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ABSTRACT

In bony vertebrates, melanocortin 2 receptor (Mc2r) specifically binds
adrenocorticotropic hormone (ACTH) and is responsible for mediating anterior pituitary
signaling that stimulates corticosteroid production in the adrenal gland/interrenal cells.
In bony fishes Mc2r requires the chaperoning of an accessory protein (Mrap1) to traffic
to the membrane surface and bind ACTH. Here, we evaluated the structure and
pharmacological properties of Mc2r from the Senegal bichir (Polypterus senegalus),
which represents the most basal bony fish from which an Mc2r has been
pharmacologically studied to date. In our experiments, cDNA constructs of the Mc2r
from the Senegal bichir (sbMc2r) and various vertebrate Mrap1s were heterologously
co-expressed in Chinese hamster ovary (CHO) cells, stimulated by ACTH or
melanocyte-stimulating hormone (a-MSH) ligands, and assessed using a luciferase
reporter gene assay. When expressed without an Mrap1, sbMc2r was not activated by
ACTH. When co-expressed with Mrap1 from either chicken (Gallus gallus) or bowfin
(Amia calva), sbMc2r could be activated in a dose-dependent manner by ACTH, but not
a-MSH. Co-expression of sbMrap2 with sbMc2r resulted in no detectable activation of
the receptor. Collectively, these results demonstrate that sbMc2r has pharmacological
properties similar to those of Mc2rs of later-evolved bony fishes, such as Mrap1
dependence and ACTH selectivity, indicating that these qualities of Mc2r function are

ancestral to all bony fish Mc2rs.
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1. INTRODUCTION

Melanocortin receptors are members of the large rhodopsin family of seven-pass
transmembrane G protein-coupled receptors (Cone, 2006; Ramachandrappa et al.,
2013). Among bony vertebrates, there are five known melanocortin receptors (Mc1r,
Mc2r, Mc3r, Mc4r, and Mc5r) which exhibit varying degrees of selectivity to the
proopiomelanocortin (POMC)-derived peptides adrenocorticotropin hormone (ACTH)
and melanocyte-stimulating hormone (a-MSH) (Nakanishi et al., 1979). Mammalian
Mc1r, Mc3r, Mc4r, and Mc5r can all be activated by both ACTH and a-MSH ligands
(Cone, 2006). However, Mc2r can only be activated by ACTH and is designated as the
“ACTH receptor” (Mountjoy et al., 1992).

As a receptor for ACTH, Mc2r is important in mediating hypothalamic-pituitary-
adrenall/interrenal (HPA/HPI) signaling, wherein the adrenal gland of later-evolved
tetrapods is homologous to the interrenal tissue associated with the kidney of
amphibians and fishes. In the HPI axis of fishes, corticotropin releasing factor (CRF) is
secreted from the hypothalamus to the pituitary causing the release of ACTH into the
vascular system (Wendelaar Bonga, 1997). At the interrenal cells, ACTH binds to Mc2r
to initiate steroid biosynthesis resulting in the production and release of corticosteroids
(Dores and Garcia, 2015). Comparative pharmacological investigations on Mc2r have
described many functional qualities that appear to have been derived throughout
vertebrate evolution (Dores and Chapa, 2021). Of the bony vertebrates (class
Osteichthyes) studied to date, Mc2r exclusively binds ACTH and requires cooperative
interaction with a melanocortin receptor accessory protein (Mrap1) for membrane
trafficking and activation by ACTH (Dores and Chapa, 2021). However, these qualities
of bony vertebrate Mc2r function appear to be derived (Dores and Chapa, 2021).

In the group of jawed cartilaginous fishes (class Chondrichthyes), comprised of
the elasmobranchs (i.e., sharks, skates, rays) and holocephalans (i.e., chimaeras)
(Nelson et al., 2016), the reliance of Mc2r on Mrap1 chaperoning and modulation is less
apparent or altogether absent. The Mc2r ortholog of the stingray (Dasyatis akajei)
(srMc2r) can be activated by both ACTH and a-MSH at non-physiological
concentrations. Although co-expression with Mrap1 is not required for srMc2r activation,
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it does greatly increase the sensitivity of srMc2r to stimulation by ACTH (Dores et al.,
2018; Takahashi et al., 2016). Similar observations were made for the Mc2r ortholog of
the whale shark (Rhincodon typus) (wsMc2r), for which it was explained that Mrap1 had
no effect on wsMc2r activation, but enhanced trafficking of wsMc2r to the plasma
membrane (Hoglin et al., 2022). Together, these studies in elasmobranchs suggest that
the lack of selectivity for ACTH and the increased sensitivity of Mc2r for ACTH by Mrap1
chaperoning are shared features of Mc2rs in elasmobranchs. Similar studies have been
performed in the elephant shark (Callorhincus milli), a representative of the sister group
to the elasmobranchs, the holocephalans. Like in the elasmobranchs, the Mc2r ortholog
of the elephant shark (esMc2r) can be activated by both ACTH and a-MSH, but the
sensitivity of esMc2r to ACTH was not appreciably affected by co-expression with
Mrap1 (Barney et al., 2019).

Conspicuously absent from previous comparative studies on Mc2r orthologs
were representatives from the subclass Chondrostei (e.g. bichir, ropefish, paddlefish,
sturgeon) (Nelson et al., 2016). In the present study, we sought to evaluate the
pharmacological properties of the Mc2r from the Senegal bichir (Polypterus senegalus)
(sbMc2r). Bichirs are members of the family Polypteridae (order Polypteriformes), which
represent the most basal order of ray-finned fishes (class Actinopterygii) (Carroll, 1988).
As there have been no functional studies on Mc2r from any of the lobe-finned fishes
(the basal representatives of the sister class of bony vertebrates, Sarcopterygii), sbMc2r
represents an Mc2r that may be more closely related to the Mc2rs of cartilaginous
fishes than any other Mc2r studied to date (Betancur et al., 2017). Indeed, functional
studies of Mc2rs from the most basal bony vertebrates (including bichir and lobe-finned
fishes) may facilitate an enhanced understanding of how the functional qualities of the
bony vertebrate Mc2r arose. Our primary hypothesis was that sbMc2r would exhibit
functional qualities characteristic of the Mc2rs of more derived actinopterygians,
including ACTH selectivity and Mrap1 dependence. However, we have made the
observation that a sequence for an mrap1 gene is apparently absent from the recently
published P. senegalus genome assembly (Bi et al., 2021). This observation has raised
the possibility that sbMc2r may have properties more similar to the cartilaginous fish

Mc2r, which lacks Mrap1-dependance and is capable of being activated by either ACTH



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

or a-MSH (Hoglin et al., 2022; Reinick et al., 2012a). Hence, this study tested an
alternative hypothesis that sbMc2r may be an Mrap1-independent Mc2r ortholog that is
capable of being activated by either ACTH or a-MSH.

2. MATERIALS AND METHODS

2.1 Sequence discovery and analyses

The genome assembly of P. senegalus is available from the National Center for
Biotechnology Information (NCBI) GenBank (assembly ASM1683550v1; Bi et al., 2021).
Using the BLAST (Basic Local Alignment Search Tool) from NCBI, we surveyed the P.
senegalus assembly by querying with nucleotide sequences of mc2r, mrap1, and mrap2
orthologues from several species of basal bony fishes for which sequences for these
genes are available, including spotted gar (Lepisosteus oculatus) and bowfin (Amia
calva). Amino acid sequences for sbMc2r and sbMrap2 were deduced using the
Translate tool from ExPASYy (https://www. expasy.org). Hypothetical membrane
topology of sbMc2r was predicted using the TMHMM tool from the DTU Bioinformatics
Server (https://www.bioinformatics.dtu.dk). Multiple sequence alignment and
phylogenetic analyses were carried out using a selection of gnathostome Mc2r and
Mrap amino acid sequences available from NCBI GenBank. Sequence alignments were
performed using the Clustal Omega multiple sequence alignment tool available from the
European Bioinformatics Institute (https://www.ebi.ac.uk/tools/msa/), which was also
used to obtain percent sequence identities. Multiple sequence alignments were
arranged using BioEdit software (Hall, 1999), with modifications to ensure the alignment
of functional motifs following previously described methods (Dores et al., 1996).
Phylogenetic analyses using the maximum parsimony method (1,000 bootstrap
replicates) were implemented using MEGA10 software (Kumar et al., 2008).

Accession numbers for the amino acid sequences used in our analyses were:
elephant shark Mc2r (FAA00704), whale shark Mc2r (XP_020380838), stingray Mc2r
(BAU98231), gar Mc2r (XP_006636159), rainbow trout Mc2r (ABV23494), carp Mc2r
(CAE53845), zebrafish Mc2r (AAO24743), lungfish Mc2r (XP_043923917), frog Mc2r
(XP_002936118), chicken Mc2r (AGR42637), mouse Mc2r (NP_001288301), human
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Mc2r (NP_001278840), whale shark Mrap1 (XP_020375601), whale shark Mrap2
(XP_020377388), chicken Mrap1 (XR_001470382), chicken Mrap2 (XP_046770071),
mouse Mrap1 (NP_084120), and mouse Mrap2 (NP_001346884). Sequences for
bowfin (bf) Mc2r, Mrap1, and Mrap2 were obtained as a gift from the authors of the
recently published bowfin genome (Thompson et al., 2021).

2.2 Cell Culture, Transfection, and Reporter Gene Assay

Using previously described methods (Hoglin et al., 2022; Liang et al., 2011;
Reinick et al., 2012b), sbMc2r receptor activation by melanocortin ligands was analyzed
by transfecting cDNA constructs of the bichir mc2r and various vertebrate mrap1s into
Chinese hamster ovary (CHO) cells, then using a luciferase reporter gene assay to
indirectly measure cAMP production resulting from receptor activation by melanocortin
ligands. CHO cells were selected for this project because this cell line does not
endogenously express Mc2r or Mrap1 proteins (Noon et al., 2002; Reinick et al., 2012b;
Sebag and Hinkle, 2007).

Transfection was performed using cDNA constructs that were commercially
obtained as inserts on a pcDNA3.1+ expression vector (GenScript; Piscataway, NJ).
Plasmid vectors (2 ug per 1x10° cells) were transiently transfected into CHO cells
(ATCC; Manassas, VA) using a Solution T kit for the Amaxa Nucleofector 2b system
(Lonza; Portsmouth, NH). This system is quoted by the manufacturer as delivering
efficiencies of ~80% (http://bioscience.lonza.com), and has been empirically shown to
produce such efficiencies (Hannes et al., 2010; Maasho et al., 2004). Our lab has used
this system to successfully transfect CHO cells for many years (Liang et al., 2011;
Reinick et al., 2012a, 2012b), and we confirm the success of our transfections using
positive controls for each functional assay we run. Although the particular arrangement
of mc2r and mrap constructs that were co-transfected varied by experiment, all
transfections included the co-transfection of a cAMP reporter construct (luciferase gene
promoted by a cAMP responsive element (CRE-Luciferase); transfected at 2.5 ug per
1x10° cells) (Chepurny and Holz, 2007), totaling a maximum of 3 simultaneous
transfections for any experiment. After transfection, CHO cells were seeded in triplicate

wells in opaque 96-well cell culture plates (Cat. No. 3912; Corning Life Sciences;
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Manassas, VA) at a density of 3x10° cells cm* and incubated at 37 °C with 5% CO2 for
2 d in a DMEM/F12 media (Cat. No. 11320-033; Gibco, UK) with 10% fetal calf serum
and 1% penicillin-streptomycin. After 48 h in incubation post-transfection, the culture
media was removed, and transfected cells were stimulated with either human ACTH(1-
24) (hereafter referred to as ACTH) or a-MSH (New England Peptide, Gardiner, MA)
diluted to concentrations ranging from 10-¢-10-'2 M in serum-free DMEM/F 12 media,
then placed back into incubation for an additional 4 h. After stimulation, media was
removed and replaced with a luciferase substrate (BrightGLO; Promega; Madison, WI).
The luminescence generated after 5 min was measured spectrophotometrically by a
BioTek Synergy HT microplate reader using Gen5 software (Agilent Technologies;
Santa Clara, CA). Luminescence readings (in relative light units) were corrected by
subtracting the average luminescence values of an unstimulated (0 M ligand) control for

each unique transfection.

2.3 Calculations and statistics

The dose-response curve of receptor activation was analyzed using non-linear
regression (three-parameter polynomial; log([ligand]) vs luminescence). From the fitted
curves, values for half-maximal effective concentration (ECso) and maximal response
(Vmax) were obtained. Values for ECso and Vmax were compared using the extra-sum-of-
squares F test (a = 0.05). All statistics and figure preparation were performed using
Prism 9 software (GraphPad Inc., La Jolla, CA). All data are presented as mean +

standard error (n = 3).

3. RESULTS

3.1 Sequence analyses

In our survey of the P. senegalus genome, we were able to identify a sequence
for mc2r (XM_039738597). However, no mrap1 ortholog was detected in the P.
senegalus genome, although we could identify an accessory protein sequence that
NCBI BLAST analysis identified as an mrap2 ortholog (XM_039747869). The deduced
amino acid sequence of sbMc2r aligned with a selection of other vertebrate Mc2r
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sequences, exhibiting high sequence similarity in the 7 transmembrane domains that
are characteristic of Mc2r proteins (Fig. 1). In our analysis of vertebrate Mc2r orthologs,
the highest sequence similarities were within the mammals (mouse and human; 89%
sequence similarity) and the cyprinids (carp and zebrafish; 83%), whereas the lowest
sequence similarities were between the stingray and the cyprinids (39-41%) (Fig. 2A).
As expected, the sequence similarity of sbMc2r to other vertebrate Mc2rs fell within
these two extremes. The sbMc2r ortholog had highest similarity to the Mc2r in gar
(65%), and sbMc2r had a 55% sequence similarity to human MC2R and a 46%
sequence similarity to srMc2r (Fig. 2A). In a molecular phylogenetic comparison, Mc2r
sequences of sarcopterygians, actinopterygians, and chondrichthyes all formed
respective monophyletic clades, with the sbMc2r occupying the basal position among
the Mc2rs of actinopterygians (Fig. 2B).

The amino acid sequence for sbMrap2 was aligned with a selection of
gnathostome Mrap1 and Mrap2 sequences (Fig. 3A). All gnathostome Mrap sequences
had high sequence similarity in the reverse topology motif in the N-terminal domain and
the trafficking motif in the transmembrane domain, but only the bony vertebrate Mrap1
sequences contained the putative activation motif consisting of a 8-D-Y-0 residue
sequence (Dores and Chapa, 2021) (Fig. 3A). The sbMrap2 sequence was missing this
putative activation motif (Fig. 3A). In a phylogenetic analysis, the Mrap1 and Mrap2
sequences formed distinct monophyletic clades, with the sbMrap2 sequence being

represented as most closely related to the bowfin Mrap2 (Fig. 3B).

3.2 Receptor activation studies

To test the hypothesis that sbMc2r was dependent on chaperoning by an Mrap,
we performed receptor activation studies on sbMc2r expressed either alone or with the
co-expression of various vertebrate Mrap1s or the sbMrap2. When expressed alone
(without co-expression of an Mrap), sbMc2r was not activated by any concentration of
ACTH ligand (Fig. 4A). The positive control for this experiment was bfMc2r co-
expressed with bfMrap1, which responded in a robust manner to stimulation by ACTH
(Fig. 4A).
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Given these results, we tested the hypothesis that sbMc2r does indeed require
co-expression with an Mrap1 ortholog for functional activation. This experiment was
performed using various vertebrate Mrap1 orthologues, including bfMrap1 and chMrap1
orthologs, which contain the 8-D-Y-0 activation motif, and wsMrap1, which lacks the 6-
D-Y-0 activation motif. Co-expression of sbMc2r with various vertebrate Mrap1s
resulted in activation of sbMc2r by ACTH, but this affect was dependent on the
particular Mrap1 being co-expressed (Fig. 4B). When sbMc2r was co-expressed with
wsMrap1, no activation of sbMc2r by ACTH was observed. When sbMc2r was co-
expressed with either bfMrap1 or chMrap1, a characteristic activation of sbMc2r by
ACTH was observed that fit a classic dose-response curve (bfMrap1: R? = 0.91;
chMrap1: R? = 0.90) (Fig. 4A). The ECso values of sbMc2r modulated by bfMrap1 and
chMrap1 were as follows: bfMrap1: ECso = 9.0x10-1° M (95% CI: 4.3x10-° to 1.8x10°
M); chMrap1: ECso = 1.0x102 (95% Cl: 3.9%10° to 2.3x10-® M). These ECso values
were determined to be significantly different from each other (F1,38 = 13.7; P < 0.001).
Although the maximal luciferase activity (Vmax) was consistently marginally higher when
sbMc2r was co-expressed with bfMrap1 compared with chMrap1, the Vmax for each was
not significantly different (F1,3s = 1.78; P = 0.190).

The results of experiments presented in Fig. 4A-B demonstrated the requirement
of Mrap co-expression for sbMc2r function. Due to our ability to detect an mrap2
ortholog, but not an mrap1 ortholog, in the P. senegalus genome, we evaluated whether
sbMrap2 could facilitate activation of sbMc2r (Fig. 4C). In this experiment, although
sbMc2r co-expressed with bfMrap1 (the positive control) was activated following
stimulation with ACTH, sbMc2r co-expressed with sbMrap2 did not respond to
stimulation with ACTH (Fig. 4C).

Finally, previous studies have shown that neopterygian and tetrapod Mc2r
orthologs are exclusively selective for activation by ACTH, whereas cartilaginous fish
Mc2r orthologs could be activated by either ACTH or a-MSH with varying degrees of
efficacy (Dores and Chapa, 2021). To evaluative the ligand selectivity of sbMc2r, the
receptor was co-expressed with bfMrap1 and stimulated with either ACTH or a-MSH
ligands (Fig. 5). As in our previous experiments, sbMc2r co-expressed with bfMrap1

characteristically responded to stimulation by ACTH (the positive control) (Fig. 5).
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However, no activation of sbMc2r co-expressed with bfMrap1 was observed at any

concentration of a-MSH (Fig. 5).

4. DISCUSSION

In the present study, we have provided a molecular and functional
characterization of the most basal Mc2r from a bony vertebrate studied to date, the
Mc2r from a polypterus species, the Senegal bichir. As will be discussed, we have
demonstrated that the sbMc2r was selectively activated by ACTH (compared to a-MSH)
and dependent on the cooperative interaction of Mrap1 for functional activation. These
results increase the resolution of our view of how derived Mc2r function arose
throughout the radiation of the vertebrates, indicating that a major shift in Mc2r function
occurred at the root of the radiation of class Osteichthyes.

Although many similarities exist across the five-member family of melanocortin
receptors (Ramachandrappa et al., 2013), Mc2r has many unique features due to the
considerably more rapid sequence divergence of this gene (Schidth et al., 2005). All
melanocortin receptors are coupled to cAMP/PKA pathways and activated by POMC-
derived peptides, however only Mc2r has been shown to require chaperoning by Mrap1
and exclusive selectivity for ACTH (Ramachandrappa et al., 2013). Importantly, these
unique functional properties of Mc2r are not universal and seem to only be present in
the Mc2rs of the most derived chordates (Dores and Chapa, 2021).

Recent investigations in our lab and others have renewed an interest in better
understanding the evolutionary origins of a stress-responsive HPI axis responsible for
corticosteroid production by studying basal vertebrates (Bouyoucos et al., 2021).
Although it has been shown that jawless and cartilaginous fishes, as well as basal bony
fishes, produce corticosteroids in response to stress (Close et al., 2010; McCormick et
al., 2020; Rai et al., 2015; Ruiz-Jarabo et al., 2019; Shaughnessy et al., 2020;
Shaughnessy and McCormick, 2021), whether an ACTH- and Mc2r-mediated HPI axis
exists in these basal vertebrate lineages remains unknown (Bouyoucos et al., 2021;
Roberts et al., 2014). Whereas the Mc2rs of all bony vertebrates studied to date appear
to display Mrap1 dependance and ACTH selectivity, the Mc2r of cartilaginous fishes

10
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have variable Mrap1 dependance and no ACTH selectivity (Barney et al., 2019; Dores
and Chapa, 2021; Hoglin et al., 2022). Thus, there appears to have been an important
shift in Mc2r function during the emergence of bony vertebrates. By studying the Mc2r
of polypterus in the present study, we aimed to determine whether sbMc2r, as the most
basal bony vertebrate Mc2r studied to date, exhibited any ancestral (i.e., cartilaginous
fish-like) features of Mc2r function, such as Mrap1 independence or lack of ACTH
selectivity. In doing so, we aimed to further resolve the timing of acquisition of the
derived features of Mc2r function in bony vertebrates.

Our analyses demonstrated that sbMc2r unambiguously exhibited only the
derived features of Mc2r function, including an obligatory dependance on Mrap1 for
activation and an exclusive selectivity for ACTH over a-MSH. These results indicate that
the acquisition of these derived features of Mc2r function occurred at the root of the
bony vertebrates, prior to the radiation of Polypteriformes. Indeed, the presence of
these features of Mc2r function in both the actinopterygian and sarcopterygian lineages
was already a good indication that these derived functional qualities of Mc2r would be
represented in the common ancestor to all bony vertebrates (Dores and Chapa, 2021).
However, functional analyses of the most basal members of these two primary bony
vertebrate lineages have been needed to add support for this hypothesis. The present
study provides such evidence from the actinopterygian lineage. It will be important to
also analyze the functional properties of the Mc2r from the most basal members of
Sarcopterygii, such as the lobe-finned fishes which include the lungfishes and the
coelacanth.

The functional evolution of vertebrate Mc2r is likely related to the functional
evolution of Mrap1. In the present study, it was not simply the case that sbMc2r could
be activated when co-expressed with any vertebrate Mrap1. Whereas sbMc2r could be
activated by ACTH when co-expressed with bowfin or chicken Mrap1, sbMc2r was
unable to be activated when co-expressed with the Mrap1 of whale shark. This is likely
explained by the putative activation motif 3'8D1°Y2052" (residue numbers indicated for
mouse Mrap1) (Chan et al., 2009; Malik et al., 2015; Sebag and Hinkle, 2009; Webb
and Clark, 2010). This activation motif is present in the bfMrap1 and chMrap1 but
absent in wsMrap1. The 8-D-Y-0 motif is specific to osteichthyan Mrap1s, and directly

11
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follows the highly conserved Y-E-Y-Y motif contained in nearly all Mrap1 and Mrap2
sequence structures (Fig. 3A) (Dores and Chapa, 2021). In a previous study from our
lab, we demonstrated that wsMc2r can be activated without co-expression with an
Mrap, but only at supraphysiological concentrations of ACTH (Hoglin et al., 2022). This
contrasts with the functional qualities of sbMc2r demonstrated in the present study,
where sbMc2r could not be activated by any concentration of ACTH without Mrap1 co-
expression. Interestingly, sensitivity of wsMc2r to ACTH is substantially improved by co-
expression with either wsMrap1 or wsMrap2, which are both missing a 6-D-Y-0
activation motif (Hoglin et al., 2022). This has been explained as wsMrap1 and
wsMrap2 helping to increase the trafficking of the wsMc2r to the cell surface (Hoglin et
al., 2022). It is due to the appearance in bony vertebrates of the requirement of Mrap1
co-expression for Mc2r activation by ACTH, coupled with the appearance of the 8-D-Y-0
activation motif in Mrap1 of bony vertebrates, that it has been suggested that Mc2r and
Mrap1 have been co-evolving since the emergence of jawed vertebrates (Dores et al.,
2016, 2014; Dores and Chapa, 2021; Vastermark and Schiéth, 2011).

In the present study, the dependence of sbMc2r on co-expression with a bony
vertebrate Mrap1 indicates that an mrap1 gene containing a 8-D-Y-0 activation motif
likely exists in the genome of P. senegalus, despite our current inability to detect any
such mrap1 in the published P. senegalus assembly. It's possible that the assembly of
the bichir genome is either incomplete (less than 100% coverage) or fragmented in such
a way that makes the mrap1 sequence impossible or difficult to detect. A similar
phenomenon occurred with Xenopus tropicalis, for which an Mc2r was identified and
functionally characterized as being Mrap1-dependant (Liang et al., 2011) many years
before the genomic discovery of a X. tropicalis Mrap1 orthologue (Tai et al., 2022).

In summary, we have presented a molecular and functional characterization of
the Mc2r of the Senegal bichir, which represents an Mc2r from the most basal bony
vertebrate studied to date. The sbMc2r was obligatorily dependent on the cooperative
interaction with a bony vertebrate Mrap1, and sbMc2r had exclusive selectivity for
ACTH over a-MSH. These results indicate that an Mrap1 likely exists for P. senegalus,
despite its apparent absence from the available genome. Furthermore, our results add

needed support to the hypothesis that the acquisition of Mrap1 dependence and ACTH
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selectivity with respect to Mc2r function occurred at the root of the radiation of the class
Osteichthyes, though this hypothesis of ancestral Mc2r function requires more empirical

testing from basal sarcopterygians.
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FIGURE LEGENDS

Figure 1: Multiple alignment of Mc2r amino acids sequences from a selection of
jawed vertebrates, including bichir Mc2r. Shading indicates identical (black) and
molecularly similar (grey) residues. Horizontal bars indicate the 7 transmembrane
regions; arrows indicate continuation of the indicated regions. See Materials and

Methods for details of analyses and sequence accession numbers.
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Figure 2: Sequence similarities and phylogenetic relationships of Mc2r amino
acid sequences from a selection of jawed vertebrates. (A) Amino acid sequence
similarities of gnathostome Mc2rs are presented as percent identity (shading intensity
reflects sequence similarity). (B) Molecular phylogeny of gnathostome Mc2rs, where the
clade of Chondrichthyes was rooted as an outgroup. Bichir Mc2r is highlighted by black
dot. See Materials and Methods for details of analyses and sequence accession

numbers.

Figure 3: Molecular characterization of Mrap amino acid sequences from a
selection of jawed vertebrates, including bichir Mrap2. (A) Multiple sequence
alignment of gnathostome Mrap1s and Mrap2s. Shading indicates identical (black) and
molecularly similar (grey) residues. Horizontal bars indicate the activation motif (AM),
reverse topology motif (RTM), and the membrane trafficking motif (MTM); arrows
indicate continuation of the indicated regions. (B) Molecular phylogeny of gnathostome
Mrap1s and Mrap2s. See Materials and Methods for details of analyses and sequence

accession numbers.

Figure 4: Mrap1-dependance of bichir Mc2r. (A) Dose-response stimulation of bowfin
(bf) Mc2r (co-expressed with bfMrap1) and bichir (sb) Mc2r (expressed without an
Mrap) by human ACTH(1-24). (B) Dose-response stimulation by ACTH of sbMc2r
expressed with and without various vertebrate Mrap1s (bfMrap1; chicken, chMrap1;
whale shark, wsMrap1). (C) Dose-wise stimulation by ACTH of sbMc2r co-expressed
with either bfMrap1 or sbMrap2. In all panels, data are presented as mean + standard
error (n = 3) and lines represent fitted dose-response curve (three-parameter

polynomial).

Figure 5: ACTH selectivity of bichir Mc2r. Dose-wise stimulation by either human
ACTH(1-24) or a-MSH of bichir Mc2r co-expressed with bowfin Mrap1. Data are
presented as mean * standard error (n = 3) and line represents fitted dose-response

curve (three-parameter polynomial).
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