) with respect to the

measure r dr.

Corollary 2.7 (Strichartz estimates for (2.3)). Fix k � 1 and let v(t) be a radial solution to
the linear equation

@2t v � @2rv �
1

r
@rv +

k2

r2
v = F (t, r), v(0) = (v0, v̇0) 2 E = H ⇥ L2.

Then, for any time interval 0 2 I ⇢ R we have

kvkS(I) + kv(t)kL1
t (H⇥L2)(I) . kv(0)kH⇥L2 + kFk

L
1
tL

2
r(I)

,

where the implicit constant above is independent of I.

Writing the Cauchy problem for (1.1) in the class E = E0,0 as

@2t u��u+
k2

r2
u =

k2

2r2
(2u� sin 2u)

u(0) = (u0, u1) 2 E = H ⇥ L2.
(2.7)

a standard argument based on the contraction mapping principle yields the following result; see
for example [14].

Lemma 2.8 (Cauchy theory in E0,0). There exist �0 > 0 and a functions C : [0,1) ! (0,1)
with the following properties. Let A � 0 and let u0 = (u0, u1) 2 E with ku0kE  A. Let I 3 0 be
an open interval such that

kSl(t)u0kS(I) = �  �0.

Then there exists a unique solution u(t) to (2.7) in the space C0(I; E) \ S(I) with initial data
u(0) = u0. Moreover, u(t) satisfies the bounds kukS(I)  C(A)�, and kukL1

t (I;E)  C(A). To
each solution u(t) to (2.7) we can associate a maximal interval of existence Imax(u) such that
for each compact subinterval I 0 ⇢ Imax we have kukS(I0) < 1.

Moreover, small data scattering holds: there exists ✏0 small enough so that if u0 2 E satisfies
E(u0) < ✏0, the solution u(t) given above is defined globally in time, satisfies the bound,

sup
t2R

ku(t)kE + kukS(R) . ku0kE

and scatters in the following sense: there exist solutions u±
l (t) 2 E to (2.3) such that

ku� u±
l (t)kE ! 0 as t ! ±1 (2.8)

Conversely, the existence of wave operators holds, i.e., for any solution vl(t) 2 E to the linear
equation (2.3), there exists a unique, global-in-forward time solution u(t) 2 E to (2.7) such
that (2.8) holds as t ! 1. An analogous statement holds for negative times.

We make note of the following estimate proved in [10], which is relevant for the vanishing of
the error in the linear profile decomposition stated in the next section.
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Lemma 2.9. [10, Lemma 2.11] There exists a uniform constant C > 0 such that every solution
v(t) 2 E to (2.3) satisfies,

kvkL1
t,r(R)  Ckv(0)k

3
8
E kr

� 3
5 vk

5
8

L
5
t,r(R)

.

2.3. Profile decomposition. Bahouri-Gérard-type linear profile decompositions [1] are an es-
sential ingredient in the study of solutions to (1.1); see also [3, 32, 48, 49, 54]. We make explicit
use of a version adapted to sequences of functions in the a�ne spaces E`,m proved by Jia and
Kenig in [42], which synthesized Côte’s analysis in [10]; see also [11] which treats sequences in
E0,0.

Lemma 2.10 (Linear profile decomposition). [42, Lemma 5.5] [1] Let `,m 2 Z and let un be a
sequence in E`,m with lim supn!1E(un) < 1. Then, there exists K0 2 {0, 1, 2, . . . }, sequences
�n,j 2 (0,1) for j 2 {1, . . . ,K0}, �n,i 2 (0,1), and tn,i 2 R, as well as mappings  j 2 E`j ,mj

with E( j) < 1 and finite energy solutions vi
l to (2.3) such that for each J � 1,

un = m⇡ +
K0X

j=1

(
⇣
 j
� ·
�n,j

�
,

1

�n,j
 ̇j
� ·
�n,j

�⌘
�mj⇡)

+
JX

i=1

⇣
vil
��tn,i
�n,i

,
·
�n,i

�
,

1

�n,i
@tv

i

l

��tn,i
�n,i

,
·
�n,i

�⌘
+wJ

n,0(·)

where, denoting by wJ
n,l(t) the solution to the linear wave equation (2.3) with initial data wJ

n,0
,

the following hold:

• the parameters �n,j satisfy

�n,1 ⌧ �n,2 ⌧ · · · ⌧ �n,K0 as n ! 1;

and for each j one of �n,j ! 0, �n,j = 1 for all n, or �n,j ! 1 as n ! 1, holds;

• for each i, either tn,i = 0 for all n or limn!1
�tn,i

�n,i
= ±1. Either �n,i ! 0, �n,i = 1 for

all n, or �n,i ! 1 as n ! 1;
• for each i 2 N,

�n,j
�n,i

+
�n,i
�n,j

+
|tn,i|
�n,j

! 1 as n ! 1 8j = 1, . . . ,K0;

• the scales �n,i and times tn,i satisfy,

�n,i
�n,i0

+
�n,i0

�n,i
+

��tn,i � tn,i0
��

�n,i
! 1 as n ! 1;

• the integers `j and mj satisfy, |`j �mj | � 1, and,

` = m+
K0X

j=1

(`j �mj);

• the error term wJ
n satisfies,

(wJ

n,0(�n,j ·),�n,jẇJ

n,0(�n,j ·))* 0 2 E as n ! 1
(wJ

n,l(tn,i,�n,i·),�n,i@twJ

n,l(tn,i,�n,i·))* 0 2 E as n ! 1
for each J � 1, each j = 1, . . . ,K0, and i 2 N, and vanishes strongly in the sense that

lim
J!1

lim sup
n!1

⇣
kwJ

n,lkL1
t,r(R) + kwn,lkS(R)

⌘
= 0;
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• the following pythagorean decomposition of the nonlinear energy holds: for each J � 1,

E(un) =
K0X

j=1

E( j) +
JX

i=1

E
�
(vjl(�tn,i/�n,i), @tv

j

l(�tn,i/�n,i))
�
+ E(wJ

n) + on(1) (2.9)

as n ! 1.

Remark 2.11. The pythagorean expansion of the nonlinear energy in the case K0 = 0 was
treated in [11, Lemma 2.16]. The case with K0 � 1 was treated in the recent preprint [18,
Appendix B.2].

Remark 2.12. We call the pairs ( j ,�n,j) and the triplets (vi
l,�n,i, tn,i) profiles. Following

Bahouri and Gérard [1] we refer to the profiles ( j ,�n,j) and the profiles (vi
l,�n,i, 0) as centered,

to the profiles (vi
l,�n,i, tn,i) with �tn,i/�n,i ! 1 as n ! 1 as outgoing, and those with

�tn,i/�n,i ! �1 as incoming.

In Section 3 we will need to evolve the linear profiles via the flow for (1.1) in the special
case when all of the centered profiles are given by harmonic maps. In this setting we define
nonlinear profiles as follows. Given a profile (vi

l,�n,i, tn,i) as in Lemma 2.10 we define the
corresponding nonlinear profile, (vi

nl,�n,i, tn,i) as the unique solution to (1.1) such that for all
�tn,i/�n,i 2 Imax(vnl) we have,

lim
n!1

kvi

nl(�
tn,i
�n,i

)� vi

l(�
tn,i
�n,i

)kE = 0

The existence of nonlinear profiles follows from the local Cauchy theory in Lemma 2.8 in the
case of a centered linear profile, i.e., tn,i = 0, and from the existence of wave operators statement
in Lemma 2.8 in the case of outgoing/incoming profiles, i.e., �tn,i/�n,i ! ±1.

Lemma 2.13 (Nonlinear profile decomposition). Let `,m 2 Z and let un be a sequence in
E`,m with lim supn!1E(un) < 1. Assume the linear profile decomposition for un given by the
Lemma 2.10 takes the form

un = m⇡ +
K0X

j=1

((Q
� ·
�n,j

�
, 0)� ⇡) +

JX

i=1

⇣
vil
��tn,i
�n,i

,
·
�n,i

�
,

1

�n,i
@tv

i

l

��tn,i
�n,i

,
·
�n,i

�⌘
+wJ

n,0(·),

that is, all of the profiles ( j ,�n,j) for 1  j  K0 as in Lemma 2.10 are given by harmonic
maps (Q,�n,j). There exists a constant �0 > 0 su�ciently small with the following properties.
Let i0 2 N, ⌧0 > 0 and assume that for each i 2 N, and for each 1  j  K0,

⌧0�n,i0 � tn,i
�n,i

< T+,i(v
i

nl), lim sup
n!1

kvinlkS((� tn,i
�n,i

,
⌧0�n,i0

�tn,i
�n,i

))
< 1,

and ⌧0
�n,i0
�n,j

 �0,
(2.10)

for all n. Then for each n su�ciently large, the wave map evolution un(t) of the data un(0) = un

is defined on the interval [0, ⌧0�n,i0 ] and the following nonlinear profile decomposition holds: for
each t 2 [0, ⌧0�n,i0 ] the sequence zJ

n(t) defined by

un(t) = m⇡ +
K0X

j=1

((Q
� ·
�n,j

�
, 0)� ⇡) +

JX

i=1

⇣
vinl

� t� tn,i
�n,i

,
·
�n,i

�
,

1

�n,i
@tv

i

nl

� t� tn,i
�n,i

,
·
�n,i

�⌘

+wJ

n,l(t) + zJ

n(t),
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satisfies,

lim
J!1

lim sup
n!1

⇣
sup

t2[0,⌧0�n,i0 ]

kzJ

n(t)kE + kzJnkS([0,⌧0�n,i0 ])

⌘
= 0.

Remark 2.14. We note that the harmonic maps in the nonlinear profile decomposition are
static solutions to (1.1), but their presence in a linear profile decomposition may lead to eventual
singularities in the nonlinear flow. This leads us to the hypothesis in the second line of (2.10),
which ensures that we are only considering the nonlinear evolution of un(t) on time intervals
shorter than the length scales of the harmonic maps, thus avoiding the possibility of a singularity.

The key ingredient in the proof of Lemma 2.13 is the following modification of the now
standard nonlinear perturbation lemma [43, Theorem 2.20]; see also [1, Section IV].

Lemma 2.15 (Nonlinear perturbation lemma). Fix integers `,m. There are continuous func-
tions ✏0, C0 : (0,1) ! (0,1) with the following properties. Let I be an open interval and let
u,v 2 C0(I; E`,m) such that for some A � 0,

ku� vkL1
t (I;E) + kr�

2
3 sin vk

L
3
t (I;L

6
r)

 A

and

keq(u)k
L
1
t (I;L

2
r)
+ keq(v)k

L
1
t (I;L

2
r)
+ kw0kS(I)  ✏  ✏0(A)

where eq(u) := @2t u��u+k2r�2f(u) in the sense of distributions, and w0(t) := ~Sl(t�t0)(u(t0)�
v(t0)) is the linear evolution of the di↵erence, i.e., the solution to (2.3), where t0 2 I is arbitrary,
but fixed, and where ~Sl(t)v := (Sl(t)v, @tSl(t)v). Then,

ku(t)� v(t)�w0(t)kL1(I;E) + ku� vkS(I)  C0(A)✏.

Proof of Lemma 2.15. Let X(I) denote the space L3
t (I;L

6
r) in this proof. Define w(t) := u(t)�

v(t) and let e := @2t u��u+k2r�2 sin(u) cos(u)�(@2t v��v+k2r�2 sin(v) cos(v)) = eq(u)�eq(v).
Let t0 2 I, fix a small constant �0 to be determined below and partition the right-half of I as
follows,

t0 < t1 < t2 < · · · < tn  1, Ij := (tj , tj+1), I \ (t0,1) = (t0, tn),

kr�
2
3 sin vk

L
3
t (Ij ;L

6
r)

 �0 for j = 0, . . . , n� 1, and n  C(A; �0).

We omit the estimate on I \ (�1, t0) since it is the same by symmetry. Let wj(t) := Sl(t �
tj)w(tj) for all 0  j < n, where Sl is the linear propagator for (2.3). Then

w(t) = w0(t) +

Z
t

t0

Sl(t� s)
�
0, e� k2r�2(f(v + w)� f(v)� w)

�
(s) ds,

which implies that, for some absolute constant C1 � 1,

kw � w0kX(I0)
. ke� k2r�2(f(v + w)� f(v)� w)k

L
1
tL

2
r(I0)

 C1✏+ C1(�
2

0 + kwk2
X(I0)

)kwkX(I0)
.

(2.11)

In the second estimate above we have used the expansion,

f(v + w)� f(v)� w =
1

2
(sin(2v + 2w)� sin 2v � 2w)

= �2w sin2 v � 2 sin v cos v sin2w +O(|w|3),
to estimate the terms on the right. Note that in (2.11) we are using in an essential way the
divisibility of the X(I) norm. Note that kwkX(I0)

< 1 provided I0 is a finite interval. If I0 is
half-infinite, then we first need to replace it with an interval of the form [t0, N), and let N ! 1
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after performing estimates which are uniform in N . Now assume that C1�20  1

4
and fix �0 in

this fashion. By means of the continuity method, (2.11) implies that kwkX(I0)
 8C1✏. Next,

Duhamel’s formula gives

w1(t)� w0(t) =

Z
t1

t0

Sl(t� s)
�
0, e� k2r�2(f(v + w)� f(v)� w)

�
(s) ds

from which we obtain

kw1 � w0kX(R) .
Z

t1

t0

k
�
e� k2r�2(f(v + w)� f(v)� w)

�
(s)k2 ds

which is estimated as in (2.11). We conclude that kw1kX(R)  8C1✏. In a similar fashion one
verifies that for all 0  j < n

kw � wjkX(Ij)
+ kwj+1 � wjkX(R) . ke� k2r�2(f(v + w)� f(v)� w)k

L
1
tL

2
r(Ij)

 C1✏+ C1(�
2

0 + kwk2
X(Ij)

)kwkX(Ij)

(2.12)

where C1 � 1 is as above. By induction in j we have

kwkX(Ij)
+ kwjkX(R)  C(j) ✏ 8 1  j < n.

This requires that ✏ < ✏0(n) which can be achieved as long as ✏0(A) is chosen small enough.
Repeating the estimate (2.12), but with the full S(I) norm and the energy piece L1

t E included
on the left-hand side completes the proof. ⇤

Sketch of the proof of Lemma 2.13. The proof is very similar to [21, Proof of Proposition 2.8]
or [11, Proof of Proposition 2.17] and we give a brief sketch below, mainly to address how the
nonlinear profiles given by harmonic maps are handled.

Let In = [0, ⌧n) ⇢ [0, ⌧0�n,i0 ] be any half-open subinterval on which the wave map evolution
un(t) is defined. By (2.10), the sequence

vJ

n(t) := m⇡ +
K0X

j=1

((Q
� ·
�n,j

�
, 0)� ⇡) +

JX

i=1

⇣
vinl

� t� tn,i
�n,i

,
·
�n,i

�
,

1

�n,i
@tv

i

nl

� t� tn,i
�n,i

,
·
�n,i

�⌘

is well defined on the time intervals [0, ⌧0�n,i0 ]. The idea is to apply Lemma 2.15 to the sequences
un and vJ

n on In for large n and so we need to check that the hypothesis of Lemma 2.15 are
satisfied. First, un(t) solves (1.1) so eq(un) = 0. Next we claim that

lim
n!1

keq(vJn)kL1
tL

2
r([0,⌧0�n,i0 ])

= 0 (2.13)

for any fixed J . Denoting vinl,n(t) := vinl
�
t�tn,i

�n,i
, ·
�n,i

�
we have,

��eq(uJn)(t)
�� = k2

2r2

��� sin(2vJn(t))�
K0X

j=1

sin 2Q�n,j �
JX

i=1

sin 2(vinl,n(t))
���.

And hence (2.13) follows from an argument based the pseudo-orthogonality of the parameters,
the hypothesis (2.10), and repeated use of the identity,

sin(A+B)� sinA� sinB = �2 sinA sin2(B/2)� 2 sinB sin2(A/2).

Next, note that the last condition in (2.10) implies that

lim sup
n!1

kr�
2
3 sinQ�n,jkL3

t ([0,⌧0�n,i0 ];L
6
r)

. 1,
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for each j 2 1, . . . ,K0. In fact, is crucial that,

lim sup
n!1

kr�
2
3 sin(vJn)kL3

tL
6
r(In)

. 1

uniformly in J . This is possible thanks to the small data theory from Lemma 2.8 together
with the pythagorean expansion of the energy (2.9). Indeed, there exists J1 such that for
each i � J1, we must have lim supn!1E(vj

l,n(0)) < ✏0 where ✏0 is as in Lemma 2.8 and

vil,n(t) := vil
�
t�tn,i

�n,i
, ·
�n,i

�
. Using again the pseudo-orthogonality of the parameters and (2.10)

along with Lemma 2.8 we obtain,

lim sup
n!1

kr�
2
3 sin(

X

i�J1

vinl,n)k3L3
tL

6
r(In)

. lim sup
n!1

X

i�J1

kr�
2
3 vinl,nk3L3

tL
6
r(In)

. lim sup
n!1

X

i�J1

kvil,nk3E < 1,

where the last inequality implicitly uses the fact that for all v 2 E with E(v)  ✏ su�ciently
small we have kvkE ' E(v). One may now apply Lemma 2.15 and conclude, for instance, that

lim sup
n!1

sup
t2In

kun(t)� vJ

n(t)�wJ

l,n(t)kE = 0, (2.14)

for each interval In ⇢ [0, ⌧0�n,i0 ] on which un(t) is defined. In fact, by Lemma 2.5 this is su�cient
to deduce that T+(un) > ⌧0�n,i0 for all su�ciently large n as long as �0 as in (2.10) is chosen small
enough. To see this, suppose for contradiction there is some subsequence un(t) and a sequence
⌧n ! 0 for which un(t) has maximal forward interval existence given by In = [0, ⌧n�n,i0). Fix
J > i0 and let ✏ > 0 be a constant to be determined below. Since each of the profiles is
well-defined up till time ⌧0�n,i0 , and using crucially the second line in (2.10) (in particular that
�n,j & �n,i0 for each j), we can find An = An(✏) > 0 such that

K0X

j=1

E(Q�n,j ; 0, An) +
JX

i=1

E(vi

nl,n(⌧n�n,i0); 0, An) + E(wJ

l,n(⌧n�n,i0); 0, An) < ✏

and such that sn := ⌧n�n,i0 � An
4

> 0. By finite speed of propagation and the above we have

K0X

j=1

E(Q�n,j ; 0, An/2) +
JX

i=1

E(vi

nl,n(sn); 0, An/2) + E(wJ

l,n(sn); 0, An/2) < ✏.

Combing the above with (2.14), we obtain,

E(un(sn); 0, An/2) . ✏

as long as n is taken su�ciently large. Since ⌧n�n,i0 � sn = An/4 < An/2, we see by Lemma 2.5
that ⌧n�n,i0 cannot be a maximal time for un as long as ✏ > 0 is chosen small enough, a
contradiction. This completes the proof. ⇤

In Section 3 we need an additional fact about profile decompositions satisfying additional
hypothesis proved in [19]. First, a preliminary lemma.

Lemma 2.16. [19, Claim 2] Let (fn, gn) 2 E be a sequence of functions, bounded in E and
assume that there exists a sequence ↵n > 0 of positive numbers such that

kgnkL2(r�↵n)
! 0 as n ! 1.
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Let {sn} ⇢ R be any sequence such that limn!1 |sn| /↵n = 1, and denote by v0 = (v0, v̇0) 2 E
the following weak limit,

~Sl(�sn)(fn, gn)* v0 2 E .

Then, ~Sl(sn)(fn, gn)* (v0,�v̇0) 2 E, where ~Sl(t)(f, g) = (Sl(t)(f, g), @tSl(t)(f, g)).

As a consequence one has the following lemma.

Lemma 2.17. [19, Claim 3] Let `,m 2 Z and let un be a sequence in E`,m with lim supn!1E(un) <
1. Assume the sequence un admits a profile decomposition of the form,

un = m⇡ +
K0X

j=1

(Q
� ·
�n,j

�
, 0)� ⇡) +

JX

i=1

⇣
vil
��tn,i
�n,i

,
·
�n,i

�
,

1

�n,i
@tv

i

l

��tn,i
�n,i

,
·
�n,i

�⌘
+wJ

n,0(·),

that is, all of the profiles ( j ,�n,j) for 1  j  K0 as in Lemma 2.10 are given by harmonic
maps (Q,�n,j). Assume in addition that,

ku̇nkL2 ! 0 as n ! 1.

Then, after passing to a subsequence, for each profile (vi
l,�n,i, tn,i) we can ensure that either,

tn,i = 0 8 n and v̇il(0) = 0

or,

� tn,i
�n,i

! ±1 and 9i0 6= i such that vil(t) = vi
0
l (�t) 8t, tn,i = �tn,i0 �n,i = ��n,i0 8n.

2.4. Multi-bubble configurations. In this section we study properties of finite energy maps
near a multi-bubble configuration.

The operator LQ obtained by linearization of (1.1) about anM -bubble configurationQ(m,~◆,~�)
is given by,

LQ g := D2Ep(Q(m,~◆,~�))g = ��g +
k2

r2
f 0(Q(m,~◆,~�))g,

where f 0(z) = cos 2z and Ep is the potential energy,

Ep( ) :=

Z 1

0

1

2

⇣
(@r (r))

2 + k2
sin2  (r)

r2

⌘
r dr.

Given g = (g, ġ) 2 E ,
⌦
D2E(Q(m,~◆,~�))g | g

↵
=

Z 1

0

⇣
ġ(r)2 + (@rg(r))

2 +
k2

r2
f 0(Q(m,~◆,~�))g(r)2

⌘
rdr.

An important instance of the operator LQ is given by linearizing (1.1) about a single harmonic
map Q(m,M,~◆,~�) = Q�. In this case we use the short-hand notation,

L� := (��+
k2

r2
) +

k2

r2
(f 0(Q�)� 1).

We write L := L1. For each k � 1,

⇤Q(r) := r@rQ(r) = k sinQ = 2k
rk

1 + r2k
.

When k � 2, ⇤Q is a zero energy eigenfunction for L, i.e.,

L⇤Q = 0, and ⇤Q 2 L2

rad(R2).
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When k = 1, L⇤Q = 0 holds but ⇤Q 62 L2 due to slow decay as r ! 1 and 0 is called a
threshold resonance. Indeed, for R > 0,

Z
R

0

(⇤Q(r))2 r dr = � 2R2

1 +R2
+ 2 log(1 +R2) = 4 logR+O(1) as R ! 1. (2.15)

On the other hand when k = 1, ⇤⇤Q has an important cancellation which leads to improved
decay,

⇤⇤Q =
4r

(1 + r2)2
, (2.16)

so ⇤⇤Q 2 L1 \ L1 and h⇤⇤Q | ⇤Qi = 2, whereas for k � 2, h⇤⇤Q | ⇤Qi = 0.
We define a smooth non-negative function Z 2 C1(0,1) \ L1((0,1), r dr) by

Z(r) :=

(
�(r)⇤Q(r) if k = 1, 2

⇤Q(r) if k � 3
(2.17)

and note that

hZ | ⇤Qi > 0. (2.18)

In fact the precise form of Z is not so important, rather only that it is not perpendicular to ⇤Q
and has su�cient decay and regularity. We fix it as above because of the convenience of setting
Z = ⇤Q if k � 3. We record the following localized coercivity lemma proved in [36].

Lemma 2.18 (Localized coercivity for L). [36, Lemma 5.4] Fix k � 1. There exist uniform
constants c < 1/2, C > 0 with the following properties. Let g 2 H. Then,

hLg | gi � ckgk2H � C hZ | gi2 .

If R > 0 is large enough then,

(1� 2c)

Z
R

0

⇣
(@rg)

2 + k2
g2

r2

⌘
rdr + c

Z 1

R

⇣
(@rg)

2 + k2
g2

r2

⌘
rdr +

⌦k2

r2
(f 0(Q)� 1)g | g

↵

� �C hZ | gi2 .
If r > 0 is small enough, then

(1� 2c)

Z 1

r

⇣
(@rg)

2 + k2
g2

r2

⌘
rdr + c

Z
r

0

⇣
(@rg)

2 + k2
g2

r2

⌘
rdr +

⌦k2

r2
(f 0(Q)� 1)g | g

↵

� �C hZ | gi2 .
As a consequence, (see for example [37, Proof of Lemma 2.4] for an analogous argument) one

obtains the following coercivity property of the operator LQ.

Lemma 2.19. Fix k � 1, M 2 N. There exist ⌘, c0 > 0 with the following properties. Consider
the subset of M -bubble configurations Q(m,~◆,~�) for ~◆ 2 {�1, 1}M , ~� 2 (0,1)M such that,

M�1X

j=1

⇣ �j
�j+1

⌘
k

 ⌘2. (2.19)

Let g 2 H be such that

0 =
D
Z�j | g

E
for j = 1, . . .M.

for some ~� as in (2.19). Then,
D
D2Ep(Q(m,~◆,~�))g | g

E
� c0kgk2H .
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The following technical lemma is useful when computing interactions between bubbles at
di↵erent scales.

Lemma 2.20. For any �  µ and ↵,� > 0 with ↵ 6= � the following bound holds:
Z 1

0

max
⇣
1,

r

�

⌘�↵

max
⇣
1,

µ

r

⌘�� dr

r
.↵,�

⇣�
µ

⌘min(↵,�)

.

For any ↵ > 0 the following bound holds:
Z 1

0

max
⇣
1,

r

�

⌘�↵

max
⇣
1,

µ

r

⌘�↵dr

r
.↵

⇣�
µ

⌘
↵

log
⇣µ
�

⌘
.

Proof. This is a straightforward computation, considering separately the regions 0 < r  �,
�  r  µ, and r � µ. ⇤

Using the above, along with the formula for Z in (2.17) we obtain the following.

Corollary 2.21. Let Z be as in (2.17) and suppose that �, µ > 0 satisfy �/µ  1. Then,

D
Z� | ⇤Qµ

E
.
(
(�/µ)k+1 if k = 1, 2

(�/µ)k�1 if k � 3
,

D
Zµ | ⇤Q�

E
.
(
1 if k = 1

(�/µ)k�1 if k � 2
.

Lemma 2.20 is also used to prove the following two lemmas. The first gives leading order
terms in an expansion of the nonlinear energy functional about an M -bubble configuration.

Lemma 2.22. Fix k � 1,M 2 N. For any ✓ > 0, there exists ⌘ > 0 with the following property.
Consider the subset of M -bubble Q(m, ◆,~�) configurations such that

M�1X

j=1

⇣ �j
�j+1

⌘
k

 ⌘.

Then,

���E(Q(m,~◆,~�))�ME(Q)� 16k⇡
M�1X

j=1

◆j◆j+1

⇣ �j
�j+1

⌘
k
���  ✓

M�1X

j=1

⇣ �j
�j+1

⌘
k

. (2.20)

Moreover, there exists a uniform constant C > 0 such that for any g 2 H,

���
D
DEp(Q(m,~◆,~�)) | g

E���  CkgkH
MX

j=1

⇣ �j
�j+1

⌘
k

. (2.21)

The next lemma gives the nonlinear interaction force between bubbles, which we introduce
notation for below. Given an M -bubble configuration, Q(m,~◆,~�) we set

fi(m,~◆,~�) := �DEp(Q(m,~◆,~�)) = �k2

r2

⇣
f(Q(m,~◆,~�))�

MX

j=1

◆jf(Q�j )
⌘
. (2.22)

Lemma 2.23. Let k � 1, M 2 N. For any ✓ > 0 there exists ⌘ > 0 with the following property.
Let Q(m,~◆,~�) be an M -bubble configuration with

MX

j=0

⇣ �j
�j+1

⌘
k

 ⌘,

under the convention that �0 = 0, �M+1 = 1. Then, we have,
���
D
⇤Q�j | fi(m,~◆,~�)

E
+ ◆j�18k

2

⇣�j�1

�j

⌘
k

� ◆j+18k
2

⇣ �j
�j+1

⌘
k
���  ✓

⇣⇣�j�1

�j

⌘
k

+
⇣ �j
�j+1

⌘
k
⌘
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where here fi(m,~◆,~�) is defined in (2.22).

Proof of Lemma 2.22. To prove (2.20) we proceed iteratively, singling out first the contributions
to the leading order from the first bubble ◆1Q�1 , writing,

1

2⇡

⇣
E(Q(m,~◆,~�))�ME(Q)

⌘

=
1

2

Z 1

0

⇣
(@rQ(m,~◆,~�))2 + k2

sin2Q(m,~◆,~�)

r2

⌘
r dr �

MX

j=1

1

2

Z 1

0

⇣
(@rQ�j )

2 + k2
sin2Q�j

r2

⌘
r dr

=
X

1i<jM

Z 1

0

◆i◆j@rQ�i@rQ�jr dr +
k2

2

Z 1

0

sin2(
P

M

i=1
◆iQ�i)�

P
M

i=1
sin2Q�i

r2
r dr

=

Z 1

0

◆1@rQ�1

MX

j=2

◆j@rQ�jr dr +
k2

2

Z 1

0

sin2(
P

M

i=1
◆iQ�i)� sin2Q�1 � sin2(

P
M

i=2
◆iQ�i)

r2
r dr

+
X

2i<jM

Z 1

0

◆i◆j@rQ�i@rQ�jr dr +
k2

2

Z 1

0

sin2(
P

M

i=2
◆iQ�i)�

P
M

i=2
sin2Q�i

r2
r dr.

(2.23)

We will call a term in the expansion negligible if it can be made small relative to
P

M�1

j=1

�
�j

�j+1

�
k

by taking ⌘ small. We expand further the second term on the right above using the identity,
sin2(A+B)� sin2A� sin2B = 1

2
sin 2A sin 2B � 2 sin2A sin2B, obtaining,

sin2(
MX

i=1

◆iQ�i)� sin2Q�1 � sin2(
MX

i=2

◆iQ�i) = ◆1 sin 2Q�1

MX

j=2

◆jQ�j

� ◆1 sin 2Q�1

⇣ MX

j=2

◆jQ�j �
1

2
sin(2

MX

j=2

◆jQ�j )
⌘
� 2 sin2(

MX

j=2

◆jQ�j ) sin
2Q�1 .

(2.24)

The last term above satisfies the bound

��� sin2(
MX

j=2

◆jQ�j ) sin
2Q�1

��� . (⇤Q�1)
2

MX

j=2

(⇤Q�j )
2,

and using Lemma 2.20 we see that its contribution is negligible. The first term on the right is
integrated by parts, using the identity r�1@r(r@rQ) = k2r�22�1 sin 2Q yielding,

k2

2

Z 1

0

◆1 sin 2Q�1

P
M

j=2
◆jQ�j

r2
r dr = �

Z 1

0

◆1@rQ�1

MX

j=2

◆j@rQ�jr dr,

which exactly cancels the first term on the right of the last equality in (2.23). The second term
on the right in (2.24) contributes the leading order term involving �1. We integrate by parts
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and use the identity ⇤Q = k sinQ to obtain,

�k2

2

Z 1

0

◆1 sin 2Q�1

⇣P
M

j=2
◆jQ�j � 1

2
sin(2

P
M

j=2
◆jQ�j )

⌘

r2
r dr

= ◆1

Z 1

0

⇤Q�1

MX

j=2

◆j⇤Q�j (1� cos 2
MX

j=2

◆jQ�j )
dr

r

= ◆1◆2
2

k2

Z 1

0

⇤Q�1(⇤Q�2)
3
dr

r
+ 2◆1◆2

Z 1

0

⇤Q�1⇤Q�2

⇣
sin2(

MX

j=2

◆jQ�j )� sin2Q�2

⌘ dr

r

+ 2◆1

Z 1

0

⇤Q�1

MX

j=3

◆j⇤Q�j sin
2(

MX

j=2

◆jQ�j )
dr

r
.

The last two terms above are negligible due to Lemma 2.20 with smallness coming from the fact
that every term involves the bubble at scale �1 and at least one bubble at scale �j with j � 3.
The first term on the right is of leading order and satisfies,

◆1◆2
2

k2

Z 1

0

⇤Q�1(⇤Q�2)
3
dr

r
= ◆1◆28k

⇣�1
�2

⌘
k

(1 +O((�1/�2)
2k)),

and we refer the reader to [41, Proof of (3.18) p. 1285] where the above is proved.
To complete the proof of (2.20) we iterate the exact analysis as above with the last line

in (2.23), noting that it is of the exact same form as the expression in the previous equality
of (2.23), only with the bubbles from 2  j  M .

To prove (2.21) we use (2.22) and note that for ` = m�
P

M

i=1
◆j we have

f(Q(m,~◆,~�)) =
1

2
sin(2`⇡ + 2

MX

i=1

◆iQ�i) =
1

2
sin(2

MX

i=1

◆iQ�i)

Expanding, we obtain the expression,

r2

k2
DEp(Q(m,~◆,~�) =

1

2
sin(2

MX

i=2

◆iQ�i + 2◆1Q�1)�
1

2

MX

i=1

◆i sin 2Q�i

= � sin
�
2

MX

i=2

◆iQ�i

�
sin2Q�1 � ◆1 sin

2
� MX

i=2

◆iQ�i

�
sin 2Q�1

+
1

2
sin(2

MX

i=2

◆iQ�i)�
1

2

MX

i=2

◆i sin 2Q�i

Iterating this expansion in the last line above and using the identity k sinQ = ⇤Q we obtain
the pointwise estimates,

|DEp(Q(m,~◆,~�))| . 1

r2

X

i,j,` not all equal

⇤Q�i⇤Q�j⇤Q�`

Using Lemma (2.20) we then have,

���
D
DEp(Q(m,~◆,~�)) | g

E��� . kgkL1

MX

j=1

⇣ �j
�j+1

⌘
k

. kgkH
MX

j=1

⇣ �j
�j+1

⌘
k

,

which completes the proof. ⇤
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Proof of Lemma 2.23. Fixing j 2 {1, . . . ,M}, we expand, isolating the terms that are quadratic
in sinQ�j = k�1⇤Q�j , and interacting with only its nearest neighboring bubbles Q�j�1 and
Q�j+1 ,

1

2
sin(2

X

i 6=j

◆iQ�i + 2◆jQ�j )�
1

2

MX

i=1

◆i sin 2Q�i

= � sin
�
2
X

i 6=j

◆iQ�i

�
sin2Q�j � ◆j sin

2
�X

i 6=j

◆iQ�i

�
sin 2Q�j

+
1

2
sin(2

X

i 6=j

◆iQ�i)�
1

2

X

i 6=j

◆i sin 2Q�i

= �◆j+1 sin 2Q�j+1 sin
2Q�j � ◆j�1 sin 2Q�j�1 sin

2Q�j

+ 2 sin(2◆j�1Q�j�1) sin
2

⇣ X

i 6=j�1,j

◆iQ�i

⌘
sin2Q�j

+ 2 sin(2◆j+1Q�j+1) sin
2

⇣ X

i 6=j�1,j,j+1

◆iQ�i

⌘
sin2Q�j

+ 2 sin 2
⇣ X

i 6=j�1,j

◆iQ�i

⌘
sin2Q�j�1 sin

2Q�j

� ◆j sin
2
�X

i 6=j

◆iQ�i

�
sin 2Q�j +

1

2

⇣
sin(2

X

i 6=j

◆iQ�i)�
X

i 6=j

◆i sin 2Q�i

⌘

= �◆j+1 sin 2Q�j+1 sin
2Q�j � ◆j�1 sin 2Q�j�1 sin

2Q�j + j(~◆,~�j)

(2.25)

where the error term  j(~◆,~�j) satisfies,
��� j(~◆,~�j)

��� . (⇤Q�j )
2

⇣
⇤Q�j�1

X

i 6=j�1,j

(⇤Q�i)
2 + (⇤Q�j�1)

2
X

i 6=j�1,j

⇤Q�i

⌘

+ (⇤Q�j )
2⇤Q�j+1

X

i 6=j�1,j,j+1

(⇤Q�i)
2 + ⇤Q�j

X

i 6=j

(⇤Q�i)
2.

Using the pointwise bound above along with Lemma 2.20 the function  j(~◆,~�j) satisfies,

���
D
⇤Q�j | r�2 j(~◆,~�j)

E ���  ✓(⌘)
⇣⇣�j�1

�j

⌘
k

+
⇣ �j
�j+1

⌘
k
⌘
,

where ✓(⌘) > 0 is a function that tends to zero as ⌘ ! 0. It follows that
D
⇤Q�j | fi(m,~◆,~�)

E
' +◆j+1

⌦
r�2(⇤Q�j )

3 | sin 2Q�j+1

↵
+ ◆j�1

⌦
r�2(⇤Q�j )

3 | sin 2Q�j�1

↵

= ◆j+1

D
r�2(⇤Q�j/�j+1

)3 | sin 2Q
E
+ ◆j�1

D
r�2(⇤Q�j/�j�1

)3 | sin 2Q
E

where “'” above means up to negligible terms. Note that,

sin 2Q = 4rk
1� r2k

(1 + r2k)2
= 4rk +O(r3k) if r ⌧ 1

= �4r�k +O(r�3k) if r � 1.
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Via residue calculus we compute,
Z 1

0

(⇤Q(r))34rk
dr

r
= 32k3

Z 1

0

rk

(rk + r�k)3
dr

r
= 8k2

Z 1

0

(⇤Q(r))34r�k
dr

r
= 32k3

Z 1

0

r�k

(rk + r�k)3
dr

r
= 8k2

And thus,
���◆j+1

D
r�2(⇤Q�j/�j+1

)3 | sin 2Q
E
� ◆j+18k

2

⇣ �j
�j+1

⌘
k
���  ✓(⌘)

⇣ �j
�j+1

⌘
k

���◆j�1

D
r�2(⇤Q�j/�j�1

)3 | sin 2Q
E
+ ◆j�18k

2

⇣�j�1

�j

⌘
k
���  ✓(⌘)

⇣�j�1

�j

⌘
k

where ✓(⌘) ! 0 as ⌘ ! 0, which completes the proof; see [41, Proof of Claim 3.14] for more
details of this computation. ⇤

The following modulation lemma plays an important role in our analysis. Before stating
it, we define a proximity function to M -bubble configurations. Fixing m,M we observe that
Q(m,~◆,~�; r) is an element of E`,m, where

` = `(m,M,~◆) := m�
MX

j=1

◆j (2.26)

Definition 2.24. Fix m,M as in Definition 1.13 and let v 2 E`,m for some ` 2 Z. Define,

d(v) = dm,M (v) := inf
~◆,~�

⇣
kv �Q(m,~◆,~�)k2E +

M�1X

j=1

⇣ �j
�j+1

⌘
k
⌘ 1

2
.

where the infimum is taken over all vectors ~� = (�1, . . . ,�M ) 2 (0,1)M and all~◆ = {◆1, . . . , ◆M} 2
{�1, 1}M satisfying (2.26).

Lemma 2.25 (Static modulation lemma). Fix k � 1 and M 2 N. There exists ⌘, C > 0 with
the following properties. Let m be as in Definition 1.13 and dm,M as in Definition 2.24. Let
✓ > 0, ` 2 Z, and let v 2 E`,m be such that

dm,M (v)  ⌘, and E(v)  ME(Q) + ✓2, (2.27)

Then, there exists a unique choice of ~� = (�1, . . . ,�M ) 2 (0,1)M , ~◆ 2 {�1, 1}M , and g 2 H,
such that setting g = (g, v̇), we have

v = Q(m,~◆,~�) + g,

0 =
D
Z�j | g

E
, 8j = 1, . . . ,M,

(2.28)

along with the estimates,

dm,M (v)2  kgk2E +
M�1X

j=1

⇣ �j
�j+1

⌘
k

 Cdm,M (v)2, (2.29)

and,

kgk2E +
X

j 62A

⇣ �j
�j+1

⌘
k

 Cmax
j2A

⇣ �j
�j+1

⌘
k

+ ✓2, (2.30)

where A := {j 2 {1, . . . ,M � 1} : ◆j 6= ◆j+1}.
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Remark 2.26. We use the following, less standard, version of the implicit function theorem in
the proof of Lemma 2.25.

Let X,Y, Z be Banach spaces, (x0, y0) 2 X ⇥ Y , and �1, �2 > 0. Consider a mapping G :
B(x0, �1)⇥B(y0, �2) ! Z, continuous in x and C1 in y. Assume G(x0, y0) = 0, (DyG)(x0, y0) =:
L0 has bounded inverse L�1

0
, and

kL0 �DyG(x, y)kL(Y,Z) 
1

3kL�1

0
kL(Z,Y )

kG(x, y0)kZ  �2
3kL�1

0
kL(Z,Y )

,
(2.31)

for all kx � x0kX < �1 and ky � y0kY < �2. Then, there exists a continuous function & :
B(x0, �1) ! B(y0, �2) such that for all x 2 B(x0, �1), y = &(x) is the unique solution of
G(x, &(x)) = 0 in B(y0, �2).

This is proved in the same way as the usual implicit function theorem, see, e.g., [6, Section
2.2]. The essential point is that the bounds (2.31) give uniform control on the size of the open
set where the Banach contraction mapping theorem is applied.

Proof of Lemma 2.25. The argument is very similar to [41, Proof of Lemma 3.1] and we only
give a brief sketch. Let ⌘0 := dm,M (v). By (2.27) there exists some choice of ~◆ 2 {�1, 1}M and
~e� 2 (0,1)M such that

eg := v �Q(m,~◆,
~e�) satisfies ⌘20  kegk2H +

M�1X

j=1

⇣ e�j
e�j+1

⌘
k

 4⌘20

Define F : H ⇥ (0,1)M ! H, by

F (g,~�) := g +Q(m,~◆,
~e�)�Q(m,~◆,~�)

Note that, F (0,
~e�) = 0 and

kF (g,~�)kH . kgkH +
MX

j=1

���
�j
e�j

� 1
���. (2.32)

Next, define G : H ⇥ (0,1)M ! RM by,

G(g,~�) :=
⇣ 1

�1

D
Z�1 | F (g,~�)

E
, . . . ,

1

�M

D
Z�M | F (g,~�)

E⌘

note that G(0,
~e�) = ~0, and we record the computation,

�j@�jGj(g,~�) = � 1

�j

D
[(⇤+ 1)Z]�j | F (g,~�)

E
� ◆j hZ | ⇤Qi

�i@�iGj(g,~�) = �◆i
�i
�j

D
Z�j | ⇤Q�i

E
if i 6= j

(2.33)

At this point, it is convenient to change variables, letting `j := log �j and eG(g, ~̀) = G(g,~�).

Note that @`j = �j@�j . From (2.32) we see that eG(·, ·) is continuous near 0 2 H in the first slot

and is C1 near
~è= (log e�1, . . . , log e�M ) in the last M variables. We compute,

L0 := D`1,...`M
eG(g, ~̀)�

g=0,~̀=
~è= (Aij)1i,jM
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where (Aij) is the M ⇥M matrix with entries,

Ajj = �◆j hZ | ⇤Qi , Aij = �◆j
�j
�i

D
Z�i | ⇤Q�j

E
if i 6= j (2.34)

which one may check, using (2.18) and Corollary 2.21 is invertible and kL0k�1 = O(1). The
conditions in (2.31) are readily verified, and one may take �1 = C1⌘ and �2 = C2⌘ in the notation
of Remark 2.26 in that case for uniform constants C1, C2. Indeed,

|G(g,
~e�)| . kgkH

and thus the second condition in (2.31) is verified. One may verify the first condition in (2.31)
using (2.33) and (2.34).

An application of Remark 2.26 yields a continuous mapping & : BH(0; �1) ! BRM (0; �2) such
that

eG(g0, ~̀) = ~0 () ~̀= &(g0).

We define

g := F (eg, &(eg)), ~̀ := &(eg).

Setting �j = e`j , and g = (g, v̇), by construction we then have,

v = Q(m,~◆,~�) + g,

and g satisfies (2.28) and (2.29).
To prove the remaining estimates we expand the nonlinear energy of v,

ME(Q) + ✓2 � E(v) = E(Q(m,~◆,~�) + g)

= E(Q(m,~◆,~�)) +
D
DE(Q(m,~◆,~�)) | g

E
+

1

2

D
D2E(Q(m,~◆,~�))g | g

E
+O(kgk3E)

and apply the conclusions of Lemma 2.19 and Lemma 2.22. This completes the proof. ⇤
Lemma 2.27. Let k � 1. There exists ⌘ > 0 su�ciently small with the following property. Let
m, ` 2 Z, M,L 2 N, ~◆ 2 {�1, 1}M ,~� 2 {�1, 1}L, ~� 2 (0,1)M , ~µ 2 (0,1)L, and w be such that
Ep(w) < 1 and,

kw �Q(m,~◆,~�)k2H +
M�1X

j=1

⇣ �j
�j+1

⌘
k

 ⌘, (2.35)

kw �Q(`,~�, ~µ)k2H +
L�1X

j=1

⇣ µj

µj+1

⌘
k

 ⌘. (2.36)

Then, m = `, M = L, ~◆ = ~�. Moreover, for every ✓ > 0 the number ⌘ > 0 above can be chosen
small enough so that

max
j=1,...M

|�j
µj

� 1|  ✓. (2.37)

Proof of Lemma 2.27. From (2.35) we see that limr!1w(r) = m⇡, and from (2.36) we see that
limr!1w(r) = `⇡. Hence, m = `.

Next, let g� := w�Q(m,~◆,~�) and gµ := w�Q(`,~�, ~µ). By expanding the nonlinear potential
energy we have,

Ep(w) = Ep(Q(m,~◆,~�)) +
D
DEp(Q(m,~◆,~�)) | g�

E
+O(kg�k2H).
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Choosing ⌘ > 0 small enough so that Lemma 2.22 applies, we see that

ME(Q)� C⌘  Ep(w)  ME(Q) + C⌘,

for some C > 0. By an identical argument,

LE(Q)� C⌘  Ep(w)  LE(Q) + C⌘.

It follows that M = L. Next, we prove that ⌘ > 0 can be chosen small enough to ensure
that ~◆ = ~�. Suppose not, then we can find a sequence wn with Ep(wn)  C, and sequences

~◆n,~�n,~�n, ~µn so that,

kwn �Q(m,~◆n,~�n)k2H +
M�1X

j=1

⇣ �n,j
�n,j+1

⌘
k

= on(1) as n ! 1,

kwn �Q(m,~�n, ~µn)k2H +
M�1X

j=1

⇣ µn,j

µn,j+1

⌘
k

= on(1) as n ! 1,

but with ~◆n 6= ~�n for every n. We may assume without loss of generality that

0 = lim
r!0

wn(r) = lim
r!0

Q(m,~◆n,~�n; r) = lim
r!0

Q(m,~�n, ~µn; r)

and we note that above limits agree mean that we must have
P

M

j=1
◆n,j =

P
M

j=1
�n,j for each n.

Passing to a subsequence we may assume that there exists an index j0 � 1 such that ◆j,n = �j,n
for every j < j0 and every n and ◆j0,n 6= �j0,n for every n. We have,

kQ(m,~◆n,~�n)�Q(m,~�n, ~µn)kH
 kwn �Q(m,~◆n,~�n)kH + kwn �Q(m,~�n, ~µn)kH = on(1).

(2.38)

First we show that j0 > 1 Assume for contradiction that j0 = 1. Then, we may assume that
◆n,1 = 1, �n,1 = �1 and �n,1 < µn,1 for all n. It follows that

Q(m,~◆n,~�n)�Q(m,~�n, ~µn) �
⇡

4
8r 2 [�n,1, 2�n,1],

for all n large enough. But then,

kQ(m,~◆n,~�n)�Q(m,~�n, ~µn)k2H �
Z

2�n,1

�n,1

(⇡/4)2
dr

r
� (⇡/4)2 log 2,

for all su�ciently large n, which contradicts (2.38). So ◆1,n = �n,1 for all n. Thus j0 > 1. But
then by a nearly identical argument we can show that we must have �n,j ' µn,j uniformly in
n for all j < j0. Again we may assume (after passing to a subsequence) that �n,j0 < µn,j0 . It
follows again that for all su�ciently large n we have,

���Q(m,~◆n,~�n)�Q(m,~�n, ~µn)
��� �

⇡

4
8r 2 [�n,j0 , 2�n,j0 ],

which again yields a contradiction. Hence we must have ~◆ = ~�.
Finally, we prove (2.37). Suppose (2.37) fails. Then there exists ✓0 > 0 and sequences ~�n, ~µn

such that

kQ(m,~◆n,~�n)�Q(m,~◆n, ~µn)kH = on(1),

but

sup
j=1,...,M

|�n,j/µn,j � 1| � ✓0, (2.39)
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for all n. Following the same logic as before we note that we must have �n,j ' µn,j uniformly
in n. But then we have,

kQ(m,~◆n,~�n)�Q(m,~◆n, ~µn)k2H =
MX

j=1

kQ�n,j �Qµn,jk2H + on(1),

which implies that kQ�n,j � Qµn,jkH = on(1) for every j, yielding a contradiction with (2.39).
This completes the proof. ⇤

3. Localized sequential bubbling

The goal of this section is to prove a localized sequential bubbling lemma for sequences of
wave maps with vanishing averaged kinetic energy on an expanding region of space. The main
result, and the arguments used to prove it are in the spirit of the main theorems in Côte [10]
and Jia and Kenig [42], and also use many ideas from Struwe [73] and Duyckaerts, Kenig, and
Merle [22].

To state the compactness lemma, we define a localized distance function,

�R(u) := inf
m,M,~◆,~�

⇣
ku�Q(m,~◆,~�)k2

H(rR)
+ ku̇k2

L2(rR)
+

MX

j=1

⇣ �j
�j+1

⌘
k
⌘ 1

2
. (3.1)

where the infimum above is taken over all m 2 Z, M 2 {0, 1, 2, . . . }, and all vectors ~◆ 2
{�1, 1}M ,~� 2 (0,1)M , and here we use the convention that the last scale �M+1 = R.

Lemma 3.1 (Compactness Lemma). Let `,m 2 Z. Let ⇢n > 0 be a sequence of positive
numbers and let un(t) 2 E`,m be a sequence of wave maps on the time intervals [0, ⇢n] such that
lim supn!1E(un) < 1.

Suppose there exists a sequence Rn ! 1 such that,

lim
n!1

1

⇢n

Z
⇢n

0

Z
⇢nRn

0

|@tun(t, r)|2 r dr dt = 0.

Then, up to passing to a subsequence of the un, there exists a time sequence tn 2 [0, ⇢n] and a
sequence rn  Rn with rn ! 1 such that

lim
n!1

�rn⇢n(un(tn)) = 0.

Remark 3.2. We note that Theorem 1.15 in the blow-up case is a quick consequence of
Lemma 3.1 together with the fundamental result of Shatah and Tahvildar-Zadeh [70], that
for wave map developing a singularity at T� = 0 one has,

lim
t!0

1

t

Z
t

0

Z
⌧

0

|@tu(⌧, r)|2 r dr dt = 0.

In the global case T+ = 1 one uses,

lim
A!1

lim sup
T!1

1

T

Z
T

A

Z
t�A

0

|@tu(t, r)|2 r dr dt = 0,

proved in [12] using the analysis of [70].
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3.1. Prior results on bubbling. The proof of Lemma 3.1 requires several preliminary lemmas,
including two Real Analysis results, which we address first.

Lemma 3.3. If ak,n are positive numbers such that limn!1 ak,n = 1 for all k 2 N, then there
exists a sequence of positive numbers bn such that limn!1 bn = 1 and limn!1 ak,n/bn = 1 for
all k 2 N.

Proof. For each k and each n define eak,n = min{a1,n, . . . , ak,n}. Then the sequences eak,n ! 1
as n ! 1 for each k, but also satisfy eak,n  ak,n for each k, n, as well as eaj,n  eak,n if j > k.
Next, choose a strictly increasing sequence {nk}k ⇢ N such that eak,n � k2 as long as n � nk.
For n large enough, let bn 2 N be determined by the condition nbn  n < nbn+1. Observe that
bn ! 1 as n ! 1. Now fix any ` 2 N and let n be such that bn > `. We then have

a`,n � ea`,n � eabn,n � b2n � bn.

Thus the sequence bn has the desired properties. ⇤
If f : [0, 1] ! [0,+1] is a measurable function, we denote by

Mf(⌧) := sup
I3⌧ ;I⇢[0,1]

1

|I|

Z

I

f(t) dt

its Hardy-Littlewood maximal function. Recall the weak-L1 boundedness estimate

|{⌧ 2 [0, 1] : Mf(⌧) > ↵}|  3

↵

Z
1

0

f(t)dt, for all ↵ > 0, (3.2)

see [55, Section 2.3].

Lemma 3.4. Let fn be a sequence of continuous positive functions defined on [0, 1] such that

limn!1
R
1

0
fn(t)dt = 0 and let gn be a uniformly bounded sequence of real-valued continuous

functions on [0, 1] such that lim supn!1
R
1

0
gn(t)dt  0. Then there exists a sequence tn 2 [0, 1]

such that
lim
n!1

Mfn(tn) = 0, lim
n!1

fn(tn) = 0, and lim sup
n!1

gn(tn)  0.

Proof. Let ↵n be a sequence such that
R
1

0
fn(t)dt ⌧ ↵n ⌧ 1. Let An := {t 2 [0, 1] : Mfn(t) +

fn(t)  ↵n}. By (3.2) and Tchebychev’s inequality limn!1 |An| = 1. Since gn is uniformly
bounded, we have Z

[0,1]\An

|gn(t)|dt . |[0, 1] \An| ! 0,

which implies

lim sup
n!1

Z

An

gn(t)dt  0.

It su�ces to take tn 2 An such that gn(tn)  |An|�1
R
An

gn(t)dt. ⇤

A key ingredient of the proof of Lemma 3.1 is a Struwe-type bubbling lemma [73]. We require
the version proved in [10,42].

Lemma 3.5 (Bubbling). [73], [10, Proposition 3.1], [42, Lemma 5.6] Let � > 0 and let ↵n ! 0
and �n ! 1 be two sequences. Let vn be a sequence of wave maps, i.e., solutions to (1.1), on
the time interval [0,�] such that lim supn!1E(vn) < 1. Suppose that

lim
n!1

1

�

Z
�

0

Z
�n

↵n

|@tvn(t, r)|2 r dr dt = 0.
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Then, there exists an integer m0, ◆0 2 {�1, 0,+1}, and a scale �0 > 0 such that, up to passing
to a subsequence, we have

vn ! m0⇡ + ◆0Q�0

in the space (L2
t (E))loc([0,�] ⇥ (0,1)). In addition vn ! m0⇡ + ◆0Q�0

locally uniformly in
[0,�]⇥ (0,1). And finally, vn(0) ! m0⇡ + ◆0Q�0

in the space Eloc((0,1)).

The lengthy proof of the Lemma 3.1 will consist of several steps, which are designed to reduce
the proof to the exact scenarios already considered by Côte in [10, Proof of Lemma 3.5] and then
by Jia-Kenig in [42, Proof of Theorem 3.2]. In particular, we will seek to apply the following
result from [42].

Lemma 3.6. [42, Theorem 3.2] Let vn be a sequence of wave maps, i.e., solutions to (1.1), on
the time interval [0, 1] such that lim supn!1E(vn) < 1. Suppose that there exists a sequence
tn 2 [0, 1], and integer K0 � 0, and scales �n,1 ⌧ · · · ⌧ �n,K0 . 1 such that

vn(tn) = m1⇡ +
K0X

j=1

◆j((Q
� ·
�n,j

�
, 0)� ⇡) +wn,0,

where kwn,0kL1⇥L2 ! 0 and kwn,0kE(r�r
�1
n )

! 0 as n ! 1 for some sequence rn ! 1.

Suppose in addition that, kwn,0kE(A�1�nrA�n)
! 0 as n ! 1 for any sequence �n . 1 and

any A > 1, and finally, that

lim sup
n!1

Z 1

0

✓
k2

sin2(2vn(tn))

2r2
+ (@rvn(tn))

22 cos(2vn(tn))

◆
r dr  0. (3.3)

Then,

kwn,0kE ! 0 as n ! 1.

Remark 3.7. Lemma 3.6 is not stated in [42] exactly as given above. However, an examination
of [42, Proof of Theorem 3.2] shows that this is precisely what is established. The heart of the
matter lies in the fact that the Jia-Kenig virial functional (3.3) vanishes at Q, i.e.,

Z 1

0

✓
k2

sin2(2Q)

2r2
+ (@rQ)22 cos(2Q)

◆
r dr = 0,

but gives coercive control of the energy in regions where vn(t, r) is near integer multiples of ⇡.

3.2. Proof of the compactness lemma.

Proof of Lemma 3.1. Rescaling we may assume that ⇢n = 1 for each n.
Step 1. We claim that there exist �n 2 [0, 1

3
], ⌧n 2 [2

3
, 1], such that

lim
n!1

Z
⌧n

�n

Z 1

0

✓
k2

sin2(2un)

2r2
�� (@2run +

1

r
@run) sin(2un)�

◆
rdrdt = 0, (3.4)

where � is a smooth cut-o↵ function equal 1 on [0, 1
2
], with support in [0, 1]. Here and later in

the argument the second term in the integrand in (3.4) is to be interpreted as the expression
obtained after integration by parts, which is well defined due to the finiteness of the energy.

Since

lim
n!1

Z 1
3

0

Z
Rn

0

(@tun)
2 rdrdt = 0 and lim

n!1

Z
1

2
3

Z
Rn

0

(@tun)
2 rdrdt = 0
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there exist �n 2 [0, 1
3
], ⌧n 2 [2

3
, 1] such that,

lim
n!1

Z
Rn

0

(@tun(�n))
2 rdr = 0 and lim

n!1

Z
Rn

0

(@tun(⌧n))
2 rdr = 0. (3.5)

For t 2 [�n, ⌧n], we have the following Jia-Kenig virial identity; see [42, Lemma 3.5 and Lemma
3.10].

d

dt

Z 1

0

@tun sin(2un)� rdr =

Z 1

0

2 cos(2un)(@tun)
2� rdr

+

Z 1

0

(@2run +
1

r
@run � k2

sin(2un)

2r2
) sin(2un)� rdr.

(3.6)

By the Cauchy-Schwarz inequality, the boundedness of the nonlinear energy and (3.5), we see
that

lim
n!1

Z 1

0

�
|@tun(�n)|| sin(2un(�n))|+ |@tun(⌧n)|| sin(2un(⌧n))|

�
� rdr = 0.

Integrating (3.6) between �n and ⌧n, and using the above, we obtain (3.4).
Step 2. We rescale again so that [�n, ⌧n] becomes [0, 1]. We apply Lemma 3.4, to

fn(t) :=

Z
Rn

0

|@tun(t, r)|2 r dr,

gn(t) :=

Z 1

0

✓
k2

sin2(2un)

2r2
� (@2run +

1

r
@run) sin(2un)

◆
� rdr

(integrating by parts the second term in gn, we see that this is a uniformly bounded sequence
of continuous functions) and we find a sequence {tn} 2 [0, 1] such that we have vanishing of the
maximal function of the local kinetic energy,

lim
n!1

sup
I3tn;I⇢[0,1]

1

|I|

Z

I

Z
Rn

0

|@tun(t, r)|2 r dr dt = 0,

and lim
n!1

Z
Rn

0

|@tun(tn, r)|2 r dr dt = 0,

(3.7)

and also pointwise vanishing of a localized Jia-Kenig virial functional,

lim sup
n!1

Z 1

0

✓
k2

sin2(2un(tn))

2r2
� (@2run(tn) +

1

r
@run(tn)) sin(2un(tn))

◆
� rdr  0. (3.8)

We emphasize the conclusion from the first steps is the existence of the sequence tn such that (3.7)
and (3.8) hold.

Step 3. Now that we have chosen the sequence tn 2 [0, 1], we may, after passing to a
subsequence, assume that tn ! t0 2 [0, 1].

We apply Lemma 2.10 to the sequence un(tn), obtaining profiles ( j ,�n,j) and (vi
l, tn,i,�n,i),

and wJ

n,0
, so that, using the notation,

 j

n :=
�
 j(·/�n,j),��1

n,j
 ̇j(·/�n,j)

�
, vi

l,n(0) :=
�
vil(

�tn,i
�n,i

,
·
�n,i

),��1

n,i
@tv

i

l(
�tn,i
�n,i

,
·
�n,i

)
�
,

we have

un(tn) = m0⇡ +
K0X

j=1

( j

n �mj⇡) +
JX

i=1

vi

l,n(0) +wJ

n,0 (3.9)



34 JACEK JENDREJ AND ANDREW LAWRIE

satisfying the conclusions of Lemma 2.10. We refer to the profiles ( j ,�n,j) as well as the profiles
(vi

l(0), tn,i,�n,i) with tn,i = 0 for all n as centered profiles (here the subscript l on vi
l is super-

fluous). We refer to the profiles (vi
l(0), tn,i,�n,i) with �tn,i/�n,i ! ±1 as outgoing/incoming

profiles.
Step 4.(Centered profiles at large scales) At each step, we will impose conditions on the

choice of the ultimate choice of sequence rn ! 1. Consider the sets of indices

Jc,1, := {j 2 {1, . . . ,K0} | lim
n!1

�n,j = 1}

Ic,1 := {i 2 N | tn,i = 0 8n, and lim
n!1

�n,i = 1}.

Using Lemma 3.3 we choose a sequence r0,n ! 1 so that r0,n ⌧ Rn,�n,j ,�n,i for each �n,j with
j 2 Jc,1 and each �n,i with i 2 Ic,1. We note that by construction we have,

E( j

n; 0, r0,n) ! 0 as n ! 1,

E((vil(0, ·/�n,i),��1

n,i
v̇il(0, ·/�n,i)); 0, r0,n) ! 0 as n ! 1,

(3.10)

for any of the indices j 2 Jc,1, i 2 Ic,1.
Step 5.(Centered profiles at bounded scales) Consider the sets of indices

Jc,0 := {j 2 {1, . . . ,K0} | lim
n!1

�n,j < 1}

Ic,0 := {i 2 N | tn,i = 0 8n, and lim
n!1

�n,i < 1}

We use Lemma 3.5 to show that each of the associated profiles must be a harmonic map.
Consider first the case of a profile ( j ,�n,j) with j 2 Jc,0. Define,

uj

n(t, r) = (ujn(t, r), @tu
j

n(t, r)) :=
�
un(tn + �n,jt,�n,jr), �n,j@tun(tn + �n,jt,�n,jr)

�

and note that uj
n is a wave map on the interval t 2 [�tn/�n,j , (⇢� tn)/�n,j ]. Consider the case

tn ! t0 < 1, (the other possible limits have nearly identical arguments). Recall that we have
the weak convergence uj

n(0)*  j . Moreover,

1

�

Z
�

0

Z Rn
�n,j

0

|@tujn(t, r)|2 r dr dt =
1

�

Z
�

0

Z Rn
�n,j

0

|�n,j@tun(tn + �n,jt,�n,jr)|2 r dr dt

=
1

��n,j

Z
tn+�n,j�

tn

Z
Rn

0

|@tun(s, y)|2 y dy ds ! 0 as n ! 1

where the last line follows from (3.7) after fixing � > 0 small enough so that tn + �n,j�  1
for all n large enough. Thus by Lemma 3.5 we conclude that there exists emj , ◆j ,�0,j so that
 j = emj⇡ + ◆jQ�0,j

.

The cases of profiles (vi
l(0), tn,i,�n,i) with i 2 Ic,0 are completely analogous. And we conclude

that each of these profiles must satisfy

vi

l(0, r) = (0, 0).

since each vi
l(0) 2 E and thus can only be a constant harmonic map.

Step 6.(Incoming/outgoing profiles with limn!1 |tn,i| = 1) We next treat profiles (vi
l, tn,i,�n,i)

that satisfy,

� tn,i
�n,i

! ±1.
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Up to passing to a subsequence of un(tn) we may assume that �tn,i ! t1 2 [�1,1]. Consider
the set of indices,

Il,1 := {i 2 N | � tn,i
�n,i

! ±1 and |tn,i| ! 1}.

We impose additional restrictions on the sequence rn. We require that rn  1

2
|tn,i| for su�ciently

large n, for each sequence tn,i in Il,1. So at this stage, we again use Lemma 3.3 to choose a
sequence r1,n ! 1 such that r1,n  r0,n and r1,n  1

2
|tn,i| for su�ciently large n, for each

sequence tn,i in Jl,1.
Since vi

l is a solution to (2.3) we know that it asymptotically concentrates all of its energy
near the light-cone. In fact, a direct consequence of [15, Theorem 4] is that

lim
s!±1

kvi

l(s)kE(r 1
2 |s|)

= 0.

Thus, if i 2 Il,1 and as long as r1,n  1

2
|tn,i| for n large enough, we see that ��1

n,i
r1,n  1

2
��1

n,i
|tn,i|

and thus

kvi

l(�tn,i/�n,i)kE(rr1,n�
�1
n,i)

! 0 as n ! 1. (3.11)

by the above and we conclude that any such profile does not contribute to the asymptotic size
of �r1,n(un(tn)).

Step 7.(Incoming/outgoing profiles with limn!1 |tn,i| < 1) Next, we consider profiles
(vi

l, tn,i,�n,i) such that

� tn,i
�n,i

! ±1 and � tn,i ! t1,i 2 R

and we denote by Il,0 the set indices labeling all such profiles, and note that �n,i ! 0 as n ! 1
for each i 2 Il,0. We claim that any such profile must satisfy vi

l ⌘ 0. The argument we use
follows closely the argument given in [19, Erratum]. As there are few technical changes due to
setting of the current problem, we reproduce the argument here.

We claim that there exists a new sequence
p
r1,n  r2,n  r1,n such that

lim
n!1

sup
t2[0,1]

E(un(t);A
�1

n r2,n, Anr2,n) = 0 (3.12)

for some 1 ⌧ An ⌧ r2,n. By the finite speed of propagation, it su�ces to have

lim
n!1

E(un(0);A
�1

n r2,n, Anr2,n) = 0,

and then replace An by its half, for example.
Let An be the largest integer such that A2An

n  p
r1,n. Obviously, 1 ⌧ An ⌧ p

r1,n. For

l 2 {0, 1, . . . , An � 1}, set R(l)

n := A2l
n

p
r1,n, so that A�1

n R(l+1)

n = AnR
(l)

n , thus

An�1X

l=0

E(un(0);A
�1

n R(l)

n , AnR
(l)

n )  E(un(0)).

Since all the terms of the sum are positive, there exists l0 2 {0, 1, . . . , An � 1} such that r2,n :=

R(l0)
n satisfies

E(un(0);A
�1

n r2,n, Anr2,n)  A�1

n E(un(0)) ! 0,

proving (3.12).
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Next, using the finite speed of propagation along with (3.12), we pass to a new sequence of
maps eun with vanishing average kinetic energy on the whole space. To see this, first we use
Lemma 2.1 to find a sequence yn 2 [2r2,n, 4r2,n] and integers mn 2 Z such that

|un(0, yn)�mn⇡| ! 0 as n ! 1.

Since `,m are fixed and lim supn!1E(un) < 1, the integers mn 2 [�L,L] for all n for some
L > 0. Hence, after passing to a subsequence, we may assume that mn = m1 is a fixed integer
for each n. We define a sequence of truncated initial data eun as follows,

eun(tn, r) = �2r2,n(r)un(tn, r) + (1� �2r2,n(r))m1⇡. (3.13)

Using (3.12), we have E(eun(tn);
1

8
r2,n, 8r2,n) ! 0 as n ! 1. Let eun(t) denote the wave map

evolution of the data eun(tn), which we observe, using the vanishing of the energy of the data on
the region [r2,n/8, 8r2,n] is well defined on the interval [0, 1] for large n. In fact, using the finite
speed of propagation and the monotonicity of the energy on truncated cones, we see that eun(t)
satisfies,

eun(t, r) = un(t, r) if r  r2,n, and sup
t2[0,1]

E(eun(t); r2,n,1) ! 0 as n ! 1. (3.14)

Next, from the decomposition (3.9) we have,

eun(tn) = m1⇡ +
X

j2Jc,0

(◆jQ
� ·
�n,j

�
, 0)� ⇡) +

X

iJ, i2Il,0

vi

l,n(0) + �2r2,nw
J

n,0

� �2r2,nm1⇡ + �2r2,nm0⇡ + (�2r2,n � 1)
X

j2Jc,0

(◆jQ
� ·
�n,j

�
, 0)� ⇡)

+ (�2r2,n � 1)
X

iJ, i2Il,0

vi

l,n(0) + �2r2,n

X

j2Jc,1

 j

n

(3.15)

where above we have allowed the abuse of notation, �n,j $ �n,j�0,j , for the profiles with indices
in Jc,0. Using the same logic used to deduce (3.10) and (3.11) we have,

E(Q�n,j ; r2,n,1) ! 0 as n ! 1, kvi

l(�tn,i/�n,i)kE(r�r2,n�
�1
n,i)

! 0 as n ! 1

for any fixed j 2 Jc,0 or i 2 Il,0. Thus, using (2.9) and the above along with (3.10) and (3.11)
we see that the last three lines in (3.15) can e↵ectively be absorbed into the error and writing

ewJ

n,0(r) := �2r2,n(r)w
J

n,0(r) + on(1)

we obtain the decomposition,

eun(tn) = m1⇡ +
X

j2Jc,0

◆j((Q
� ·
�n,j

�
, 0)� ⇡) +

X

iJ, i2Jl,0

vi

l,n(0) + ewJ

n,0. (3.16)

The above is a profile decomposition for eun(tn) in the sense of Lemma 2.10 – the vanishing
properties of the error ewJ

n,0 are inherited from the corresposnding vanishing properties of wJ

n,0

using e.g., [15, Lemmas 10 and 11] after noting the correspondence between the linear wave
equation (2.6) and the 2k + 2-dimensional radially symmetric free wave equation (see also [21,
Claim A.1 and Claim 2.11] for the treatment of the wave equation in odd dimensions).

Assume for the sake of contradiction that there exists a nonzero profile (vi0
l ,�n,i0 , tn,i0) with

index i0 2 Il,0, and assume without loss of generality that

�tn,i0
�n,i0

! +1 as n ! 1.
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Using (3.7) and (3.14) we have

lim
n!1

sup
I3tn;I⇢[0,1]

1

|I|

Z

I

Z 1

0

|@teun(t, r)|2 r dr dt = 0,

k@teun(tn)kL2 ! 0 as n ! 1,

(3.17)

and we can apply (after passing to a subsequence) Lemma 2.17 to deduce the existence of a
matching profile (vi1

l ,�n,i1 , tn,i1) such that for all s 2 R,

vi1l (s) = vi0l (�s), �n,i1 = �n,i0 , and tn,i1 = �tn,i0 8n.

After relabeling we may assume that i1 = i0 + 1.
We claim that there exists ⌧0 > 0 so that, in addition to (3.17), we also have,

lim
n!1

k@teun(tn + ⌧0�n,i0)kL2 = 0. (3.18)

To see this, assume for simplicity that tn ! t0 < 1 (the other possible scenarios are similar).
Passing to a subsequence, we may assume that

2�2n�4 � sup
I3tn;I⇢[0,1]

1

|I|

Z

I

Z 1

0

|@teun(t, r)|2 r dr dt,

and define sets En (for all large n) via,

En := {⌧ 2 [0, 1] : k@teun(tn + ⌧�n,i0)k2L2 � 2�n�2}.

Thus,

2�2n�4 � 1

�n,i0

Z
tn+�n,i0

tn

k@teun(t)k2L2 dt =

Z
1

0

k@teun(tn + ⌧�n,i0)k2L2 d⌧ � |En| 2�n�2

which means that |En|  2�n�2 for all n large enough. Hence |[n�0En|  1

2
, and thus any

⌧0 2 [0, 1] \ [n�0En satisfies (3.18).
Next, we will need to evolve the profiles for time = ⌧0�n,i0 . To get in the setting of Lemma 2.13

we first need to truncate the sequence again, removing all profiles concentrating at a scales
⌧ �n,i0 . To this end, and following [19, Erratum], we denote by K = Kc,0 [ Kl,0, where
Kc,0 ⇢ Jc,0 is the set of indices j such that,

9Cj > 0 such that �n,j  Cj�n,i0 ,

and letting ✏0 > 0 be as in Lemma 2.8, Kl,0 ⇢ Il,0 is the set of indices i such that both

E(vi

nl) � ✏0 and 9Ci > 0 such that max(�n,i, |tn,i|)  Ci�n,i0 .

Observe that i0, i0 + 1 62 Kl,0 and that by the pythagorean expansion of the nonlinear energy,
K is a finite set.

Since �n,i0 ⌧ |tn,i0 | we can, arguing as in (3.12), find a scale �n such that �n,i0 ⌧ �n ⌧ |tn,i0 |
and such that E(eun;�n/4, 4�n) ! 0 as n ! 1. Using Lemma 2.1, and arguing as above,
after passing to a subsequence we can find a sequence yn 2 [3

4
�n,

5

4
�n] and an integer `1 with

|eun(tn, yn)� `1⇡| ! 0. We then define a sequence ǔn(tn) 2 E`1,m1 by

ǔn(tn) := ��n`1⇡ + (1� ��n)eun(tn).

It follows that for any J � max(i; i 2 Kl,0) + 1 we have

ǔn(tn) = m1⇡ +
X

j2Jc,0\Kc,0

◆j((Q
� ·
�n,j

�
, 0)� ⇡) +

X

iJ, i2Jl,0\Kl,0

vi

l,n(0) + w̌J

n,0 + on(1)
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where we define w̌J

n,0
(r) = (1���n) ewJ

n,0
(r). We need to justify the on(1) term above. First, it is

clear the harmonic maps with indices j 2 Kc,0 satisfy k(1� ��n/2
)(◆jQ

� ·
�n,j

�
, 0)�⇡)kE = on(1)

since j 2 Kc,0 implies �n,j  Cj�n,i0 ⌧ �n. Next for those indices i 2 Kl,0 we claim that,

k(1� ��n/2
)vi

l(�tn,i/�n,i)kE . kvi

l(�tn,i/�n,i)kE(r� 1
2�n/�n,i)

= on(1). (3.19)

To prove the last inequality above note that since i 2 Kl,0 we have

1

2

�n
�n,i

=
1

2

�n
�n,i0

�n,i0
�n,i

� 1

2Ci

�n
�n,i0

|tn,i|
�n,i

and now (3.19) follows from [15, Lemma 9] after noting again that �n/�n,i0 ! 1 as n ! 1,
and using the equivalence between (2.3) and (2.4) outlined in Section 2.2.

Note that

ǔn(tn, r) = eun(tn, r) = un(tn, r) if 4�n  r  r2,n

and thus, denoting by ǔn(t) the wave map evolution of ǔn we have by finite speed of propagation
that for s > 0,

ǔn(tn + s, r) = eun(tn + s, r) = un(tn + s, r) if 4�n + s  r  r2,n � s. (3.20)

The point of these truncations is that we can now apply the nonlinear profile decomposition
Lemma 2.13 to ǔn(0) up to time ⌧0�n,i0 , obtaining an error term zJ

n(t) satisfying for all s 2
[0, ⌧0�n,i0 ],

ǔn(tn + s) = m1⇡ +
X

j2Jc,0\Kc,0

◆j((Q
� ·
�n,j

�
, 0)� ⇡) +

X

iJ, i2Il,0\Kl,0

vi

nl,n(s) + w̌J

n(s) + zJ

n(s)

lim
J!1

lim sup
n!1

⇣
sup

t2[0,⌧0�n,i0 ]

kzJ

n(t)kE + kzJnkS([0,⌧0�n,i0 ])

⌘
= 0.

Next observe that plugging in s = ⌧0�n,i0 above gives rise to linear profile decomposition for
ǔn(tn + ⌧0�n,i0) in the sense of Lemma 2.10, where the profiles are given by (Q,�n,j) and
(evi

l, e�n,i,etn,i) = (vi
l,�n,i, tn,i � ⌧0�n,i0).

We apply Lemma 2.16 to the sequence,

(fn, gn) :=
�
ǔn(tn + ⌧0�n,i0 ,�n,i0 ·),�n,i0@tǔn(tn + ⌧0�n,i0 ,�n,i0 ·)

�

�m1⇡ �
X

j2Jc,0\Kc,0

(◆jQ
��n,i0
�n,j

·
�
, 0)� ⇡)

with ↵n = 4 �n
�n,i0

+ ⌧0 and sn =
tn,i0
�n,i0

. By (3.20) and (3.18) we have kgnkL2(r�↵n)
! 0 as n ! 1.

Since �n ⌧ |tn,i0 | we also have |sn|
↵n

! 1 as n ! 1. Hence we may apply Lemma 2.16. On the
one hand, by the way the profiles are obtained,

~Sl(sn)(fn, gn) = ~Sl(
tn,i0
�n,i0

)(fn, gn) = ~Sl(⌧0)~Sl(
etn,i0
e�n,i0

)(fn, gn)* (vi0l (⌧0), @tv
i0
l (⌧0)) 2 E

but on the other hand, since etn,i0+1 = �tn,i0 � ⌧0�n,i0 and since �n,i0 = �n,i0+1 = e�n,i0+1 we
have

~Sl(�sn)(fn, gn) = ~Sl(�
tn,i0
�n,i0

)(fn, gn)

= ~Sl(⌧0)~Sl(�
etn,i0+1

e�n,i0+1

)(fn, gn)* (vi0+1

l (⌧0), @tv
i0+1

l (⌧0)) = (vi0l (�⌧0),�@tvi0l (�⌧0)) 2 E .
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An application of Lemma 2.16 then gives vi0l (⌧0) = vi0l (�⌧0) and @tv
i0
l (⌧0) = @tv

i0
l (�⌧0), or in

other words vi0l (t) = vi0l (t+ 2⌧0), is periodic with period 2⌧0, which is impossible since vi0
l (t) is

a finite energy solution to (2.3), unless vi0
l ⌘ 0, which contradicts our assumption. Thus, there

are no nonzero profiles with indices in the set Il,0.
Step 8.(Vanishing properties of the error wJ

n,0
) We summarize where the argument stands

after all of the previous steps. With eun defined in (3.16), we may relabel the indices in Jc,0, so

that ~�n = (�n,1, . . .�n,K0) with 0  K0  K1, and with �n,1 ⌧ �n,2 ⌧ · · · ⌧ �n,K0 . 1 and
signs ~◆ = (◆1, . . . , ◆K0), so that

eun(tn) = m1⇡ +
K0X

j=1

◆j((Q
� ·
�n,j

�
, 0)� ⇡) + ewn,0,

where we have removed the index J in ewJ

n,0 using the previous step since there are no nonzero
outgoing/incoming profiles relevant to the region r  r2,n. To conclude the proof, it will su�ce to
show the existence of a sequence rn ! 1, with rn  r2,n so that after passing to a subsequence,

k ewn,0kE(rrn)
! 0 as n ! 1.

Using the pythagorean expansion of the energy with (3.17), and the seventh bullet point in
Lemma 2.10, we have

k ėwn,0kL2 + k ewn,0kL1 ! 0 as n ! 1. (3.21)

After passing to a subsequence of the un, we claim there is a sequence rn ! 1 with the
properties,

1 ⌧ rn  r2,n, k ewn,0kE( 18 r�1
n r8rn)

! 0 as n ! 1. (3.22)

The existence of such a sequence follows from the following property about ewn,0: for any sequence
�n . 1 and any A > 1 we have,

k ewn,0kE(�nA
�1r�nA) ! 0 as n ! 1. (3.23)

The property (3.23) was proved in [10, Step 2., p.1973-1975, Proof of Theorem 3.5] and [42, Proof
of (5.29) in Theorem 5.1] and we refer the reader to those works for details of the argument.
The intuition is that at any scale �n . 1 at which eun carries energy we have already extracted a
profile Q�n,j with �n,j ' �n. To prove (3.22) we consider the case �n = 1 in (3.23), and passing
to a subsequence of the eun, we obtain a sequence as in (3.22).

We truncate to the region r  rn, following the same procedure used to define eun in (3.13),
using now rn in place of r2,n. Indeed, set

ŭn(tn, r) := �2rn(r)eun(t, r) + (1� �2rn(r))m1⇡.

Defining w̆n,0 := �2rn(r) ewn,0+(�2rn(r)� 1)
P

K0
j=1

◆j((Q
� ·
�n,j

�
, 0)�⇡) and using that �n,K0 . 1

along with (3.21) and (3.22) we see that,

ŭn(tn) = m1⇡ +
K0X

j=1

◆j((Q
� ·
�n,j

�
, 0)� ⇡) + w̆n,0, and

lim
n!1

⇣
kw̆n,0kE(r�1

n r<1)
+ k ˙̆wn,0kL2 + kw̆n,0kL1

⌘
= 0.

(3.24)

Moreover, by (3.23) we see that for any sequence �n . 1 and any A > 1 that,

lim
n!1

kw̆n,0kE(�nA
�1r�nA) = 0. (3.25)
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Letting ŭn(t) denote the wave map evolution of ŭn(tn) we see from (3.14) that

ŭn(t, r) = un(t, r) if r  rn (3.26)

and from (3.17) that

lim
n!1

sup
I3tn;I⇢[0,1]

1

|I|

Z

I

Z 1

0

|@tŭn(t, r)|2 r dr dt = 0,

k@tŭn(tn)kL2 ! 0 as n ! 1.

(3.27)

It remains to prove the vanishing limn!1 kw̆n,0kE(rr
�1
n )

= 0 and it is at this final step where

we employ the Jia-Kenig virial functional. We see from (3.8) and (3.26) that ŭn satisfies

lim sup
n!1

Z 1

0

✓
k2

sin2(2ŭn(tn))

2r2
� (@2r ŭn(tn) +

1

r
@rŭn(tn)) sin(2ŭn(tn))

◆
� rdr  0. (3.28)

In addition to the above, after possibly passing to a subsequence of the ŭn, we claim that

lim
n!1

Z 1

0

✓
k2

sin2(2ŭn(tn))

2r2
� (@2r ŭn(tn) +

1

r
@rŭn(tn)) sin(2ŭn(tn))

◆
(1� �) rdr = 0.(3.29)

The cases limn!1 �n,K0 = 0 and limn!1 �n,K0 > 0 require slightly di↵erent arguments and we
consider these separately. First, if limn!1 �n,K0 = 0, then from (3.24) we have,

lim
n!1

E(ŭn(tn); 1/2,1) = 0. (3.30)

Using the above the first term in the integrand satisfies,
Z 1

0

k2
sin2(2ŭn(tn))

2r2
(1� �) rdr . E(ŭn(tn); 1/2,1) ! 0 as n ! 1.

Integration by parts in the second term gives,

�
Z 1

0

(@2r ŭn +
1

r
@rŭn) sin(2ŭn)(1� �) rdr =

Z 1

0

(@rŭn)
22 cos(2ŭn)(1� �) r dr

�
Z 1

0

@rŭn sin(2ŭn)�
0 r dr.

The terms on the right above satisfy,
����
Z 1

0

(@rŭn)
22 cos(2ŭn)(1� �) r dr

����+
����
Z 1

0

@rŭn sin(2ŭn)�
0 r dr

���� . E(ŭn(tn); 1/2,1)

and thus vanish as n ! 1 by (3.30), proving (3.29) in the case limn!1 �n,K0 = 0.
Next suppose limn!1 �n,K0 > 0. Note that in this case,

lim
n!1

E(ŭn(tn)� ◆K0(Q�n,K0
� ⇡); 1/2,1) = 0, (3.31)

which follows from (3.24). To ease notation let  n := ŭn(tn) � ◆K0(Q�n,K0
� ⇡) and �n :=

◆K0(Q�n,K0
� ⇡). Expanding sin(2ŭn(tn)) = sin 2 n cos 2�n + sin 2�n(cos 2 n � 1) + sin 2�n

and using the pointwise vanishing of @2r�n + 1

r
@r�n � k

2

2r2
sin 2�n = 0, we rewrite the term in

parenthesis in (3.29) as,

k2
sin2(2ŭn(tn))

2r2
� (@2r ŭn(tn) +

1

r
@rŭn(tn)) sin(2ŭn(tn))

= sin(2ŭn(tn))
⇣ k2

2r2
sin 2 n cos 2�n � k2

r2
sin2  n sin 2�n � (@2r n +

1

r
@r n)

⌘
.



SOLITON RESOLUTION FOR WAVE MAPS 41

The contributions of the first two terms above satisfy
���
Z 1

0

sin(2ŭn(tn))
⇣ k2

2r2
sin 2 n cos 2�n � k2

r2
sin2  n sin 2�n

⌘
(1� �) rdr

��� .
p
E( n; 1/2,1)

and thus vanish as n ! 1 by (3.31). Integrating by parts, the third term satisfies,

�
Z 1

0

sin 2ŭn(tn)(@
2

r n +
1

r
@r n)(1� �) rdr = �

Z 1

0

@r n sin(2ŭn(tn))�
0 rdr

+ 2

Z 1

0

@r n@rŭn(tn) cos(2ŭn(tn))(1� �) rdr.

By Cauchy Schwarz,
���
Z 1

0

@r n sin(2ŭn(tn))�
0 rdr

���+
���
Z 1

0

@r n@rŭn(tn) cos(2ŭn(tn))(1� �) rdr
���

.
p
E( n; 1/2,1) ! 0 as n ! 1,

by (3.31), proving (3.29) in the case limn!1 �n,K0 > 0. Combining (3.28) and (3.29) gives

lim sup
n!1

Z 1

0

✓
k2

sin2(2ŭn(tn))

2r2
� (@2r ŭn(tn) +

1

r
@rŭn(tn)) sin(2ŭn(tn))

◆
rdr  0.

The above together with (3.24), (3.25), and (3.27) yield all of the hypothesis of Lemma 3.6 for
the sequence ŭn(tn). An application of Lemma 3.6 gives limn!1 kw̆n,0kE = 0. It follows that
that �1(ŭn(tn)) ! 0 as n ! 1. By (3.26) we in fact have proved that �rn(un(tn)) ! 0 as
n ! 1, (note that �n,K0 . 1 and rn ! 1 ensures that the final ratio �n,K0/�n,K0+1 ! 0,
where �n,K0+1 := rn), completing the proof. ⇤

4. Decomposition of the solution and collision intervals

In the final two sections we prove Theorem 1 for equivariance classes k � 2. We reserve the
case k = 1 for the appendix.

4.1. Proximity to a multi-bubble and collisions. For the remainder of the paper we fix a
solution u(t) 2 E`,m of (1.1), defined on the time interval I⇤ = (0, T0] in the blow-up case and on
I⇤ = [T0,1) in the global case, for some T0 > 0. We set T⇤ := 1 in the global case and T⇤ := 0
in the blow-up case. Let u⇤(t) be the radiation as defined in Theorem 1.10. More precisely, we
let m� := limt!T+ u(t, 1

2
t) 2 Z and shift the radiation so that u⇤(t) 2 E0,m1 for some m1 2 Z,

and for r & t, u(t, r) ⇠ m�⇡ + u⇤(t, r). Note that m1 = 0 if T⇤ = 1.
It is a crucial insight of [9, 11, 12] that u⇤(t) is given for continuous time. Recall that Theo-

rem 1.10 gives a function ⇢ : I⇤ ! (0,1) such that

lim
t!T⇤

�
(⇢(t)/t)k + ku(t)� u⇤(t)�m�⇡k2E(⇢(t),1)

�
= 0, (4.1)

and that for any ↵ 2 (0, 1) we have

lim
t!T⇤

E(u⇤(t); 0,↵t) = 0. (4.2)

By Theorem 1.15 there exists a time sequence tn ! T⇤ and an integer N � 0, which we
now fix, such that u(tn) � u⇤(tn) approaches an N -bubble as n ! 1. Roughly, our goal is to
show that on the region r 2 (0, ⇢(t)), the solution u(t) approaches a continuously modulated
N -bubble, noting that the radiation u⇤(t) is negligible in this region. By convention, we will
set �N+1(t) := t to be the “scale” of the radiation and �0(t) := 0. Our argument requires the
following localized version of the distance function to a multi-bubble.
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Definition 4.1 (Proximity to a multi-bubble). For all t 2 I, ⇢ 2 (0,1), and K 2 {0, 1, . . . , N},
we define the localized multi-bubble proximity function as

dK(t; ⇢) := inf
~◆,~�

✓
ku(t)� u⇤(t)�Q(m�,~◆,~�)k2E(⇢,1)

+
NX

j=K

⇣ �j
�j+1

⌘
k
◆ 1

2

,

where ~◆ := (◆K+1, . . . , ◆N ) 2 {�1, 1}N�K , ~� := (�K+1, . . . ,�N ) 2 (0,1)N�K , �K := ⇢ and
�N+1 := t.

The multi-bubble proximity function is defined by d(t) := d0(t; 0).

Remark 4.2. We emphasize that if dK(t; ⇢) is small, this means that u(t) � u⇤(t) is close to
N �K bubbles in the exterior region r 2 (⇢,1).

We can now rephrase Theorem 1.15 in this notation: there exists a monotone sequence tn ! T⇤
such that

lim
n!1

d(tn) = 0. (4.3)

Even though this fact is certainly a starting point of our analysis, it will turn out that we cannot
use it as a black box. Rather, we need to examine the proof and use more precise information
provided by the analysis in [10, 42]; see Section 3.

We state and prove some simple consequences of the set-up above. We always assume N � 1,
since the pure radiation case N = 0 (in fact, also the case N = 1) is already settled by Côte’s
and Jia’s and Kenig’s work [10,42].

First, a direct consequence of (4.1) is that u(t)�u⇤(t) always approaches a 0-bubble in some
exterior region. With ⇢N (t) = ⇢(t) given by the function in Theorem 1.10 the following lemma
is immediate from the conventions of Definition 4.1

Lemma 4.3. There exists a function ⇢N : I ! (0,1) such that

lim
t!T⇤

dN (t; ⇢N (t)) = 0. (4.4)

Theorem 1 will be a quick consequence of showing that, in fact,

lim
t!T⇤

d(t) = 0. (4.5)

The approach which we adopt in order to prove (4.5) is to study colliding bubbles. A collision
is defined as follows.

Definition 4.4 (Collision interval). Let K 2 {0, 1, . . . , N}. A compact time interval [a, b] ⇢ I⇤
is a collision interval with parameters 0 < ✏ < ⌘ and N �K exterior bubbles if

• d(a)  ✏ and d(b)  ✏,
• there exists c 2 (a, b) such that d(c) � ⌘,
• there exists a function ⇢K : [a, b] ! (0,1) such that dK(t; ⇢K(t))  ✏ for all t 2 [a, b].

In this case, we write [a, b] 2 CK(✏, ⌘).

Definition 4.5 (Choice of K). We define K as the smallest nonnegative integer having the
following property. There exist ⌘ > 0, a decreasing sequence ✏n ! 0 and sequences (an), (bn)
such that [an, bn] 2 CK(✏n, ⌘) for all n 2 {1, 2, . . .}.

Lemma 4.6 (Existence of K � 1). If (4.5) is false, then K is well defined and K 2 {1, . . . , N}.

Remark 4.7. The fact that K � 1 means that at least one bubble must lose its shape if (4.5)
is false.
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Proof of Lemma 4.6. Assume (4.5) does not hold, so that there exist ⌘ > 0 and a monotone
sequence sn ! T⇤ such that

d(sn) � ⌘, for all n.

We claim that there exist sequences (✏n), (an), (bn) such that [an, bn] 2 CN (✏n, ⌘). Indeed, (4.3)
implies that there exist ✏n ! 0, an  sn and bn � sn such that d(an)  ✏n and d(bn)  ✏n. Note
that an ! T⇤ and bn ! T⇤. Let ⇢N : [an, bn] ! (0,1) be the function given by Lemma 4.3,
restricted to the time interval [an, bn]. Then (4.4) yields

lim
n!1

sup
t2[an,bn]

dN (t; ⇢N (t)) = 0.

Upon adjusting the sequence ✏n, we obtain that all the requirements of Definition 4.4 are satisfied
for K = N .

We now prove that K � 1. Suppose K = 0. By Definition 4.4 of a collision interval, there
exist ⌘ > 0, and sequences cn 2 [an, bn] and ⇢0(cn) � 0 such that d0(cn; ⇢0(cn))  ✏n and at the
same time d(cn) � ⌘. We show that this is impossible.

Define vn := u(cn) � u⇤(cn). Since d0(cn; ⇢0(cn))  ✏n we can find parameters, ⇢0(cn) ⌧
�n,1 ⌧ · · · ⌧ �n,N and signs ~◆n such that defining gn = vn �Q(m�,~◆n,~�n) we have

d0(cn; ⇢0(cn)) ' kgnk2E(⇢0(cn),1)
+

NX

j=0

⇣ �n,j
�n,j+1

⌘
k

. ✏2n. (4.6)

With ⇢(t) as in (4.1) we see that we must have �n,N ⌧ ⇢(cn) ⌧ cn, and thus using (4.1) along
with (4.6) and Lemma 2.22 we have

E(u(cn); ⇢0(cn),1) = E(gn + u⇤(cn) +Q(m�,~◆n,~�n); ⇢0(cn), ⇢(cn))

+ E(gn + u⇤(cn) +Q(m�,~◆n,~�n); ⇢(cn),1)

= NE(Q) + E(u⇤) + on(1)

Since by (1.7) we know that E(u(cn)) = NE(Q) + E(u⇤(cn)), we conclude from the previous
line that,

E(u(cn); 0, ⇢0(cn)) = on(1) as n ! 1.

Using (4.2) and the fact that ⇢0(cn) ⌧ ⇢(cn) it follows that E(vn; 0, ⇢0(cn)) = on(1), and hence
by (2.1) we conclude that

kvn � `⇡kE(0,⇢0(cn)) . E(vn; 0, ⇢0(cn)) = on(1) as n ! 1

Thus, combining the above with (4.6) we have d(cn) = on(1) as n ! 1, a contradiction. ⇤
In the remaining part of the paper, we argue by contradiction, fixing K to be the number

provided by Lemma 4.6. We also let ⌘, ✏n, an and bn be some choice of objects satisfying the
requirements of Definition 4.5. We fix choices of signs and scales for the N � K “exterior”
bubbles provided by Definition 4.1 in the following lemma.

Remark 4.8. For each collision interval there exists a time cn 2 [an, bn] with d(cn) � ⌘ and
we may assume without loss of generality that d(an) = d(bn) = ✏n and d(t) � ✏n for each
t 2 [an, bn]. Indeed, given some initial choice of [an, bn] 2 CK(⌘, ✏n), we can find an  ean < cn
and cn < ebn  bn so that d(an) = d(bn) = ✏n and d(t) � ✏n for each t 2 [ean,ebn]. Just set
an  ean := inf{t  cn | d(t) � ✏n} and similarly for ebn.

Similarly, given some initial choice ✏n ! 0, ⌘ > 0 and intervals [an, bn] 2 CK(⌘, ✏n) we are free
to “enlarge” ✏n by choosing some other sequence ✏n  e✏n ! 0, and new collision subintervals
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[ean,ebn] ⇢ [an, bn] \ CK(⌘,e✏n) as in the previous paragraph. We will enlarge our initial choice of
✏n in this fashion several times over the course of the proof.

Lemma 4.9. Let K � 1 be the number given by Lemma 4.6, and let ⌘, ✏n, an and bn be some
choice of objects satisfying the requirements of Definition 4.5. Then there exist a sequence
~�n 2 {�1, 1}N�K , a function ~µ = (µK+1, . . . , µN ) 2 C1([n2N[an, bn]; (0,1)N�K), a sequence
⌫n ! 0, and a sequence mn 2 Z, so that defining the function,

⌫ : [n2N[an, bn] ! (0,1), ⌫(t) := ⌫nµK+1(t), for t 2 [an, bn], (4.7)

we have,

lim
n!1

sup
t2[an,bn]

⇣
dK(t; ⌫(t)) + E(u(t), ⌫(t), 2⌫(t))

⌘
= 0, (4.8)

and defining w(t),h(t) for t 2 [n[an, bn] by

w(t) = (1� �⌫(t))(u(t)� u⇤(t)) + �⌫(t)mn⇡ = m�⇡ +
NX

j=K+1

�n,j(Qµj(t)
� ⇡) + h(t), (4.9)

we have, w(t) 2 Emn,m�, h(t) 2 E, and

lim
n!1

sup
t2[an,bn]

⇣
kh(t)k2E +

⇣ ⌫(t)

µK+1(t)

⌘
k

+
NX

j=K+1

⇣ µj(t)

µj+1(t)

⌘
k
⌘
= 0, (4.10)

with the convention that µN+1(t) = t. Finally, ⌫(t) satisfies the estimate,

lim
n!1

sup
t2[an,bn]

��⌫ 0(t)
�� = 0. (4.11)

Remark 4.10. One should think of ⌫(t) as the scale that separates the N � K “exterior”
bubbles, which are defined continuously on the union of the collision intervals [an, bn] from
the K “interior” bubbles that are coherent at the endpoints of [an, bn], but come into collision
somewhere inside the interval and lose their shape. In the case K = N , there are no exterior
bubbles, µK+1(t) = t and ⌫n ! 0 is chosen using (4.1).

Proof. By Definition 4.1 for each n we can find scales ⇢K(t) ⌧ eµK+1(t) ⌧ · · · ⌧ eµN (t) ⌧ t and
signs ~�(t) 2 {�1, 1}N�k for t 2 [an, bn], such that defining h⇢K (t) for r 2 (⇢K(t),1) by

u(t)� u⇤(t) = Q(m�,~�(t),~eµ(t)) + h⇢K (t)

we have,

d(t; ⇢K(t)) ' kh⇢K (t)k2E(⇢K(t),1)
+

NX

j=K

⇣ eµj(t)

eµj+1(t)

⌘
k

. ✏2n, (4.12)

keeping the convention eµK(t) := ⇢K(t), eµN+1(t) := t. Using limn!1 supt2[a,b] dK(t; ⇢K(t)) = 0
and the fact that

lim
n!1

sup
t2[an,bn]

E(Q(m�,~�(t),~eµ(t));↵neµK+1(t),�neµK+1(t)) = 0,

for any two sequence ↵n ⌧ �n ⌧ 1, we can choose a sequence ⌫n ! 0 with

⇢K(t)  ⌫neµK+1(t), and lim
n!1

sup
t2[an,bn]

E(u(t)� u⇤(t);
1

4
⌫neµK+1(t), 4⌫neµK+1(t)) = 0.
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Defining e⌫(t) = ⌫neµK+1(t), it follows from Lemma 2.1 that we can find integers mn 2 Z, which
are independent of t 2 [an, bn] due to continuity of the flow so that

lim
n!1

sup
t2[an,bn]

sup
r2( 14⌫neµK+1(t),4⌫neµK+1(t))

|u(t, r)� u⇤(t, r)�mn⇡| = 0,

lim
n!1

sup
t2[an,bn]

ku(t)� u⇤(t)�mn⇡kE(( 14⌫neµK+1(t),4⌫neµK+1(t))
= 0

(4.13)

Thus, defining ew(t) 2 Emn,m� and, eh(t) 2 E for t 2 [n[an, bn], by

ew(t) := (1� �e⌫(t))(u(t)� u⇤(t)) + �e⌫(t)mn⇡

= (1� �e⌫(t))m�⇡ + �e⌫(t)

NX

j=K+1

�j(t)⇡ + �e⌫(t)mn⇡ +
NX

j=K+1

�j(t)(Qeµj(t)
� ⇡) + eh(t)

= m�⇡ +
NX

j=K+1

�j(t)(Qeµj(t)
� ⇡) + eh(t)

(4.14)

we have using (4.12),

sup
t2[an,bn]

⇣
keh(t)k2E +

NX

j=K

⇣ eµj(t)

eµj+1(t)

⌘
k
⌘
 ✓2n. (4.15)

for some sequence ✓n ! 0. We note that the last equality in (4.14) follows from the observation
that we must have,

m� �
NX

j=K+1

�j(t) = mn (4.16)

for any t 2 [an, bn]. We invoke Lemma 2.27 and continuity of the flow to conclude that for each
n, the sign vector ~�(t) = ~�n is independent of t 2 [an, bn], and the functions eµK+1(t), . . . , eµN (t)
can be adjusted to be continuous functions of t. However, in the next sections we require
di↵erentiability of the function eµK+1(t), so we must modify it slightly.

Given a vector ~µ(t) = (µK+1(t), . . . µN (t)), set,

w(t, ~µ(t)) := (1� �⌫nµK+1(t)
)(u(t)� u⇤(t)) + �⌫nµK+1(t)

mn⇡

Fixing t and suppressing it in the notation, and setting up for an argument as in the proof of
Lemma 2.25, define

F (h, ~µ) := h� (w(·,~eµ)�Q(m�,~�n,~eµ)) + w(·, ~µ)�Q(m�,~�n, ~µ)

and note that F (0,~eµ) = 0. Moreover,

kF (h, ~µ)kH . khkH +
NX

j=K+1

����
µj

eµj

� 1

����

Define,

G(h, ~µ) :=
⇣ 1

µK+1

D
ZµK+1 | F (h, ~µ)

E
, . . . ,

1

µN

D
ZµN | F (h, ~µ)

E⌘

and thus G(0,~eµ) = (0, . . . , 0). Following the same scheme as the proof of Lemma 2.25 we obtain
via Remark 2.26 a mapping & : BH(0;C0✓n) ! (0,1)N�K such that for each h 2 BH(0;C0✓n)
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we have

|&j(h)/eµj � 1| . ✓n

and such that

G(h, ~µ) = 0 () ~µ = &(h)

Using (4.15) we define

h := F (eh, &(eh)), ~µ := &(eh)

By construction we then have,

w(t, ~µ(t)) = (1� �⌫(t))(u(t)� u⇤(t)) + �⌫(t)mn⇡

= Q(m�,~�n, ~µ(t)) + h(t)

for ⌫(t) := ⌫nµK+1(t), and for each j = K + 1, . . . , N ,

sup
t2[an,bn]

⇣
kh(t)k2E +

NX

j=K

⇣ µj(t)

µj+1(t)

⌘
k
⌘
. ✓2n, 0 =

D
Zµj(t)

| h(t)
E

(4.17)

Note that (4.8) follows from the above and from (4.1). The point is that we can now use
orthogonality conditions above to deduce the di↵erentiability of µ(t). Indeed, noting the identity,

@th(t) = @tw(t, ~µ(t))� @tQ(m�,~�n, ~µ(t))

= ⌫nµ
0
K+1(t)⇤�⌫(t)

�
u(t)� u⇤(t)�mn⇡

�
+ ḣ(t) +

NX

j=K+1

�n,jµ
0
j(t)⇤Qµj(t)

,

di↵erentiation of the jth orthogonality condition for h(t) gives for each j = K + 1, . . . , N

�n,jµ
0
j(t) hZ | ⇤Qi+

X

i 6=j

�n,iµ
0
i(t)

D
Zµ

j
(t) | ⇤Qµi(t)

E

+ ⌫nµ
0
K+1(t)

D
Zµj(t)

| ⇤�⌫(t)

�
u(t)� u⇤(t)�mn⇡

�E
� µ0

j(t)
D
[r⇤Z]µj(t)

| r�1h
E

= �
⌦
Zµj(t)

| ḣ(t)
↵
,

(4.18)

which is a diagonally dominant first order di↵erential system for ~µ(t). To see this, write the
above system as

NX

`=K+1

Aj,`(t)µ
0
`
(t) = �

⌦
Zµj(t)

| ḣ(t)
↵

where,

AK+1,K+1 = �n,K+1 hZ | ⇤Qi+ ⌫n
⌦
ZµK+1 | ⇤�⌫(t)

�
u� u⇤ �mn⇡

�↵
�
⌦
[r⇤Z]µK+1 | r�1h

↵

Aj,j = �n,j hZ | ⇤Qi �
⌦
[r⇤Z]µj | r�1h

↵
if j = K + 2, . . . , N,

Aj,K+1 = �n,K+1

⌦
Zµ

j
| ⇤Qµi

↵
+ ⌫n

⌦
ZµK+1 | ⇤�⌫(t)

�
u� u⇤ �mn⇡

�↵
, if j 6= K + 1

Aj,` = �n,`
D
Zµ

j
| ⇤Qµ`

E
j 6= `, ` 6= K + 1

Using that
⌦
Z | ⇤Q

↵
> 0 along with (4.13) and (4.17) we see that the diagonal terms are all

O(1), whereas the o↵-diagonal terms are all small by (4.13), Corollary 2.21, and (4.17).
Next, fix any t0 2 [n[an, bn] so that (4.17) holds at the initial data ~µ(t0). The existence

and uniqueness theorem gives a unique solution ~µode 2 C1(J) for J 3 t0 a su�ciently small



SOLITON RESOLUTION FOR WAVE MAPS 47

neighborhood. As the scales were uniquely defined using the implicit function theorem at each
fixed t and the solution of the ODE preserves the orthogonality conditions, we must have ~µ(t) =
~µode(t) must agree. Hence ~µ(t) 2 C1. Finally, inverting (4.18) we obtain the estimates,

��µ0
j(t)

�� . kḣkL2 . ✓n

Using the above with j = K + 1 yields (4.11). This completes the proof. ⇤

4.2. Basic modulation. On some subintervals of the collision interval [an, bn], mutual inter-
actions between the bubbles dominate the evolution of the solution. We justify the modulation
inequalities allowing to obtain explicit information on the solution on such time intervals. We
stress that in our current approach the modulation concerns only the bubbles from 1 to K.

Lemma 4.11 (Basic modulation, k � 2). There exist C0, ⌘0 > 0 and a sequence ⇣n ! 0 such
that the following is true.

Let n 2 N and J ⇢ [an, bn] be an open time interval such that d(t)  ⌘0 for all t 2 J . Then,
there exist ~◆ 2 {�1, 1}K (independent of t 2 J), modulation parameters ~� 2 C1(J ; (0,1)K),
and g(t) 2 E satisfying, for all t 2 J ,

�⌫(t)u(t) + (1� �⌫(t))mn⇡ = Q(mn,~◆,~�(t)) + g(t), (4.19)

0 =
⌦
Z�j(t)

| g(t)
↵
, (4.20)

where ⌫(t) is as in (4.7) and mn is as in Lemma 4.9. The estimates,

C�1

0
d(t)� ⇣n  kg(t)kE +

K�1X

j=1

⇣ �j(t)

�j+1(t)

⌘ k
2  C0d(t) + ⇣n, (4.21)

and

kg(t)kE +
X

j 62A

⇣ �j(t)

�j+1(t)

⌘ k
2  C0max

j2A

✓
�j(t)

�j+1(t)

◆ k
2

+ ⇣n, (4.22)

hold, where

A :=
�
j 2 {1, . . . ,K � 1} : ◆j 6= ◆j+1

 
. (4.23)

Moreover, for all j 2 {1, . . . ,K} and t 2 J ,
���0j(t)

��  C0kġ(t)kL2 + ⇣n. (4.24)

If j 2 {1, . . . ,K} we have

���◆j�0j(t) +
1

hZ | ⇤Qi
⌦
Z�j(t)

| ġ(t)
↵���

 C0kg(t)k2E + C0

✓⇣ �j(t)

�j+1(t)

⌘
k�1

+
⇣�j�1(t)

�j(t)

⌘
k�1

◆
kġ(t)kL2 + ⇣n, (4.25)

where, by convention, �0(t) = 0,�K+1(t) = 1 for all t 2 J .

We observe that Lemma 4.11 is su�cient to reduce to the case K � 2. More precisely, under
the contradiction assumption that (4.5) fails, the set A as defined in (4.23) is non-empty.

Lemma 4.12. If (4.5) is false, then both N,K � 2 and the set A defined in (4.23) is non-empty.
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Proof. Assume (4.5) is false and A is empty. For n large, we have d(an) = ✏n  ⌘0 as in
Lemma 4.11. Define en := sup{t 2 [an, bn] : d(⌧)  ⌘0 8 ⌧ 2 [an, t)}. Since A is empty, we
see from (4.21) and (4.22) that d(t) . ⇣n ⌧ 1 for all t 2 [an, en) and thus en = bn, for large
n. But this is a contradiction, as [an, bn] 2 CK(⌘, ✏n) means there must be a cn 2 [an, bn] with
d(cn) � ⌘ > 0. Since A being empty is impossible, this implies that N,K � 2 in the event
that (4.5) is false. ⇤
Proof of Lemma 4.11. Step 1:(The decomposition (4.19) and the estimates (4.21) and (4.22))
First, observe that by Lemma 4.9,

lim
n!1

sup
t2[an,bn]

|E(u(t); ⌫(t),1)� E(u⇤)� (N �K)E(Q)| = 0. (4.26)

Since E(u) = E(u⇤) +NE(Q) it follows from the above along with (4.8) that

lim
n!1

sup
t2[an,bn]

|E(u(t); 0, 2⌫(t))�KE(Q)| = 0. (4.27)

Using continuity of the flow, the fact that d(t)  ⌘0 on J , Lemma 2.27, and by taking ⌘0 > 0

small enough, we obtain continuous functions
~e�(t) = (e�1(t), . . . , e�N (t)) and signs ~◆ independent

of t 2 J , so that

u(t)� u⇤(t) = Q(m�,~◆,
~e�(t)) + eg(t),

and,

d(t)2  keg(t)k2E +
NX

j=1

⇣ e�j(t)
e�j+1(t)

⌘
k

 4d(t)2. (4.28)

with as usual the convention that e�N+1(t) = t. It follows from (4.26) and (4.27) that,

sup
t2J

h⇣e�K(t)

⌫(t)

⌘
k

+
⇣ ⌫(t)
e�K+1(t)

⌘
k
i
. d(t)2 + on(1) as n ! 1, (4.29)

which means, roughly speaking, that there are K bubbles to the left of the curve ⌫(t) and N�K
bubbles to the right of the curve ⌫(t). Above, and in the rest of the proof, the notation on(1) is
used to denote a quantity tending to 0 with n that is independent of the subinterval J 2 [an, bn].
In all instances where on(1) appears in the proof it arises from quantities that are estimated
uniformly in t 2 [an, bn].

For the purposes of this argument we denote by

v(t) := u(t)�⌫(t) + (1� �⌫(t))mn⇡,

w(t) := (u(t)� u⇤(t))(1� �⌫(t)) + �⌫(t)mn⇡.
(4.30)

Noting that Lemma 4.9 together with (4.29) imply the identity,

(m� �
NX

j=K+1

◆j)⇡ = mn⇡,

we may express v(t) on J ⇢ [an, bn] as follows,

v(t) = mn⇡ +
KX

j=1

◆j(Qe�j(t)
� ⇡)

� (1� �⌫(t))
KX

j=1

◆j(Qe�j(t)
� ⇡) + �⌫(t)

NX

j=K+1

◆jQe�j(t)
+ �⌫(t)u

⇤(t) + �⌫(t)eg(t).
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Using (4.1) along with (4.28) and (4.29) we see that,

kv(t)�mn⇡ �
KX

j=1

◆j(Qe�j(t)
� ⇡)k2E +

KX

j=1

⇣ e�j(t)
e�j+1(t)

⌘
k

. d(t)2 + on(1) as n ! 1.

This means that

dmn,K(v(t)) . d(t) + on(1) as n ! 1

in the notation of Lemma 2.25. By taking ⌘0 > 0 small enough, and n large enough, we may
apply Lemma 2.25, (as well as Lemma 2.27, which ensures the signs ~◆ stays fixed) at each t 2 J ,
to obtain unique g(t) 2 E , ~�(t) 2 (0,1)K so that

v(t) = Q(mn,~◆,~�(t)) + g(t),

0 =
⌦
Z�j(t)

| g(t)
↵
, 8j = 1, . . . ,K,

(4.31)

where in this formula ~◆,~� are K-vectors, i.e., ~◆ = (◆1, . . . , ◆K), ~�(t) = (�1(t), . . . ,�K(t)). We note
the estimate,

dmn,K(vn(t))
2  kg(t)k2E +

K�1X

j=1

⇣ �j(t)

�j+1(t)

⌘
k

+
⇣�K(t)

⌫(t)

⌘
k

. dmn,K(v(t))2 + d(t)2 + on(1)

. d(t)2 + on(1),

(4.32)

as n ! 1. Next, using (4.27) we see that

E(v)  KE(Q) + on(1).

Therefore, the estimate (2.30) from Lemma 2.25 applied here yields,

kg(t)k2E . sup
j2A

⇣ �j(t)

�j+1(t)

⌘
k

+ on(1)

where A = {j 2 {1, . . . ,K � 1} : ◆j 6= ◆j+1}, proving (4.22).
Next, we prove the lower bound in (4.21). Note the identity,

u(t)� u⇤(t) = v(t)�mn⇡ +w(t)� �⌫(t)u
⇤(t)

= m�⇡ +
KX

j=1

◆j(Q�j(t)
� ⇡) +

NX

j=K+1

�n,j(Qµj(t)
� ⇡)

+ g(t) + h(t)� �⌫(t)u
⇤(t)

(4.33)

which follows from (4.30), (4.9) and (4.16).
First we prove that (◆K+1, . . . , ◆N ) = (�K+1, . . . ,�N ). From (4.9) and (4.10) we see that

kw(t)�m�⇡ �
NX

j=K+1

�n,j(Qµj(t)
� ⇡)k2E +

⇣ ⌫(t)

µK+1(t)

⌘
k

+
NX

j=K+1

⇣ µj(t)

µj+1(t)

⌘
k

. ✏2n.

On the other hand, we see from (4.29) that,

kw(t)�m�⇡ �
NX

j=K+1

◆j(Qe�j(t)
� ⇡)k2E +

⇣ ⌫(t)
e�K+1(t)

⌘
k

+
NX

j=K+1

⇣ e�j(t)
e�j+1(t)

⌘
k

. d(t)2 + on(1).
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Hence, using Lemma 2.27 we see that for any ✓0 > 0 we may take ⌘0 > 0 small enough so that
(◆K+1, . . . , ◆N ) = (�K+1, . . . ,�N ), and in addition we have

���
e�j(t)
µn,j(t)

� 1
���  ✓0 8j = K + 1, . . . , N.

The above, together with (4.10) implies that

NX

j=K+1

⇣ e�j(t)
e�j+1(t)

⌘
k

. ✏2n.

We may thus rewrite (4.33) as

u(t)� u⇤(t) = m�⇡ +
KX

j=1

◆j(Q�j(t)
� ⇡) +

NX

j=K+1

◆j(Qµj(t)
� ⇡)

+ g(t) + h(t)� �⌫(t)u
⇤(t)

Noting that

sup
t2[an,bn]

ku⇤(t)�⌫(t)kE = on(1) as n ! 1,

the previous line together with (4.32) and (4.10) imply that,

d(t)2 . dmn,K(v(t))2 + on(1) . kg(t)k2E +
K�1X

j=1

⇣ �j(t)

�j+1(t)

⌘
k

+ on(1) as n ! 1,

which proves the lower bound in (4.21).
Step 2:(The dynamical estimates (4.24) and (4.25)) Momentarily assuming that ~� 2 C1(J)

(we will justify this assumption below) we record the computations,

@tv(t) = ġ(t) + (mn⇡ � u(t))
⌫ 0(t)

⌫(t)
⇤�⌫(t), @tQ(mn,~◆,~�(t)) = �

KX

j=1

◆j�
0
j(t)⇤Q�j(t)

.

Di↵erentiating in time the first line in (4.31) and using the above lead to the expression,

@tg(t) = ġ(t) +
KX

j=1

◆j�
0
j(t)⇤Q�j(t)

+ (mn⇡ � u(t))
⌫ 0(t)

⌫(t)
⇤�⌫(t). (4.34)

We di↵erentiate the orthogonality conditions (4.20) for each j = 1, . . . ,K,

0 = �
�0
j

�j

D
⇤Z�j | g

E
+
D
Z�j | @tg

E

= �
�0
j

�j

D
⇤Z�j | g

E
+
D
Z�j | ġ

E
+

KX

`=1

◆`�
0
`

D
Z�j | ⇤Q�`

E
+
⌫ 0

⌫

D
Z�j | (mn⇡ � u)⇤�⌫

E
,

which we rearrange into the system,

◆j�
0
j

⇣
hZ | ⇤Qi � ��1

j

⌦
⇤Z�j | g

↵⌘
+
X

i 6=j

◆i�
0
i

D
Z�j | ⇤Q�i

E

= �
D
Z�j | ġ

E
� ⌫ 0

⌫

D
Z�j | (mn⇡ � u)⇤�⌫

E
. (4.35)
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This is a diagonally dominant system, hence invertible, and we arrive at the estimate,
���0j

�� . kġkL2 + on(1) j = 1, . . . ,K, (4.36)

after noting the estimates,
���
D
Z�j | ġ

E��� . kġkL2

����
⌫ 0(t)

⌫(t)

D
Z�j | (mn⇡ � u(t))⇤�⌫(t)

E���� .
��⌫ 0
�� �j
⌫
kr�1(mn⇡ � u(t))⇤�⌫(t)kL2 = on(1),

where the last line follows from (4.11). Lastly, we note that the system (4.35) implies that ~�(t)
is a C1 function on J . Indeed, arguing as in the end of the proof of Lemma 4.9, let t0 2 J
be any time and let ~�(t0) be defined as in (4.31). Using the smallness (4.32) at time t0, the
system (4.35) admits a unique C1 solution ~�ode(t) in a neighborhood of t0. Due to the way the
system (4.35) was derived, the orthogonality conditions in (4.31) hold with ~�ode(t). Since ~�(t)
was obtained uniquely via the implicit function theorem, we must have ~�(t) = ~�ode(t), which
means that ~�(t) is C1.

Lastly, the estimates (4.25) are immediate from (4.35) using (4.36) along with the estimates,

D
Z�j | ⇤Q�i

E
.

8
><

>:

⇣
�j

�i

⌘
k+1

if j < i
⇣

�i
�j

⌘
k�1

if j > i
�����1

j

D
⇤Z�j | g

E ��� . kgkH ,

This completes the proof. ⇤

4.3. Refined modulation. Next, our goal is to gain precise dynamical control of the modu-
lation parameters in the spirit of [35, 41]. The idea is to construct a virial correction to the
modulation parameters; see (4.47). We start by finding suitable truncation of the function 1

2
r2,

similar to [36, Lemma 4.6]. Since here we may have arbitrary number of bubbles, we need to
localize this function both away from r = 0 and away from r = 1. To make the exposition as
uniform as possible, we restrict to equivariance classes k � 2 in this section, saving case k = 1,
which introduces additional technical complications, for the appendix.

Lemma 4.13. For any c > 0 and R > 1 there exists a function q = qc,R 2 C4((0,1)) having
the following properties:

(P1) q(r) = 1

2
r2 for all r 2 [R�1, R],

(P2) there exists eR > 0 (depending on c and R) such that q(r) = const for r � eR and
q(r) = const for r  eR�1,

(P3) |q0(r)| . r and |q00(r)| . 1 for all r > 0, with constants independent of c and R,
(P4) q00(r) � �c and 1

r
q0(r) � �c for all r > 0,

(P5)
��� d

2

dr2
+ 1

r

d

dr

�2
q(r)

��  cr�2 for all r > 0,

(P6)
��� q0(r)

r

�0��  cr�1 for all r > 0.

Proof. Step 1: We construct a function q(r) satisfying the desired properties for all r � 1. In
this step, without loss of generality we can assume R = 1. Let c1 > 0 be small, to be chosen
later and set

qo(r) :=

(
1

2
r2 if r  1

1

2
r2 � c1 o(r) if r � 1
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where  o(r) =
1

2
r2 log r + e o(r) and e o(r) is any smooth function satisfying,

e o(1) = 0, e 0
o(1) = �1

2
, e 00

o(1) = �3

2
, e 000

o (1) = �1, e (4)

o (1) = 1,
��� e (j)

o (r)
��� . r2�j 8r � 1, j = 0, 1, . . . 4

which ensures 0 =  o(1) =  0
o(1) =  00

o(1) =  000
o (1) =  (4)

o (1). To construct such a function it
su�ces to take a suitable linear combination of negative powers of r, for example. Set R0 :=
exp(1/c1). We check all the properties for 1  r  R0. We have, q0o(r) = r(1� c1 log r)+O(c1r)
and q00o(r) = (1� c1 log r) +O(c1), so (P4) holds. Also,

���
⇣ 0

o(r)

r

⌘0��� =
����(log r +

1

2
)0
����+O(r�1) = O(r�1)

for an absolute constant, implying (P6). (P5) follows from �2(r2 log r) = 0, with all the
remaining terms estimated brutally. We now truncate at R0, setting ej(r) := 1

j!
rj�(r) for

j = 1, . . . , 4 and defining,

q(r) :=

(
qo(r) if r  R0

qo(R0) +
P

4

j=1
q(j)o (R0)R

j

0
ej(�1 + r/R0), if r � R0

Noting that
���q(j)o (R0)

��� . c1R
2�j

0
for j = 1, . . . , 4, we see that q(r) inherits all the desired

properties from qo(r) and is constant after 3R0; see [36, Lemma 4.6] for additional details.
Step 2: We next find a function q(r) with all the desired properties for r  1. As above, we

may assume here that R = 1. Let c1 > 0 be small, to be chosen later, and set

qi(r) :=

(
1

2
r2 if r � 1

1

2
r2 + c1 i(r) if r  1

where  i(r) =
1

2
r2 log r + e i(r) and e i(r) is any smooth function satisfying,

e i(1) = 0, e 0
i(1) = �1

2
, e 00

i (1) = �3

2
, e 000

i (1) = �1, e (4)

i
(1) = 1,

��� e (j)

i
(r)

��� . r2�j 8r  1, j = 0, 1, . . . 4

which ensures 0 =  i(1) =  0
i
(1) =  00

i
(1) =  000

i
(1) =  (4)

i
(1). To obtain such a function it

su�ces to take a suitable linear combination of positive powers of r, for example. Set R�1

0
:=

exp(� 1

c1
). One can check, as in Step 1, that all the properties hold for R�1

0
 r  1, using that

1+ c1 log r � 0 in this regime. Then truncate as in Step 1 to obtain the truncated function q(r).
Step 3: The final function q(r) is obtained by gluing together the two functions called q

obtained in Steps 1, 2. ⇤
Definition 4.14 (Localized virial operator). For each � > 0 we set

A(�)g(r) := q0
� r
�

�
· @rg(r), (4.37)

A(�)g(r) :=
� 1

2�
q00
� r
�

�
+

1

2r
q0
� r
�

��
g(r) + q0

� r
�

�
· @rg(r). (4.38)

These operators depend on c and R as in Lemma 4.13.

Note the similarity between A and 1

�
⇤ and between A and 1

�
⇤. For technical reasons we

introduce the space

X := {g 2 H | g
r
, @rg 2 H}.
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Lemma 4.15 (Localized virial estimates). [36, Lemma 5.5] For any c0 > 0 there exist c1, R1 >
0, so that for all c, R as Lemma 4.13 with c < c1, R > R1 the operators A(�) and A(�) defined
in (4.37) and (4.38) have the following properties:

• the families {A(�) : � > 0}, {A(�) : � > 0}, {�@�A(�) : � > 0} and {�@�A(�) : � > 0} are
bounded in L (H;L2), with the bound depending only on the choice of the function q(r),

• Let g1 = Q(m,~◆,~�) be an M -bubble configuration and let g 2 X. Then, for all � > 0,

���
⌧
A(�)g1 |

1

r2
�
f(g1 + g2)� f(g1)� f 0(g1)g2

��

+

⌧
A(�)g2 |

1

r2
�
f(g1 + g2)� f(g1)� k2g2

�� ��� 
c0
�
kg2k2H , (4.39)

• For all g 2 X we have

hA(�)g | L0gi � �c0
�
kgk2H +

1

�

Z
R�

R�1�

⇣
(@rg)

2 +
k2

r2
g2
⌘
rdr, (4.40)

• For �, µ > 0 with either �/µ ⌧ 1 or µ/�⌧ 1,

k⇤⇤Q� �A(�)⇤Q�kL2  c0, (4.41)

k
� 1
�
⇤�A(�)

�
Q�kL1  c0

�
, (4.42)

kA(�)QµkL1 + kA(�)QµkL1 . 1

�
min{(�/µ)k, (µ/�)k} (4.43)

kA(�)QµkL2 + kA(�)QµkL2 . min{(�/µ)k, (µ/�)k} (4.44)

• Lastly, the following localized coercivity estimate holds. Fix any smooth function Z 2 L2 \X
such that hZ | ⇤Qi > 0. For any g 2 H,� > 0 with

⌦
g | Z�

↵
= 0,

1

�

Z
R�

R�1�

(@rg)
2 +

k2

r2
g2 rdr +

1

�

Z 1

0

�1
2
q00
� r
�

�
+

�

2r
q0
� r
�

��k2

r2
(f 0(Q�)� 1)g2 r dr

� �c0
�
kgk2H .

(4.45)

Proof. See [36, Lemmas 4.7 and 5.5] for the proof in the cases k � 2 and [65, Lemma 3.7 and
Remark 3.8] for modifications to handle the case k = 1. ⇤

The modulation parameters ~�(t) defined in Lemma 4.11 are imprecise proxies for the dynamics
in the case k = 2 (and also k = 1; see the appendix) due to the fact that the orthogonality
conditions were imposed relative to Z 6= ⇤Q. Indeed, we use (4.20) primarily to ensure coercivity,
and thus the estimate (4.22), as well as the di↵erentiability of ~�(t). To access the dynamics
of (1.1) we introduce a correction ~⇠(t) defined as follows. For each t 2 J ⇢ [an, bn] as in
Lemma 4.11 set,

⇠j(t) :=

(
�j(t) if k � 3

�j(t)� ◆j

k⇤Qk2
L2

⌦
�L�j(t)

⇤Q�j(t)
| g(t)

↵
if k = 2

(4.46)

for each j = 1, . . . ,K�1, and where L > 0 is a large constant to be determined below. (Note that
for j = K we only require the brutal estimate (4.24)). We require yet another modification, since
the dynamics of (1.1) truly enter after taking two derivatives of the modulation parameters and it
is not clear how to derive useful estimates from the expression for ⇠00

j
(t). So we introduce a refined
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modulation parameter, which we view as a subtle correction to ⇠0
j
(t). For each t 2 J ⇢ [an, bn]

as in Lemma 4.11 and for each j 2 {1, . . . ,K} define,

�j(t) := � ◆j
k⇤Qk2

L2

⌦
⇤Q�j(t)

| ġ(t)
↵
� 1

k⇤Qk2
L2

hA(�j(t))g(t) | ġ(t)i . (4.47)

Note that �j(t) is similar to the function called b(t) in [41].

Lemma 4.16 (Refined modulation). Let k � 2 and c0 2 (0, 1). There exist ⌘0 > 0, L > 0, c >
0, R > 1, C0 > 0 and a decreasing sequence �n ! 0 so that the following is true. Let J ⇢ [an, bn]
be an open time interval with

d(t)  ⌘0 and max
i2A

�
�i(t)/�i+1(t)

�
k/2 � �n, (4.48)

for all t 2 J , where A := {j 2 {1, . . . ,K � 1} | ◆j 6= ◆j+1}. Then, for all t 2 J ,

kg(t)kE +
X

i 62A

�
�i(t)/�i+1(t)

�
k/2  C0max

i2A

�
�i(t)/�i+1(t)

�
k/2

, (4.49)

and,

1

C0

d(t)  max
i2A

�
�i(t)/�i+1(t)

�
k/2  C0d(t). (4.50)

Moreover, for all j 2 {1, . . . ,K � 1} and t 2 J ,

|⇠j(t)/�j(t)� 1|  c0, (4.51)

|⇠0j(t)� �j(t)|  c0max
i2A

✓
�i(t)

�i+1(t)

◆
k/2

, (4.52)

and,

�0j(t) �
⇣
�◆j◆j+1!

2 � c0
⌘ 1

�j(t)

✓
�j(t)

�j+1(t)

◆
k

+
⇣
◆j◆j�1!

2 � c0
⌘ 1

�j(t)

✓
�j�1(t)

�j(t)

◆
k

� c0
�j(t)

max
i2A

✓
�i(t)

�i+1(t)

◆
k

.

(4.53)

where, by convention, �0(t) = 0,�K+1(t) = 1 for all t 2 J , and !2 > 0 is defined by

!2 = !2(k) := 8k2k⇤Qk�2

L2 = 4k2⇡�1 sin(⇡/k) > 0.

Remark 4.17. By (4.22), without loss of generality (upon enlarging ✏n), we can assume that

⌘0 � d(t) � ✏n implies max
i2A

�
�i(t)/�i+1(t)

�
k/2 � �n,

so that Lemma 4.16 can always be applied on the time intervals J ⇢ [an, bn] as long as d(t)  ⌘0
on J .

Before beginning the proof of Lemma 4.16 we record the equation satisfied by g(t). Observe
the identity,

�Q(mn,~◆,~�) =
k2

r2

KX

j=1

◆jf(Q�j ),
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and hence,

(@2t u)�⌫ = �⌫�u� k2

r2
f(u)�⌫

= �
�
u�⌫ + (1� �⌫)mn⇡

�
� k2

r2
f
�
u�⌫ + (1� �⌫)mn⇡)

�

� 2

r
@ru⇤�⌫ +

1

r2
(mn⇡ � u)(r2��)⌫ +

k2

r2

⇣
f
�
u�⌫ + (1� �⌫)mn⇡)

�
� f(u)�⌫

⌘

= �g � k2

r2

⇣
f(Q(mn,~◆,~�) + g)�

KX

j=1

◆jf(Q�j )
⌘

� 2

r
@ru⇤�⌫ +

1

r2
(mn⇡ � u)(r2��)⌫ +

k2

r2

⇣
f
�
u�⌫ + (1� �⌫)mn⇡)

�
� f(u)�⌫

⌘
.

Recalling (4.34), we are led to the system of equations,

@tg(t) = ġ(t) +
KX

j=1

◆j�
0
j(t)⇤Q�j(t)

+ �(u(t), ⌫(t))

@tġ(t) = �LQg + fi(mn, ◆,~�) + fq(mn,~◆,~�, g) + �̇(u(t), ⌫(t)),

(4.54)

where,

�(u, ⌫) := (mn⇡ � u)
⌫ 0

⌫
⇤�⌫

�̇(u, ⌫) := �2

r
@ru⇤�⌫ +

1

r2
(mn⇡ � u)(r2��)⌫

+
k2

r2

⇣
f
�
u�⌫ + (1� �⌫)mn⇡)

�
� f(u)�⌫

⌘
� ⌫ 0

⌫
⇤�⌫@tu,

(4.55)

which we note are supported in r 2 (⌫,1), and

fi(mn,~◆,~�) := �k2

r2

⇣
f
�
Q(mn,~◆,~�)

�
�

KX

j=1

◆jf(Q�j )
⌘

fq(mn,~◆,~�, g) := �k2

r2

⇣
f
�
Q(mn,~◆,~�) + g

�
� f

�
Q(mn,~◆,~�)

�
� f 0�Q(mn,~◆,~�)

�
g
⌘
.

The subscript i above stands for “interaction” and q stands for “quadratic.” In particular,
fq(mn,~◆,~�, g) satisfies,

kfq(mn,~◆,~�, g)kL1 . kgk2H . (4.56)

In one instance it will be convenient to rewrite the right-hand side of the equation for ġ as
follows,

@tġ = �L0g + fi(mn, ◆,~�) + efq(mn,~◆,~�, g) + �̇(u,�⌫), (4.57)

where efq(mn,~◆,~�, g) is defined by the formula,

efq(mn,~◆,~�, g) := �k2

r2

⇣
f
�
Q(mn,~◆,~�) + g

�
� f

�
Q(mn,~◆,~�)

�
� g

⌘
. (4.58)

Proof of Lemma 4.16 . First, we prove the estimates (4.49) and (4.50). Let ⇣n be the sequence
given by Lemma 4.11 and let �n be any sequence such that ⇣n/�n ! 0 as n ! 1. Using
Lemma 4.11, estimate (4.49) follows from (4.22) and the estimate (4.50) follows from (4.21).
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Note also that with this choice of �n and (4.49), the estimate (4.24) leads to,
���0j(t)

�� . max
i2A

�
�i(t)/�i+1(t)

�
k/2

. (4.59)

Next, we treat (4.51), which is only relevant in the case k = 2. From (4.46) we see that,

|⇠j/�j � 1| = |k⇤Qk�2

L2�
�1

j

⌦
�L�j⇤Q�j | g

↵
|

. kgkL1(1 +

Z
L

1

⇤Q(r) r dr) . (1 + log(L))kgkH  c0

using (4.49) and (4.50) in the last line. Next we compute ⇠0
j
(t).

For k = 2, from (4.46) we have

⇠0j = �0j �
◆j

k⇤Qk2
L2

⌦
�L�j⇤Q�j | @tg

↵

+
◆j

k⇤Qk2
L2

�0
j

�j

⌦
⇤�L�j⇤Q�j | g

↵
+

◆j
k⇤Qk2

L2

�0
j

�j

⌦
�L�j⇤⇤Q�j | g

↵
.

(4.60)

We examine each of the terms on the right above. The last two terms are negligible. Indeed,
using kgkL1 . kgkH ,

���
�0
j

�j

⌦
⇤�L�j⇤Q�j | g

↵��� .
���0j

�� kgkL1

Z
2L

2�1L

⇤Q(r) r dr

. kgk2E ,
and,

���
�0
j

�j

⌦
�L�j⇤⇤Q�j | g

↵��� .
���0j

�� kgkL1

Z
2L

0

⇤Q(r) r dr . (1 + log(L))kgk2E ,

which is small relative to kgkE because of (4.49). Using (4.54) in the second term in (4.60) gives

� ◆j
k⇤Qk2

L2

⌦
�L�j⇤Q�j | @tg

↵
= � ◆j

k⇤Qk2
L2

⌦
�L�j⇤Q�j | ġ

↵
� ◆j

k⇤Qk2
L2

⌦
�L�j⇤Q�j |

KX

i=1

◆i�
0
i⇤Q�i

↵

� ◆j
k⇤Qk2

L2

⌦
�L�j⇤Q�j | �(u, ⌫)

↵
.

The first term on the right satisfies,

� ◆j
k⇤Qk2

L2

⌦
�L�j⇤Q�j | ġ

↵
= � ◆j

k⇤Qk2
L2

⌦
⇤Q�j | ġ

↵
+

◆j
k⇤Qk2

L2

⌦
(1� �L�j )⇤Q�j | ġ

↵

= � ◆j
k⇤Qk2

L2

⌦
⇤Q�j | ġ

↵
+ oL(1)kgkE .

where the oL(1) term can be made as small as we like by taking L > 0 large. Using (4.59), the
second term yields,

� ◆j
k⇤Qk2

L2

⌦
�L�j⇤Q�j |

KX

i=1

◆i�
0
i⇤Q�i

↵
= ��0j

�
X

i 6=j

◆j◆i�0i
k⇤Qk2

L2

⌦
�L�j⇤Q�j | ⇤Q�i

↵
+

�0
j

k⇤Qk2
L2

⌦
(1� �L�j )⇤Q�j | ⇤Q�j

↵

= ��0j +O((�j�1/�j) + (�j/�j+1) + oL(1))max
i2A

�
�i/�i+1

�
k/2

.
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Finally, the third term vanishes due to the fact that for each j < K, L�j ⌧ �K ⌧ ⌫, and hence

⌦
�L�j⇤Q�j | �(u, ⌫)

↵
= 0.

Plugging all of this back into (4.60) we obtain,

���⇠0j(t) +
◆j

k⇤Qk2
L2

⌦
⇤Q�j | ġ

↵���  c0max
i2A

�
�i/�i+1

�
k/2

. (4.61)

for k = 2, after fixing L > 0 su�ciently large. The same estimate for k � 3, i.e., when
⇠0
j
(t) = �0

j
(t), is immediate from (4.25) since in this case we take Z = ⇤Q. Thus (4.61) holds

for all k � 2. The estimate (4.52) is then immediate from (4.61), the definition of �j , and the
estimate,

���
1

k⇤Qk2
L2

hA(�j)g | ġi
��� . kgk2E ,

which follows from the first bullet point in Lemma 4.15.
We prove (4.53). We compute,

�0j =
◆j
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�0
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hA(�j)@tg | ġi � 1
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hA(�j)g | @tġi .
(4.62)

Using (4.54) we arrive at the expression,

�
⌦
⇤Q�j | @tġ

↵
=
D
⇤Q�j | (LQ � L�j )g

E
�
D
⇤Q�j | fi(mn, ◆,~�)

E

�
D
⇤Q�j | fq(mn,~◆,~�, g)

E
�
D
⇤Q�j | �̇(u, ⌫)

E
,

where in the first term on the right we used that L�j⇤Q�j = 0. Using (4.54) we obtain,

�hA(�j)@tg | ġi = �hA(�j)ġ | ġi �
KX

i=1

◆i�
0
i

D
A(�j)⇤Q�i | ġ
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E
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D
A(�j)⇤Q�i | ġ

E
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where we used that hA(�j)ġ | ġi = 0. Finally, using (4.57) we have,

�hA(�j)g | @tġi = hA(�j)g | L0gi �
D
A(�j)g | fi(mn, ◆,~�)

E

�
D
A(�j)g | efq(mn,~◆,~�, g)

E
�
D
A(�j)g | �̇(u, ⌫)

E
.
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Plugging these back into (4.62) and rearranging we have,
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L2�0j = � ◆j

�j

D
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E
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(4.63)

We examine each of the terms on the right-hand side above. The leading order contribution
comes from the first term, i.e., by Lemma 2.23

� ◆j
�jk⇤Qk2

L2

D
⇤Q�j | fi(mn, ◆,~�)

E
= �(!2 +O(⌘20))
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⌘
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+ (!2 +O(⌘20))
◆j◆j�1

�j

⇣�j�1

�j

⌘
k

The second and third terms together will have a sign, up to an acceptable error. First, us-
ing (4.40) we have,

hA(�j)g | L0gi � � c0
�j

kgk2H +
1

�j

Z
R�j

R�1�j

⇣
(@rg)

2 +
k2

r2
g2
⌘
rdr

To treat the third term, we start by using the definition (4.58) to observe the identity,
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(4.64)

Next, by definition,
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The contributions of the second two terms in (4.64) yield acceptable errors. Indeed,

��⌦(A(�j)�A(�j))g | k
2

r2
(f 0(Q(mn,~◆j ,~�j))� f 0(Q�j ))g

↵���

. 1

�j

Z eR�j

eR�1�j

g2
���f 0(Q(mn,~◆j ,~�j))� f 0(Q�j ))

���
dr

r
 c0

kgk2
H

�j



SOLITON RESOLUTION FOR WAVE MAPS 59

with eR as in Lemma 4.13, and by (4.56) and the definition of q from Lemma 4.13,
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E��� . 1
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Putting this together we obtain,
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We show that the remaining terms contribute acceptable errors. For the fourth term a direct
calculation gives,
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By (4.41) along with (4.24) we have,
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����� .
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For the sixth term on the right-hand side of (4.63) we note that

A(�j)
KX

i=1

◆iQ�i = A(�j)Q(mn,~◆,~�),

and hence we may apply (4.39) with g1 = Q(mn,~◆,~�) and g2 = g to conclude that
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which takes care of the sixth and seventh terms. By (4.42) and (4.56) we see that,
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Using the first bullet point in Lemma 4.15 and (4.24) we estimate the eighth term as follows,
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Next, using (4.43) and (4.56) we have,
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An application of (4.44) and (4.24) gives
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Next, consider the twelfth term. Using the first bullet point in Lemma 4.15, and in particular
the spatial localization of A(�j) we obtain

���
D
A(�j)g | fi(mn, ◆,~�)

E��� . kgkHkfi(mn, ◆,~�)kL2( eR�1�jr eR�j)
.

Using the expansion (2.25) from Lemma 2.23 we have the pointwise estimate,
���fi(mn, ◆,~�)
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X
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. (4.65)

It follows that
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We obtain
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Finally, we treat the last line of (4.63). First, using Lemma 4.9 and the definition of �̇ in (4.55)
we have

���
D
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�j
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. (4.66)

for some sequence ✓n ! 0 as n ! 1. The last two terms in (4.63) vanish due to the support
properties of A(�j),�(u, ⌫), �̇(u, ⌫) and the fact that �j  �K ⌧ ⌫.

Combining these estimates in (4.63) we obtain the inequality,
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where to obtain c0�n in the last term we enlarged �n so as to ensure �n � ✓n in the esti-
mate (4.66). Finally, we use (4.45) on the second line above followed by (4.49) and (4.48) to
conclude the proof. ⇤

Finally, we prove that, again by enlarging ✏n, we can control the error in the virial identity,
see Lemma 2.4, by d.

Lemma 4.18. There exist C0, ⌘0 > 0 depending only on k and N and a decreasing sequence
✏n ! 0 such that

|⌦⇢(t)(u(t))|  C0d(t)

for all t 2 [an, bn] such that ✏n  d(t)  ⌘0, ⇢(t)  ⌫(t) and |⇢0(t)|  1.

Proof. Since limn!1 supt2[an,bn] ku(t)kE(⌫(t),2⌫(t)) = 0, Lemma 4.11 yields

ku(t)�Q(mn,~◆,~�(t))� g(t)kE(0,2⌫(t)) ! 0, as n ! 1.

Using Remark 4.17, (4.49) and (4.50) we have kg(t)kE . d(t), hence, after choosing ✏n ! 0
su�ciently large, it su�ces to check that

|⌦⇢(t)(Q(mn,~◆,~�(t)))|  C0d(t),
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which in turn will follow from
Z 1

0

���(@rQ(mn,~◆,~�(t)))
2 � k2

sin2Q(mn,~◆,~�(t))

r2

��� rdr  C0d(t).

Recall that ⇤Q� = r@rQ� = k sinQ�, so it su�ces to estimate the cross terms. It is easy to
check that �� sin2

�X
ai
�
�
X

sin2 ai
��  4

X

i 6=j

| sin ai|| sin aj |.

Invoking the bound Z 1

0

|⇤Q�(r)⇤Qµ(r)|
dr

r
. (�/µ)k/2

from [41, p. 1277], we obtain the claim. ⇤

5. Conclusion of the proof

5.1. The scale of the K-th bubble. As mentioned in the Introduction, the K-th bubble is of
particular importance. We introduce below a function µ which is well-defined on every [an, bn],
and close to �K on time intervals where the solution approaches a multi-bubble configuration.

Definition 5.1 (The scale of the K-th bubble). For all t 2 I, we set

µ(t) := sup
�
r : E(u(t); r) = (N �K + 1/2)E(Q) + E(u⇤)

 
.

Note that K > 0 implies 0 < (N�K+1/2)E(Q)+E(u⇤) < E(u), hence µ(t) is a well-defined
finite positive number for all t 2 I. By Lemma 4.9,

lim
n!1

sup
t2[an,bn]

��E(u(t); ⌫(t))� (N �K)E(Q)� E(u⇤)
�� = 0,

which implies µ(t)  ⌫(t) for all n large enough and t 2 [an, bn], thus µ(t) ⌧ µK+1(t) as n ! 1.
In the next lemma, we relate the localized distance function �R, defined by (3.1), computed

at any scale R � µ(t), with the global distance function d(t).

Lemma 5.2. The function µ defined above has the following properties:

(i) its Lipschitz constant is  1,
(ii) for any ✏ > 0 there exist 0 < �  ⌘0 and n0 2 N such that t 2 [an, bn] with n � n0 and

d(t)  � imply |µ(t)/�K(t)� 1|  ✏, where �K(t) is the modulation parameter defined in
Lemma 4.11,

(iii) if (tn)n and (rn)n are any sequences such that tn 2 [an, bn] for all n, 1 ⌧ rn ⌧
µK+1(tn)/µ(tn) and limn!1 �rnµ(tn)(tn) = 0, then limn!1 d(tn) = 0.

Proof. Let s, t 2 I. We prove that |µ(s) � µ(t)|  |s � t|. Assume, without loss of generality,
µ(t) � µ(s). Of course, we can also assume µ(t) > |s� t|. By (2.2),

E(u(s);µ(t)� |s� t|) � E(u(t);µ(t)) = (N �K + 1/2)E(Q) + E(u⇤),

which implies µ(s) � µ(t)� |s� t|.
In order to prove (ii), it su�ces to check that

E(u(t); (1 + ✏)�K(t)) < (N �K + 1/2)E(Q) + E(u⇤),

E(u(t); (1� ✏)�K(t)) > (N �K + 1/2)E(Q) + E(u⇤).
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By (4.26), this will follow from

E(u(t); (1 + ✏)�K(t), ⌫(t)) < E(Q)/2,

E(u(t); (1� ✏)�K(t), ⌫(t)) > E(Q)/2.

We use (4.19). By (4.21), kgkE ⌧ 1 when � ⌧ 1 and n0 � 1. Thus, it su�ces to see that

E(Q(mn,~◆,~�); (1 + ✏)�K(t), ⌫(t)) < E(Q)/2,

E(Q(mn,~◆,~�); (1� ✏)�K(t), ⌫(t)) > E(Q)/2

whenever
P

K

j=1
�j(t)/�j+1(t) ⌧ 1, which is obtained directly from the definition of Q.

We now prove (iii). Let Rn be a sequence such that rnµ(tn) ⌧ Rn ⌧ µK+1(tn). Without loss
of generality, we can assume Rn � ⌫(tn), since it su�ces to replace Rn by ⌫(tn) for all n such
that Rn < ⌫(tn). Let Mn,mn,~◆n,~�n be parameters such that

ku(tn)�Q(mn,~◆n,~�n)k2H(rrnµ(tn))
+ ku̇(tn)k2L2(rrnµ(tn))

+
M�1X

j=1

⇣ �n,j
�n,j+1

⌘
k

! 0, (5.1)

which exist by the definition of the localized distance function (3.1). Since
⇣
K � 1

2

⌘
E(Q)  lim inf

n!1
E(u(tn); 0, rnµ(tn))  lim sup

n!1
E(u(tn); 0, rnµ(tn))  KE(Q),

we have Mn = K for n large enough. We set �n,j := µj(tn) and ◆n,j := �j for j > K. We claim
that

lim
n!1

✓
ku(t)� u⇤(t)�Q(m�,~◆n,~�n)k2E +

NX

j=1

⇣ �n,j
�n,j+1

⌘
k
◆

= 0.

By the definition of d, the proof will be finished. First, we observe that �n,K ⌧ rnµ(tn), so
�n,K/�n,K+1 ! 0. In the region r  rnµ(tn), convergence follows from (5.1), since the energy
of the exterior bubbles asymptotically vanishes there. In the region r � Rn, the energy of the
interior bubbles vanishes, hence it su�ces to apply Lemma 4.9 and recall that Rn � ⌫(tn). In
particular

lim
n!1

E(u(tn); 0, rnµ(tn)) = KE(Q), lim
n!1

E(u(tn);Rn) = (N �K)E(Q) + E(u⇤),

which implies
lim
n!1

E(u(tn); rnµ(tn), Rn) = 0,

and (2.1) yields convergence of the error also in the region rnµ(tn)  r  Rn. ⇤
Our next goal is to prove that the minimality of K (see Definition 4.5) implies a lower bound

on the length of the collision intervals. First, we have the following fact.

Lemma 5.3. If mn 2 Z, ◆n 2 {�1, 1}, 0 < rn ⌧ µn ⌧ Rn, 0 < tn ⌧ µn and un a sequence of
solutions of (1.1) such that un(t) is defined for t 2 [0, tn] and

lim
n!1

kun(0)� (mn⇡ + ◆nQµn
)kE(rn,Rn)

= 0,

then
lim
n!1

sup
t2[0,tn]

kun(t)� (mn⇡ + ◆nQµn
)kE(rn+t,Rn�t) = 0.

Proof. Without loss of generality, we can assume mn = 0, ◆n = 1 and µn = 1. After these
reductions, the conclusion directly follows from [9, Lemma 3.4]. ⇤
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Lemma 5.4. If ⌘1 > 0 is small enough, then for any ⌘ 2 (0, ⌘1] there exist ✏ 2 (0, ⌘) and Cu > 0
having the following property. If [c, d] ⇢ [an, bn], d(c)  ✏, d(d)  ✏ and there exists t0 2 [c, d]
such that d(t0) � ⌘, then

d� c � C�1

u max(µ(c), µ(d)).

Proof. We argue by contradiction. If the statement is false, then there exist ⌘ > 0, a de-
creasing sequence (✏n) tending to 0, an increasing sequence (Cn) tending to 1 and intervals
[cn, dn] ⇢ [an, bn] (up to passing to a subsequence in the sequence of the collision intervals
[an, bn]) such that d(cn)  ✏n, d(dn)  ✏n, there exists tn 2 [cn, dn] such that d(tn) � ⌘
and dn � cn  C�1

n max(µ(cn), µ(dn)). We will check that, up to adjusting the sequence ✏n,
[cn, dn] 2 CK�1(✏n, ⌘) for all n, contradicting Definition 4.5.

The first and second requirement in Definition 4.4 are clearly satisfied. It remains to construct
a function ⇢K�1 : [cn, dn] ! [0,1) such that

lim
n!1

sup
t2[cn,dn]

dK�1(t; ⇢K�1(t)) = 0. (5.2)

Assume µ(cn) � µ(dn) (the proof in the opposite case is very similar). Let rn be a sequence
such that �K�1(cn) ⌧ rn ⌧ �K(cn) (recall that �K(cn) is at main order equal to µ(cn) and
that �0(t) = 0 by convention). Set ⇢K�1(t) := rn + (t � cn) for t 2 [cn, dn]. Recall that
~�n 2 {�1, 1}N�K and ~µ(t) 2 (0,1)N�K are defined in Lemma 4.9. Let ◆n be the sign of
the K-th bubble at time cn, and set e� := (◆n,~�n) 2 {�1, 1}N�(K�1) and eµ(t) := (µ(cn), ~µ(t)) 2
(0,1)N�(K�1). Let Rn be a sequence such that ⌫n(cn) ⌧ Rn ⌧ µK+1(cn). Applying Lemma 5.3
with these sequences rn, Rn and un(t) := u(cn + t), we obtain

lim
n!1

sup
t2[cn,dn]

ku(t)�Q(m�, e�n, eµ(t))kE(⇢K�1(t),1) = 0,

implying (5.2) ⇤

Remark 5.5. We denote the constant Cu to stress that it depends on the solution u and is
obtained in a non-constructive way as a consequence of the assumption that u does not satisfy
the continuous time soliton resolution.

5.2. Demolition of the multi-bubble. Recall the following notion from Real Analysis. If
X ⇢ R, U : X ! R [ {+1} and t0 2 X, we say that t0 is a local minimal point from the right
if there exists t1 > t0 such that U(t0)  U(t) for all t 2 X \ (t0, t1). Similarly, we say that
t0 is a local minimal point from the left if there exists t1 < t0 such that U(t0)  U(t) for all
t 2 X \ (t1, t0).

Definition 5.6 (Weighted interaction energy). On each collision interval [an, bn], we define the
function U : [an, bn] ! R+ as follows:

• if d(t) � ⌘0, then U(t) := +1.

• if d(t) < ⌘0, then U(t) := maxi2A
�
2�i⇠i(t)/�i+1(t)

�
k
, where �i+1 and ⇠i are the modu-

lation parameter and its refinement defined above, see Lemma 4.16.

Remark 5.7. Continuity of d, ⇠i and �i implies that U is finite and continuous in a neighborhood
of any point where it is finite. Moreover, applying (4.51) and (4.50), we obtain that there exists
C1 > 0 such that

d(t) < ⌘0 implies C�1

1
d(t)2  U(t)  C1d(t)

2. (5.3)
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Lemma 5.8. Let k � 2. If ⌘0 is small enough, then there exists C0 � 0 depending only on k
and N such that the following is true. If t0 is a local minimal point from the right of U such
that U(t0) < +1 and t⇤ � t0 is such that U(t) < 1 for all t 2 [t0, t⇤], then

3

4
�K(t0)  �K(t⇤) 

4

3
�K(t0), (5.4)

Z
t⇤

t0

d(t)dt  C0d(t⇤)
2
k�K(t0). (5.5)

An analogous statement is true if t⇤ is a local minimal point from the left.

Remark 5.9. Since d(t0)  ⌘0 and d(t⇤)  ⌘0 are small, �K di↵ers from µ by a small relative
error, so in the formulation of the lemma we could just as well write µ instead of �K .

Proof of Lemma 5.8. Step 1. We can assume t⇤ > t0. For j 2 A, denote e⇠j(t) := 2�j⇠j(t)/�j+1(t)
and let

A0 := {j 2 A : U(t0) = e⇠j(t0)k} = {j 2 A : e⇠j(t0) = max
i2A

e⇠i(t0)},

eA0 := {j 2 A0 : e⇠0j(t0) � 0}.

Since t0 is a local minimal point from the right of U , eA0 6= ;. Let j0 := min eA0 2 A.
We now define by induction a sequence of times t0  t1  . . .  tl⇤ = t⇤ and a sequence of

elements of A, j0 > j1 > . . . > jl⇤�1, in the following way. Assume t0  t1  . . .  tl�1 and
j0 > j1 > . . . > jl�1 are already defined. We set

tl := sup
�
t 2 [tl�1, t⇤] : e⇠j(⌧)  e⇠jl�1(⌧) for all ⌧ 2 [tl�1, t) and j 2 A such that j < jl�1

 
.

If tl = t⇤, then we set l⇤ := l and terminate the procedure. If not, let

Al := {j 2 A : j < jl�1 and e⇠j(tl) = e⇠jl�1(tl)}.

By the definition of tl and continuity, Al 6= ;. We set jl := minAl.
Step 2. We check that tl > tl�1 for l = 1, . . . , l⇤.

In order to prove that t1 > t0, we need to show that there exists t > t0 such that e⇠j(⌧)  e⇠j0(⌧)
for all ⌧ 2 [t0, t) and j 2 A such that j < j0. Since A is a finite set, it su�ces to check this
separately for each j 2 A. If j /2 A0, the claim is clear, by continuity. If j 2 A0 \ eA0, then
e⇠j(t0) = e⇠j0(t0), e⇠0j(t0) < 0 and e⇠0

j0
(t0) � 0, again implying the claim.

For l � 1, the definition of jl implies that e⇠j(tl) < e⇠jl(tl) for all j < jl. Writing l � 1 instead

of l, we get e⇠j(tl�1) < e⇠jl�1(tl�1) for all j < jl�1, whenever l � 2. Thus, by continuity, tl > tl�1.
Step 3. By induction with respect to l, we show that there exists a constant C0 depending only
on k and N such that for all l 2 {1, . . . , l⇤} we have

Z
tl

tl�1

d(t)dt  C0d(tl)
2
k�jl�1+1(tl�1), (5.6)

e⇠jl�1(t) �
1

2
e⇠j(t), for all t 2 (tl�1, tl) and j > jl�1.
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Suppose (5.6) is proved for l 2 {1, . . . , l0} and let T0 2 (tl0 , tl0+1] be the largest number such
that

Z
T0

tl0

d(t)dt  2C0d(T0)
2
k�jl0+1(tl0), (5.7)

e⇠jl0 (t) �
1

4
e⇠j(t), for all t 2 (tl0 , T0) and j > jl0 , (5.8)

⇠jl0 (t) �
3

4
⇠jl0 (tl0), for all t 2 (tl0 , T0).

It su�ces to prove that
Z

T0

tl0

d(t)dt  C0d(T0)
2
k�jl0+1(tl0), (5.9)

e⇠jl0 (t) �
1

2
e⇠j(t), for all t 2 (tl0 , T0) and j > jl0 , (5.10)

⇠jl0 (t) �
7

8
⇠jl0 (tl0), for all t 2 (tl0 , T0). (5.11)

It will be convenient to assume T0 = t⇤ = tl0+1, which is allowed. Also, in order to simplify the
notation, we write l instead of l0 in the induction step which follows.

The first observation is that if jl < j  jl�1, then �j(t) is “almost constant” on the time
interval (tl, tl+1). More precisely, we claim that

|�j(t)/�j(tl)� 1|  c0, if j > jl and t > tl, (5.12)

where c0 can be made arbitrarily small by taking ⌘0 small enough. Indeed, |�0
j
(t)| . d(t), so

(5.7) implies the claim (we stress again that C0 will not depend on ⌘0).
The definition of tl+1 implies

e⇠jl(t) � e⇠j(t), for all t 2 (tl, tl+1) and j  jl, (5.13)

so (5.8) yields

max
i2A

e⇠i(t) . e⇠jl(t), for all t 2 (tl, tl+1). (5.14)

The bound (4.53) yields for all t 2 (tl, tl+1)

�jl(t)�
0
jl
(t) � (�◆jl◆jl+1!

2 � c0)
�
2jl e⇠jl(t)

�
k
+ (◆jl◆jl�1!

2 � c0)
�
2jl�1e⇠jl�1(t)

�
k

� c0max
i2A

�
2ie⇠i(t)

�
k
,

with the convention ⇠0(t) = 0. By (5.13), 2jl�1e⇠jl�1(t)  1

2
2jl e⇠jl(t). Taking c0 small enough and

applying (5.14), we obtain

�jl(t)�
0
jl
(t) � !2

4

�
2jl e⇠jl(t)

�
k ) �0jl(t) � c1

⇠jl(t)
k�1

�jl+1(tl)k
, (5.15)

where c1 > 0 depends only on k and N , and in the last step we used (5.12).
With c2 > 0 to be determined, consider the auxiliary function

�(t) := �jl(t) + c2
�
⇠jl(t)/�jl+1(tl)

� k
2 .

The Chain Rule gives

�0(t) = �0jl(t) + c2
k

2
�jl+1(tl)

� k
2 ⇠jl(t)

k
2�1⇠0jl(t).
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We have |⇠0
jl
(t)|  c3(⇠jl(t)/�jl+1(tl))

k
2 , with c3 depending only on k and N , hence (5.15) implies

�0(t) � c3
�jl+1(tl)

✓
⇠jl(t)

�jl+1(tl)

◆
k�1

� c4
�jl+1(tl)

�(t)
2k�2

k ,

with c2, c3, c4 depending only on k and N . The last inequality yields

�
�jl+1(tl)�(t)

2/k
�0 & �(t) )

Z
tl+1

tl

�(t)dt . �jl+1(tl)�(tl+1)
2/k . d(tl+1)

2/k�jl+1(tl).

(5.16)

If we consider e�(t) := �jl(t) +
c2
2

�
⇠jl(t)/�jl+1(tl)

� k
2 instead of �, then the computation above

shows that e� is increasing. From (5.19), we have e�(tl) � 0, so e�(t) � 0 for all t 2 (tl, tl+1),
implying d(t) . �(t). Thus, (5.16) yields (5.9) if C0 is su�ciently large (but depending on k
and N only).

We now prove (5.11). By the definition of tl and the fact that jl < jl�1, we have e⇠jl(⌧) 
e⇠jl�1(⌧) for all ⌧ 2 [tl�1, tl). By the definition of jl, e⇠jl(tl) = e⇠jl�1(tl), in particular we have

e⇠0jl(tl) � e⇠0jl�1
(tl). (5.17)

Recalling that e⇠j(t) = 2�j⇠j(t)/�j+1(t), we find

2�jl
⇠0
jl
(tl)

�jl+1(tl)
� 2�jl

⇠jl(tl)�
0
jl+1

(tl)

�jl+1(tl)2
� 2�jl�1

⇠0
jl�1

(tl)

�jl�1+1(tl)
� 2�jl�1

⇠jl�1(tl)�
0
jl�1+1

(tl)

�jl�1+1(tl)2
. (5.18)

Since �jl+1(tl)/�jl�1+1(tl) + ⇠jl(tl)/�jl+1(tl) + ⇠jl�1(tl)/�jl�1+1(tl) is small when ⌘0 is small and,
see Lemma 4.16,

|�0jl+1(tl)|+ |⇠0jl�1(tl)|+ |�0jl�1+1(tl)| . max
i2A

(⇠i/�i+1)
k/2,

we obtain

⇠0jl(tl) � �c0max
i2A

(⇠i/�i+1)
k/2, (5.19)

where c0 can be made arbitrarily small upon taking ⌘0 small.

By (5.19) and (4.52), we have �jl(tl) � �c0(⇠jl(tl)/�jl+1(tl))
k
2 , where c0 can be made as small

as needed, and

�0jl(t) � (3/4)k�1c1
⇠jl(tl)

k�1

�jl+1(tl)k
.

We deduce that ⇠0
jl
(t) � 0 provided

t� tl �
2c0
c1

(4/3)k�1⇠jl(tl)(⇠jl(tl)/�jl+1(tl))
� k

2 .

But, if the opposite inequality is satisfied, the bound |⇠0
jl
(t)| . (⇠jl(tl)/�jl+1(tl))

k
2 yields (5.11),

if c0 is small enough. In fact, the argument gives the bound with 7

8
replaced by 1 � c0, where

c0 > 0 is as small as we want. Combining this with (5.12), we obtain in particular

e⇠jl(tl+1) � (1� c0)e⇠jl(tl), (5.20)

with c0 > 0 arbitrarily small.
Finally, we prove (5.10). By (5.11) and (5.12), it su�ces to show that

e⇠jl(tl) �
3

4
e⇠j(tl), for all j > jl.
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Let l0  l be such that jl0 < j  jl0�1. The definition of jl0 yields e⇠j0l(tl0) �
e⇠j(tl0), so it su�ces

to check that
e⇠jel(tel) � (3/4)

1
K e⇠jel�1

(tel�1
), for all el,

with c0 > 0 small, and use this inequality l � l0 times. The last inequality follows from (5.17)
and (5.20).
Step 4. Taking the sum over l of (5.9), we get (5.5). The bound (5.4) follows from (5.12). ⇤

Starting from now, ⌘0 > 0 is fixed so that Lemma 5.8 holds and Lemma 5.4 can be applied
with ⌘ = ⌘0. We also fix ✏ > 0 to be the value given by Lemma 5.4 for ⌘ = ⌘0. Recall that
d(an) = d(bn) = ✏n and d(t) � ✏n for all t 2 [an, bn].

Lemma 5.10. There exists ✓0 > 0 such that for any sequence satisfying ✏n ⌧ ✓n  ✓0 and for
all n large enough there exist Nn 2 N⇤ and a partition of the interval [an, bn]

an = eLn,0  eRn,0  cRn,0  dRn,0  fR

n,0  fL

n,1  dLn,1  cLn,1  eLn,1  . . .  eRn,Nn
= bn,

having the following properties.

(1) For all m 2 {0, 1, . . . , Nn} and t 2 [eLn,m, eRn,m], d(t)  ⌘0, and
Z

e
R
n,m

eLn,m

d(t)dt  C2✓
2/k

n min(µ(eLn,m), µ(eRn,m)), (5.21)

where C2 � 0 depends only on k and N .
(2) For all m 2 {0, 1, . . . , Nn � 1} and t 2 [eRn,m, cRn,m] [ [fR

n,m, fL

n,m+1
] [ [cL

n,m+1
, eL

n,m+1
],

d(t) � ✓n.
(3) For all m 2 {0, 1, . . . , Nn � 1} and t 2 [cRn,m, fR

n,m] [ [fL

n,m+1
, cL

n,m+1
], d(t) � ✏.

(4) For all m 2 {0, 1, . . . , Nn � 1}, d(dRn,m) � ⌘0 and d(dL
n,m+1

) � ⌘0.

(5) For all m 2 {0, 1, . . . , Nn � 1}, d(cRn,m) = d(cL
n,m+1

) = ✏.

(6) For all m 2 {0, 1, . . . , Nn � 1}, either d(t) � ✏ for all t 2 [cRn,m, cL
n,m+1

], or d(fR
n,m) =

d(fL

n,m+1
) = ✏.

(7) For all m 2 {0, 1, . . . , Nn � 1},
sup

t2[eLn,m,cRn,m]

µ(t)/ inf
t2[eLn,m,cRn,m]

µ(t)  2,

sup
t2[cLn,m+1,e

R
n,m+1]

µ(t)/ inf
t2[cLn,m+1,e

R
n,m+1]

µ(t)  2.

Remark 5.11. The purpose of the Lemma 5.10 above is to partition any collision interval
[an, bn] into subintervals, depending on the values of d(t). On the intervals [eL

n,j
, eR

n,j
], the bound

(5.21) will always be invoked. Outside of these intervals, the lower bounds on d(t), combined
with a more or less direct application of Lemma 3.1, will be used. Of special importance are the
intervals [cR

n,j
, fR

n,j
] and [fL

n,j
, cL

n,j
], since they allow to apply Lemma 5.4, leading to the crucial

bound (5.32).
Lemma 5.4 could not be applied directly on the intervals [eR

n,j
, eL

n,j+1
], because there is no

uniform (independent of n) lower bound on d(t) on these intervals, unless ✓n & 1. But, in our
application of (5.21) in the proof of Theorem 1, it will be necessary to have ✓n ! 0, see (5.33).
For this reason, the contribution of the intervals [eR

n,j
, cR

n,j
], [fR

n,j
, fL

n,j+1
] and [cL

n,j+1
, eL

n,j+1
] will

be estimated di↵erently, see (5.29)–(5.31).
The intervals [cR

n,j
, fR

n,j
] and [fL

n,j
, cL

n,j
] correspond to what were called “compactness intervals”

[cn, dn] in the summary of the proof in Section 1.4, whereas [eL
n,j

, eR
n,j

] correspond to the “mod-
ulation intervals”. For simplicity, we have not mentioned the remaining intervals in Section 1.4.
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They are the “intermediate intervals,” on which we will use both Lemma 3.1 and estimates of
the modulation parameters leading to the property (7) above.

A part of Lemma 5.10 will also play a role in the construction of an appropriate time-dependent
cut-o↵ radius for the virial identity, in Lemma 5.12 below.

Proof of Lemma 5.10. For all t0 2 [an, bn] such that U(t0) < 1, let J(t0) ⇢ [an, bn] be the union
of all the open (relatively in [an, bn]) intervals containing t0 on which U is finite. Equivalently,
we have one of the following three cases:

• J(t0) = (ean,ebn), t0 2 (ean,ebn), d(ean) = d(ebn) = ⌘0 and d(t) < ⌘0 for all t 2 (ean,ebn),
• J(t0) = [an,ebn), t0 2 [an,ebn), d(ebn) = ⌘0 and d(t) < ⌘0 for all t 2 [an,ebn),
• J(t0) = (ean, bn], t0 2 (ean, bn], d(ean) = ⌘0 and d(t) < ⌘0 for all t 2 (ean, bn].

Note that ✓n � ✏n implies ean > an and ebn < bn. Clearly, any two such intervals are either equal
or disjoint.

Consider the set
A := {t 2 [an, bn] : d(t)  ✓n}.

Observe that {an, bn} 2 A. Since A is a compact set, there exist Nn 2 N and a sequence

an  sn,0 < sn,1 < . . . < sn,Nn  bn

such that

sn,m 2 A, A ⇢
Nn[

m=0

J(sn,m). (5.22)

Without loss of generality, we can assume J(sn,m)\J(sn,m0) = ; whenever m 6= m0 (it su�ces to
remove certain elements from the sequence). We choose ✓0 < ⌘, where ⌘ is given by Definition 4.5.
Then Definition 4.4 implies that [an, bn] 6= A, thus Nn > 0.

Observe, using (5.3), that U(sn,m)  Cd(sn,m)2 = on(1), whereas U(ean) � C�1

1
d(ean)2 �

C�1

1
⌘2
0
and similarly U(ebn) � C�1

1
⌘2
0
, which for n large enough implies that U , restricted to

J(sn,m), attains its global minimum. Let tn,m 2 J(sn,m) be one of the points where this global
minimum is attained, in particular we have J(tn,m) = J(sn,m) and one of the following three
cases:

• tn,m 2 (an, bn) is a local minimal point of U ,
• tn,m = an is a local minimal point from the right of U ,
• tn,m = bn is a local minimal point from the left of U .

Note also that, again by (5.3),

d(tn,m) 
q
C1U(tn,m) 

q
C1U(sn,m)  C1d(sn,m)  C1✓n, (5.23)

where the last inequlity follows since sn,m 2 A.
We set eL

n,0
:= an and eR

n,Nn
:= bn. Let m 2 {0, 1, . . . , Nn� 1}. Since J(tn,m)\J(tn,m+1) = ;,

there exists t 2 (tn,m, tn,m+1) such that U(t) = 1. Let dRn,m be the smallest such t, and dL
n,m+1

the largest one. Let cRn,m be the smallest number such that d(t) � ✏ for all t 2 (cRn,m, dRn,m).

Similarly, let cL
n,m+1

be the biggest number such that d(t) � ✏ for all t 2 (dL
n,m+1

, cL
n,m+1

). Next,

let eRn,m be the smallest number such that d(t) � 2C1✓n for all t 2 (eRn,m, cRn,m). If we take

✓n  ✓0 < ✏

2C1
, then we have eRn,m < cRn,m. It follows from (5.23) that eRn,m > tn,m. Similarly,

let eL
n,m+1

be the biggest number such that d(t) � 2C1✓n for all t 2 (cL
n,m+1

, eL
n,m+1

) (again,

it follows that eL
n,m+1

< tn,m+1). Finally, if d(t) � ✏ for all t 2 (dRn,m, dL
n,m+1

), we set fR
n,m

and fL

n,m+1
arbitrarily, for example fR

n,m := dRn,m and fL

n,m+1
:= dL

n,m+1
. If, on the contrary,

there exists t 2 (dRn,m, dL
n,m+1

) such that d(t) < ✏, we let fR
n,m be the biggest number such that



SOLITON RESOLUTION FOR WAVE MAPS 69

d(t) � ✏ for all t 2 (dRn,m, fR
n,m), and fL

n,m+1
be the smallest number such that d(t) � ✏ for all

t 2 (fL

n,m+1
, dL

n,m+1
).

We check all the desired properties. For all n 2 {0, 1, . . . , Nn}, we have eLn,m  tn,m  eRn,m.

By the definition of dRn,m, for all n 2 {0, 1, . . . , Nn�1} we have U(t) < 1 for all t 2 [tn,m, dRn,m),

in particular for all t 2 [tn,m, eRn,m]. Similarly, U(t) < 1 for all t 2 [eL
n,m+1

, tn,m+1]. We also have

an 2 J(tn,0), which implies U(t) < 1 for all t 2 [an, tn,0] = [eL
n,0

, tn,0]. Similarly, U(t) < 1 for

all t 2 [tn,Nn , e
R

n,Nn
], thus U(t) < 1 for all n 2 {0, 1, . . . , Nn} and t 2 [eLn,m, eRn,m]. Moreover, if

tn,m = eLn,m (which can only happen for m = 0), then tn,m is a local minimal point from the right

of U , and if tn,m = eRn,m (which can only happen for m = Nn), then tn,m is a local minimal point

from the left of U . Since d(eLn,m)  2C1✓n and d(eRn,m)  2C1✓n, the property (1) follows from
(5.5). The properties (3), (4), (5) and (6) follow directly from the construction. The property (2)
is now equivalent to the following statement: if d(t0) < ✓n, then there exists m 2 {0, 1, . . . , Nn}
such that t0 2 [eLn,m, eRn,m]. But (5.22) implies that t0 2 J(sn,m) = J(tn,m) for some m and, by

construction, d(t) > ✓n for all t 2 J(tn,m) \ [eLn,m, eRn,m], so we obtain t 2 [eLn,m, eRn,m]. Finally,

using again Lemma 5.8, but on the time intervals [tn,m, cRn,m] and [cL
n,m+1

, tn,m+1], we deduce
the property (7) from (5.4). ⇤
5.3. End of the proof: virial inequality with a cut-o↵. In this section, we conclude the
proof, by integrating the virial identity on the time interval [an, bn]. The radius where the cut-o↵
is imposed has to be carefully chosen, which is the object of the next lemma.

Lemma 5.12. There exist ✓0 > 0 and a locally Lipschitz function ⇢ : [1
n=1

[an, bn] ! (0,1)
having the following properties:

(1) max(⇢(an)k@tu(an)kL2 , ⇢(bn)k@tu(bn)kL2) ⌧ max(µ(an), µ(bn)) as n ! 1,
(2) limn!1 inft2[an,bn]

�
⇢(t)/µ(t)

�
= 1 and limn!1 supt2[an,bn]

�
⇢(t)/µK+1(t)

�
= 0,

(3) if d(t0)  1

2
✓0, then |⇢0(t)|  1 for almost all t in a neighborhood of t0,

(4) limn!1 supt2[an,bn] |⌦⇢(t)(u(t))| = 0.

Proof. We will define two functions ⇢(a), ⇢(b), and then set ⇢ := min(⇢(a), ⇢(b), ⌫). First, we let

⇢(a)(an) := min(Rnµ(an), ⌫(an)),

where 1 ⌧ Rn ⌧ k@tu(an)k�1

L2 . Consider an auxiliary sequence

�n := sup
t2[an,bn]

ku(t)kE(min(⇢(a)(an)+t�an,⌫(t));2⌫(t))
.

We have limn!1 �n = 0. Indeed, we see from the finite speed of propagation that

lim sup
n!1

E(u(t); ⇢(a)(an) + t� an,1)  E(u⇤) + (N �K)E(Q).

This and Lemma 4.9 yield

lim
n!1

E(u(t);min(⇢(a)(an) + t� an, ⌫(t)); 2⌫(t)) = 0,

thus Lemma 2.1 implies �n ! 0.
Let ✓0 > 0 be given by Lemma 5.10 (assuming without loss of generality that ✓0 < ✏), and

divide [an, bn] into subintervals applying this lemma for the constant sequence ✓n = ✓0. We let
⇢(a) be the piecewise a�ne function such that

d

dt
⇢(a)(t) := 1 if t 2 [eLn,m, eRn,m],

d

dt
⇢(a)(t) := �

� 1
2

n otherwise.

Note that if t 2 [an, bn] and t /2 [eLn,m, eRn,m] for all m, then d(t) � ✓0.



70 JACEK JENDREJ AND ANDREW LAWRIE

We check that limn!1 inft2[an,bn]
�
⇢(a)(t)/µ(t)

�
= 1. First, suppose that t 2 [eRn,m, eL

n,m+1
]

and t� eRn,m & µ(eRn,m). Then µ(t)  µ(eRn,m)+ (t� eRn,m) . t� eRn,m and ⇢(a)(t) � �
� 1

2
n (t� eRn,m),

so ⇢(a)(t) � µ(t).
By Lemma 5.4, eL

n,m+1
� eRn,m � Cuµ(eRn,m), so in particular we obtain ⇢(a)(eL

n,m+1
) �

µ(eL
n,m+1

) for all m 2 {0, 1, . . . , Nn � 1}. Note that we also have ⇢(a)(eL
n,0

) = ⇢(a)(an) �
µ(an) = µ(eL

n,0
), by the choice of ⇢(a)(an). Since, by the property (7) in Lemma 5.10, µ changes

at most by a factor 2 on [eLn,m, eRn,m] and ⇢(a) is increasing, we have ⇢(a)(eRn,m) � µ(eRn,m).

Finally, if t� eRn,m  µ(eRn,m), then µ(t)  2µ(eRn,m), which again implies ⇢(a)(t) � µ(t).

The function ⇢(b) is defined similarly, but integrating from bn backwards. Properties (1), (2),
(3) are clear. By the expression for ⌦⇢(t)(u(t)), see Lemma 2.4, we have

|⌦⇢(t)(u(t))| . (1 + |⇢0(t)|)ku(t)k2E(⇢(t),2⇢(t)) .
p
�n ! 0,

which proves the property (4).
⇤

We need one more elementary result.

Lemma 5.13. If a, b 2 R, a < b, µ : [a, b] ! (0,1) is a 1-Lipschitz function and b�a � 1

4
µ(a),

then there exist l 2 N and a sequence a = a0 < a1 < . . . < al < al+1 = b such that

1

4
µ(ai)  ai+1 � ai 

3

4
µ(ai), for all i 2 {0, 1, . . . , l}. (5.24)

Proof. We set a0 := a and define inductively ai+1 := ai +
1

4
µ(ai), as long as b� ai >

3

4
µ(ai). If

b � ai  3

4
µ(ai), then we set l := i, al+1 := b and terminate the procedure. Since ai+1 � ai �

1

4
mint2[a,b] µ(t) > 0 for all i, this is achieved in a finite number of steps. We have ai+1 � ai =

1

4
µ(ai) for all i < l, thus (5.24) holds for all i < l. By the definition of l, we have b�al  3

4
µ(al),

and we only need to prove that b� al � 1

4
µ(al).

If l = 0, then the assumptions of the lemma yield b � a0 = b � a � µ(a) = µ(a0). If l > 0,
then, by the definition of l, we have b � al�1 > 3

4
µ(al�1). Since µ is 1-Lipschitz, we also have

µ(al) = µ(al�1 + µ(al�1)/4)  µ(al�1) + µ(al�1)/4 = 5

4
µ(al�1), thus

b� al = b� al�1 �
1

4
µ(al�1) >

3

4
µ(al�1)�

1

4
µ(al�1) >

5

16
µ(al�1) �

1

4
µ(al).

⇤

Remark 5.14. Note that (5.24) and the fact that µ is 1-Lipschitz imply inft2[ai,ai+1]
µ(t) �

1

4
µ(ai) and supt2[ai,ai+1]

µ(t)  7

4
µ(ai), thus

1

7
sup

t2[ai,ai+1]

µ(t)  ai+1 � ai  3 inf
t2[ai,ai+1]

µ(t),

in other words the length of each subinterval is comparable with both the smallest and the
largest value of µ on this subinterval.

Lemma 5.15. Let ⇢ be the function given by Lemma 5.12 and set

v(t) :=

Z 1

0

@tu(t)r@ru(t)�⇢(t) rdr. (5.25)
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1. There exists a sequence ✓n ! 0 such that the following is true. If [ean,ebn] ⇢ [an, bn] is
such that

ebn � ean � 1

4
µ(ean) and d(t) � ✓n for all t 2 [ean,ebn],

then

v(ebn) < v(ean). (5.26)

2. For any c, ✓ > 0 there exists � > 0 such that if n is large enough, [ean,ebn] ⇢ [an, bn],

cµ(ean)  ebn � ean and d(t) � ✓ for all t 2 [ean,ebn],

then

v(ebn)� v(ean)  �� sup
t2[ean,ebn]

µ(t). (5.27)

Proof. By the virial identity, we obtain

v0(t) = �
Z 1

0

(@tu(t))
2�⇢(t) rdr + on(1). (5.28)

We argue by contradiction. If the claim is false, then there exists ✓ > 0 and an infinite sequence
[ean,ebn] ⇢ [an, bn] (as usual, we pass to a subsequence in n without changing the notation) such
that

ebn � ean � 1

4
µ(ean) and d(t) � ✓ for all t 2 [ean,ebn],

and

v(ebn)� v(ean) � 0.

We claim that there exists a subinterval of [ean,ebn], which we will still denote [ean,ebn], such that

1

4
µ(ean)  ebn � ean  3

4
µ(ean) and v(ebn)� v(ean) � 0.

Indeed, by Lemma 5.13, there exist ln 2 N and ean = ean,0 < ean,1 < . . . < ean,ln+1 = ebn such that

1

4
µ(ean,i)  ean,i+1 � ean,i 

3

4
µ(ean,i), for all i 2 {0, 1, . . . , ln}.

If we had v(ean,i+1)�v(ean,i) < 0 for all i 2 {0, 1, . . . , ln}, then summation with respect to i would

yield v(ebn) � v(ean) < 0. Hence, there exists i 2 {0, 1, . . . , ln} such that v(ean,i+1) � v(ean,i) � 0,

and [ean,i,ean,i+1] is the subinterval of [ean,ebn] whose existence we claimed.
Let e⇢n := inf

t2[ean,ebn] ⇢(t). From (5.28), we have

lim
n!1

1
ebn � ean

Z ebn

ean

Z 1
2 e⇢n

0

(@tu(t))
2 rdr = 0.

By Lemma 5.12, inf
t2[ean,ebn] µK+1(t) � e⇢n � inf

t2[ean,ebn] µ(t) ' sup
t2[ean,ebn] µ(t), so Lemma 3.1

yields sequences tn 2 [ean,ebn] and 1 ⌧ rn ⌧ µK+1(tn)/µ(tn) such that

lim
n!1

�rnµ(tn)(u(tn)) = 0,

which is impossible by Lemma 5.2 (iii). The first part of the lemma is proved.
In the second part, we can assume without loss of generality ebn � ean  3

4
µ(ean). Indeed, in

the opposite case, we apply Lemma 5.13 and keep only one of the subintervals where µ attains
its supremum, and on the remaining subintervals we use (5.26).
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After this preliminary reduction, we argue again by contradiction. If the claim is false, then
there exist c, ✓ > 0, a sequence �n ! 0 and a sequence [ean,ebn] ⇢ [an, bn] (after extraction of a
subsequence) such that

cµ(ean)  ebn � ean  3

4
µ(ean) and d(t) � ✓ for all t 2 [ean,ebn],

and

v(ebn)� v(ean) � ��nµ(ean)
(we use the fact that µ(ean) is comparable to sup

t2[ean,ebn] µ(t), see Remark 5.14).

Let e⇢n := inf
t2[ean,ebn] ⇢(t). From (5.28), we have

lim
n!1

1
ebn � ean

Z ebn

ean

Z 1
2 e⇢n

0

(@tu(t))
2 rdr = 0.

We now conclude as in the first part. ⇤

Proof of Theorem 1. Let ✓n be the sequence given by Lemma 5.15, part 1. We partition [an, bn]
applying Lemma 5.10 for this sequence ✓n. Note that this partition is di↵erent than the one
used in the proof of Lemma 5.12. We claim that for all m 2 {0, 1, . . . , Nn � 1}

v(cRn,m)� v(eRn,m)  on(1)µ(c
R

n,m), (5.29)

v(fL

n,m+1)� v(fR

n,m)  on(1)µ(f
R

n,m), (5.30)

v(eLn,m+1)� v(cLn,m+1)  on(1)µ(c
L

n,m+1). (5.31)

Here, on(1) denotes a sequence of positive numbers converging to 0 when n ! 1. In order to
prove the first inequality, we observe that if cRn,m � eRn,m � 1

4
µ(eRn,m), then (5.26) applies and

yields v(cRn,m) � v(eRn,m) < 0. We can thus assume cRn,m � eRn,m  1

4
µ(eRn,m)  1

2
µ(cRn,m), where

the last inequality follows from Lemma 5.10, property (7). But then (5.28) again implies the
required bound. The proofs of the second and third bound are analogous.

We now analyse the compactness intervals [cR
n,j

, fR

n,j
] and [fL

n,j+1
, cL

n,j+1
]. We claim that there

exists � > 0 such that for all n large enough and m 2 {0, 1, . . . , Nn}

v(cLn,m+1)� v(cRn,m)  ��max(µ(cRn,m), µ(cLn,m+1)). (5.32)

We consider separately the two cases mentioned in Lemma 5.10, property (6). If d(t) � ✏ for all
t 2 [cRn,m, cL

n,m+1
], then Lemma 5.4 yields cL

n,m+1
� cRn,m � C�1

u µ(cRn,m), so we can apply (5.27),

which proves (5.32). If d(fR
n,m) = ✏, then we apply the same argument on the time interval

[cRn,m, fR
n,m] and obtain

v(fR

n,m)� v(cRn,m)  ��max(µ(cRn,m), µ(fR

n,m)),

and similarly

v(cLn,m+1)� v(fL

n,m+1)  ��max(µ(cLn,m+1), µ(f
L

n,m+1)).

The bound (5.30) yields (5.32).
Finally, on the intervals [eLn,m, eRn,m], for n large enough Lemma 5.12 yields |⇢0(t)|  1 for

almost all t, and Lemma 4.18 implies |v0(t)| . d(t). By Lemma 5.10, properties (1) and (7), we
obtain

v(eRn,m)� v(eLn,m)  on(1)µ(c
R

n,m), for all m 2 {0, 1, . . . , Nn � 1},
v(eRn,m)� v(eLn,m)  on(1)µ(c

L

n,m), for all m 2 {1, . . . , Nn � 1, Nn}.
(5.33)
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Taking the sum in m of (5.29), (5.31), (5.32) and (5.33), we deduce that there exists � > 0
and n arbitrarily large such that

v(bn)� v(an)  ��max(µ(cRn,0), µ(c
L

n,Nn
)).

But an = eL
n,0

and bn = eR
n,Nn

, hence property (7) in Lemma 5.10 yields µ(an)  2µ(cR
n,0

) and

µ(bn)  2µ(cL
n,Nn

), thus

v(bn)� v(an)  �e�max(µ(an), µ(bn)).

Lemma 5.12 (1) and (5.25) yield

|v(an)| ⌧ µ(an), |v(bn)| ⌧ µ(bn),

a contradiction which finishes the proof. ⇤

5.4. Absence of elastic collisions. This section is devoted to proving Proposition 1.7 Our
proof closely follows Step 3 in our proof of [41, Theorem 1.6].

Proof of Proposition 1.7. Suppose that a solution of (1.1), u, defined on its maximal time of ex-
istence t 2 (T�, T+), is a pure multi-bubble in both time directions in the sense of Definition 1.6,
in other words

lim
t!T+

d(t) = 0, and lim
t!T�

d(t) = 0,

and the radiation u⇤ = u⇤
L
or u⇤ = u⇤

0
in both time directions satisfies u⇤ ⌘ 0. In this proof,

all the N bubbles can be thought of as “interior” bubbles thus, whenever we invoke the results
from the preceding sections, it should always be understood that K = N . Applying Lemma 2.25
with ✓ = 0 and M = N , we obtain from (2.30) and (2.29) that

d(t)  Cmax
j2A

⇣ �j
�j+1

⌘ k
2
.

Let ⌘ > 0 be a small number to be chosen later and t+ be such that d(t)  ⌘ for all t � t+. If ⌘
is su�ciently small, then the modulation parameters are well-defined for t � t+, so we can set

U(t) := max
i2A

�
2�i⇠i(t)/�i+1(t)

�
k
, for all t � t+,

cf. Definition 5.6. Since U is a positive continuous function and limt!T+ U(t) = 0, there exists
an increasing sequence tn ! T+ such that tn is a local minimal point from the left of U . Thus,
Lemma 5.8 yields

Z
tn

t+

d(t)dt  C0d(t+)
2
k�N (t+),

and passing to the limit n ! +1 we get
Z

T+

t+

d(t)dt  C0d(t+)
2
k�N (t+). (5.34)

By inspecting the proof of Lemma 4.11, one finds that in the present case it holds with ⇣n = 0, in
particular we have |�0

N
(t)| . d(t). This bound, together with (5.34), implies that limt!T+ �N (t)

is a finite positive number, thus T+ = +1.
Analogously, T� = �1 and limt!�1 �N (t) 2 (0,+1) exists.
The remaining part of the argument is exactly the same as in [41], but we reproduce it here

for the reader’s convenience.
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Let � > 0 be arbitrary. Inspecting the proof of Lemma 4.18, we see that in the present case
it holds with ✏n = 0, thus for any R > 0 we have |⌦R(u(t))|  C0d(t). From this bound and
the estimates above, we obtain existence of T1, T2 2 R such that

Z
T1

�1
|⌦R(u(t))|dt 

1

3
�,

Z
+1

T2

|⌦R(u(t))|dt 
1

3
�

for any R > 0. On the other hand, because of the bound |⌦R(u(t))|  C0E(u(t);R, 2R) and
since [T1, T2] is a finite time interval, for all R su�ciently large we have

Z
T2

T1

|⌦R(u(t))|dt 
1

3
�,

in other words Z

R
|⌦R(u(t))|dt  �.

Integrating the virial identity from Lemma 2.4 with ⇢(t) = R over the real line, we obtain
Z

+1

�1

Z 1

0

(@tu(t, r)�R(r))
2 rdrdt  �.

By letting R ! +1, we get
Z

+1

�1

Z 1

0

(@tu(t, r))
2 rdrdt  �,

which implies the u is stationary since � is arbitrary. ⇤

Appendix A. Modifications to the argument in the case k = 1

In this section we outline the changes to the arguments in Section 4 and Section 5 needed to
prove Theorem 1 for the equivariance class k = 1.

A.1. Modulation and refined modulation. The set-up in Sections 4.1 holds without mod-
ification for k = 1. To be precise the number K � 1 is defined as in Lemma 4.6, the collision
intervals [an, bn] 2 CK(⌘, ✏n) are as in Definition 4.5, and the sequences of signs ~�n 2 {�1, 1}N�K ,
scales ~µ(t) 2 (0,1)N�K , and integers mn 2 Z associated to the exterior bubbles, and the se-
quence ⌫n ! 0 and the function ⌫(t) = ⌫nµK+1(t) are as in Lemma 4.9.

Lemma 4.11 also holds without modification. Let J ⇢ [an, bn] be any time interval on which
d(t)  ⌘0, where ⌘0 is as in Lemma 4.11. Let ~◆ 2 {�1, 1}K ,~�(t) 2 (0,1)K , and g(t) 2 E be
as in the statement of Lemma 4.11. Let L > 0 be a parameter to be fixed below and define for
each j 2 {1, . . . ,K � 1},

⇠j(t) := �j(t)�
◆j

2 log(�j+1(t)

�j(t)
)

⌦
�
L

p
�j(t)�j+1(t)

⇤Q�j(t)
| g(t) +

X

i<j

◆i(Q�i(t)
� ⇡)

↵
,

and,
�j(t) := �◆j

⌦
�
L

p
⇠j(t)�j+1(t)

⇤Q�j(t)
| ġ(t)

↵
� hA(�j(t))g(t) | ġ(t)i . (A.1)

Proposition A.1 (Refined modulation, k = 1). Let c0 2 (0, 1) and c1 > 0. There exists
constants L0 = L0(c0, c1) > 0, ⌘0 = ⌘0(c0, c1), as well as c = c(c0, c1) and R = R(c0, c1) > 1 as
in Lemma 4.13, a constant C0 > 0, and a decreasing sequence ✏n ! 0 so that the following is
true.
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Suppose L > L0 and J ⇢ [an, bn] is an open time interval with ✏n  d(t)  ⌘0 for all t 2 J ,
where A := {j 2 {1, . . . ,K � 1} | ◆j 6= ◆j+1}. Then, for all t 2 J ,

kg(t)kE +
X

i 62A
(�i(t)/�i+1(t))

1
2  max

i2A
(�i(t)/�i+1(t))

1
2 , (A.2)

and,

1

C0

d(t)  max
i2A

(�i(t)/�i+1(t))
1
2  C0d(t), (A.3)

���
⇠j(t)

�j+1(t)
� �j(t)

�j+1(t)

���  c0d(t)
2. (A.4)

Moreover, let j 2 A be such that for all t 2 J

c1d(t) 
⇣ �j(t)

�j+1(t)

⌘ 1
2
. (A.5)

Then for all t 2 J ,

��⇠0j(t)
��
⇣
log

⇣�j+1(t)

�j(t)

⌘⌘ 1
2  C0max

i2A

s
�i(t)

�i+1(t)
, (A.6)

���⇠0j(t)2 log(
�j+1(t)

�j(t)
)� �j(t)

��� 
C0

c1
max
i2A

s
�i(t)

�i+1(t)
(A.7)

and,
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(A.8)

where, by convention, �0(t) = 0,�K+1(t) = 1 for all t 2 J .

Proof. The estimates (A.2) and (A.3) follow as in the proofs of the corresponding estimates in
Lemma 4.16. We next prove (A.4). From the definition of ⇠j(t),
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For the first term on the right we have,
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Next, for any i < j we have,
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and hence,
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and (A.4) follows.
Next using (A.2) and (4.24) for each j, we have

���0j
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(�i(t)/�i+1(t))

1
2 . (A.9)

We show that in fact ⇠0
j
satisfies the improved estimate (A.6). We compute,
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(A.10)

The second, third, and fourth terms on the right above contribute acceptable errors. Indeed,
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with the gain in the last line arising from the fact that ⇤⇤Q 2 L1; see (2.16). The leading order
comes from the second to last term in (A.10). Using (4.54) gives
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We estimate the contribution of each of the terms on the right above to (A.10). The last term
above vanishes due to the support properties of �(u, ⌫). Using (2.15), (A.9) on the second term
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above, gives
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which means this terms cancels the term �0 on the right-hand side of (A.10) up to an acceptable
error. Next we write,
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The first term cancels the last term in (A.10). For the second term we estimate, if i > j,
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↵
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and thus, using (A.9) the second term in the previous equation contributes an acceptable error.
Plugging all of these estimates back into (A.10) gives the estimate,
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Using (A.2) and k�
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2 , we deduce the estimate,
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which completes the proof of (A.6).
Next we compare �j and 2⇠0

j
log(�j+1/�j). Using (A.1) we have,
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We also note the estimate
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which is a consequence of (A.4). Using (A.11) the estimate (A.7) follows.
Finally, the proof of the estimate (A.8) is nearly identical to the argument used to prove (4.53),

di↵ering only in a few places where the cut-o↵ �
L

p
⇠j�j+1

is involved. Arguing as in the proof
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of (4.53) we arrive at the formula,
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All but the last four terms above are treated exactly as in the proof of (4.53). For the fourth-
to-last term a direct computation using the estimate (4.65) gives,
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For the third-to-last term, we use that ⇤⇤Q 2 L2, (A.9), and (A.2) to deduce that,
���◆j
�0
j

�j

D
(1� �

L

p
⇠j�j+1

)⇤⇤Q�j | ġ
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The size of the constant L > 0 becomes relevant only in the second-to-last term. Indeed, since
L⇤Q = 0, we have,
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And therefore, using (A.2) and (A.4) we obtain the estimate,
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for a uniform constant, independent of L. Taking L > 1 large enough relative to c0 makes this an
acceptable error. Finally, for the last term we use the improved estimate (A.6) for ⇠0
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and (A.4)

to obtain,
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This completes the proof. ⇤
We note that Lemma 4.18 and its proof remain valid for k = 1.

A.2. Demolition of the multi-bubble. We define the weighted interaction energy in the same
way as for k � 2, see Definition 5.6.

Lemma A.2. If c0 in Proposition A.1 is taken su�ciently small, then there exists a constant
C1 > 0 such that

d(t) < ⌘0 implies C�1

1
d(t)2  U(t)  C1d(t)

2.

Remark A.3. In the case k � 2 the corresponding estimate (5.3) follows immediately from
(4.51). For k = 1, since the bound (A.4) does not imply that ⇠j(t) ' �j(t) for all j 2 A.

Proof. Let t be such that d(t) < ⌘0, and let j0 2 A be such that

�j0(t)/�j0+1(t) = max
i2A

�i(t)/�i+1(t).

Then we deduce from (A.4) that

⇠j0(t)/�j0+1(t) & �j0(t)/�j0+1(t) & d(t)2,

which yields the required lower bound on U(t).
The upper bound follows directly from (A.4) and the fact that �j(t)/�j+1(t) . d(t)2 for all

j 2 A. ⇤
The analog of Lemma 5.8 for k = 1 is formulated as follows.

Lemma A.4. If ⌘0 is small enough, then there exists C0 � 0 depending only on k and N such
that the following is true. If t0 is a local minimal point from the right of U such that U(t0) < +1
and t⇤ � t0 is such that U(t) < 1 for all t 2 [t0, t⇤], then

3

4
�K(t0)  �K(t⇤) 

4

3
�K(t0),

Z
t⇤

t0

d(t)dt  C0d(t⇤)
2
p

� logd(t⇤)�K(t0).

An analogous statement is true if t⇤ is a local minimal point from the left.

Proof. Steps 1 and 2 are similar as for k � 2. Step 3 di↵ers significantly, so let us indicate the
necessary changes. First, the modulation estimates (A.6), (A.7) and (A.8) only hold under the
assumption (A.5). However, note that in Step 3 this last assumption is satisfied on the time
interval (tl0 , T0), on which the modulation estimates are used, see (5.14).

Instead of (5.19), we claim that

⇠0jl(tl)
q

� log e⇠jl(tl) ' ⇠0jl(tl)
q
� log(⇠jl(tl)/�jl+1(tl)) � �c0max
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p
⇠i(tl)/�i+1(tl), (A.12)

where c0 can be made arbitrarily small upon taking ⌘0 small. Indeed, recalling that e⇠j(t) =
2�j⇠j(t)/�j+1(t), (5.18) yields

⇠0jl(tl) & �e⇠jl(tl)|�
0
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�
.

Since e⇠jl(tl) is small when ⌘0 is small, (A.9) yields

e⇠jl(tl)
q

� log e⇠jl(tl)|�
0
jl+1(tl)|  c0max

i2A

p
⇠i(tl)/�i+1(tl).
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Since e⇠jl(tl) = e⇠jl�1(tl), (A.6) yields
q
� log e⇠jl(tl)|⇠

0
jl�1
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Since jl < jl�1, �jl+1(tl)/�jl�1+1(tl) is small when ⌘0 is small, so we get (A.12).

In (5.6), (5.7) and (5.9), we replace d(t)k/2 by d(t)2
p
�d(t). Next, we introduce the auxiliary

function �(x) :=
p
�x log x for 0 < x < 1. Note that
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p
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+O((�x log x)�1/2) > 0.

With c2 > 0 to be determined, consider the auxiliary function
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�
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.

The Chain Rule gives
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By (A.6) and (5.12), we have |⇠0
jl
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1
2 log(�⇠jl(t)/�jl+1(tl))�1/2, with C3

depending only on N , hence (A.8) implies

�0(t) � 4
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, (A.13)

provided c2 is taken small enough (depending only on N). If we consider e�(t) := �jl(t) +
c2
2
�
�
⇠jl(t)/�jl+1(tl)

�
instead of �, then the computation above shows that e� is increasing. From

(A.12), we have e�(tl) � 0, so e�(t) � 0 for all t 2 (tl, tl+1), implying
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The bound (A.13) yields
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We observe that |�(t)| . �(d(t)2), hence �(t)2/
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Thus, (A.14) yields (5.9) (with d(t)2
p
� logd(t) instead of d(t)2/k) if C0 is su�ciently large

(but depending on k and N only).
We now prove (5.11). By (A.12) and (A.7), we have �jl(tl) � �c0�(⇠jl(tl)/�jl+1(tl)), where

c0 can be made as small as needed, and

�0jl(t) � c1/�jl+1(tl).

We deduce that ⇠0
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But, if the opposite inequality is satisfied, the bound

|⇠0jl(t)| .
q
⇠jl(tl)/�jl+1(tl)/

q
� log(⇠jl(tl)/�jl+1(tl))

yields (5.11), if c0 is small enough.
The proof is then finished as for k � 2. ⇤
The remaining arguments of Section 5 apply without major changes. In (5.21), one should

replace ✓2/kn by ✓2n
p
� log ✓n.

A.3. Absence of pure multi-bubbles with N � 2 when k = 1. This section is devoted to
proving Proposition 1.8, which follows quickly from Lemma A.4.

Proof of Proposition 1.8. Suppose that N � 2 and u is a pure N -bubble in the future time
direction and let T+ 2 R [ {1} be its final time of existence. Let T0 < T+ be such that
d(t) < ⌘0 for all t 2 [T0, T+), so that U(t) < 1, where U is the weighted interaction energy
from Definition 5.6. Since we assume N � 2, we have U(t) > 0 for all t.

We have limt!T+ U(t) = 0, thus there exists a sequence tn ! T+ such that tn is a local
minimal point from the left of U . By Lemma A.4, for all n and t 2 [T0, tn) we have

3

4
�N (tn)  �N (t)  4

3
�N (tn),

thus for all t 2 [T0, T+)
9

16
�N (T0)  �N (t)  16

9
�N (T0),

which implies that we cannot have limt!T+ �N (t) = 0, in particular T+ = 1.
Again by Lemma A.4, for all t 2 [T0, tn) we have

Z
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2
p
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and letting n ! 1 we obtain
Z 1
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3
C0d(t)

2
p
� logd(t)�N (T0)  d(t)

3
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where the last bound is justified by taking ⌘0 small enough. The Chain Rule yields

d

dt

✓✓Z 1

t

d(⌧)d⌧

◆ 1
3
◆

 �1

3
�(T0)

� 2
3

for all t � T0, which is impossible. ⇤
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