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Abstract
We consider the focusing energy-critical nonlinear wave equation for radially sym-
metric initial data in space dimensions D ≥ 4. This equation has a unique (up to sign
and scale) nontrivial, finite energy stationary solution W , called the ground state. We
prove that every finite energy solution with bounded energy norm resolves, contin-
uously in time, into a finite superposition of asymptotically decoupled copies of the
ground state and free radiation.
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1 Introduction

1.1 Setting of the Problem

We study the Cauchy problem for the focusing nonlinear wave equation in the energy-
critical case and under the assumption of radial symmetry, i.e.,

∂2t u − ∂2r u −
D − 1
r

∂r u − |u| 4
D−2 u = 0,

(u(T0), ∂t u(T0)) = (u0, u̇0),
(1.1)

where here D ∈ {4, 5, 6, . . . } is the underlying spatial dimension, u = u(t, r) ∈ R,
where r = |x | ∈ (0,∞) is the radial coordinate in RD , and T0 ∈ R.

The conserved energy for (1.1) is given by

E(u(t), ∂t u(t)) :=
∫ ∞

0

1
2

[
(∂t u(t))2 + (∂r u(t))2

]
r D−1 dr

−
∫ ∞

0

D − 2
2D

|u(t)| 2D
D−2 r D−1 dr .

The Cauchy problem for (1.1) can be rephrased as a Hamiltonian system. To for-
mulate it as such, we will write pairs of functions using boldface, v = (v, v̇), noting
that the notation v̇ does not, in general, refer to the time derivative of v but just to the
second component of the vector v. We see that (1.1) is equivalent to
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∂tu(t) = J ◦ DE(u(t)), u(T0) = u0, (1.2)

where

J =
(

0 1
−1 0

)
, DE(u(t)) =

(
−∂2r u(t)− D−1

r ∂r u(t)− f (u(t))
u̇(t)

)
.

Above we have introduced the notation f (u) := |u| 4
D−2 u.

Solutions to (1.1) are invariant under the scaling,

u(t, r) &→ uλ(t, r) := (λ−
D−2
2 u(t/λ, r/λ), λ−

D
2 ∂t u(t/λ, r/λ)), λ > 0,

and (1.1) is called energy-critical because E(u) = E(uλ).
The linearization of (1.1) about the zero solution is the free scalar wave equation,

∂2t v − ∂2r v −
D − 1
r

∂rv = 0. (1.3)

In this paper we study solutions with initial data in the energy space E, which is
defined via the norm,

‖u0‖2E :=
∫ ∞

0

[
(u̇0(r))2 + (∂r u0(r))2 +

(u0(r))2

r2

]
r D−1 dr .

UsingHardy’s inequality, functions u(r) in E can be identifiedwith radially symmetric
functions v(x) in the space Ḣ1 × L2(RD) in the usual way. We will sometimes use
the notation,

‖u0‖2H :=
∫ ∞

0

[
(∂r u0(r))2 +

(u0(r))2

r2

]
r D−1 dr ,

and write E = H × L2.
It is a classical result of Ginibre and Velo [32] that (1.1) is well-posed in the space

E. Solutions u(t) are defined in the Duhamel sense; see Section 2.2. To every u0 ∈ E,
viewed as initial data for (1.2) at time T0 = 0, we can associate maximal forward and
backward times of existence T+ ∈ (0,∞] and T− ∈ [−∞, 0), a maximal interval of
existence Imax = (T−, T+) on which u ∈ C(Imax; E) and u ∈ S(J )∩W (J ) for every
compact subinterval J ⊂ Imax, where

S(J ) := L
2(D+1)
D−2 (J × RD),

W (J ) := L
2(D+1)
D−1

(
J ; Ḃ

1
2
2(D+1)
D−1 ,2

(RD)
)
;
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see Section 2.2 for details. We will only consider solutions u(t) ∈ E to (1.1) that
satisfy,

lim sup
t→T+

‖u(t)‖E <∞ or lim sup
t→T−

‖u(t)‖E <∞.

Solutions for which limt→T+ ‖u(t)‖E = ∞ are known to exist and are called type-I
(or ODE-type) blow up solutions; see e.g., [5, 15, 51].

We define the Aubin-Talenti solution, W(x) := (W (x), 0) where W : RD → R,
by

W (x) :=
(
1+ |x |2

D(D − 2)

)− D−2
2
,

and note that W (x) is the unique (up to sign, scaling, and translation), non-negative
and nontrivial C2 solution to

−#W (x) = |W (x)| 4
D−2 W (x), x ∈ RD.

Abusing notation slightly and writing W (x) = W (r) with r = |x |, we see that
W(r) is a stationary solution to (1.1). In fact, it is the unique (up to sign and scaling)
static radial nontrivial solution to (1.1) in E. For each λ > 0, we write Wλ(r) :=
(λ−

D−2
2 W (r/λ), 0).

1.2 Statement of the Results

Our main result is formulated as follows.

Theorem 1 (Soliton Resolution) Let D ≥ 4 and let u(t) be a finite energy solution
to (1.1) with initial data u(0) = u0 ∈ E, defined on its maximal forward interval of
existence [0, T+). Suppose that,

lim sup
t→T+

‖u(t)‖E <∞.

Then,
(Global solution) if T+ = ∞, there exist a time T0 > 0, a solution u∗l ∈

C(R; E) to the linear wave equation (1.3), an integer N ≥ 0, continuous functions
λ1(t), . . . , λN (t) ∈ C0([T0,∞)), signs ι1, . . . , ιN ∈ {−1, 1}, and g(t) ∈ E defined
by

u(t) =
N∑

j=1

ι jWλ j (t) + u∗l(t)+ g(t),
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such that

‖g(t)‖E +
N∑

j=1

λ j (t)
λ j+1(t)

→ 0 as t →∞,

where above we use the convention that λN+1(t) = t;
(Blow-up solution) if T+ < ∞, there exists a time T0 < T+, a function u∗0 ∈ E,

an integer N ≥ 1, continuous functions λ1(t), . . . , λN (t) ∈ C0([T0, T+)), signs
ι1, . . . , ιN ∈ {−1, 1}, and g(t) ∈ E defined by

u(t) =
N∑

j=1

ι jWλ j (t) + u∗0 + g(t),

such that

‖g(t)‖E +
N∑

j=1

λ j (t)
λ j+1(t)

→ 0 as t → T+,

where we use the convention that λN+1(t) = T+ − t .
Analogous statements hold for the backwards-in-time evolution.

Remark 1.1 This type of behavior is referred to as soliton resolution. Theorem 1 has
been proved for (1.1) in a series of remarkable works by Duyckaerts, Kenig, and
Merle in odd space dimensions D ≥ 3; see [22] for dimension D = 3 and see [24–
26] for odd space dimensions D ≥ 5. The space dimension D = 4 was treated by
Duyckaerts,Kenig,Martel, andMerle in [18],which also covers the 1-equivariantwave
maps equation, and dimension D = 6 was treated by Collot, Duyckaerts, Kenig, and
Merle [10]. All of these papers use, in some fashion, the method of energy channels.
Roughly, energy channels refer to measurements of the portion of energy that a linear
or nonlinear wave radiates outside fattened light cones {|x | > |t | + R} for R ≥ 0.
The approach we take to prove Theorem 1 is independent of the method of energy
channels. Our method of proof follows closely our recent preprint [41], which proved
the analogue ofTheorem1 for the k-equivariantwavemaps equation in all equivariance
classes k ∈ N.

Remark 1.2 The soliton resolution problem is inspired by the theory of completely
integrable systems, e.g., [29, 72, 75], motivated by numerical simulations, [30, 88],
and by the bubbling theory of harmonic maps in the elliptic and parabolic settings [66,
67, 83, 86, 87]; see also [16, 18, 26] for discussions on the history of the problem.

Remark 1.3 Equation 1.1, its counterpart in defocusing case, as well as the sub- and
super-critical versions, have been classically studied; see for example the articles [3,
34, 43, 44, 59, 60, 64, 65, 69, 73, 74, 76, 77, 82, 84] and the books by Strauss [81],
Sogge [80], and Statah, Struwe [78].
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Remark 1.4 Kenig and Merle [45] gave the first general description of dynamics in a
non-perturbative setting for the focusing energy critical NLW (non-radial), proving
that solutions u with energy below the ground state energy scatter in both directions
if ‖∇u0‖2L2 < ‖∇W‖2L2 or blow up in finite time in both directions if ‖∇u0‖2L2 >

‖∇W‖2L2 . In [27] Duyckaerts and Merle classified the dynamics of solutions at the
threshold energy E = E(W). Characterizations of the dynamics for energies slightly
above the ground state energy were given by Krieger, Nakanishi, and Schlag in [46,
47].

Remark 1.5 Theorem 1 is a qualitative description of the dynamics of all finite energy
solutions to (1.1) with bounded critical norm. A natural, challenging question is to ask
which types of configurations of solitons and radiation are realized in solutions. The
first results in this direction were by Krieger and Schlag [48] who found a manifold
of global-in-time solutions that decoupled into a static W and free radiation; see
also the improvement by Beceanu [4]. The first construction of a solution developing
a bubbling singularity (with one concentrating bubble) in finite time was done by
Krieger, Schlag, and Tataru [50]; see also Hillairet and Raphael [35] for a different
construction in dimension D = 4, and also [49].

In [37], the first author constructed a solution exhibiting more than one bubble
in the decomposition, showing the existence of a solution that forms a 2-bubble in
infinite time with zero radiation in dimension D = 6. We expect that solutions that
form 2-bubble in forward infinite time also exist in dimensions D ≥ 7.

When multi-bubble solutions do occur in one time direction, it is natural to ask
about the dynamics of those solutions in the opposite time direction. We answered
this question in [40] in the setting of equivariant wave maps for the pure 2-bubble
solution u(2) constructed by the first author in [37]. We showed that any 2-bubble in
forward time must scatter freely in backwards time. When the scales of the bubbles
become comparable, this ‘collision’ completely annihilates the 2-bubble structure and
the entire solution becomes free radiation, i.e., the collision is inelastic. Viewed in
forward time, this means that the 2-soliton structure emerges from pure radiation, and
constitutes an orbit connecting two different dynamical behaviors. We later showed in
[38, 39] that u(2)(t) is the unique 2-bubble solution up to sign, translation, and scaling
in equivariance classes k ≥ 4. While we do not consider such refined two-directional
analysis here, a relatively straightforward corollary of the proof of Theorem 1 is that
there can be no elastic collisions of pure multi-bubbles, which we formulate as a
proposition below.

Before stating the result, we define puremulti-bubbles in forward or backward time.

Definition 1.6 With the notations from the statement of Theorem 1, we say that u is a
pure multi-bubble in the forward time direction if u∗l = 0 in the case T+ = +∞, and
u∗0 = 0 in the case T+ < +∞.

We say that u is a pure multi-bubble in the backward time direction if t &→
(u(−t),−u̇(−t)) is a pure multi-bubble in the forward time direction.

Proposition 1.7 (No elastic collisions of pure multi-bubbles) Stationary solutions are
the only pure multi-bubbles in both time directions.
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Remark 1.8 We note that Proposition 1.7 was also proved for odd dimensions D ≥ 3
in [23–26] and in dimensions D = 4, 6 in [10, 18] by the method of energy channels.
The case of k = 1 equivariant wave maps was treated in [18] using energy channels.
Here the proof of Proposition 1.7 follows from the method introduced by the authors
in [41] where we treated equivariant wave maps for all equivariance classes k ≥ 1. See
[55–57] for more regarding the inelastic soliton collision problem for non-integrable
PDEs.

1.3 Summary of the Proof

The proof of Theorem 1 is built on two significant partial results; (1) that the radiation
term, u∗l in the global case and u

∗
0 in the blow-up setting, can be identified continuously

in time, and (2) that the resolution is known to hold along a well-chosen sequence of
times (at least in the case of certain space dimensions). Because the existing literature
does not cover all space dimensions, we sketch a unified proof of the sequential
soliton resolution (see Theorem 1.14 below) as a consequence of what we call the
Compactness Lemma (see Lemma 3.1, which is also used crucially in the proof of
the main theorem), the identification of the radiation, and the fact that no energy can
concentrate in the self-similar region of the light cone.

We discuss these results in more detail. To unify the blow-up and global-in-time
settingswemake the following conventions. Consider a finite energy solution u(t) ∈ E.
We assume that either u(t) blows up in backwards time at T− = 0 and is defined on
an interval I∗ := (0, T0], or u(t) is global in forward time and defined on the interval
I∗ := [T0,∞) where in both cases T0 > 0. We let T∗ := 0 in the blow-up case and
T∗ :=∞ in the global case. We assume that u(t) exhibits type II behavior in that,

lim sup
t→T∗

‖u(t)‖E <∞. (1.4)

Step 1: Extraction of the radiation. Below we will use the notation E(r1, r2) to
denote the localized energy norm

‖g‖2E(r1,r2) :=
∫ r2

r1

(
(ġ)2 + (∂r g)2 +

g2

r2

)
r D−1dr . (1.5)

By convention, E(r0) := E(r0,∞) for r0 > 0. The local nonlinear energy is denoted
by

E(u0; r1, r2) :=
∫ r2

r1

1
2

[
(u̇0)2 + (∂r u0)2

]
r D−1 dr −

∫ r2

r1

D − 2
2D

|u0|
2D
D−2 r D−1 dr .

We adopt similar conventions as for E regarding the omission of r2, or both r1 and r2.

Theorem 1.9 (Properties of the radiation) [12, 21, 22, 42, 71] Let u ∈ C(I∗; E) be a
finite energy solution to (1.1) on an interval I∗ as above and such that (1.4) holds. Then,
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there exists an open neighborhood J of T∗ and finite energy solution u∗(t) ∈ C(J ; E)
to (1.1) called the radiation, and a function ρ : I∗ → (0,∞) that satisfy,

lim
t→T∗

(
(ρ(t)/t)

D−2
2 + ‖u(t)− u∗(t)‖2E(ρ(t))

)
= 0,

and for any α ∈ (0, 1),

‖u∗(t)‖E(0,αt)→ 0 as t → T∗.

Remark 1.10 In the global setting, i.e., I∗ = [T0,∞) the linear wave u∗l ∈ C(R; E)
that appears in Theorem 1 is the unique solution to the linear equation (1.3) satisfying,

‖u∗(t)− u∗l(t)‖E→ 0 as t →∞,

see Proposition 4.2. In the finite time blow-up setting the final radiation u∗0 ∈ E that
appears in Theorem 1 can be viewed as initial data for u∗(t), i.e., the radiation u∗(t) in
Theorem 1.9 satisfies u(t, r) = u∗(t, r) for r > t . We refer the reader to Section 4.3
for a sketch of the proof of Theorem 1.9 following the scheme of Duyckaerts, Kenig,
and Merle [22] (see also the preliminary results in Sections 4.1 for the identification
of the radiation and Section 4.2 for non-concentration of energy in the self-similar
region of the cone, which follow the methods of [12, 42] by Côte, Kenig, the second
author, and Schlag, and by Jia and Kenig).

Remark 1.11 The radiation field for (1.1) can be identified even outside radial sym-
metry; see the work of Duyckaerts, Kenig, and Merle [20]. The radiation field can be
identified in several other contexts and by different means. For example, Tao accom-
plished this in [85] for certain high dimensional NLS.

Step 2: Sequential soliton resolution. A deep insight of Duyckaerts, Kenig, and
Merle, proved in [22] for D = 3, is that once the linear radiation is subtracted from
the solution, the entire remainder should exhibit strong sequential compactness – it
decomposes into a finite sum of asymptotically decoupled elliptic objects, in our case
these are copies of the ground state, along at least one time sequence, up to an error that
vanishes in the energy space. A crucial tool in proving such a compactness statement
is the remarkable theory of profile decompositions for dispersive equations developed
by Bahouri and Gérard [2]. However, after finding the profiles and their space-time
concentration properties (in our case their scales) via the main result in [2], one must
identify them as elliptic objects (solitons) by somemeans, and then prove that the error
vanishes in the energy space, rather than theweaker form of compactness (vanishing of
certain Strichartz norms) given by [2]. This was proved in the breakthrough paper [22]
using linear energy channels (amongst other techniques). Rodriguez [71] extended this
result to all odd dimensions D ≥ 3. It was shown in [12, 13] that the scheme of proof
from [22] could be extended to the subset of even space dimensions D ≡ 0 (mod 4). Jia
and Kenig then proved the sequential soliton resolution result for dimension D = 6
using a different scheme based on virial inequalities rather than energy channels.
We follow the Jia-Kenig approach here to prove a general result, which we call the
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Compactness Lemma 3.1, which we then combine with Theorem 1.9 to give a unified
proof of the sequential resolution in all space dimensions D ≥ 4; for the latter, see
Section 4.3.

Before stating the sequential resolution result, we introduce some notation.

Definition 1.12 (Multi-bubble configuration) Given M ∈ {0, 1, . . .}, /ι = (ι1, . . . , ιM )

∈ {−1, 1}M and an increasing sequence /λ = (λ1, . . . , λM ) ∈ (0,∞)M , amulti-bubble
configuration is defined by the formula

W(/ι, /λ; r) :=
M∑

j=1

ι jWλ j (r).

Remark 1.13 IfM = 0, it should be understood thatW(/ι, /λ; r) = 0 for all r ∈ (0,∞),
where /ι and /λ are 0-element sequences, that is the unique functions ∅ → {−1, 1} and
∅ → (0,∞), respectively.

Theorem 1.14 (Sequential soliton resolution) [22, Theorems 1 and 4], [12, Theorems
1.1 and 1.3] [42, Theorem 1.1] [71, Theorems 1.1 and 1.3] Let u ∈ C(I∗; E) be a
finite energy solution to (1.1) on an interval I∗ as above. Let the radiation u∗ be as
in Theorem 1.9. Then, there exists an integer N ≥ 0, a sequence of times tn → T∗, a
vector of signs /ι ∈ {−1, 1}N , and a sequence of scales /λn ∈ (0,∞)N such that,

lim
n→∞

(
‖u(tn)− u∗(tn)−W(/ι, /λn)‖E +

N∑

j=1

λn, j

λn, j+1

)
= 0,

where above we use the convention λn,N+1 := tn.

Remark 1.15 The Duyckaerts, Kenig, and Merle approach from [22] to sequential
soliton resolution has been successful in other settings. The same authors with Jia
proved the sequential decomposition for the full energy critical NLW (i.e., not assum-
ing radial symmetry) in [16] and for wave maps outside equivariant symmetry for data
with energy slightly above the ground state [17].

Step 3: Collision intervals and no-return analysis. The challenging nature of
bridging the gap between Theorem 1.14, which is the resolution along one sequence
of times, and Theorem 1 is apparent from the following consideration. The sequence
tn → T∗ inTheorem1.14gives no relationship between the lengths of the time intervals
[tn, tn+1] and the concentration scales /λn of the bubbles in the decomposition. One
immediate enemy is then the possibility of elastic collisions. If colliding solitons could
recover their shape after a collision, then one could potentially encounter the following
scenario: the solution approaches amulti-soliton configuration for a sequence of times,
but in between infinitelymany collisions take place, so that there is no soliton resolution
in continuous time.

We describe our approach. Fix u ∈ C(I∗; E), a finite energy solution to (1.1) on the
time interval I∗ as defined above. Let N ≥ 0 and the radiation u∗ be as inTheorem1.14.
We define a multi-bubble proximity function at each t ∈ I∗ by
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d(t) := inf
/ι,/λ

(
‖u(t)− u∗(t)−W(/ι, /λ)‖2E +

N∑

j=1

( λ j

λ j+1

) D−2
2
) 1

2

, (1.6)

where /ι := (ι1, . . . , ιN ) ∈ {−1, 1}N , /λ := (λ1, . . . , λN ) ∈ (0,∞)N , and λN+1 := t .
Note that d(t) is continuous on I∗.

With this notation, we see that Theorem 1.14 gives a monotone sequence of times
tn → T∗ such that,

lim
n→∞d(tn) = 0.

Theorem 1 is a direct consequence of showing that limt→T∗ d(t) = 0. We argue by
contradiction, assuming that lim supt→T∗ d(t) > 0. This means that there is some
sequence of times where u − u∗ approaches an N -bubble and another sequence of
times for which it stays bounded away from N -bubble configurations. It is natural to
rule out this behavior by proving what is called a no-return lemma. In this generality,
our approach is inspired by no-return results for one soliton by Duyckaerts and Merle
[27, 28], Nakanishi and Schlag [62, 63], andKrieger, Nakanishi and Schlag [46, 47]. In
those works a key role is played by exponential instability, where here we have in addi-
tion attractive nonlinear interactions between the solitons. This latter consideration,
and indeed the overall scheme of the proof is based on our previous works [40, 41].
We remark that the argument in [40] marks the first time where modulation analysis
of bubble interactions was used in the context of the soliton resolution problem.

The basic tool we use is the standard virial functional

v(t) :=
〈
∂t u(t) | χρ(t)

(
r∂r u(t)+

D − 2
2

u(t)
)〉
,

where the cut-off χ is placed along a Lipschitz curve r = ρ(t) that will be carefully
chosen (note that a time-dependent cut-off of the virial functional was also used in
[62, 63]). Here the inner product is,

〈φ | ψ〉 :=
∫ ∞

0
φ(r)ψ(r) r D−1dr , for φ,ψ : (0,∞)→ R. (1.7)

Differentiating v(t) in time we have,

v′(t) = −
∫ ∞

0
|∂t u(t, r)|2 χρ(t)(r) r D−1 dr +*ρ(t)(u(t)), (1.8)

where*ρ(t)(u(t)) is the error created by the cut-off. Importantly, this error has struc-
ture, see Lemmas 2.1 and 5.19, and satisfies the estimates,

*ρ(t)(u(t)) ! (1+
∣∣ρ′(t)

∣∣)min{‖u(t)‖E(ρ(t),2ρ(t)),d(t)}.

Roughly, this allows us to think of v(t) as a Lyapunov functional for our problem,
localized to scale ρ(t), with “almost” critical points given by multi-bubblesW(/ι, /λ).
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Indeed, if u(t) is close to a multi-bubble up to scale ρ(t), and
∣∣ρ′(t)

∣∣ ! 1, then∣∣v′(t)
∣∣ ! d(t).

Our first result is a localized compactness lemma. In Section 3 we prove the fol-
lowing: given a sequence of nonlinear waves un(t) ∈ E on time intervals [0, τn] with
bounded energy, and a sequence Rn →∞ such that

lim
n→∞

1
τn

∫ τn

0

∫ Rnτn

0
|∂t un(t, r)|2 r D−1 dr dt = 0,

one can find a new sequence 1 4 rn 4 Rn and a sequence of times sn ∈ [0, τn], so
that up to passing to a subsequence of the un , we have limn→∞ δrnτn (un(sn)) = 0.
Here δR(u) is a local (up to scale R) version of the distance function d.

We give a caricature of the no-return analysis, pointing the reader to the technical
arguments in Sections 5, 6 for the actual arguments. We would like to integrate (1.8)
over intervals [an, bn]with an, bn → T∗ such that d(an),d(bn)4 1 but contain some
subinterval [cn, dn] ⊂ [an, bn] on which d(t) 5 1; such intervals exist under the
contradiction hypothesis. From (1.8) we obtain,

∫ bn

an

∫ ρ(t)

0
|∂t u(t, r)|2 r D−1 dr dt ! ρ(an)d(an)+ ρ(bn)d(bn)

+
∫ bn

an

∣∣*ρ(t)(u(t))
∣∣ dt .

(1.9)

We consider the choice of ρ(t). One can use the sequential compactness lemma so
that choosing ρ(t)/(dn − cn)6 1 we have,

∫ dn

cn

∫ ρ(t)

0
|∂t u(t, r)|2 r D−1 dr dt " dn − cn, (1.10)

and one can expect that the integral of the error
∫ dn
cn

∣∣*ρ(t)(u(t))
∣∣ dt 4 |dn − cn| is

absorbed into the left-hand side by choosing ρ(t) to lie in a region where u(t) has
negligible energy.

To complete the proof one would need to show that the error generated on the inter-
vals [an, cn] and [dn, bn] can also be absorbed into the left-hand side, and moreover
that the boundary terms ρ(an)d(an), ρ(bn)d(bn) 4 dn − cn . For this, we require a
more careful choice of the intervals [an, bn] and placement of the cut-off ρ(t), which
motivates the notion of collision intervals introduced in Section 5.1. These allow us to
distinguish between “interior” bubbles that come into collision, and “exterior” bubbles
that stay coherent throughout the intervals [an, bn], and to ensure we place the cutoff
in the region between the interior and exterior bubbles.

Given K ∈ {1, . . . , N }, we say that an interval [a, b] is a collision interval with
parameters 0 < ε < η and N − K exterior bubbles for some 1 ≤ K ≤ N , if
d(a),d(b) ≤ ε, there exists c ∈ [a, b] with d(c) ≥ η, and a curve r = ρK (t) outside
of which u(t) − u∗(t) is within ε of an (N − K )-bubble in the sense of (1.6) (a
localized version of d(t)); see Defintion 5.4. We write in this case [a, b] ∈ CK (ε, η).
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We now define K to be the smallest non-negative integer for which there exists η > 0,
a sequence εn → 0, and sequences an, bn → T∗, so that [an, bn] ∈ CK (εn, η); see
Section 5.1 for the proof that K is well-defined and ≥ 1, under the contradiction
hypothesis.

We revisit (1.9) on a sequence of collision intervals [an, bn] ∈ CK (εn, η). Near the
endpoints an, bn , u(t)−u∗(t) is close to an N -bubble configuration and we denote the
interior scales, which will come into collision, by /λ = (λ1, . . . , λK ) and the exterior
scales, which stay coherent, by /µ = ( /µK+1, . . . , /µN ). We assume for simplicity in
this discussion that the collision intervals have only a single subinterval [cn, dn] as
above, and that d(t) is sufficiently small on the intervals [an, cn] and [dn, bn] so that the
interior scales are well defined (via modulation theory) there.We call [an, cn], [dn, bn]
modulation intervals and [cn, dn] compactness intervals.

The scale of the K th bubble λK (t) plays an important role and must be carefully
tracked. We will need to also make sense of this scale on the compactness intervals,
where the bubble itself may lose its shape from time to time. We do this by energy-
norm considerations; see Definition 6.1. Crucially, the minimality of K can be used
to ensure that the intervals [cn, dn] as above satisfy dn − cn 5 max{λK (cn), λK (dn)};
see Lemma 6.3. Thus the first terms on the right-hand-side of (1.9) can be absorbed
using (1.10) by ensuring ρ(an) = o(ε−1n )λK (an), ρ(bn) = o(ε−1n )λK (bn) if we can
additionally prove that the scale λK (t) does not change much on the modulation
intervals. Note that our choice of cut-off will satisfy λK (t)4 ρ(t)4 µK+1(t).

We must also absorb the errors (
∫ cn
an

+
∫ bn
dn

)|*ρ(t)(u(t))| dt ! (
∫ cn
an

+
∫ bn
dn

)d(t) dt
on the modulation intervals. Here we perform a refined modulation analysis on the
interior bubbles, which allows us to track the growth of d(t) through a collision of
(possibly) many bubbles. Roughly, up to scale ρ(t), u(t) looks like a K -bubble, and
using the implicit function theoremwe define modulation parameters /ι, /λ(t), and error
g(t) with

u(t, r) = W(/ι, /λ(t); r)+ g(t, r), if r ≤ ρ(t),
〈
.Wλ j (t) | g(t)

〉
= 0, for j = 1, . . . , K ,

where . := r∂r + D−2
2 is the generator of the H -invariant scaling (note that for

D = 4, 5, 6 the decomposition is slightly different due to the slow decay of.W ). The
orthogonality conditions and an expansion of the nonlinear energy of u(t) up to scale
ρ(t) lead to the coercivity estimate,

‖g(t)‖E +
∑

j /∈S

( λ j (t)
λ j+1(t)

) D−2
4 ! max

i∈S

( λi (t)
λi+1(t)

) D−2
4

+ max
1≤i≤K

∣∣a±i (t)
∣∣+ on(1) 5 d(t)+ on(1),

where S = { j ∈ 1, . . . , K − 1 : ι j = ι j+1} captures the non-alternating bubbles
(which experience an attractive interaction force). The terms a±j (t) on the right-hand
side above are, roughly speaking, the projections of g(t) onto the unstable/stable direc-
tions related to the unique, simple negative eigenvalue associated to the linearization
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about W . The on(1) term comes from errors due to the presence of the radiation u∗

in the region r ! ρ(t) 4 t . In fact, since d(t) grows out of the modulation intervals
we can absorb these errors into d(t) by enlarging the parameter εn and requiring the
lower bound d(t) ≥ εn on the modulation intervals.

The growth of d(t) is then captured by the dynamics of adjacent bubbles with
the same sign, or by the dynamics along the unstable/stable directions a±j (t). In the
case when the dynamics is driven by bubble interactions, precise information enters
at the level of λ′′j (t), since (1.1) is second order. However, it is not clear how to
derive useful estimates from the equation for λ′′(t) obtained by twice differentiating
the orthogonality conditions. To cancel terms with critical size, but indeterminate
sign, we introduce a localized virial correction to λ′j 5 −ι j‖.W‖−2L2 λ

−1
j

〈
.Wλ j | ġ

〉
,

defining

β j (t) = −ι j‖.W‖−2L2

〈
.Wλ j (t) | ġ(t)

〉
− ‖.W‖−2L2

〈
A(λ j (t))g(t) | ġ(t)

〉
,

where A(λ) is a truncated (to scale λ) version of . = r∂r + D
2 , the generator of

L2 scaling. Roughly, we show in Sections 5.3 and 6.2, that (λ j (t),β j (t), a±j (t))
satisfy a system of differential inequalities that can be used to control the growth
of d(t) until the solution exits a modulation interval. All the while, the K th scale
λK (t) does not move much, and we obtain bounds of the form

∫ cn
an

d(t)dt ≤
C0

(
d(an)

min
(
1, 4

D−2
)
λK (an) + d(cn)

min
(
1, 4

D−2
)
λK (cn)

)
, and an analogous bound on

the interval [dn, bn] (see the “ejection” Lemma 6.5). Thus the errors can be absorbed
into the left-hand side of (1.9) and we obtain a contradiction. In dimensions D ≥ 5,
this proof follows closely the scheme from [41] together with an elegant “weighted
sum" trick from [26, Section 6], which simplifies some of the ODE analysis from [41];
see Section 6.2. The analysis in dimension D = 4 is more complicated, due to the
fact that the modulation inequalities for the j th scale are only valid on subintervals
where the ratio (λ j (t)/λ j+1(t))

D−2
4 is comparable to d(t), and thus a weighted sum

trick involving the dynamics of all the bubbles at once does not seem to apply. For this
special case we introduce an induction scheme together with the notion of an “ignition
condition”, (see Definition B.4) which identifies the most relevant controllable index
j on a given subinterval of the modulation interval; see Appendix B.
While other aspects of the proof adapt readily to dimension D = 3, this refined

analysis of the modulation parameters introduces significant complications due to the
slow decay of .W .

A similar, but simpler refined modulation analysis was performed in [40]. The use
of refinements to modulation parameters to obtain dynamical control of interacting
bubbles for an energy-critical equation was introduced by the first author in the context
of a two-bubble construction for NLS in [36]. The notion of localized virial corrections
to modulation parameters was first introduced by Raphaël and Szeftel in [68] in a
different context.
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1.4 Notational Conventions

The nonlinear energy is denoted E , E is the energy space.
Given a function φ(r) and λ > 0, we denote by φλ(r) = λ−

D−2
2 φ(r/λ), the H -

invariant re-scaling, and by φλ(r) = λ−
D
2 φ(r/λ) the L2-invariant re-scaling. We

denote by . := r∂r + D−2
2 and . := r∂r + D

2 the infinitesimal generators of these
scalings. We denote 〈· | ·〉 the radial L2(RD) inner product given by (1.7).

We denote by f (u) := |u| 4
D−2 u the nonlinearity in (1.1). We let χ be a smooth

cut-off function, supported in r ≤ 2 and equal 1 for r ≤ 1.
The general rules we follow giving names to various objects are:

• index of an infinite sequence: n
• sequences of small numbers: γ , δ, ε, ζ, η, θ
• scales of bubbles and quantities describing the spatial scales: λ, µ, ν, ξ, ρ; in
general we call λ the scale of the interior bubbles and µ the exterior ones (once
these notions are defined)

• moment in time: t, s, τ, a, b, c, d, e, f
• indices in summations: i, j, 6
• time intervals: I , J
• number of bubbles: K ,M, N
• signs are denoted ι and σ

• boldface is used for pairs of elements related to theHamiltonian structure; an arrow
is used for vectors (finite sequences) in other contexts.

We call a “constant” a numberwhich depends only on the dimension D and the number
of bubbles N . Constants are denoted C,C0,C1, c, c0, c1. We write A ! B if A ≤ CB
and A " B if A ≥ cB. We write A 4 B if limn→∞ A/B = 0.

For any sets X , Y , Z we identify Z X×Y with (ZY )X , which means that if φ :
X ×Y → Z is a function, then for any x ∈ X we can view φ(x) as a function Y → Z
given by (φ(x))(y) := φ(x, y).

2 Preliminaries

2.1 Virial Identities

We have the following virial identities.

Lemma 2.1 (Virial identities) Let u ∈ C(I ; E) be a solution to (1.1) on an open time
interval I and ρ : I → (0,∞) a Lipschitz function. Then for almost all t ∈ I ,

d
dt

〈
∂t u(t) | χρ(t) r∂r u(t)

〉
= −D

2

∫ ∞

0
(∂t u(t, r))2χρ(t)(r) r D−1 dr

+D − 2
2

∫ ∞

0

[
(∂r u(t, r))2 − |u(t, r)| 2D

D−2
]

×χρ(t)(r) r D−1 dr +*1,ρ(t)(u(t)), (2.1)
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and,

d
dt

〈
∂t u(t) | χρ(t) u(t)

〉
=
∫ ∞

0
(∂t u(t, r))2χρ(t)(r) r D−1 dr

−
∫ ∞

0

[
(∂r u(t, r))2 − |u(t, r)| 2D

D−2
]
χρ(t)(r) r D−1 dr

+*2,ρ(t)(u(t))
(2.2)

where

*1,ρ(t)(u(t)) := −
ρ′(t)
ρ(t)

∫ ∞

0
∂t u(t, r)r∂r u(t, r)(r∂rχ)(r/ρ(t)) r D−1 dr

− 1
2

∫ ∞

0

(
(∂t u(t, r))2 + (∂r u(t, r))2 −

D − 2
D

|u(t, r)| 2D
D−2

)

× (r∂rχ)(r/ρ(t))r D−1 dr ,

*2,ρ(t)(u(t)) := −
ρ′(t)
ρ(t)

∫ ∞

0
∂t u(t, r)u(t, r)(r∂rχ)(r/ρ(t)) r D−1 dr

−
∫ ∞

0
∂r u(t, r)

u(t, r)
r

(r∂rχ)(r/ρ(t)) r D−1 dr .

(2.3)

Proof The proof is a direct computation along with an approximation argument for
fixed t ∈ I , assuming ρ is differentiable at t . 89
Remark 2.2 In practice we will make use of the following two linear combinations of
the identities (2.1) and (2.2).

d
dt

〈
∂t u(t) | χρ(t)

(
r∂r u(t)+

D − 2
2

u(t)
)〉

= −
∫ ∞

0
(∂t u(t, r))2χρ(t)(r) r D−1 dr

+*1,ρ(t)(u(t))+
D − 2
2

*2,ρ(t)(u(t))

(2.4)

and,

d
dt

〈
∂t u(t) | χρ(t)

(
r∂r u(t)+

D
2
u(t)

)〉
= −

∫ ∞

0

[
(∂r u(t, r))2 − |u(t, r)| 2D

D−2
]

χρ(t)(r) r D−1 dr

+*1,ρ(t)(u(t))+
D
2
*2,ρ(t)(u(t)).

Note that the multiplier (r∂r + D−2
2 )u in the first identity (2.4) corresponds to the

generator of Ḣ1-invariant dilations.
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2.2 Local Cauchy Theory

In the remainder of this section, we follow the presentation in [71, Section 2 and
Appendix A].

Given that we are restricting our attention to radially symmetric functions v :
RD → R, we often abuse notation, writing v(x) = v(r) with r = |x |, and denoting,
for p ≥ 1,

‖v‖L p(RD) =
(∫ ∞

0
|v(r)|p r D−1 dr

) 1
p

which agrees with the usual definition of the L p norm for functions on RD up to the
dimensional constant cD > 0. For 0 < s < 1 and 1 < p < ∞, Ḃs

p,2 = Ḃs
p,2(RD)

denotes the homogeneous Besov space with norm

‖u‖Ḃs
p,2

:=
(∑

j∈Z
22 js‖Pju‖2L p

) 1
2

,

where Pj are the Littlewood-Paley projections. We recall that if s < D/p, then Ḃs
p,2

is a Banach space, see [1, Theorem 2.25].
For any time interval I ⊂ R, we introduce the Strichartz-type spaces and norms

S(I ) := L
2(D+1)
D−2 (I × RD),

W (I ) := L
2(D+1)
D−1

(
I ; Ḃ

1
2
2(D+1)
D−1 ,2

(RD)
)
.

We denote /Sl(t) = (Sl(t), Ṡl(t)) the free wave propagator, in other words for all
v0 = (v0, v̇0) we have

/Sl(t)v0 =
(
cos(t |∇|)v0 +

sin(t |∇|)
|∇| v̇0,−|∇| sin(t |∇|)v0 + cos(t |∇|)v̇0

)
.

We say that u is a solution of (1.1) on a time interval I : 0 with initial data u0 ∈ E if

• u ∈ C0(I ; E),
• ‖u‖S(J ) + ‖u‖W (J ) <∞ for all compact intervals J ⊂ I ,
• u satisfies the Duhamel formula

u(t) = Sl(t)u0 +
∫ t

0
Sl(t − s)(0, f (u(s)))ds.

Local well-posedness was obtained by Ginibre and Velo [32], who used a slightly
different but equivalent notion of solution; see also [34, 65, 84]. We use the versions in
[7, 45]. Key to the proof are Strichartz estimates for the wave equation; see, Lindblad,
Sogge [52], and Ginibre, Velo [33].
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Lemma 2.3 (Cauchy theory in E) [45, Theorem 2.7] [7, Theorem 3.3] There exists
δ0 > 0 and functions ε,C : [0,∞) → (0,∞) with ε(δ) → 0 as δ → 0, with the
following properties. Let A > 0 and u0 = (u0, u1) ∈ E with ‖u0‖E ≤ A. Let I : 0
be an open interval such that

‖Sl(t)u0‖S(I ) = δ ≤ δ0.

Then there exists a unique solution u(t) to (1.1) in the spaceC(I ; E)∩S(I )∩W (I )with
initial data u(0) = u0. The solution u(t) satisfies the bounds ‖u‖S(I ) ≤ C(A)ε(δ),
and ‖u‖L∞t (I ;E) ≤ C(A). To each solution u(t) to (1.1) we can associate a maximal
interval of existence 0 ∈ Imax(u) = (−T−, T+) such that for each compact subinterval
I ′ ⊂ Imax we have ‖u‖S(I ′) < ∞ and, if, say T+ < ∞, then limT→T+ ‖u‖S([0,T )) =
∞.

The data to solution map is continuous in the following sense. Let u0 ∈ E and
let u be the unique solution to (1.1) with initial data u0. Then for every ε > 0 and
T0 < T+(u0) there exists δ > 0 with the following property: for all v0 ∈ E with
‖u0− v0‖E < δ we have T0 < T+(v0) and supt∈[0,T0] ‖u(t)− v(t)‖E < ε, where v(t)
is the unique solution to (1.1) associated to v0.

The completeness of wave operators holds for small data: there exists ε0 small
enough so that if u0 ∈ E satisfies ‖u0‖E < ε0, the solution u(t) given above is defined
globally in time, satisfies the bound,

sup
t∈R
‖u(t)‖E + ‖u‖S(R) + ‖u‖W (R) ! ‖u0‖E, (2.5)

and scatters in the following sense: there exist free waves u±l (t) ∈ E such that

‖u(t)− u±l (t)‖E→ 0 as t → ±∞. (2.6)

Conversely, the existence of wave operators holds, i.e., for any solution vl ∈ C(R; E)
to the free linear equation, there exists T0 > 0 and a unique, global-in-forward time
solution u ∈ C([T0,∞); E) to (1.1) such that (2.6) holds as t → ∞. An analogous
statement holds for negative times.

Remark 2.4 For dimensions D ≥ 6 the continuous dependence on the initial data is
not stated explicitly as part of [7, Theorem 3.3], but it does follow from their proof;
see for example [7, Remark 4.3].

The following lemma is a consequence of the local Cauchy theory.

Lemma 2.5 (Propagation of small E norm) There exist δ,C > 0 with the following
properties. Let I : 0 be a time interval and let v ∈ C(I ; E) be the solution to (1.1) on
I with initial data v(0) = v0. If,

‖v0‖E ≤ δ,
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then 0 ≤ E(v0) ≤ Cδ2 and

sup
t∈I
‖v(t)‖2E ≤ CE(v) ≤ Cδ2.

Proof Abusing notation and identifying v0 ∈ E with v0 ∈ Ḣ1 × L2(RD) we can
express the nonlinear energy of v0 as

E(v0) =
1
2
‖v̇0‖2L2(RD)

+ 1
2
‖∇v0‖2L2(RD)

− D − 2
2D

‖v0‖
2D
D−2

L
2D
D−2 (RD)

.

It is clear that E(v) = E(v0) ≤ C‖v0‖2E ≤ Cδ2. Since 2D
D−2 > 2, by the

Sobolev inequality, ‖v‖
L

2D
D−2 (RD)

≤ C1‖∇v‖L2(RD) together with Hardy’s inequal-

ity, ‖ |x |−1 v‖L2(RD) ≤ C2‖∇v‖2L2(RD)
, which hold for all v ∈ Ḣ1(RD), we see that

by taking δ > 0 small enough we can find C > 0 so that

E(v) = E(v0) ≥ C−1‖v0‖2E .

The remaining conclusion now follows from (2.5) restricted to the time interval I . 89

Using the finite speed of propagation and the previous lemma, one obtains the
following localized version.

Lemma 2.6 (Propagation of small localized E norm) There exist δ,C > 0 with the
following properties. Let I : 0 be a time interval and let u ∈ C(I ; E) be a solution
to (1.1) on I with initial data u(0) = u0. Let 0 < r1 < r2. Suppose that

‖u0‖E( r14 ,4r2) ≤ δ.

Then,

‖u(t)‖E(r1+|t |,r2−|t |) ≤ Cδ,

for all t ∈ I such that r1 + 2 |t | < r2.

Proof Let ϕ(r) be a smooth cut-off function such that ϕ(r) = 1 if r ∈ [ 12r1, 2r2],
ϕ(r) = 0 if r ∈ (0, 1

4r1] ∪ [4r2,∞) and such that |∂rϕ(r)| ≤ 4r−11 for r ∈ [ 14r1, 1
2r1]

and |∂rϕ(r)| ≤ 4r−12 for r ∈ [2r2, 4r2]. Setting v0 := ϕu0 it follows from the
definition of the local E-norm in (1.5) that ‖v0‖E ≤ C‖u0‖E( r14 ,4r2) for some constant
C > 0 independent of u0, r1, r2. Taking δ > 0 sufficiently small we may apply
Lemma 2.5 to the solution v(t) with initial data v(0) = v0 The conclusion then
follows by finite speed of propagation, which ensures that u(t, r) = v(t, r) for all
(t, r) ∈ I × (0,∞) with r ∈ (r1 + |t | , r2 − |t |) and r1 + 2 |t | < r2. 89

Lemma 2.7 (Short time evolution close to W ) Let ι ∈ {−1, 1}. There exists δ0 > 0
and a function ε0 : [0, δ0] → [0,∞) with ε0(δ) → 0 as δ → 0 with the following
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properties. Let v0 ∈ E and let v(t) denote the unique solution to (1.1)with v0(0) = v0.
Let µ0 > 0 and suppose that

‖v0 − ιWµ0‖E = δ ≤ δ0.

Then, µ0 < T+(v0) and

sup
t∈[0,µ0]

‖v(t)− ιWµ0‖E < ε0(δ).

Proof By rescaling we may assume µ0 = 1. The result is then a particular case of the
local Cauchy theory, in particular the continuity of the data to solution map at W . 89

We also require the following localized version.

Lemma 2.8 (Localized short time evolution close to W ) Let ι ∈ {−1, 1}. There exists
δ0 > 0 and a function ε0 : [0, δ0] → [0,∞) with ε0(δ) → 0 as δ → 0 with the
following properties. Let u0 ∈ E, and let u(t) denote the unique solution to (1.1) with
u0(0) = u0. Let µ0 > 0, 0 < r1 < r2 <∞ and suppose that

‖u0 − ιWµ0‖E( 14 r1,4r2) = δ ≤ δ0.

Then,

‖u(t)− ιWµ0‖E(r1+t,r2−t) < ε0(δ)

for all 0 < t < min(µ0, T+(u0)) such that r1 + 2t < r2.

Proof Let ϕ(r) be as in the proof of Lemma 2.6 and define v0 := ϕu0+ (1−ϕ)ιWµ0 .
By taking δ0 sufficiently small we see that v0, µ0 satisfy the hypothesis of Lemma 2.7.
The conclusion then follows from the finite speed of propagation. 89

We will make use of the following consequence of the previous four lemmas.

Lemma 2.9 If ιn ∈ {−1, 0, 1}, 0 < rn 4 µn 4 Rn, 0 < tn 4 µn and un is a
sequence of solutions of (1.1) such that un(t) is defined for t ∈ [0, tn] and

lim
n→∞‖un(0)− ιnWµn‖E( 14 rn ,4Rn)

= 0,

then

lim
n→∞ sup

t∈[0,tn ]
‖un(t)− ιnWµn‖E(rn+t,Rn−t) = 0.

Proof This is a direct consequence of Lemma 2.6 when ιn = 0 and Lemma 2.8 when
ιn ∈ {−1, 1}. 89
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2.3 Profile Decomposition

The linear profile decomposition of Bahouri and Gérard [2] is an essential ingredient
in the study of solutions to (1.1); see also [6, 31, 53, 54, 58].

Lemma 2.10 (Linear profile decomposition) [2] Let un be a bounded sequence in
E, i.e., lim supn→∞ ‖un‖E < ∞. Then, after passing to a subsequence, there exist
sequences λn, j ∈ (0,∞), and tn, j ∈ R and finite energy free waves v j

l ∈ E such that
for each J ≥ 1,

un =
J∑

j=1

(
λ
− D−2

2
n, j v

j
l

(−tn, j
λn, j

,
·

λn, j

)
, λ
− D

2
n, j ∂tv

j
l

(−tn, j
λn, j

,
·

λn, j

))
+ w J

n,0(·)

where, denoting by w J
n,l(t) the free wave with initial data wJ

n,0, the following hold:

• for each j , either tn, j = 0 for all n or limn→∞
−tn, j
λn, j

= ±∞. One of λn, j → 0,
λn, j = 1 for all n, or λn, j →∞ as n→∞, holds;

• the scales λn, j and times tn, j satisfy,

λn, j

λn, j ′
+ λn, j ′

λn, j
+

∣∣tn, j − tn, j ′
∣∣

λn, j
→∞ as n→∞;

for each j <= j ′;
• the error term wJ

n,l satisfies,

(λ
D−2
2

n, j w J
n,l(tn, j , λn, j ·), λ

D
2
n, j∂tw

J
n,l(tn, j , λn, j ·))⇀0 in E as n→∞

for each J ≥ 1, each 1 ≤ j ≤ J , and vanishes strongly in the sense that

lim
J→∞

lim sup
n→∞

(
‖w J

n,l‖L∞t L
2D
D−2 (R×RD)

+ ‖w J
n,l‖S(R)

)
= 0;

• the followingPythagorean decomposition of the free energy holds: for each J ≥ 1,

‖un‖2Ḣ1×L2 =
J∑

j=1

‖(v j
l (−tn, j/λn, j ), ∂tv

j
l (−tn, j/λn, j ))‖

2
Ḣ1×L2

+ ‖w J
n,0‖2Ḣ1×L2 + on(1)

(2.7)

as n→∞.

Remark 2.11 We call the triplets (vil, λn, j , tn, j ) profiles. Following Bahouri and

Gérard [2] we refer to the profiles (v
j
l, λn, j , 0) as centered, to the profiles

(v
j
l, λn, j , tn, j ) with −tn, j/λn, j → ∞ as n → ∞ as outgoing, and those with
−tn, j/λn, j →−∞ as incoming.
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Remark 2.12 In Section 3 we implicitly make use of nonlinear profile decompositions,
in addition to Lemma 2.10, when we invoke arguments from [19]. We refer the reader
to [19, Proposition 2.1] for the statement.

2.4 Multi-bubble Configurations

In this section we study properties of finite energy functions near a multi-bubble
configuration, and we record several properties of the ground state W .

TheoperatorLW obtainedby linearizationof (1.1) about anM-bubble configuration
W(/ι, /λ) is given by,

LW g := D2 Ep(W(/ι, /λ))g = −∂2r g −
D − 1
r

∂r g − f ′(W(/ι, /λ))g,

where f (z) := |u| 4
D−2 u and f ′(z) = D+2

D−2 |z|
4

D−2 , and Ep is the potential energy,

Ep(u) =
∫ ∞

0

1
2
(∂r u)2r D−1 dr −

∫ ∞

0

D − 2
2D

|u| 2D
D−2 r D−1 dr .

Given g = (g, ġ) ∈ E,

〈
D2 E(W(/ι, /λ))g | g

〉
=
∫ ∞

0

(
ġ(r)2 + (∂r g(r))2 − f ′(W(/ι, /λ))g(r)2

)
rdr .

An important instance of the operator LW is given by linearizing (1.1) about a single
copy of the ground stateW(/ι, /λ) = Wλ. In this case we use the short-hand notation,

Lλ := −∂2r −
D − 1
r

∂r − f ′(Wλ).

We write L := L1.
We define the infinitesimal generators of Ḣ1-invariant dilations by . and in the

L2-invariant case we write ., which are given by

. := r∂r +
D − 2
2

, . := r∂r +
D
2
.

We have

.W (r) =
(D − 2

D
− r2

2D

)(
1+ r2

D(D − 2)

)− D
2
.

Note that both W and .W satisfy,

|W (r)| , |.W (r)| 5 1 if r ≤ 1, and |W (r)| , |.W (r)| 5 r−D+2 as r →∞.
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In fact,

W (r) = 1+ O(r2) if r 4 1

= (D(D − 2))
D−2
2 r−D+2 + O(r−D) if r 6 1

and,

.W (r) = D − 2
2

+ O(r2) if r 4 1

= − (D(D − 2))
D
2

2D
r−D+2 + O(r−D) if r 6 1.

When D = 4 we will use the extra decay in

..W (r) = (r∂r + 2).W (r) = 1
4

3r2 − 8

(1+ 1
8r

2)3
5 r−4 as r →∞ if D = 4.

(2.8)

We note that if D ≥ 5 then
〈
..W | .W

〉
= 0. If D = 4 then

〈
..W | .W

〉
= 32.

We will use the following computations,

D + 2
D − 2

∫ ∞

0
.W (r)W (r)

4
D−2 r D−1 dr = −D − 2

2D
(D(D − 2))

D
2

D + 2
D − 2

(D(D − 2))
D−2
2

∫ ∞

0
.W (r)W (r)

4
D−2 r dr = D − 2

2D
(D(D − 2))

D
2

‖.W‖2L2 =
2(D2 − 4)(D(D − 2))

D
2

D2(D − 4)

:(1+ D
2 )

:(D)
if D ≥ 5.

If D = 4,

∫ R

0
(.W (r))2r3 dr = 16 log R + O(1) as R→∞. (2.9)

If σ 4 1 we have,

|
〈
.Wσ | .W

〉
| ! σ

D−4
2 if D ≥ 5.

For any R > 0,

∣∣〈χR
√
σ.Wσ | .W

〉∣∣ ! R2σ
D−2
2 if D ≥ 4.

Next we discuss the spectral properties of L. Importantly,

L(.W ) = d
dλ

#λ=1 (−∂2r Wλ −
D − 1
r

∂rWλ − f (Wλ)) = 0
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and thus if D ≥ 5, .W ∈ L2 is a zero energy eigenfunction for L and a threshold
resonance if D = 4. In fact, { f ∈ H | L f = 0} = span{.W } (see [27, Proposition
5.5]). In addition to this fact, it was also shown in [27, Proposition 5.5] that L has a
unique negative simple eigenvalue that we denote by −κ2 < 0 (we take κ > 0). We
denote by Y the associated positive eigenfunction such that ‖Y‖L2 = 1. By elliptic
regularity Y is smooth, and by Agmon estimates it decays exponentially. Using that
L is symmetric we deduce that 〈Y | .W 〉 = 0.

We follow the notations and set-up in [37, Section 3]. Define

Y− := (
1
κ
Y,−Y), Y+ := (

1
κ
Y,Y)

and,

α− = κ

2
JY+ = 1

2
(κY,−Y), α+ := −κ

2
JY− = 1

2
(κY,Y).

Recalling that J ◦ D2 E(W) =
(

0 Id
−L 0

)
we see that

J ◦ D2 E(W)Y− = −κY−, and J ◦ D2 E(W)Y+ = κY+

and for all h ∈ E,
〈
α− | J ◦ D2 E(W)h

〉
= −κ

〈
α− | h

〉
,

〈
α+ | J ◦ D2 E(W)h

〉
= κ

〈
α+ | h

〉
.

We view α± as linear forms on E and we note that
〈
α− | Y−

〉
=

〈
α+ | Y+〉 = 1 and〈

α− | Y+〉 =
〈
α+ | Y−

〉
= 0. For λ > 0 the rescaled versions of these objects are

defined as,

Y−λ := (
1
κ
Yλ,−Yλ), Y+

λ := (
1
κ
Yλ,Yλ)

and,

α−λ := κ

2λ
JY+

λ = 1
2
(
κ

λ
Yλ,−Yλ), α+

λ := − κ

2λ
JY− = 1

2
(
κ

λ
Yλ,Yλ). (2.10)

These choices of scalings ensure that
〈
α−λ | Y−λ

〉
=
〈
α+
λ | Y+

λ

〉
= 1. We have,

J ◦ D2 E(Wλ)Y−λ = −κ

λ
Y−λ , and J ◦ D2 E(Wλ)Y+

λ = κ

λ
Y+

λ

and for all h ∈ E,
〈
α−λ | J ◦ D2 E(Wλ)h

〉
= −κ

λ

〈
α−λ | h

〉
,

〈
α+
λ | J ◦ D2 E(Wλ)h

〉
= κ

λ

〈
α+
λ | h

〉
.

(2.11)
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We define a smooth non-negative function Z ∈ C∞(0,∞)∩ L1((0,∞), r D−1 dr)
as follows. First if D ≥ 7 we simply define

Z(r) := .W (r) if D ≥ 7

and note that

〈Z | .W 〉 > 0 and 〈Z | Y〉 = 0. (2.12)

In fact the precise form of Z is not so important, rather only the properties in (2.12)
and that it has sufficient decay and regularity. As .W /∈ Ḣ−1 for D ≤ 6 we cannot
take Z = .W . Rather if 4 ≤ D ≤ 6 we fix any Z ∈ C∞0 (0,∞) so that

〈Z | .W 〉 > 0 and 〈Z | Y〉 = 0.

We record the following localized coercivity lemma from [37].

Lemma 2.13 (Localized coercivity for L) [37, Lemma 3.8] Fix D ≥ 4. There exist
uniform constants c < 1/2,C > 0 with the following properties. Let g ∈ H. Then,

〈Lg | g〉 ≥ c‖g‖2H − C 〈Z | g〉2 − C 〈Y | g〉2 .

If R > 0 is large enough then,

(1− 2c)
∫ R

0
(∂r g(r))2 r D−1dr + c

∫ ∞

R
(∂r g(r))2 r D−1dr

−
∫ ∞

0
f ′(W (r))g(r)2 r D−1 dr

≥ −C 〈Z | g〉2 − C 〈Y | g〉2 .

If ρ > 0 is small enough, then

(1− 2c)
∫ ∞

ρ
(∂r g(r))2 r D−1dr + c

∫ ρ

0
(∂r g(r))2 r D−1dr

−
∫ ∞

0
f ′(W (r))g(r)2 r D−1 dr

≥ −C 〈Z | g〉2 − C 〈Y | g〉2 .

As a consequence, (see for example [37, Proof of Lemma 3.9] for an analogous
argument in the case of two bubbles) we have the following coercivity property of
LW.

Lemma 2.14 Fix D ≥ 4, M ∈ N. There exist η, c0 > 0 with the following properties.
Consider the subset of M-bubble configurations W(/ι, /λ) for /ι ∈ {−1, 1}M, /λ ∈
(0,∞)M such that,
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M−1∑

j=1

( λ j

λ j+1

) D−2
2 ≤ η2. (2.13)

Let g ∈ E be such that

0 =
〈
Zλ j | g

〉
for j = 1, . . .M

for /λ as in (2.13). Then,

1
2

〈
D2 E(W(/ι, /λ))g | g

〉
+ 2

M∑

j=1

(〈
α−λ j

| g
〉2 +

〈
α+
λ j

| g
〉2) ≥ c0‖g‖2E. (2.14)

Lemma 2.15 Fix D ≥ 4,M ∈ N. For any θ > 0, there exists η > 0 with the following
property. Consider the subset of M-bubble configurationsW(ι, /λ) such that

M−1∑

j=1

( λ j

λ j+1

) D−2
2 ≤ η.

Then,

∣∣∣E(W(/ι, /λ))− ME(W)+ (D(D − 2))
D
2

D

M−1∑

j=1

ι j ι j+1

( λ j

λ j+1

) D−2
2
∣∣∣

≤ θ

M−1∑

j=1

( λ j

λ j+1

) D−2
2
.

Moreover, there exists a uniform constant C > 0 such that for any g = (g, 0) ∈ E,

∣∣∣
〈
DEp(W(/ι, /λ)) | g

〉∣∣∣ ≤ C‖(g, 0)‖E
M−1∑

j=1

( λ j

λ j+1

) D−2
2
.

Proof This is an explicit computation analogous to [41, Lemma 2.22]. 89
The following modulation lemma plays an important role in our analysis. Before

stating it, we define a proximity function to M-bubble configurations.

Definition 2.16 Fix M as in Definition 1.12 and let v ∈ E. Define,

d(v) := inf
/ι,/λ

(
‖v −W(/ι, /λ)‖2E +

M−1∑

j=1

( λ j

λ j+1

) D−2
2
) 1

2
,

where the infimum is taken over all vectors /λ = (λ1, . . . , λM ) ∈ (0,∞)M and all
/ι = {ι1, . . . , ιM } ∈ {−1, 1}M .
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Lemma 2.17 (Staticmodulation lemma) Let D ≥ 4 and M ∈ N. There exists η,C > 0
with the following properties. Let θ > 0, and let v ∈ E be such that

d(v) ≤ η, and E(v) ≤ ME(W)+ θ2.

Then, there exists a unique choice of /λ = (λ1, . . . , λM ) ∈ (0,∞)M, /ι ∈ {−1, 1}M,
and g ∈ H, such that setting g = (g, v̇), we have

v = W(/ι, /λ)+ g, 0 =
〈
Zλ j | g

〉
, ∀ j = 1, . . . ,M,

along with the estimates,

d(v)2 ≤ ‖g‖2E +
M−1∑

j=1

( λ j

λ j+1

) D−2
2 ≤ Cd(v)2. (2.15)

Defining the unstable/stable components of g by,

a±j :=
〈
α±
λ j

| g
〉

we additionally have the estimates,

‖g‖2E +
∑

j /∈S

( λ j

λ j+1

) D−2
2 ≤ C max

j∈S

( λ j

λ j+1

) D−2
2 + C max

i∈{1,...,M},±
|a±i |2 + θ2,

(2.16)

where S := { j ∈ {1, . . . ,M − 1} : ι j = ι j+1}.

Remark 2.18 Note that the scaling in the definition of α±
λ j

is chosen so that |a±j | !
‖g‖E, see (2.10).

Remark 2.19 We use the following, less standard, version of the implicit function
theorem in the proof of Lemma 2.17.

Let X ,Y , Z be Banach spaces, (x0, y0) ∈ X×Y , and δ1, δ2 > 0.Consider a map-
ping G : B(x0, δ1)× B(y0, δ2)→ Z , continuous in x and C1 in y. Assume G(x0, y0)
= 0, (DyG)(x0, y0) =: L0 has bounded inverse L−10 , and

‖L0 − DyG(x, y)‖L(Y ,Z) ≤
1

3‖L−10 ‖L(Z ,Y )
‖G(x, y0)‖Z ≤

δ2

3‖L−10 ‖L(Z ,Y )
,

(2.17)

for all ‖x−x0‖X ≤ δ1 and ‖y−y0‖Y ≤ δ2.Then, there exists a continuous function ς :
B(x0, δ1)→ B(y0, δ2) such that for all x ∈ B(x0, δ1), y = ς(x) is the unique solution
of G(x, ς(x)) = 0 in B(y0, δ2).
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This is proved in the same way as the usual implicit function theorem, see, e.g., [8,
Section 2.2]. The essential point is that the bounds (2.17) give uniform control on the
size of the open set where the Banach contraction mapping theorem is applied.

Proof of Lemma 2.17 The proof is a standard argument and is very similar to [40, Proof
of Lemma 3.1] and [41, Proof of Lemma 2.24]. We refer to those papers for details
and here only sketch the distinction in the estimate (2.16) where the stable/unstable
directions enter.

To prove the estimate (2.16) we expand the nonlinear energy of v,

ME(W)+ θ2 ≥ E(v) = E(W(/ι, /λ)+ g)

= E(W(/ι, /λ))+
〈
D E(W(/ι, /λ)) | g

〉
+ 1

2

〈
D2 E(W(/ι, /λ))g | g

〉
+ O(‖g‖3E)

and apply the conclusions of Lemma 2.14, in particular the estimate (2.14) and
Lemma 2.15. 89

Lemma 2.20 Let D ≥ 4. There exists η > 0 sufficiently small with the following
property. Let M, L ∈ N, /ι ∈ {−1, 1}M , /σ ∈ {−1, 1}L , /λ ∈ (0,∞)M , /µ ∈ (0,∞)L ,
and w = (w, 0) be such that ‖w‖E <∞ and,

‖w −W(/ι, /λ)‖2E +
M−1∑

j=1

( λ j

λ j+1

) D−2
2 ≤ η,

‖w −W(/σ , /µ)‖2E +
L−1∑

j=1

( µ j

µ j+1

) D−2
2 ≤ η.

Then, M = L, /ι = /σ . Moreover, for every θ > 0 the number η > 0 above can be
chosen small enough so that

max
j=1,...M

| λ j

µ j
− 1| ≤ θ . (2.18)

Proof of Lemma 2.20 Let gλ := w−W(/ι, /λ) and gµ := w−W(/σ , /µ). By expanding
the nonlinear potential energy we have,

Ep(w) = Ep(W(/ι, /λ))+
〈
DEp(W(/ι, /λ)) | gλ

〉
+ O(‖(gλ, 0)‖2E).

Choosing η > 0 small enough so that Lemma 2.15 applies, we see that

ME(W)− Cη ≤ Ep(w) ≤ ME(W)+ Cη,

for some C > 0. By an identical argument,

LE(W)− Cη ≤ Ep(w) ≤ LE(W)+ Cη.
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It follows that M = L . Next, we prove that η > 0 can be chosen small enough to
ensure that /ι = /σ . Suppose not, then we can find a sequence wn = (wn, 0) with
‖wn‖E ≤ C , and sequences /ιn, /σn, /λn, /µn so that,

‖wn −W(/ιn, /λn)‖2E +
M−1∑

j=1

( λn, j

λn, j+1

) D−2
2 = on(1) as n→∞,

‖wn −W(/σn, /µn)‖2E +
M−1∑

j=1

( µn, j

µn, j+1

) D−2
2 = on(1) as n→∞,

but with /ιn <= /σn for every n. Passing to a subsequence we may assume that there
exists an index j0 ∈ {1, . . . ,M} such that ι j,n = σ j,n for every j > j0 and every n
and ι j0,n <= σ j0,n for every n. We first observe that,

‖W(/ιn, /λn)−W(/σn, /µn)‖E ≤ ‖wn −W(/ιn, /λn)‖E + ‖wn −W(/σn, /µn)‖E = on(1).

(2.19)

We first show that j0 < M . Assume for contradiction that j0 = M . Then, we may
assume that ιn,M = 1, σn,M = −1 and λn,M > µn,M for all n. It follows that there
exists a constant c > 0 for which

∣∣∣W(/ιn, /λn)−W(/σn, /µn)
∣∣∣ ≥ c

λ
D−2
2

n,M

∀r ∈ [λn,M , 2λn,M ],

for all n large enough. But then,

‖W(/ιn, /λn)−W(/σn, /µn)‖2E ≥
∫ 2λn,M

λn,M

c2

λD−2
n,M

r D−2
dr
r
≥ c2

D − 2
(2D−2 − 1),

for all sufficiently large n, which contradicts (2.19). So ι1,n = σn,1 for all n. Thus
j0 < M . By a nearly identical argument we can show that we must have |λn, j/µn, j −
1| = on(1) for all j > j0. Next, again wemay assume (after passing to a subsequence)
that λn, j0 > µn, j0 . It follows again that for all sufficiently large n we have,

∣∣∣W(/ιn, /λn)−W(/σn, /µn)
∣∣∣ ≥ c

λ
D−2
2

n, j0

∀r ∈ [λn, j0 , 2λn, j0 ],

which again yields a contradiction. Hence we must have /ι = /σ .
Finally, we prove (2.18). Suppose (2.18) fails. Then there exists θ0 > 0 and

sequences /λn, /µn such that

‖W(/ιn, /λn)−W(/ιn, /µn)‖H = on(1),
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but

sup
j=1,...,M

|λn, j/µn, j − 1| ≥ θ0,

for all n. We arrive at a contradiction following the same logic as before. 89

We require the following lemma, which gives the nonlinear interaction force
between bubbles. Given an M-bubble configuration, W(/ι, /λ), we set

fi(/ι, /λ) := f (W(/ι, /λ))−
M∑

j=1

ι j f (Wλ j ). (2.20)

Lemma 2.21 Let D ≥ 4, M ∈ N. For any θ > 0 there exists η > 0 with the following
property. LetW(/ι, /λ) be an M-bubble configuration with

M∑

j=0

( λ j

λ j+1

) D−2
2 ≤ η,

under the convention that λ0 = 0, λM+1 =∞. Then, we have,

∣∣∣
〈
.Wλ j | fi(/ι, /λ)

〉
− ι j−1

D − 2
2D

(D(D − 2))
D
2

(λ j−1
λ j

) D−2
2

+ι j+1
D − 2
2D

(D(D − 2))
D
2

( λ j

λ j+1

) D−2
2
∣∣∣

≤ θ
((λ j−1

λ j

) D−2
2 +

( λ j

λ j+1

) D−2
2
)

where here fi(/ι, /λ) is defined in (2.20).

Proof This is an explicit computation analogous to the one in [41, Lemma 2.27]. 89

3 Localized Sequential Bubbling

The goal of this section is to prove a localized sequential bubbling lemma for sequences
of solutions to (1.1) with vanishing averaged kinetic energy on a (relatively) expanding
region of space. The main result, and the arguments used to prove it are in the spirit of
the main theorems of Duyckaerts, Kenig, andMerle in [22]. To prove the compactness
lemma in all space dimensions via a unified approach, we use the virial inequalities of
Jia and Kenig to obtain vanishing of the error instead of the channels-of-energy type
arguments from [12, 22, 71], which in those works was limited to either odd space
dimensions or the subset of even space dimensions that satisfy D ≡ 0 (mod 4).
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To state the compactness lemma, we define a localized distance function,

δR(u) := inf
M,/ι,/λ

(
‖(u −W(/ι, /λ), u̇)‖2E(r≤R) +

M∑

j=1

( λ j

λ j+1

) D−2
2
) 1

2
, (3.1)

where the infimum above is taken over all M ∈ {0, 1, 2, . . . }, and all vectors /ι ∈
{−1, 1}M , /λ ∈ (0,∞)M , and here we use the convention that the last scale λM+1 = R.

Lemma 3.1 (Compactness Lemma) Let ρn > 0 be a sequence of positive numbers
and let un ∈ C([0, ρn]; E) be a sequence of solutions to (1.1) on the time intervals
[0, ρn] such that

lim sup
n→∞

sup
t∈[0,ρn]

‖un(t)‖E <∞. (3.2)

Suppose there exists a sequence Rn →∞ such that,

lim
n→∞

1
ρn

∫ ρn

0

∫ ρn Rn

0
|∂t un(t, r)|2 r D−1 dr dt = 0.

Then, up to passing to a subsequence of the un, there exists a time sequence tn ∈ [0, ρn]
and a sequence rn ≤ Rn with rn →∞ such that

lim
n→∞ δrnρn (un(tn)) = 0.

Remark 3.2 In fact, the proof provides a sequence tn ∈ [0, ρn], rn ≤ Rn with rn →∞,
a non-negative integer M independent of n, scales /λn ∈ (0,∞)M , and a vector of signs
/ι ∈ {−1, 1}M (also independent of n), such that

lim
n→∞

(
‖u(tn)−W(/ι, /λn)‖2E(r≤rnρn) +

M∑

j=1

( λn, j

λn, j+1

) D−2
2
) 1

2 = 0.

3.1 Technical Lemmas

The proof of Lemma 3.1 requires two Real Analysis results, which we address first.

Lemma 3.3 If ak,n are positive numbers such that limn→∞ ak,n = ∞ for all k ∈ N,
then there exists a sequence of positive numbers bn such that limn→∞ bn = ∞ and
limn→∞ ak,n/bn =∞ for all k ∈ N.

Proof For each k and each n define ãk,n = min{a1,n, . . . , ak,n}. Then the sequences
ãk,n → ∞ as n → ∞ for each k, but also satisfy ãk,n ≤ ak,n for each k, n, as well
as ã j,n ≤ ãk,n if j > k. Next, choose a strictly increasing sequence {nk}k ⊂ N such
that ãk,n ≥ k2 as long as n ≥ nk . For n large enough, let bn ∈ N be determined by the
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condition nbn ≤ n < nbn+1. Observe that bn → ∞ as n → ∞. Now fix any 6 ∈ N
and let n be such that bn > 6. We then have

a6,n ≥ ã6,n ≥ ãbn ,n ≥ b2n 6 bn .

Thus the sequence bn has the desired properties. 89

If f : [0, 1]→ [0,+∞] is a measurable function, we denote by

M f (τ ) := sup
I:τ ;I⊂[0,1]

1
|I |

∫

I
f (t) dt

its Hardy-Littlewood maximal function. Recall the weak-L1 boundedness estimate

|{τ ∈ [0, 1] : M f (τ ) > α}| ≤ 3
α

∫ 1

0
f (t)dt, for all α > 0, (3.3)

see [61, Section 2.3].

Lemma 3.4 Let fn be a sequence of continuous positive functions defined on [0, 1]
such that limn→∞

∫ 1
0 fn(t)dt = 0 and let gn be a uniformly bounded sequence of

real-valued continuous functions on [0, 1] such that lim supn→∞
∫ 1
0 gn(t)dt ≤ 0.

Then there exists a sequence tn ∈ [0, 1] such that

lim
n→∞M fn(tn) = 0, lim

n→∞ fn(tn) = 0, lim sup
n→∞

gn(tn) ≤ 0.

Proof Let αn be a sequence such that
∫ 1
0 fn(t)dt 4 αn 4 1. Let An := {t ∈ [0, 1] :

M fn(t)+ fn(t) ≤ αn}. By (3.3), limn→∞ |An| = 1. Since gn is uniformly bounded,
we have

∫

[0,1]\An

|gn(t)|dt ! |[0, 1] \ An|→ 0,

which implies

lim sup
n→∞

∫

An

gn(t)dt ≤ 0.

It suffices to take tn ∈ An such that gn(tn) ≤ |An|−1
∫
An

gn(t)dt . 89

3.2 Proof of the Compactness Lemma

Proof of Lemma 3.1 Rescaling we may assume that ρn = 1 for each n.
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Step 1. We claim that there exist σn ∈ [0, 1
3 ], τn ∈ [ 23 , 1] such that

lim
n→∞

∫ τn

σn

[ ∫ ∞

0

(
∂2r un +

D − 1
r

∂r un + |un|
4

D−2 un
)(

r∂r un +
D
2
un
)
χ r D−1 dr

+
∫ ∞

0
∂t un

(
r∂r∂t un +

D
2
∂t un

)
χ r D−1 dr

]
dt = 0, (3.4)

where χ is a smooth cut-off function equal 1 on [0, 1
2 ], with support in [0, 1]. Here

and later in the argument the second term in the integrand in (3.4) is to be interpreted
as the expression obtained after integration by parts, which is well defined due to the
finiteness of the energy.

Since

lim
n→∞

∫ 1
3

0

∫ Rn

0
(∂t un)2 r D−1drdt = 0 and lim

n→∞

∫ 1

2
3

∫ Rn

0
(∂t un)2 r D−1drdt = 0

there exist σn ∈ [0, 1
3 ], τn ∈ [ 23 , 1] such that,

lim
n→∞

∫ Rn

0
(∂t un(σn))2 r D−1dr = 0 and lim

n→∞

∫ Rn

0
(∂t un(τn))2 r D−1dr = 0.

(3.5)

For t ∈ [σn, τn], we have the following Jia-Kenig virial identity; see [42, Lemma 2.2
and Lemma 2.6].

d
dt

〈
∂t un | (r∂r un +

D
2
un)χ

〉
=
∫ ∞

0
∂t un

(
r∂r∂t un +

D
2
∂t un

)
χ r D−1 dr

+
∫ ∞

0

(
∂2r un +

D − 1
r

∂r un + |un|
4

D−2 un
)(

r∂r un +
D
2
un
)
χ r D−1 dr .

(3.6)

By the Cauchy-Schwarz inequality, the assumption (3.2) and (3.5), we see that

lim
n→∞

∫ ∞

0

(
|∂t un(σn)||r∂r un(σn)+

D
2
un(σn)|

+|∂t un(τn)||r∂r un(τn)+
D
2
u(τn)|

)
χ r D−1dr = 0.

Integrating (3.6) between σn and τn , and using the above, we obtain (3.4).
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Step 2.We rescale again so that [σn, τn] becomes [0, 1]. We apply Lemma 3.4, to

fn(t) :=
∫ Rn

0
|∂t un(t, r)|2 r D−1 dr ,

gn(t) := −
∫ ∞

0

(
∂2r un(t)+

D − 1
r

∂r un(t)+ |un(t)|
4

D−2 un(t)
)

(
r∂r un(t)+

D
2
un(t)

)
χ r D−1 dr

−
∫ ∞

0
∂t un(t)

(
r∂r∂t un(t)+

D
2
∂t un(t)

)
χ r D−1 dr

(integrating by parts we see that gn is a uniformly bounded sequence of continuous
functions) and we find a sequence {tn} ∈ [0, 1] such that we have vanishing of the
maximal function of the local kinetic energy,

lim
n→∞ sup

I:tn;I⊂[0,1]

1
|I |

∫

I

∫ Rn

0
|∂t un(t, r)|2 r D−1 dr dt = 0,

and lim
n→∞

∫ Rn

0
|∂t un(tn, r)|2 r D−1 dr = 0,

(3.7)

and also pointwise vanishing of a localized Jia-Kenig virial functional,

lim sup
n→∞

(
−
∫ ∞

0

[(
∂2r un(tn)+

D − 1
r

∂r un(tn)+ |un(t)|
4

D−2 un(tn)
)

(
r∂r un(tn)+

D
2
un(tn)

)

+ ∂t un(tn)
(
r∂r∂t un(tn)+

D
2
∂t un(tn)

)]
χ r D−1 dr

)
≤ 0.

(3.8)

We emphasize the conclusion from the first steps is the existence of the sequence tn
such that (3.7) and (3.8) hold.

Step 3. Now that we have chosen the sequence tn ∈ [0, 1], we may, after passing
to a subsequence, assume that tn → t0 ∈ [0, 1].

We apply Lemma 2.10 to the sequence un(tn), obtaining profiles (v j
l, tn, j , λn, j ),

and wJ
n,0, so that, using the notation,

v
j
l,n(0) :=

(
λ
− D−2

2
n, j v

j
l

(−tn, j
λn, j

,
·

λn, j

)
, λ
− D

2
n, j ∂tv

j
l

(−tn, j
λn, j

,
·

λn, j

))
,

we have

un(tn) =
J∑

j=1

v
j
l,n(0)+ wJ

n,0 (3.9)
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satisfying the conclusions of Lemma 2.10. We refer to the profiles (v j
l(0), tn, j , λn, j )

with tn, j = 0 for alln as centered profiles (here the subscript l on v
j
l is superfluous).We

refer to the profiles (v j
l(0), tn, j , λn, j ) with −tn, j/λn, j → ±∞ as outgoing/incoming

profiles.
Step 4. (Centered profiles at large scales.) At each step, we will impose conditions

on the ultimate choice of sequence rn → ∞. We divide the indices associated to
centered profiles into two sets,

Jc,0 := { j ∈ N | tn, j = 0 ∀n, and lim
n→∞ λn, j <∞},

Jc,∞ := { j ∈ N | tn, j = 0 ∀n, and lim
n→∞ λn, j =∞}.

Using Lemma 3.3 we choose a sequence r0,n →∞ so that r0,n 4 Rn, λn, j for each
λn, j with j ∈ Jc,∞. By construction we have,

lim
n→∞‖(λ

− D−2
2

n, j v
j
l (0, ·/λn, j ), λ

− D
2

n, j v̇
j
l (0, ·/λn, j )‖E(0,r0,n) = 0 (3.10)

for any of the indices j ∈ Jc,∞.
Step 5. (Incoming/outgoing profiles with limn→∞

∣∣tn, j
∣∣ =∞.) We next treat pro-

files (v j
l, tn, j , λn, j ) that satisfy,

− tn, j
λn, j

→ ±∞.

Up to passing to a subsequence of un(tn) we may assume that −tn, j → t∞ ∈
[−∞,∞]. Consider again two sets of indices,

Jl,0 := { j ∈ N | − tn, j
λn, j

→ ±∞ and − tn, j → t∞, j ∈ R},

Jl,∞ := { j ∈ N | − tn, j
λn, j

→ ±∞ and
∣∣tn, j

∣∣→∞}.

We impose additional restrictions on the sequence rn . We require that rn ≤ 1
2

∣∣tn, j
∣∣

for large enough n, depending on j , for each sequence tn, j in Jl,∞. So at this stage,
we again use Lemma 3.3 to choose a sequence r1,n → ∞ such that r1,n ≤ r0,n and
r1,n ≤ 1

2

∣∣tn, j
∣∣ for large enough n, depending on j , for each sequence tn, j in Jl,∞.

Since v j
l is a free wave we know that it asymptotically concentrates all of its energy

near the light-cone. In fact,

lim
s→±∞

‖vil(s)‖E(r≤ 1
2 |s|) = 0,

which is proved in [21, Lemma 4.1] in odd space dimensions and is a direct conse-
quence of [13, Theorem 5] in even space dimensions.
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Thus, if j ∈ Jl,∞ and as long as r1,n ≤ 1
2

∣∣tn, j
∣∣ for n large enough, we see that

λ−1n, j r1,n ≤ 1
2λ
−1
n, j

∣∣tn, j
∣∣ and thus

‖v j
l(−tn, j/λn, j )‖E(r≤r1,nσ−1n, j )

→ 0 as n→∞, (3.11)

by the above.
Step 6. (Incoming/outgoing profiles with limn→∞

∣∣tn, j
∣∣ <∞.) Next, we consider

profiles (v j
l, tn, j , λn, j ) such that

− tn, j
λn,i
→ ±∞ and − tn, j → t∞, j ∈ R,

that is, those in Jl,0. We note that λn,i → 0 as n →∞ for each i ∈ Jl,0. We claim
that any such profile must satisfy vil ≡ 0. We use the argument given in [19, Erratum],
modulo a few technicalities which reduce our situation to the one considered there.

We claim that there exists a new sequence
√
r1,n ≤ r2,n ≤ r1,n such that

lim
n→∞ sup

t∈[0,1]
‖un(t)‖E(A−1n r2,n ,Anr2,n)

= 0 (3.12)

for some 14 An 4 r2,n . By Lemma 2.6 it suffices to have

lim
n→∞‖un(0)‖E(A−1n r2,n ,Anr2,n)

= 0,

and then replace An by its quarter, for example.
Let An be the largest integer such that A

2An
n ≤ √r1,n . Obviously, 14 An 4 √r1,n .

For l ∈ {0, 1, . . . , An − 1}, set R(l)
n := A2l

n
√
r1,n , so that A−1n R(l+1)

n = AnR
(l)
n , thus

An−1∑

l=0

‖un(0)‖2E(A−1n R(l)
n ,An R

(l)
n )
≤ ‖un(0)‖2E.

Since all the terms of the sum are positive, there exists l0 ∈ {0, 1, . . . , An − 1} such
that r2,n := R(l0)

n satisfies

‖un(0)‖2E(A−1n r2,n ,Anr2,n)
≤ A−1n ‖un(0)‖2E→ 0,

proving (3.12)
We now pass to a new sequence ũn with vanishing average kinetic energy on the

whole space. Indeed, define

ũn(tn) = χ2r2,nun(tn).

Denoting by ũn(t) the solutions to (1.1) with data ũn(tn) on the interval t ∈ [0, 1] we
can use the finite speed of propagation, the local Cauchy theory, and (3.12) to deduce
that
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ũn(t, r) = un(t, r) if r ≤ r2,n, and lim sup
n→∞

sup
t∈[0,1]

‖ũn(t)‖E(r2,n ,∞) = 0.

(3.13)

From (3.9) we have,

ũn(tn) =
∑

1≤ j≤J ; j∈Jc,0∪Jl,0

v
j
l,n(0)+ χ2r2,nw

J
n,0

+
∑

1≤ j≤J ; j∈Jc,0∪Jl,0

(χ2r2,n − 1)v j
l,n(0)+

∑

1≤ j≤J ; j∈Jc,∞∪Jl,∞

χ2r2,nv
j
l,n(0).

We claim that in fact ũn(tn) admits a profile decomposition in the sense of Lemma 2.10
of the form,

ũn(tn) =
∑

1≤ j≤J ; j∈Jc,0∪Jl,0

v
j
l,n(0)+ w̃ J

n,0, (3.14)

with the same profiles (v j
l, λn, j , tn, j ) as in the decomposition for un(tn) and where

the error above, w̃ J
n,0, satisfies,

w̃ J
n,0 = χ2r2,nw

J
n,0 + on(1) as n→∞.

The expansion (3.14) and the on(1) above is justified as follows: let ε > 0 and use (2.7)
to find J0 > 0 such that

∑

j>J0

‖v j
l,n(0)‖

2
E ≤ ε.

Using (3.10), (3.11) we see that,

∑

j≤J0, j∈Jc,∞∪Jl,∞

‖χ2r2,nv
j
l,n(0)‖

2
E→ 0 as n→∞.

Using the same logic used to deduce (3.10), (3.11) we have (since r2,n →∞),

∑

1≤ j≤J0; j∈Jc,0∪Jl,0

‖(1− χ2r2,n )v
j
l,n(0)‖

2
E→ 0 as n→∞,

fromwhich the vanishing of the on(1) term follows. It remains to deduce the vanishing
properties of the error w̃ J

n,0, which follow directly from [21, Claim A.1 and Lemma
2.1] in the odd dimensional case and [13, Lemma 10 and 11] in the case of even
dimensions.
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Finally, we can use (3.7) and (3.13) to see that,

lim
n→∞ sup

I:tn;I⊂[0,1]

1
|I |

∫

I

∫ ∞

0
|∂t ũn(t, r)|2 r D−1 dr dt = 0,

‖∂t ũn(tn)‖L2 → 0 as n→∞.

(3.15)

Then following the exact argument in [19, Erratum], but applied to ũn(tn)we conclude
that the set Jl,0 is empty, i.e., all of the profiles (v j

l, λn, j , tn, j ) with j ∈ Jl,0 satisfy,

v
j
l ≡ 0.
Step 7. (Centered profiles at bounded scales.) To recap, we now have

ũn(tn) =
∑

1≤ j≤J ; j∈Jc,0

v
j
l,n(0)+ w̃ J

n,0

where ũn(tn) satisfies (3.13) and all of the profiles (v j
l, λn, j , 0) have tn, j = 0 and

λn, j ! 1 for all n, j . Moreover, we have the vanishing in (3.15). We can now apply
the exact same arguments of Duyckaerts, Kenig, and Merle [19, Proofs of Corollary
4.1 and Corollary 4.2] (see also the identical arguments by Rodriguez in [71] and Jia
and Kenig [42]) to deduce that in fact either

v
j
l,n(0) = ι jWλn, j or v

j
l,n(0) = 0

for ι j ∈ {−1, 1} for each j ∈ Jc,0. By (2.7) there can only be finitely many of these
profiles that are non-trivial, and thus after reordering the indices we can find K0 ≥ 0
and λn,1 4 λn,2 4 · · ·4 λn,K0 ! 1 such that

ũn(tn) =
∑

1≤ j≤K0

ι jWλn, j + w̃n,0 (3.16)

where w̃n,0 := w̃K0
n,0. We note that the error w̃n,0 satisfies,

lim sup
n→∞

(
‖w̃n,0‖

L
2D
D−2

+ ‖ ˙̃wn,0‖L2

)
= 0 (3.17)

where the L2 vanishing of ˙̃wn,0 follows from (3.15) and the decomposition (3.16).
Step 8. (Vanishing properties of the error.) We now select the final sequence by

choosing rn →∞ so that

rn ≤
1
2
r2,n, lim

n→∞‖w̃n,0‖H( 14 r
−1
n ,4rn)

= 0. (3.18)

The existence of such a sequence follows from the following property about w̃n,0: for
any sequence λn ! 1 and any A > 1 we have,

‖w̃n,0‖E(λn A−1≤r≤λn A)→ 0 as n→∞. (3.19)
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The property (3.19) was proved in [11, Step 2., p.1973-1975, Proof of Theorem 3.5]
and [42, Proof of (5.29) in Theorem 5.1] and we refer the reader to those works for
details of the argument. The intuition is that at any scale λn ! 1 at which ũn carries
energy we have already extracted a profile Wλn, j with λn, j 5 λn . To prove (3.18) we
consider the case λn = 1 in (3.19), and passing to a subsequence of the ũn , we obtain
a sequence as in (3.18).

We truncate to the region r ≤ rn , following the same procedure used to define ũn
in Step 6, using now rn in place of r2,n . Indeed, set

ŭn(tn, r) := χ2rn (r )̃un(tn, r).

Setting w̆n,0 := χ2rn w̃n,0 + (χ2rn − 1)
∑K0

j=1 ι jWλn, j and using that λn,K0 ! 1 along
with (3.17) and (3.18) we see that,

ŭn(tn) =
K0∑

j=1

ι jWλn, j + w̆n,0, and

lim
n→∞

(
‖w̆n,0‖E(r−1n ≤r<∞) + ‖ ˙̆wn,0‖L2 + ‖w̆n,0‖

L
2D
D−2

)
= 0.

(3.20)

Letting ŭn(t) denote the nonlinear evolution of ŭn(tn) we see from (3.13) that

ŭn(t, r) = un(t, r) if r ≤ rn (3.21)

and from (3.15) that

lim
n→∞ sup

I:tn;I⊂[0,1]

1
|I |

∫

I

∫ ∞

0
|∂t ŭn(t, r)|2 r D−1 dr dt = 0,

‖∂t ŭn(tn)‖L2 → 0 as n→∞.

By (3.21) and (3.20) it remains to show the vanishing,

lim
n→∞‖w̆n,0‖E(r≤r−1n ) = 0.

It is at this stage where we use the Jia-Kenig virial functional. By (3.8) we have

lim sup
n→∞

(
−
∫ ∞

0

[(
∂2r ŭn(tn)+

D − 1
r

∂r ŭn(tn)+ |ŭn(t)|
4

D−2 un(tn)
)

(
r∂r ŭn(tn)+

D
2
ŭn(tn)

)

+ ∂t ŭn(tn)
(
r∂r∂t ŭn(tn)+

D
2
∂t ŭn(tn)

)]
χ r D−1 dr

)
≤ 0.

(3.22)

We distinguish between two cases, limn→∞ λn,K0 = 0 and limn→∞ λn,K0 > 0, which
require slightly different arguments. First suppose limn→∞ λn,K0 = 0. Using (3.20)
we see that in this case,
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lim
n→∞‖ŭn‖E( 12 ,∞) = 0.

Integration by parts in (3.22), we obtain,

lim sup
n→∞

(∫ ∞

0

[
(∂r ŭn(tn))2 − |ŭn(tn)|

2D
D−2

]
χ r D−1 dr

−*1,1(ŭn(tn))−
D
2
*2,1(ŭn(tn))

)
≤ 0

where *1,1,*2,1 are defined in (2.3). Using (3.20) along with Sobolev embedding
and Hardy’s inequality we obtain the vanishing of the errors terms* j,1(ŭn(tn)) above
and we conclude that,

lim sup
n→∞

∫ ∞

0

[
(∂r ŭn(tn))2 − |ŭn(tn)|

2D
D−2

]
χ r D−1 dr ≤ 0. (3.23)

Due to (3.20), the orthogonality of the profiles (i.e., λn,1 4 λn,2 4 . . . λn,K0 ), the
fact that λn,K0 → 0, and the fact that the Jia-Kenig functional vanishes at W , i.e.,

∫ ∞

0

[
(∂rW )2 − |W | 2D

D−2
]
r D−1 dr = 0

we can conclude that

lim sup
n→∞

∫ ∞

0

[
(∂r w̆0,n)

2 −
∣∣w̆0,n

∣∣ 2D
D−2

]
χ r D−1 dr ≤ 0.

But then we may use (3.20) to see that in fact

lim
n→∞

∫ ∞

0

∣∣w̆0,n
∣∣ 2D
D−2 χ r D−1 dr = 0.

Using this estimate in the previous line we conclude that

lim
n→∞

∫ ∞

0
(∂r w̆0,n)

2χ r D−1 dr = 0

and combining with (3.20) we have limn→∞ ‖∂r w̆0,n‖L2 = 0. By Hardy’s inequality
we deduce finally that limn→∞ ‖w̆0,n‖E = 0. Lastly, by (3.20) and the fact that
un(tn, r) = ŭn(tn, r) if r ≤ rn , we see that limn→∞ δrn (un(tn)) = 0, completing the
proof in the case limn→∞ λn,K0 = 0.

Next, consider the case limn→∞ λn,K0 = λ∞ > 0. We may assume that n is
sufficiently large so that

λn,K0 ∈
(
1
2
λ∞, 2λ∞

)
. (3.24)
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To ease notation, define ψn = ŭn(tn) − ιK0Wλn,K0
and φn := ιK0Wλn,K0

. Defining
the auxiliary sequence ζn := r−1n +

√
λn,K0−1, which satisfies ζn → 0 as n→∞, we

see that

lim
n→∞‖ψn‖E(ζn;∞) = 0 and lim

n→∞‖φn‖E(0,2ζn) = 0. (3.25)

Note that integration by parts of the terms in the second line of (3.22) yields the term,

−1
2

∫ ∞

0
(∂t ŭn(tn))2rχ ′(r) r D−1 dr

which tends to zero as n → ∞ by (3.20). For the first line in (3.22) we first express
ŭn(tn) = ψn+φn . Noting the point-wise vanishing ∂2r φn+ D−1

r ∂rφn+|φn|
4

D−2 φn = 0,

and employing the notation f (v) = |v| 4
D−2 v, we rewrite the first term in the integrand

of the first line in (3.22) as,

∂2r ŭn(tn)+
D − 1
r

∂r ŭn(tn)+ f (ŭn(tn)) = ∂2r ψn(tn)+
D − 1
r

∂rψn + f (ψn)

+
(
f (ψn + φn)− f (ψn)− f (φn)

)
.

We then write,

−
∫ ∞

0

[(
∂2r ŭn(tn)+

D − 1
r

∂r ŭn(tn)+ |ŭn(t)|
4

D−2 un(tn)
)

(
r∂r ŭn(tn)+

D
2
ŭn(tn)

)
χ r D−1 dr

= −
∫ ∞

0

[(
∂2r ψn(tn)+

D − 1
r

∂rψn + f (ψn)
)(

r∂rψn +
D
2
ψn

)
χ r D−1 dr

−
∫ ∞

0

[(
∂2r ψn(tn)+

D − 1
r

∂rψn + f (ψn)
)(

r∂rφn +
D
2
φn

)
χ r D−1 dr

−
∫ ∞

0

[(
f (ψn + φn)− f (ψn)− f (φn)

)(
r∂rφn +

D
2
φn

)
χ r D−1 dr

−
∫ ∞

0

[(
f (ψn + φn)− f (ψn)− f (φn)

)(
r∂rψn +

D
2
ψn

)
χ r D−1 dr .

The last three lines above tend to zero as n →∞ which can be seen by dividing the
integrals into the regions r ≤ ζn and r ∈ (ζn, 2), using (3.25), (3.24), and additionally
in the last two lines the pointwise estimate,

| f (ψn + φn)− f (ψn)− f (φn)| ! |ψn|
4

D−2 |φn| + |φn|
4

D−2 |ψn|.
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From (3.22) we then conclude that,

lim sup
n→∞

(
−
∫ ∞

0

(
∂2r ψn(tn)+

D − 1
r

∂rψn + f (ψn)
)(

r∂rψn + D
2
ψn

)
χ r D−1 dr

)
≤ 0.

Integration by parts and arguing as in the proof of (3.23) then yields,

lim sup
n→∞

∫ ∞

0

[
(∂rψn)

2 − |ψn|
2D
D−2

]
χ r D−1 dr ≤ 0.

Wehavenowreducedmatters to theprevious case aswehave limn→∞ λn,K0−1 = 0 and
we conclude as before that limn→∞ ‖w̆0,n‖E = 0 and hence, limn→∞ δrn (un(tn)) = 0,
completing the proof. 89

4 The Sequential Decomposition

In this section we sketch the proof of Theorem 1.14, the sequential decomposition.We
view this result as the consequence of three main ingredients: (1) the identification of
the linear radiation u∗, (2) a proof that no energy can concentrate in the self-similar
region of the light cone, and (3) the compactness lemma proved in the previous section.

4.1 Identification of the Radiation

The results in this subsection were proved by Duyckaerts, Kenig, and Merle in [21,
22] in the case D = 3. Following their approach, analogous results were obtained in
[12] in dimension D = 4, [42] in dimension D = 6, and in [71] for all odd D ≥ 5.
The case of even dimensions D > 6 follows from an identical argument as the one
used in [71].

Proposition 4.1 (Radiation in case of finite time blow-up) [21, Theorem 3.2] Let u ∈
C(I ; E) be a solution to (1.1) defined on the time interval I = (0, T ] for some T > 0
and blowing up in the type-II sense as t ↘ 0, that is, such that

sup
t∈(0,T ]

‖u(t)‖E <∞.

Then, there exists u∗0 ∈ E such that

u(t)⇀u∗0 weakly in E as t → 0,

‖ϕ(u(t)− u∗0)‖E→ 0 as t → 0,

where the latter limit holds for any ϕ ∈ C∞0 (0,∞). Moreover, there exists T0 > 0
such that the solution u∗(t) of (1.1) with initial data u∗0 is defined on the interval
[0, T0] and satisfies,
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u(t, r) = u∗(t, r) if r ≥ t, ∀t ∈ (0, T0],
lim
t→0

E(u(t)− u∗(t)) = E(u)− E(u∗).

Proposition 4.2 (Radiation for a global-in-time solution) [22, Corollary 3.9], [12,
Proposition 4.1] Let u ∈ C(I ; E) be a solution to (1.1) defined on the time inter-
val I = [T ,∞) for some T ≥ 0 and such that

sup
t∈[T ,∞)

‖u(t)‖E <∞.

Then, there exists a free wave u∗l ∈ C(R; E) such that

/Sl(−t)u(t)⇀u∗l(0) weakly in E as t →∞,

and ∀R ∈ R, lim
t→∞

∫ ∞

t−R

[
(∂t (u(t)− u∗l(t)))

2

+ (∂r (u(t)− u∗l(t)))
2 +

(u(t)− u∗l(t))
2

r2

]
r D−1 dr = 0.

Moreover, if we denote by u∗ the unique solution to (1.1) given by Lemma 2.3 such
that

‖u∗(t)− u∗l(t)‖E→ 0 as t →∞,

then,

lim
t→∞ E(u(t)− u∗(t)) = E(u)− E(u∗).

Remark 4.3 We note that the proof of Proposition 4.1 given in [21] was given only in
dimensions D = 3, 4, 5 (and for non-radially symmetric data), but it generalizes in a
straight-forward way to higher space dimensions using the local Cauchy theory from
Lemma 2.3. The proof of Proposition 4.2 is given in dimension D = 3 in [22] and
was generalized to dimension D = 4 in [12] using technical tools related to profile
decompositions in even space dimensions proved by Côte, Kenig, and Schlag in [13].
It was proved in all odd space dimensions in [71]. Again the proofs given in those
references generalize to all even space dimensions, using [13] .

4.2 Non-concentration of Self-similar Energy

In this section we sketch the proof that finite energy solutions cannot concentrate
linear energy in the self-similar region of the cone. As a consequence of this fact and
virial identities, we deduce the vanishing of the averaged kinetic energy in the cone.
The proof in this section closely follows the arguments given in [12] and [42], which
in turn follow the scheme developed by Christodoulou and Tahvildar-Zadeh [9] and
Shatah and Tahvildar-Zadeh [79] in the context of equivariant wave maps. We make
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one minor observation here, namely that the reductions performed in [12, 42] from
the D-dimensional radially symmetric NLW (1.1) to a wave maps-type equation in
two-space dimensions work equally well in all space dimensions D ≥ 3, and thus the
arguments from [42] (which generalized the Shatah, Tahvildar-Zadeh arguments to
cover all finite energy solutions) apply directly1.

Proposition 4.4 (No self-similar concentration for blow-up solutions) [42, Theorem
2.1] Let u ∈ C(I ; E) be a solution to (1.1) defined on the time interval I = (0, T ] for
some T > 0 and blowing up in the type-II sense as t ↘ 0, that is, such that

sup
t∈(0,T ]

‖u(t)‖E <∞.

Then, for any α ∈ (0, 1),

lim
t↘0

∫ t

αt

[
(∂t u(t, r))2 + (∂r u(t, r))2 +

(u(t, r))2

r2

]
r D−1 dr = 0.

Proposition 4.5 (No self-similar concentration for global solutions) [42, Theorem 2.4]
Let u ∈ C(I ; E) be a solution to (1.1) defined on the time interval I = [T ,∞) for
some T ≥ 0 and such that

sup
t∈[T ,∞)

‖u(t)‖E <∞.

Then, for any α ∈ (0, 1),

lim
R→∞

lim sup
t→∞

∫ t−R

αt

[
(∂t u(t, r))2 + (∂r u(t, r))2 +

(u(t, r))2

r2

]
r D−1 dr = 0.

Corollary 4.6 (Time-averaged vanishing of kinetic energy for blow-up solutions) [42,
Lemma 2.2] Let u be a solution to (1.1) satisfying the hypothesis of Proposition 4.4.
Then,

lim
τ↘0

1
τ

∫ τ

0

∫ t

0
(∂t u(t, r))2 r D−1 dr dt = 0.

Corollary 4.7 (Time-averaged vanishing of kinetic energy for global solutions) [42,
Lemma 2.6] Let u be a solution to (1.1) satisfying the hypothesis of Proposition 4.5.
Then,

lim
τ→∞

1
τ

∫ τ

0

∫ t
2

0
(∂t u(t, r))2 r D−1 dr dt = 0.

1 We note that the published version of [12] contained a gap in the proof of the corresponding results, as
the arguments used to deduce Proposition 4.4 and Proposition 4.5 in that paper were performed only for
smooth solutions. This gap was closed by an argument of the first author and was included in an appendix
to [14]. An earlier argument by Jia and Kenig from [42] can also be used to close the gap in [12], and we
refer to their approach here.
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Remark 4.8 The proofs of Proposition 4.4 and Proposition 4.5 in [12, 42] are done for
the cases D = 4, 6 and are based on the following reduction, which we generalize to
cover all dimensions D ≥ 3. Let

k := D − 2
2

.

Given u(t) ∈ E, set,

ψ(t, r) := (rku(t, r), rk∂t u(t, r)). (4.1)

We see that u(t) solves (1.1) if and only if ψ(t, r) solves,

∂2t ψ − ∂2r ψ −
1
r
∂rψ + k2 − |ψ | 2k

r2
ψ = 0

which bears enough structural similarities to the equivariant wave maps equation that
the main elements of the arguments from [9, 79] carry over. The key feature for our
purposes, is that

Fk(ψ) := 1
2
|ψ |2

(
k2 − k

k + 1
|ψ | 2k

)

is positive when |ψ(t, r)| is sufficiently small and hence so is the flux density,

1
2
(∂tψ(t, r)− ∂rψ(t, r))2 + Fk(ψ(t, r))

r2
> 0.

Up to changing the values of some constants, the line-by-line arguments in [42, Proof
of Theorem 2.1] and [42, Proof of Theorem 2.4] are valid in any dimension D ≥ 4
with ψ defined as in (4.1).

Remark 4.9 The proof of Corollary 4.6 follows from the virial identity (2.4) with
the cutoff at ρ(t) = t/2 together with Proposition 4.4. The exact argument in [42,
Proof of Lemma 2.2, in particular Eq. (2.66)] applies in our setting as well. The proof
of Corollary 4.7 is similar, using now Proposition 4.5, and follows from the exact
argument in [42, Proof of Lemma 2.4, second displayed equation on page 1552].

4.3 The Sequential Decomposition

In this section we deduce Theorem 1.14, the sequential decomposition as a conse-
quence of the Compactness Lemma 3.1 and the collection of results from earlier in
this section.

In the remainder of the paper we unify the blow-up and global-in-time settings by
making the following conventions. Consider a finite energy solution u ∈ C(I∗; E) on
its maximal time of existence I∗. We assume that either u(t) blows up in backwards
time at T− = 0 and is defined on an interval I∗ := (0, T0], or u(t) is global in forward
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time and defined on the interval I∗ := [T0,∞) where in both cases T0 > 0. We let
T∗ := 0 in the blow-up case and T∗ := ∞ in the global case. We assume that u(t)
exhibits type II behavior in that,

lim
t→T∗

‖u(t)‖E <∞.

First we complete the proof of Theorem 1.9.

Proof of Theorem 1.9 We let u∗(t) be defined as in Proposition 4.1 in the case T∗ = 0
and as in Proposition 4.2 in the case T∗ =∞. If T∗ = 0 the conclusions of Theorem1.9
are a direct consequence of Proposition 4.1 and Proposition 4.4. If T∗ = +∞ we first
note that for any α ∈ (0, 1),

‖u∗(t)‖E(0,αt) ≤ ‖u∗(t)− u∗l(t)‖E + ‖u∗l(t)‖E(0,αt)→ 0 as t → T∗

where the vanishing of the last term above is due to the asymptotic concentration of
free waves near the light cone; see [21, Lemma 4.1] for odd D and [13, Theorem 5]
for even D. Now apply Proposition 4.2 and Proposition 4.5. 89

Proof of Theorem 1.14 By Corollary 4.6 if T∗ = 0 or Corollary 4.7 if T∗ = ∞ we
have,

lim
τ→T∗

1
τ

∫ τ

0

∫ t
2

0
(∂t u(t, r))2 r D−1 dr dt = 0.

We claim there exists a sequence τn → T∗ such that,

lim
n→∞ sup

0<σ<τn

1
σ

∫ τn+σ

τn

∫ t
2

0
(∂t u(t, r))2 r D−1 dr dt = 0. (4.2)

We show that the above is a consequence of the classical maximal function esti-
mate (3.3). Indeed, define

φ(t) =
∫ t

2

0
(∂t u(t, r))2 r D−1 dr , =(τ ) := 1

τ

∫ τ

0
φ(t) dt .

Then (4.2) reduces to the following claim: If =(τ )→ 0 as τ → T∗, then there exists
at least one sequence of times τn → T∗ such that Mφ(τn) → 0 as n → ∞. Now
considering intervals Jn = (0, 1/n] if T∗ = 0 or Jn = [n/2, n] if T∗ = ∞ apply the
maximal function estimate (3.3) with αn = 6=(n−1) if T∗ = 0 or αn = 12=(n) if
T∗ =∞, noting that in both cases αn → 0 as n→∞,

∣∣∣{t ∈ Jn : Mφ(t) > αn}
∣∣∣ ≤ 3

αn

∫

Jn
φ(t) dt ≤ 1

2
|Jn|.
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This means that Mφ(t) ≤ αn → 0 for half of the points in Jn , from which we select
the sequence τn → T∗.

Next, let ρ(t) be as in Theorem 1.9. With τn as in (4.2) we set

ρn := sup
t∈[τn ,τn+ρ(τn)]

ρ(t)4 τn .

It follows from (4.2) that

lim
n→∞

1
ρn

∫ τn+ρn

τn

∫ τn
2

0
(∂t u(t, r))2 r D−1 dr dt = 0.

Next defining un(s, r) := u(τn + s, r) and changing variables above we obtain a
sequence of solutions un defined on intervals [0, ρn] such that,

lim
n→∞

1
ρn

∫ ρn

0

∫ ρn
τn
2ρn

0
(∂sun(s, r))2 r D−1 dr ds = 0.

We can now apply the Compactness Lemma 3.1 since Rn := τn
2ρn
→∞ as n →∞.

We obtain sequences sn ∈ [0, ρn] and 1 4 rn 4 τn
2ρn

for which δρnrn (un(sn)) → 0
as n → ∞. Passing back to the original variables we set tn = τn + sn and we
have, δrnρn (u(tn)) → 0 as n → ∞. From (3.1) (and examining the proof of The
Compactness Lemma 3.1, see Remark 3.2) we obtain an integer K0 ≥ 0, and scales
λn,1 4 λn,2 4 · · · 4 λn,K0 ! ρn 4 tn , and a vector of signs /ι ∈ {−1, 1}K0 such
that

‖u(tn)−W(/ι, /λn)‖E(0,rnρn)→ 0 as n→∞.

Note that by construction ρ(tn) 4 rnρ(tn) 4 rnρn 4 tn . Thus, from Theorem 1.9
we have,

‖u(tn)− u∗(tn)‖E(ρn)→ 0 and ‖u∗(tn)‖E(0,rnρn)→ 0 as n→∞.

Combining the two last displayed equations completes the proof. 89

5 Decomposition of the Solution and Collision Intervals

In the final two sections we prove Theorem 1 for dimensions D ≥ 6. We reserve the
cases D = 4, 5 for the appendix, as these low dimensions require a few technical
modifications stemming from the slower decay of W (r) as r →∞.

5.1 Proximity to aMulti-bubble and Collisions

For the remainder of the paper we fix a solution u ∈ C(I∗; E) of (1.1), defined on the
time interval I∗ = (0, T0] in the blow-up case and on I∗ = [T0,∞) in the global case,
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for some T0 > 0. We set T∗ :=∞ in the global case and T∗ := 0 in the blow-up case
and we assume,

lim
t→T∗

‖u(t)‖E <∞.

Let u∗(t) be the radiation as defined in Proposition 4.1 and Proposition 4.2. We
will use crucially the fact that the radiation is given in continuous time. Note that
combining the results of Proposition 4.1 and Proposition 4.4 in the blow-up case and
Proposition 4.2 together with Proposition 4.5 give a function ρ : I∗ → (0,∞) such
that

lim
t→T∗

(
(ρ(t)/t)

D−2
2 + ‖u(t)− u∗(t)‖2E(ρ(t),∞)

)
= 0. (5.1)

We also note that

lim
t→T∗

‖u∗(t)‖E(0,αt) = 0, (5.2)

for any α ∈ (0, 1).
By Theorem1.14 there exists a time sequence tn → T∗ and an integer N ≥ 0, which

we now fix, such that u(tn) − u∗(tn) approaches an N -bubble as n → ∞. Roughly,
our goal is to show that on the region r ∈ (0, ρ(t)), the solution u(t) approaches a
continuously modulated N -bubble, noting that the radiation u∗(t) is negligible in this
region. By convention, we will set λN+1(t) := t to be the “scale” of the radiation
and λ0(t) := 0. Our argument requires the following localized version of the distance
function to a multi-bubble.

Definition 5.1 (Proximity to a multi-bubble) For all t ∈ I , ρ ∈ (0,∞), and K ∈
{0, 1, . . . , N }, we define the localized multi-bubble proximity function as

dK (t; ρ) := inf
/ι,/λ

(
‖u(t)− u∗(t)−W(/ι, /λ)‖2E(ρ,∞) +

N∑

j=K

( λ j

λ j+1

) D−2
2
) 1

2

,

where /ι := (ιK+1, . . . , ιN ) ∈ {−1, 1}N−K , /λ := (λK+1, . . . , λN ) ∈ (0,∞)N−K ,
λK := ρ and λN+1 := t .

The multi-bubble proximity function is defined by d(t) := d0(t; 0).

Remark 5.2 We emphasize that if dK (t; ρ) is small, this means that u(t) − u∗(t) is
close to N − K bubbles in the exterior region r ∈ (ρ,∞).

We can now rephrase Theorem 1.14 in this notation: there exists a monotone sequence
tn → T∗ such that

lim
n→∞d(tn) = 0. (5.3)
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Even though this fact is certainly a starting point of our analysis, it will turn out that
we cannot use it as a black box. Rather, we need to examine the proof and use more
precise information provided by the analysis in [22] (this is done in Section 3).

We state and prove some simple consequences of the set-up above. We always
assume N ≥ 1, since the pure radiation case N = 0 (in fact, also the case N = 1) is
a consequence of the sequential decomposition (as observed by Duyckaerts, Kenig,
and Merle in [22, Theorem 2, Theorem 5, Corollary 6]).

Next, a direct consequence of (5.1) is that u(t)−u∗(t) always approaches a 0-bubble
in some exterior region. With ρN (t) = ρ(t) given by (5.1) the following lemma is
immediate from the conventions of Definition 5.1

Lemma 5.3 There exists a function ρN : I → (0,∞) such that

lim
t→T∗

dN (t; ρN (t)) = 0. (5.4)

Theorem 1 will be a quick consequence of showing that,

lim
t→T∗

d(t) = 0. (5.5)

The approach which we adopt in order to prove (5.5) is to study colliding bubbles. A
collision is defined as follows.

Definition 5.4 (Collision interval) Let K ∈ {0, 1, . . . , N }. A compact time interval
[a, b] ⊂ I∗ is a collision interval with parameters 0 < ε < η and N − K exterior
bubbles if

• d(a) ≤ ε and d(b) ≤ ε,
• there exists c ∈ (a, b) such that d(c) ≥ η,
• there exists a function ρK : [a, b] → (0,∞) such that dK (t; ρK (t)) ≤ ε for all
t ∈ [a, b].

In this case, we write [a, b] ∈ CK (ε, η).

Definition 5.5 (Choice of K ) We define K as the smallest nonnegative integer hav-
ing the following property. There exist η > 0, a decreasing sequence εn → 0 and
sequences (an), (bn) such that [an, bn] ∈ CK (εn, η) for all n ∈ {1, 2, . . .}.

Lemma 5.6 (Existence of K ≥ 1) If (5.5) is false, then K is well defined and K ∈
{1, . . . , N }.

Remark 5.7 The fact that K ≥ 1 means that at least one bubble must lose its shape
if (5.5) is false.

Proof of Lemma 5.6 Assume (5.5) does not hold, so that there exist η > 0 and a
monotone sequence sn → T∗ such that

d(sn) ≥ η, for all n.
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We claim that there exist sequences (εn), (an), (bn) such that [an, bn] ∈ CN (εn, η).
Indeed, (5.3) implies that there exist εn → 0,an ≤ sn and bn ≥ sn such thatd(an) ≤ εn
and d(bn) ≤ εn . Note that an → T∗ and bn → T∗. Let ρN : [an, bn] → (0,∞) be
the function given by Lemma 5.3, restricted to the time interval [an, bn]. Then (5.4)
yields

lim
n→∞ sup

t∈[an ,bn ]
dN (t; ρN (t)) = 0.

Upon adjusting the sequence εn , we obtain that all the requirements ofDefinition 5.4
are satisfied for K = N .

We now prove that K ≥ 1. Suppose K = 0. The definition of a collision interval
yields d0(cn; ρn) ≤ εn for some sequence ρn ≥ 0, and at the same time d(cn) ≥ η

for some η > 0. Without loss of generality we may assume that cn is a time at which
η ≤ d(cn) ≤ 2η for each n, and we may assume further that η > 0 is small relative to
‖W‖E. We show that this is impossible.

First, by Theorem 1.14 we know that

E(u) = NE(W)+ E(u∗). (5.6)

On the other hand, since d0(cn, ρn) ≤ εn we can find parameters, ρn 4 λn,1 4 · · ·4
λn,N 4 ρ(cn)4 cn and signs /ιn such that

‖u(cn)− u∗(cn)−W(/ιn, /λn)‖2E(ρn ,∞) +
N∑

j=0

( λn, j

λn, j+1

) D−2
2 ! ε2n . (5.7)

Since ρn 4 λn,1 4 ρ(cn) we have by (5.1) that

‖u∗(cn)+W(/ιn, /λn)‖E(ρn ,2ρn) = on(1)

and hence from the previous line,

‖u(cn)‖E(ρn ,2ρn) = on(1). (5.8)

Using the above along with (5.2), Lemma 2.15, and the asymptotic orthogonality of
the various parameters we have,

E(u(cn); ρn,∞) = NE(W)+ E(u∗)+ on(1) as n→∞.

Using the above along with (5.6) we conclude that,

E(u(cn); 0, ρn) = on(1) as n→∞.

Now, let vn := u(cn)χρn . Using the above along with (5.8) we have shown that
E(vn) = on(1). We claim that we must have ‖vn‖E 5 η, which would give a contra-
diction with the critical Sobolev inequality, since η > 0 can be chosen small. To prove
the claim, find parameters /σn, /µn such that
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η 5 d(cn) 5
(
‖u(cn)− u∗(cn)−W(/σn, /µn)‖2E +

N∑

j=0

( µn, j

µn, j+1

) D−2
2
) 1

2
.

An application of Lemma 2.20 (taking η > 0 smaller if needed) together with the
above and (5.7) yields that /σn = /ιn and moreover that ρn 4 µn,1 4 . . . µn,N 4
ρ(cn)4 cn . In fact, we have |λn, j/µn, j − 1| ! θ(η) for θ(η) as in Lemma 2.20 and
thus by (5.7) we have,

‖u(cn)− u∗(cn)−W(/σn, /µn)‖2E(ρn ,∞) +
N∑

j=0

( µn, j

µn, j+1

) D−2
2 = on(1).

Since ρn 4 µn,1 and µn,N 4 ρ(cn) we also have,

‖u∗(cn)+W(/ιn, /µn)‖E(0,ρn) = on(1).

From the previous three displayed equations we can conclude that ‖vn‖E 5 η, proving
the claim, and establishing the contradiction. 89

In the remaining part of the paper, we argue by contradiction, fixing K to be the
number provided by Lemma 5.6.We also let η, εn, an and bn be some choice of objects
satisfying the requirements of Definition 5.5. We fix choices of signs and scales for
the N − K “exterior” bubbles provided by Definition 5.1 in the following lemma.

Remark 5.8 For each collision interval there exists a time cn ∈ [an, bn]with d(cn) ≥ η

and we may assume without loss of generality that d(an) = d(bn) = εn and d(t) ≥ εn
for each t ∈ [an, bn]. Indeed, given some initial choice of [an, bn] ∈ CK (η, εn), we
can find an ≤ ãn < cn and cn < b̃n ≤ bn so that d(an) = d(bn) = εn and d(t) ≥ εn
for each t ∈ [̃an, b̃n]. Just set an ≤ ãn := inf{t ≤ cn | d(t) ≥ εn} and similarly for
b̃n .

Similarly, given some initial choice εn → 0, η > 0 and intervals [an, bn] ∈
CK (η, εn)we are free to “enlarge” εn by choosing some other sequence εn ≤ ε̃n → 0,
and new collision subintervals [̃an, b̃n] ⊂ [an, bn]∩CK (η, ε̃n) as in the previous para-
graph. We will enlarge our initial choice of εn in this fashion several times over the
course of the proof.

Lemma 5.9 Let K ≥ 1 be the number given by Lemma 5.6, and let η, εn, an and
bn be some choice of objects satisfying the requirements of Definition 5.5. Then
there exist a sequence /σn ∈ {−1, 1}N−K , a function /µ = (µK+1, . . . , µN ) ∈
C1(∪n∈N[an, bn]; (0,∞)N−K ), a sequence νn → 0, and a sequence mn ∈ Z, so
that defining the function,

ν : ∪n∈N[an, bn]→ (0,∞), ν(t) := νnµK+1(t), (5.9)

we have,

lim
n→∞ sup

t∈[an ,bn ]

(
dK (t; ν(t))+ ‖u(t)‖E(ν(t)≤r≤2ν(t))

)
= 0, (5.10)
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and defining w(t), h(t) for t ∈ ∪n[an, bn] by

w(t) = (1− χν(t))(u(t)− u∗(t)) =
N∑

j=K+1

σn, jWµ j (t) + h(t), (5.11)

we have, w(t), h(t) ∈ E, and

lim
n→∞ sup

t∈[an ,bn ]

(
‖h(t)‖2E +

( ν(t)
µK+1(t)

) D−2
2 +

N∑

j=K+1

( µ j (t)
µ j+1(t)

) D−2
2
)
= 0,

(5.12)

with the convention that µN+1(t) = t . Finally, ν(t) satisfies the estimate,

lim
n→∞ sup

t∈[an ,bn ]

∣∣ν′(t)
∣∣ = 0. (5.13)

Remark 5.10 One should think of ν(t) as the scale that separates the N −K “exterior”
bubbles, which are defined continuously on the union of the collision intervals [an, bn]
from the K “interior” bubbles that are coherent at the endpoints of [an, bn], but come
into collision somewhere inside the interval and lose their shape. In the case K = N ,
there are no exterior bubbles, µK+1(t) = t and νn → 0 is chosen using (5.1).

Proof By Definition 5.1 for each n we can find scales ρK (t) 4 µ̃K+1(t) 4 · · · 4
µ̃N (t) 4 t and signs /σ (t) ∈ {−1, 1}N−k for t ∈ [an, bn], such that defining hρK (t)
for r ∈ (ρK (t),∞) by

u(t)− u∗(t) = W(/σ (t), /̃µ(t))+ hρK (t)

we have,

d(t; ρK (t)) 5 ‖hρK (t)‖2E(ρK (t),∞) +
N∑

j=K

( µ̃ j (t)
µ̃ j+1(t)

) D−2
2 ! ε2n , (5.14)

keeping the convention µ̃K (t) := ρK (t), µ̃N+1(t) := t . Using limn→∞ supt∈[an ,bn ]
dK (t; ρK (t)) = 0 and the fact that

lim
n→∞ sup

t∈[an ,bn ]
‖W(/σ (t), /̃µ(t))‖E(αnµ̃K+1(t)≤r≤βnµ̃K+1(t)) = 0,

for any two sequence αn 4 βn 4 1, we can choose a sequence νn → 0 with

ρK (t) ≤ νnµ̃K+1(t), and lim
n→∞ sup

t∈[an ,bn ]
‖u(t)− u∗(t)‖E( 14 νnµ̃K+1(t)≤4νnµ̃K+1(t))

= 0,

(5.15)
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and define ν̃(t) = νnµ̃K+1(t). Thus, defining w̃(t), h̃(t) ∈ E for t ∈ ∪n[an, bn], by

w̃(t) := (1− χν̃(t))(u(t)− u∗(t)) =
N∑

j=K+1

σ j (t)W µ̃ j (t) + h̃(t)

we have using (5.14),

sup
t∈[an ,bn ]

(
‖h̃(t)‖2E +

N∑

j=K

( µ̃ j (t)
µ̃ j+1(t)

) D−2
2
)
≤ θ2n (5.16)

for some sequence θn → 0. We invoke Lemma 2.20 and continuity of the flow to
conclude that for each n, the sign vector /σ (t) = /σn is independent of t ∈ [an, bn],
and the functions µ̃K+1(t), . . . , µ̃N (t) can be adjusted to be continuous functions of
t . However, in the next sections we require differentiability of the function µ̃K+1(t),
so we must modify it slightly.

Given a vector /µ(t) = (µK+1(t), . . . µN (t)), set,

w(t, /µ(t)) := (1− χνnµK+1(t))(u(t)− u∗(t)).

Fixing t and suppressing it in the notation, and setting up for an argument as in the
proof of Lemma 2.17, define

F(h, /µ) := h − (w(·, /̃µ)−W(/σn, /̃µ))+ w(·, /µ)−W(/σn, /µ)

and note that F(0, /̃µ) = 0. Moreover,

‖F(h, /µ)‖H ! ‖h‖H +
N∑

j=K+1

∣∣∣∣
µ j

µ̃ j
− 1

∣∣∣∣ .

Define,

G(h, /µ) :=
( 1
µK+1

〈
ZµK+1 | F(h, /µ)

〉
, . . . ,

1
µN

〈
ZµN | F(h, /µ)

〉 )

and thus G(0, /̃µ) = (0, . . . , 0). Following the same scheme as the proof of
Lemma 2.17 we obtain via Remark 2.19 a mapping ς : BH (0;C0θn)→ (0,∞)N−K

such that for each h ∈ BH (0;C0θn) we have

∣∣ς j (h)/µ̃ j − 1
∣∣ ! θn

and such that

G(h, /µ) = 0⇐⇒ /µ = ς(h).
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Using (5.16) we define

h := F (̃h, ς (̃h)), /µ := ς (̃h).

By construction we then have,

w(t, /µ(t)) = (1− χν(t))(u(t)− u∗(t)) = W(/σn, /µ(t))+ h(t)

for ν(t) := νnµK+1(t), and we define ḣ by

ḣ(t) := ẇ(t, /µ(t)).

Then for each j = K + 1, . . . , N ,

sup
t∈[an ,bn ]

(
‖h(t)‖2E +

N∑

j=K

( µ j (t)
µ j+1(t)

) D−2
2
)

! θ2n , 0 =
〈
Zµ j (t) | h(t)

〉
. (5.17)

Note that (5.10) follows from the above and from (5.1). The point is that we can now
use orthogonality conditions above to deduce the differentiability of µ(t). Indeed,
noting the identity,

∂t h(t) = ∂tw(t, /µ(t))− ∂tW(/σn, /µ(t))

= µ′K+1(t)

µK+1(t)
(r∂rχ)(·/ν(t))

(
u(t)− u∗(t))+ ḣ(t)+

N∑

j=K+1

σn, jµ
′
j (t).Wµ j (t),

differentiation of the j th orthogonality condition for h(t) gives for each j = K +
1, . . . , N

σn, jµ
′
j (t) 〈Z | .W 〉+

∑

i <= j,K+1≤i≤N
σn,iµ

′
i (t)

〈
Zµ j (t) | .Wµi (t)

〉

+
µ′K+1(t)

µK+1(t)

〈
Zµ j (t) | (r∂rχ)(·/ν(t))

(
u(t)− u∗(t)

)〉
− µ′j (t)

〈
[r.Z]µ j (t) | r−1h

〉

= −
〈
Zµ j (t) | ḣ(t)

〉
,

(5.18)

which, using (5.15) and (5.17), is a diagonally dominant first order differential system
for /µ(t). Fix any t0 ∈ ∪n[an, bn] so that (5.17) holds at the initial data /µ(t0). The
existence and uniqueness theorem gives a unique solution /µode ∈ C1(J ) for J : t0
a sufficiently small neighborhood. As the scales were uniquely defined using the
implicit function theorem at each fixed t and the solution of the ODE preserves the
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orthogonality conditions, we must have /µ(t) = /µode(t). Hence /µ(t) ∈ C1. Finally,
inverting (5.18) we obtain the estimates,

∣∣∣µ′j (t)
∣∣∣ ! ‖ḣ‖L2 ! θn .

Using the above with j = K + 1 yields (5.13). This completes the proof. 89

We require a few additional facts related to the scale ν(t). Observe that if tn ∈
[an, bn] and ν(tn) ≤ Rn 4 µK+1(tn), then

lim
n→∞‖u(tn)‖E(Rn ,2Rn) = 0. (5.19)

Also, if µn is a positive sequence such that limn→∞ δµn (tn) = 0, then

lim
n→∞‖u(tn)‖E( 12µn ,µn)

= 0. (5.20)

Importantly, this choice of ν(t) gives us a way of relating the localized distance δR
from Section 3 with the global distance d on collision intervals.

Lemma 5.11 There exists a constant η0 > 0 having the following property. Let tn ∈
[an, bn] and let µn be a positive sequence satisfying the conditions:

(i) limn→∞
µn

µK+1(tn)
= 0,

(ii) µn ≥ ν(tn) or ‖u(tn)‖E(µn ,ν(tn)) ≤ η0,
(iii) limn→∞ δµn (tn) = 0.

Then limn→∞ d(tn) = 0.

Proof Let Rn be a sequence such that µn 4 Rn 4 µK+1(tn). Without loss of gener-
ality, we can assume Rn ≥ ν(tn), since it suffices to replace Rn by ν(tn) for all n such
that Rn < ν(tn). Let Mn,/ιn, /λn be parameters such that

‖u(tn)−W(/ιn, /λn)‖2H(r≤µn)
+ ‖u̇(tn)‖2L2(r≤µn)

+
Mn−1∑

j=1

( λn, j

λn, j+1

) D−2
2 → 0,

(5.21)

which exist by the definition of the localized distance function (3.1). Set

u(i)n := χ 1
2µn

u(tn),

u(o)n := (1− χRn )u(tn),

u(m)
n := u(tn)− u(i)n − u(o)n .

Invoking (5.20), we have from (5.21) that

lim
n→∞‖u

(i)
n −W(/ιn, /λn)‖E = 0.
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Assumption (ii), together with (5.20) and (5.19), yields

‖u(m)
n ‖E ≤ 2η0, for all n large enough.

We also have, again using (5.20) and (5.19),

lim sup
n→∞

∣∣E(u(tn))− E(u(i)n )− E(u(m)
n )− E(u(o)n )

∣∣ = 0.

Since limn→∞ E(u(o)n ) = (N − K )E(W)+ E(u∗) and 0 ≤ E(u(m)
n ) ≤ 2η0, the con-

vergence above yieldsMn = K and limn→∞ E(u(m)
n ) = 0.UsingSobolev embedding,

we get limn→∞ ‖u(m)
n ‖E = 0, and the result follows. 89

5.2 Basic Modulation

On some subintervals of the collision interval [an, bn], mutual interactions between the
bubbles dominate the evolution of the solution. We justify themodulation inequalities
allowing to obtain explicit information on the solution on such time intervals. We
stress that in our current approach the modulation concerns only the bubbles from 1
to K .

Lemma 5.12 (Basic modulation, D ≥ 6) There exist C0, η0 > 0 and a sequence
ζn → 0 such that the following is true.

Let J ⊂ [an, bn] be an open time interval such that d(t) ≤ η0 for all t ∈ J .
Then, there exist /ι ∈ {−1, 1}K (independent of t ∈ J ), modulation parameters /λ ∈
C1(J ; (0,∞)K ), and g(t) ∈ E satisfying, for all t ∈ J ,

χ(·/ν(t))u(t) = W(/ι, /λ(t))+ g(t), (5.22)

0 =
〈
Zλ j (t) | g(t)

〉
, (5.23)

where ν(t) is as in (5.9). Define the stable/unstable components a−j (t), a
+
j (t) of g(t)

by

a±j (t) :=
〈
α±
λ j (t)

| g(t)
〉
,

where α±
λ is as in (2.10).

The estimates,

C−10 d(t)− ζn ≤ ‖g(t)‖E +
K−1∑

j=1

( λ j (t)
λ j+1(t)

) D−2
4 ≤ C0d(t)+ ζn, (5.24)
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and

‖g(t)‖E +
∑

j /∈S

( λ j (t)
λ j+1(t)

) D−2
4 ≤ C0 max

j∈S

(
λ j (t)

λ j+1(t)

) D−2
4

+ max
1≤i≤K

|a±i (t)| + ζn,

(5.25)

hold, where

S :=
{
j ∈ {1, . . . , K − 1} : ι j = ι j+1

}
.

Moreover, for all j ∈ {1, . . . , K } and t ∈ J ,

∣∣∣λ′j (t)
∣∣∣ ≤ C0‖ġ(t)‖L2 + ζn (5.26)

and,

∣∣∣ι jλ′j (t)+
1

〈Z | W 〉
〈
Zλ j (t) | ġ(t)

〉∣∣∣

≤ C0‖g(t)‖2E + C0

(( λ j (t)
λ j+1(t)

) D−4
2 +

(λ j−1(t)
λ j (t)

) D−4
2
)
‖ġ(t)‖L2 + ζn,

(5.27)

where, by convention, λ0(t) = 0, λK+1(t) =∞ for all t ∈ J . Finally, we have

∣∣∣
d
dt

a±j (t)∓
κ

λ j (t)
a±j (t)

∣∣∣ ≤ C0

λ j (t)
d(t)2 + ζn

λ j
. (5.28)

Remark 5.13 We stress that the scaling in α±
λ is Ḣ−1 × L2-invariant so as to ensure

that

|a±j (t)| ! ‖g(t)‖E.

We also remark that everything in Lemma 5.12, except for the estimates (5.27)
and (5.28), holds without change in the lower dimensions D = 4, 5, and we refer
to the appendix for suitable modifications of λ j (t), a±j (t) in those cases.

Proof of Lemma 5.12 Step 1. (The decomposition (5.22) and the estimates (5.24)
and (5.25).)

First, observe that by Lemma 5.9,

sup
t∈[an ,bn ]

|E(u(t)− u∗(t); ν(t),∞)− (N − K )E(W)| = on(1) as n→∞.
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Since E(u) = E(u∗) + NE(W) it follows from the above along with (5.10), (5.1),
and (5.2) that

sup
t∈[an ,bn ]

|E(u(t); 0, 2ν(t))− K E(W)| = on(1) as n→∞. (5.29)

Using continuity of the flow, the fact that d(t) ≤ η0 on J , Lemma 2.20, and by taking
η0 > 0 small enough, we obtain continuous functions /̃λ(t) = (̃λ1(t), . . . , λ̃N (t)) and
signs /ι independent of t ∈ J , so that

u(t)− u∗(t) = W(/ι, /̃λ(t))+ g̃(t),

and,

d(t)2 ≤ ‖ g̃(t)‖2E +
N∑

j=1

( λ̃ j (t)

λ̃ j+1(t)

) D−2
2 ≤ 4d(t)2, (5.30)

with as usual the convention that λ̃N+1(t) = t . Recalling the properties of w(t) :=
(1 − χν(t))(u(t) − u∗(t)) from Lemma 5.9, in particular (5.9) and (5.12), and using
Lemma 2.20 we see from the above that we must have,

( ν(t)

λ̃K+1(t)

) D−2
2 ! d(t)2 + on(1) as n→∞, (5.31)

where here and in the remainder of this argument we use the notation on(1) to mean a
quantity that tends to zero as n→∞ that can be chosen independently of t ∈ [an, bn].
Using similar logic along with (5.10) we see that we also have,

( λ̃K (t)
ν(t)

) D−2
2 ! d(t)2 + on(1) as n→∞. (5.32)

Together, the previous two lines mean, roughly speaking, that there are K bubbles to
the left of the curve ν(t) and N − K bubbles to the right of the curve ν(t).

For the purposes of this argument we denote by

v(t) := u(t)χν(t), w(t) := (u(t)− u∗(t))(1− χν(t)). (5.33)

We may express v(t) on J ⊂ [an, bn] as follows,

v(t) =
K∑

j=1

ι jW λ̃ j (t) − (1− χν(t))

K∑

j=1

ι jW λ̃ j (t)

+ χν(t)

N∑

j=K+1

ι jW λ̃ j (t) + χν(t)u∗(t)+ χν(t) g̃(t).
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Using (5.1) along with (5.30) and (5.32) we see that,

‖v(t)−
K∑

j=1

ι jW λ̃ j (t)‖
2
E +

K∑

j=1

( λ̃ j (t)

λ̃ j+1(t)

) D−2
2 ! d(t)2 + on(1) as n→∞.

This means that

d(v(t)) ! d(t)+ on(1) as n→∞,

where d(v) is as in the notation of Lemma 2.17. By taking η0 > 0 small enough, and
n large enough, we may apply Lemma 2.17, (as well as Lemma 2.20, which ensures
the signs /ι stay fixed) at each t ∈ J , to obtain unique g(t) ∈ E, /λ(t) ∈ (0,∞)K so
that

v(t) = W(/ι, /λ(t))+ g(t), 0 =
〈
Zλ j (t) | g(t)

〉
, ∀ j = 1, . . . , K , (5.34)

where in this formula /ι, /λ are K -vectors, i.e., /ι = (ι1, . . . , ιK ), /λ(t) = (λ1(t), . . . ,
λK (t)). We note the estimate,

d(v(t))2 ≤ ‖g(t)‖2E +
K−1∑

j=1

( λ j (t)
λ j+1(t)

) D−2
2 +

(λK (t)
ν(t)

) D−2
2

≤ 4d(v(t))2 + d(t)2 + on(1)

! d(t)2 + on(1), (5.35)

as n → ∞. Here the estimate for λK (t)
ν(t) is due to (5.32) and the way /λ(t) is chosen

in the proof of Lemma 2.17 (here we refer the reader to [41, Proof of Lemma 2.24]).
Next, using (5.29) we see that

E(v) ≤ K E(W)+ on(1).

Therefore, the estimate (2.16) from Lemma 2.17 applied here yields,

‖g(t)‖2E ! sup
j∈S

( λ j (t)
λ j+1(t)

) D−2
2 + max

1≤i≤K
|a±j (t)| + on(1)

where S = { j ∈ {1, . . . , K − 1} : ι j = ι j+1}, proving (5.25).
Next, we prove the lower bound in (5.24). Note the identity,

u(t)− u∗(t) = v(t)+ w(t)− χν(t)u∗(t)

=
K∑

j=1

ι jWλ j (t) +
N∑

j=K+1

σn, jWµ j (t) + g(t)+ h(t)− χν(t)u∗(t),

(5.36)
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which follows from (5.33) and (5.11). First we prove that (ιK+1, . . . , ιN ) =
(σK+1, . . . , σN ). From (5.11) and (5.12) we see that

‖w(t)−
N∑

j=K+1

σn, jWµ j (t)‖2E +
( ν(t)
µK+1(t)

) D−2
2

+
N∑

j=K+1

( µ j (t)
µ j+1(t)

) D−2
2 = on(1) as n→∞.

On the other hand, we see from (5.31) that,

‖w(t)−
N∑

j=K+1

ι jW λ̃ j (t)‖
2
E +

( ν(t)

λ̃K+1(t)

) D−2
2

+
N∑

j=K+1

( λ̃ j (t)

λ̃ j+1(t)

) D−2
2 ! d(t)2 + on(1).

Hence, using Lemma 2.20 we see that for any θ0 > 0 we may take η0 > 0 small
enough so that (ιK+1, . . . , ιN ) = (σK+1, . . . , σN ), and in addition we have

∣∣∣∣
λ̃ j (t)
µn, j (t)

− 1
∣∣∣∣ ≤ θ0 ∀ j = K + 1, . . . , N .

The above, together with (5.12) implies that

N∑

j=K+1

( λ̃ j (t)

λ̃ j+1(t)

) D−2
2 = on(1) as n→∞.

We may thus rewrite (5.36) as

u(t)− u∗(t) =
K∑

j=1

ι jWλ j (t) +
N∑

j=K+1

ι jWµ j (t) + g(t)+ h(t)− χν(t)u∗(t).

Noting that

sup
t∈[an ,bn ]

‖u∗(t)χν(t)‖E = on(1) as n→∞,

the previous line together with (5.35) and (5.12) imply that,

d(t)2 ! d(v(t))2 + on(1) ! ‖g(t)‖2E +
K−1∑

j=1

( λ j (t)
λ j+1(t)

) D−2
2 + on(1) as n→∞,
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which proves the lower bound in (5.24).
Step 2. (The dynamical estimates (5.26), (5.27), and (5.28).) Momentarily assum-

ing that /λ ∈ C1(J ) (wewill justify this assumptionbelow)we record the computations,

∂tv(t) = ġ(t)− ν′(t)
ν(t)

(r∂rχ)(·/ν(t))u(t), ∂tW(/ι, /λ(t)) = −
K∑

j=1

ι jλ
′
j (t).Wλ j (t),

which lead to the expression,

∂t g(t) = ġ(t)+
K∑

j=1

ι jλ
′
j (t).Wλ j (t) − u(t)

ν′(t)
ν(t)

(r∂rχ)(·/ν(t)).

We differentiate the orthogonality conditions (5.23) for each j = 1, . . . , K ,

0 = −
λ′j
λ j

〈
.Zλ j | g

〉
+
〈
Zλ j | ∂t g

〉

= −
λ′j
λ j

〈
.Zλ j | g

〉
+
〈
Zλ j | ġ

〉
+

K∑

6=1

ι6λ
′
6

〈
Zλ j | .Wλ6

〉

− ν′

ν

〈
Zλ j | u(r∂rχ)(·/ν)

〉
,

which we rearrange into the system,

ι jλ
′
j

(
〈Z | .W 〉 − λ−1j

〈
.Zλ j | g

〉)
+
∑

i <= j

ιiλ
′
i

〈
Zλ j | .Wλi

〉

= −
〈
Zλ j | ġ

〉
+ ν′

ν

〈
Zλ j | u(r∂rχ)(·/ν)

〉
. (5.37)

This is a diagonally dominant system, hence invertible, and we arrive at the estimate,

∣∣∣λ′j
∣∣∣ ! ‖ġ‖L2 + on(1) j = 1, . . . , K , (5.38)

after noting the estimates,

∣∣∣
〈
Zλ j | ġ

〉∣∣∣ ! ‖ġ‖L2

∣∣∣∣
ν′(t)
ν(t)

〈
Zλ j | u(t)(r∂rχ)(·/ν(t))

〉∣∣∣∣ !
∣∣ν′

∣∣ λ j

ν
‖r−1u(t)(r∂rχ)(·/ν(t))‖L2 = on(1),

where the last line follows from (5.13). Lastly, we note that the system (5.37) implies
that /λ(t) is aC1 function on J . Indeed, arguing as in the end of the proof of Lemma 5.9,
let t0 ∈ J be any time and let /λ(t0) be defined as in (5.34). Using the smallness (5.35)
at time t0, the system (5.37) admits a unique C1 solution /λode(t) in a neighborhood of
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t0. Due to theway the system (5.37) was derived, the orthogonality conditions in (5.34)
hold with /λode(t). Since /λ(t)was obtained uniquely via the implicit function theorem,
we must have /λ(t) = /λode(t), which means that /λ(t) is C1.

The estimates (5.27) are immediate from (5.37) using (5.38) along with the esti-
mates,

|
〈
Zλ j | .Wλi

〉
| !






(
λ j
λi

) D
2 if j < i

(
λi
λ j

) D−4
2 if j > i

∣∣∣λ−1j
〈
.Zλ j | g

〉 ∣∣∣ ! ‖g‖H ,

using here that D − 4 ≥ D−2
2 as long as D ≥ 6.

Lastly, we consider the estimates (5.28). We first write the equation for g(t).

∂t g = ∂tv − ∂tW(/ι, /λ).

Noting that

∂tv = χ(·/ν)∂tu −
ν′

ν
(r∂rχ)(·/ν)u

= χ(·/ν)J ◦ D E(u)− ν′

ν
(r∂rχ)(·/ν)u

= J ◦ D E(χ(·/ν)u)+
(
χ(·/ν)J ◦ D E(u)− J ◦ D E(χ(·/ν)u)

)

− ν′

ν
(r∂rχ)(·/ν)u,

we arrive at,

∂t g = J ◦ D E(W(/ι, /λ)+ g)− ∂tW(/ι, /λ)

+
(
χ(·/ν)J ◦ D E(u)− J ◦ D E(χ(·/ν)u)

)
− ν′

ν
(r∂rχ)(·/ν)u.

(5.39)

We compute,

d
dt

a−j =
〈
∂tα
−
λ j

| g
〉
+
〈
α−λ j

| ∂t g
〉
.

Expanding the first term on the right gives,

〈
∂tα
−
λ j

| g
〉
= κ

2

〈
∂t (λ

−1
j Yλ j ) | g

〉
+ 1

2

〈
∂t (Yλ j ) | ġ

〉

= −κ

2

λ′j
λ j

〈
λ−1j Yλ j +

1
λ j

(.Y)λ j | g
〉
− 1

2

λ′j
λ j

〈
(.Y)λ j ) | ġ

〉
,
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and thus,

∣∣∣
〈
∂tα
−
λ j

| g
〉∣∣∣ ! 1

λ j
(d(t)2 + on(1)).

We use (5.39) to expand the second term,

〈
α−λ j

| ∂t g
〉
=
〈
α−λ j

| J ◦ D2 E(W(/ι, /λ))g
〉

+
〈
α−λ j

| J ◦
(
D E(W(/ι, /λ)+ g)− D2 E(W(/ι, /λ))g

)〉

−
〈
α−λ j

| ∂tW(/ι, /λ)
〉

+
〈
α−λ j

|
(
χ(·/ν)J ◦ D E(u)− J ◦ D E(χ(·/ν)u)

)〉

− ν′

ν

〈
α−λ j

| (r∂rχ)(·/ν)u
〉
.

(5.40)

By (2.11) the first term on the right gives the leading order,

〈
α−λ j

| J ◦ D2 E(W(/ι, /λ))g
〉
= − κ

λ j
a−j .

Next, we expand,

〈
α−λ j

| J ◦
(
D E(W(/ι, /λ)+ g)− D2 E(W(/ι, /λ))g

)〉

= −1
2

〈
Yλ j

| f (W(/ι, /λ)+ g)− f (W(/ι, /λ))− f ′(W(/ι, /λ))g
〉

− 1
2

〈
Yλ j

| f (W(/ι, /λ))−
K∑

i=1

ιi f (Wλi )
〉
.

The first line satisfies,

∣∣∣
〈
Yλ j

| f (W(/ι, /λ)+ g)− f (W(/ι, /λ))− f ′(W(/ι, /λ))g
〉∣∣∣ ! 1

λ j
(d(t)2 + on(1)).

Noting that f (W(/ι, /λ))−∑K
i=1 ιi f (Wλi ) = fi(/ι, /λ), the same argument used to prove

Lemma 2.21 gives,

∣∣∣
〈
Yλ j

| fi(/ι, /λ)
〉∣∣∣ ! 1

λ j

(( λ j

λ j+1

) D−2
2 +

(λ j−1
λ j

) D−2
2
)

! 1
λ j

(d(t)2 + on(1)).
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Consider now the third line in (5.40):

−
〈
α−λ j

| ∂tW(/ι, /λ)
〉
= κ

2
ι j
λ′j
λ j

〈
Yλ j | .Wλ j

〉
+
∑

i <= j

ιi
κ

2
λ′i
λ j

〈
Yλ j | .Wλi

〉

=
∑

i <= j

ιi
κ

2
λ′i
λ j

〈
Yλ j | .Wλi

〉

where in the last equality we used the vanishing of
〈
Y | .W

〉
. Noting the estimates

∣∣∣
〈
Yλ j | .Wλi

〉∣∣∣ !






(
λi
λ j

) D−4
2 if i < j

(
λi
λ j

) D
2 if i > j,

and using here the fact that D ≥ 6, we obtain,

∣∣∣
〈
α−λ j

| ∂tW(/ι, /λ)
〉∣∣∣ ! 1

λ j
(d(t)2 + on(1)).

Finally, using (5.10) and (5.13) we see that the last two lines of (5.40) satisfy,

∣∣∣
〈
α−λ j

|
(
χ(·/ν)J ◦ D E(u)− J ◦ D E(χ(·/ν)u)

)〉∣∣∣ ! 1
λ j

on(1),

∣∣∣
ν′

ν

〈
α−λ j

| (r∂rχ)(·/ν)u
〉∣∣∣ ! 1

λ j
on(1).

This completes the proof. 89

5.3 RefinedModulation

Next, our goal is to gain precise dynamical control of the modulation parameters in
the spirit of [36, 40]. The idea is to construct a virial correction to the modulation
parameters (see (5.50)). The idea of adding a correction term based on underlying
symmetries (in our case scaling) to modulation parameters originates in Raphaël and
Szeftel [70, Proposition 4.3]. We start by finding a suitable truncation of the function
1
2r

2, similar to [37, Lemma 3.10]. Since here we may have an arbitrary number of
bubbles, we need to localize this function both away from r = 0 and away from
r =∞.

Lemma 5.14 For any c > 0 and R > 1 there exists a function q = qc,R ∈ C4((0,∞))

having the following properties:

(P1) q(r) = 1
2r

2 for all x ∈ RD such that r ∈ [R−1, R],
(P2) there exists R̃ > 0 (depending on c and R) such that q(r) = const for r ≥ R̃

and q(r) = const for r ≤ R̃−1,
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(P3) |q ′(r)| ! r and |q ′′(r)| ! 1 for all r ∈ (0,∞), with constants independent of c
and R,

(P4) q ′′(r)+ D−1
r q ′(r) ≥ −c for all r ∈ (0,∞),

(P5) |#2q(r)| ≤ cr−2,

(P6)
∣∣∣
(
q ′(r)
r

)′∣∣∣ ≤ cr−1 for all r > 0.

Proof See [41, Proof of Lemma 4.13]. The exact same function can be used here. 89

Definition 5.15 (Localized virial operator) For each λ > 0 we set

A(λ)g(r) := q ′
( r
λ

)
· ∂r g(r)+

D − 2
2D

1
λ
#q

( r
λ

)
g(r), (5.41)

A(λ)g(r) := q ′
( r
λ

)
· ∂r g(r)+

1
2
1
λ
#q

( r
λ

)
g(r) (5.42)

where we use the notation # = ∂2r + D−1
r ∂r in the remainder of the paper. These

operators depend on c and R as in Lemma 5.14.

Note the similarity between A and 1
λ. and between A and 1

λ.. For technical reasons
we introduce the space

X := {g ∈ E | ∂r g ∈ H}.

Lemma 5.16 (Localized virial estimates) [37, Lemma 3.12] For any c0 > 0 there exist
c1, R1 > 0, so that for all c, R as Lemma 5.14 with c < c1, R > R1 the operators
A(λ) and A0(λ) defined in (5.41) and (5.42) have the following properties.

• The families {A(λ) : λ > 0}, {A(λ) : λ > 0}, {λ∂λA(λ) : λ > 0} and {λ∂λA(λ) :
λ > 0} are bounded inL (Ḣ1; L2), with the bound depending only on the choice
of the function q(r).

• Let g1 = W(/ι, /λ) be an M-bubble configuration and let g2 ∈ X. Then, for each
λ j , j ∈ {1, . . . ,M} we have

〈
A(λ j )g1 | ( f (g1 + g2)− f (g1)− f ′(g1)g2

〉

= −
〈
A(λ j )g2 | f (g1 + g2)− f (g1)

〉
.

(5.43)

• For all g ∈ X we have

〈
A(λ)g | −(∂2r + D − 1

r
∂r )g

〉
≥ −c0

λ
‖g‖2E +

1
λ

∫ Rλ

R−1λ
(∂r g)2 r D−1 dr .(5.44)
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• For λ, µ > 0 with either λ/µ4 1 or µ/λ4 1,

‖..Wλ − A(λ).Wλ‖L2 ≤ c0, (5.45)

‖
(1
λ
.− A(λ)

)
Wλ‖

L
2D
D−2
≤ c0

λ
, (5.46)

‖A(λ)Wµ‖
L

2D
D−2

+ ‖A(λ)Wµ‖
L

2D
D−2

! 1
λ
min{(λ/µ) D−2

2 , (µ/λ)
D−2
2 }

‖A(λ).Wµ‖L2 + ‖A(λ).Wµ‖L2 ! min{(λ/µ) D−2
2 , (µ/λ)

D−2
2 }. (5.47)

• Lastly, the following localized coercivity estimate holds. Fix any smooth function
Z ∈ L2 ∩ X such that 〈Z | .W 〉 > 0 and 〈Z | Y〉 = 0. For any g ∈ E, λ > 0 with〈
g | Zλ

〉
= 0,

1
λ

∫ Rλ

R−1λ
(∂r g)2r D−1 dr −

1
λ

∫ ∞

0

1
D
#q

( r
λ

)
f ′(Wλ)g2 r D−1 dr

≥ −c0
λ
‖g‖2E −

C0

λ

〈1
λ
Yλ | g

〉2
.

(5.48)

Proof See [37, Lemma 3.12] for the proof for D = 6 and [41, Lemma 4.13] for the
case of k-equivariant wave maps. That argument generalizes in a straightforward way
to all D ≥ 4. 89

The modulation parameters /λ(t) defined in Lemma 5.12 are imprecise proxies for
the dynamics in the cases 3 ≤ D ≤ 6 due to the fact that the orthogonality conditions
were imposed relative to Z <= .W (note that we will treat the cases D = 3, 4, 5
in the appendix). Indeed, we use 5.23 primarily to ensure coercivity, and thus the
estimate (5.25), as well as the differentiability of /λ(t). To access the dynamics of (1.1)
we introduce a correction /ξ(t) defined as follows. For each t ∈ J ⊂ [an, bn] as in
Lemma 5.12 set,

ξ j (t) :=





λ j (t) if D ≥ 7
λ j (t)− ι j

‖.W‖2
L2

〈
χ(·/Lλ j (t)).Wλ j (t) | g(t)

〉
if D = 6 (5.49)

for each j = 1, . . . , K − 1, and where L > 0 is a large parameter to be determined
below. (Note that for j = K we only require the brutal estimate (5.26)).We require yet
another modification, since the dynamics of (1.1) truly enter after taking two deriva-
tives of the modulation parameters and it is not clear how to derive useful estimates
from the expression for ξ ′′j (t). So we introduce a refined modulation parameter, which
we view as a subtle correction to ξ ′j (t). For each t ∈ J ⊂ [an, bn] as in Lemma 5.12
and for each j ∈ {1, . . . , K } define,

β j (t) := −
ι j

‖.W‖2L2

〈
.Wλ j (t) | ġ(t)

〉
− 1

‖.W‖2L2

〈
A(λ j (t))g(t) | ġ(t)

〉
. (5.50)
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The function β j (t) is identical to the function β j (t) in [41] and similar to the function
called b(t) in [40].

Lemma 5.17 (Refined modulation) Let D ≥ 6 and c0 ∈ (0, 1). There exist η0 =
η(c0) > 0, L0 = L0(c0), as well as c = c(c0) > 0, R = R(c0) > 1 as in Lemma 5.14,
a constant C0 > 0, and a decreasing sequence δn → 0 so that the following is true.
Let J ⊂ [an, bn] be an open time interval with

δn ≤ d(t) ≤ η0

for all t ∈ J . Let S := { j ∈ {1, . . . , K − 1} | ι j = ι j+1}. Then, for all t ∈ J ,

‖g(t)‖E +
∑

i /∈S

(
λi (t)/λi+1(t)

) D−2
4 ≤ C0 max

i∈S
(
λi (t)/λi+1(t)

) D−2
4 + max

1≤i≤K
|a±i (t)|,

(5.51)

and,

1
C0

d(t) ≤ max
i∈S

(
λi (t)/λi+1(t)

) D−2
4 + max

1≤i≤K
|a±i (t)| ≤ C0d(t). (5.52)

Moreover, for all j ∈ {1, . . . , K − 1}, t ∈ J , and L ≥ L0,

|ξ j (t)/λ j (t)− 1| ≤ c0, (5.53)

|ξ ′j (t)− β j (t)| ≤ c0d(t) (5.54)

and,

β ′j (t) ≥
(
ι j ι j+1ω

2 − c0
) 1
λ j (t)

(
λ j (t)

λ j+1(t)

) D−2
2

+
(
−ι j ι j−1ω2 − c0

) 1
λ j (t)

(
λ j−1(t)
λ j (t)

) D−2
2

− c0
λ j (t)

d(t)2 − C0

λ j (t)

(
(a+j (t))

2 + (a−j (t))
2
)
,

(5.55)

where, by convention, λ0(t) = 0, λK+1(t) =∞ for all t ∈ J , and ω2 > 0 is defined
by

ω2 = ω2(D) := D − 2
2D

(D(D − 2))
D
2 ‖.W‖−2L2 > 0. (5.56)

Finally, for each j ∈ {1, . . . , K },
∣∣∣
d
dt

a±j (t)∓
κ

λ j (t)
a±j (t)

∣∣∣ ≤ C0

λ j (t)
d(t)2. (5.57)
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Remark 5.18 Without loss of generality (upon enlarging εn) we can assume that εn ≥
δn so that Lemma 5.17 can always be applied on the time intervals J ⊂ [an, bn] as
long as d(t) ≤ η0 on J (since d(t) ≥ εn for all t ∈ [an, bn]; see Remark 5.8).

Before proving Lemma 5.17 we rewrite the equation satisfied by g(t) in (5.39) in
components as follows,

∂t g(t) = ġ(t)+
K∑

j=1

ι jλ
′
j (t).Wλ j (t) + φ(u(t), ν(t))

∂t ġ(t) = −LWg + fi(ι, /λ)+ fq(/ι, /λ, g)+ φ̇(u(t), ν(t)),
(5.58)

where

φ(u, ν) = −u ν
′

ν
(r∂rχ)(·/ν)

φ̇(u, ν) = −∂t u
ν′

ν
(r∂rχ)(·/ν)− (r2#χ)(·/ν)r−2u

− 2
1
r
(r∂rχ)(·/ν)∂r u + χ(·/ν) f (u)− f (χ(·/ν)u),

(5.59)

which we note are supported in r ∈ (ν,∞), and

fi(/ι, /λ) := f
( K∑

i=1

ιiWλi

)
−

K∑

i=1

ιi f (Wλi )

fq(/ι, /λ, g) = f
( K∑

i=1

ιiWλi + g
)
− f

( K∑

i=1

ιiWλi

)
− f ′

( K∑

i=1

ιiWλi

)
g.

The subscript i above stands for “interaction” and q stands for “quadratic.” For ‖g‖E ≤
1, the term fq(/ι, /λ) satisfies,

‖ fq(/ι, /λ)‖
L

2D
D+2

! ‖g‖2E + ‖g‖
D+2
D−2
E . (5.60)

The proof of (5.60) follows from the pointwise estimates,

| f (x1 + x2)− f (x1)− f ′(x1)x2| ≤ |z2|2 if D = 6

and if D ≥ 7,

| f (x1 + x2)− f (x1)− f ′(x1)x2| ≤
{
|x2|

D+2
D−2 ∀x1, x2 ∈ R

|x1|−
D−6
D−2 |x2|2 if x1 <= 0.

(5.61)
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See [36, Lemma 2.1] for the proof of the previous two estimates.
In one instance it will be convenient to write the equation for ġ as follows,

∂t ġ = #g + fi(/ι, /λ)+ f̃q(/ι, /λ, g)+ φ̇(u, ν) (5.62)

with,

f̃q(/ι, /λ, /g) := f
( K∑

i=1

ιiWλi + g
)
− f

( K∑

i=1

ιiWλi

)
. (5.63)

Proof of Lemma 5.17 First, we prove the estimates (5.51) and (5.52). Let ζn be the
sequence given byLemma5.12 and let δn be any sequence such that ζn/δn → 0 as n→
∞. Using Lemma 5.12, estimate (5.51) follows from (5.25) and the estimate (5.52)
follows from (5.24).

Note also that with this choice of δn and (5.51), the estimate (5.26) leads to,

∣∣∣λ′j (t)
∣∣∣ ! d(t). (5.64)

Next, we treat (5.53), which is only relevant in the case D = 6. From (5.49) we
see that,

|ξ j/λ j − 1| ! |λ−1j
〈
χ(·/Lλ j ).Wλ j | g

〉
|

! ‖g‖L3λ−1j ‖χ(L · /λ j ).Wλ j ‖L 3
2

! (log L)
2
3 ‖g‖E,

which is small by taking η0 sufficiently small (after L is fixed below).
Next we compute ξ ′j (t). For D = 6, from (5.49) we have

ξ ′j = λ′j −
ι j

‖.W‖2
L2

〈
χ(·/Lλ j ).Wλ j | ∂t g

〉

+ ι j

‖.W‖2
L2

λ′j
λ j

〈
(r∂rχ)(·/Lλ j ).Wλ j | g

〉
+ ι j

‖.W‖2
L2

λ′j
λ j

〈
χ(·/Lλ j )..Wλ j | g

〉
.

(5.65)

We examine each of the terms on the right above. The last two terms are negligible. Indeed,
using ‖g‖L3(R6) ! ‖g‖E,

∣∣∣
λ′j
λ j

〈
(r∂rχ)(·/Lλ j ).Wλ j | g

〉∣∣∣ !
∣∣∣λ′j

∣∣∣ ‖g‖L3

( ∫ 2L

2−1L
|.W (r)| 32 r5 dr

) 2
3 ! d(t)2,
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and,

∣∣∣
λ′j
λ j

〈
χ(·/Lλ j )..Wλ j | g

〉∣∣∣ !
∣∣∣λ′j

∣∣∣ ‖g‖L3

∫ 2L

0
|..W (r)| 32 r5 dr

! (1+ log(L))d(t)2.

Using (5.58) in the second term in (5.65) gives

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ∂t g

〉
= − ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ġ

〉

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j |

K∑

i=1

ιiλ
′
i.Wλi

〉

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | φ(u, ν)

〉
.

The first term on the right satisfies,

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ġ

〉
= − ι j

‖.W‖2L2

〈
.Wλ j | ġ

〉

+ ι j

‖.W‖2L2

〈
(1− χ(·/Lλ j )).Wλ j | ġ

〉

= − ι j

‖.W‖2L2

〈
.Wλ j | ġ

〉
+ oL(1)‖g‖E

where the oL(1) term can be made as small as we like by taking L > 0 large.
Using (5.64), the second term yields,

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j |

K∑

i=1

ιiλ
′
i.Wλi

〉
= −λ′j

−
∑

i <= j

ι j ιiλ
′
i

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | .Wλi

〉

+
λ′j

‖.W‖2L2

〈
(1− χ(·/Lλ j )).Wλ j | .Wλ j

〉

= −λ′j + O((λ j−1/λ j )+ (λ j/λ j+1)+ oL(1))d(t).

Finally, the third term vanishes due to the fact that for each j < K , Lλ j 4 λK 4 ν,
and hence

〈
χ(·/Lλ j ).Wλ j | φ(u, ν)

〉
= 0.
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Plugging all of this back into (5.65) we obtain,
∣∣∣ξ ′j (t)+

ι j

‖.W‖2L2

〈
.Wλ j | ġ

〉∣∣∣ ≤ c0d(t) (5.66)

for D = 6, after fixing L > 0 sufficiently large. The same estimate for D ≥ 7, i.e.,
when ξ ′j (t) = λ′j (t), is immediate from (5.27) since in this case we take Z = .W .
Thus (5.66) holds for all D ≥ 6. The estimate (5.54) is then immediate from (5.66),
the definition of β j , and the estimate,

∣∣∣
1

‖.W‖2L2

〈
A(λ j )g | ġ

〉 ∣∣∣ ! ‖g‖2E,

which follows from the first bullet point in Lemma 5.16.
We prove (5.55). We compute,

β ′j =
ι j

‖.W‖2L2

λ′j
λ j

〈
..Wλ j | ġ

〉
− ι j

‖.W‖2L2

〈
.Wλ j | ∂t ġ

〉

− 1

‖.W‖2L2

λ′j
λ j

〈
λ j∂λ j A(λ j )g | ġ

〉
− 1

‖.W‖2L2

〈
A(λ j )∂t g | ġ

〉

− 1

‖.W‖2L2

〈
A(λ j )g | ∂t ġ

〉
.

(5.67)

Using (5.58) we arrive at the expression,

−
〈
.Wλ j | ∂t ġ

〉
=
〈
.Wλ j | (LW − Lλ j )g

〉
−
〈
.Wλ j | fi(ι, /λ)

〉

−
〈
.Wλ j | fq(/ι, /λ, g)

〉
−
〈
.Wλ j | φ̇(u, ν)

〉
,

where in the first term on the right we used that Lλ j.Wλ j = 0. Using (5.58) we
obtain,

−
〈
A(λ j )∂t g | ġ

〉
= −

〈
A(λ j )ġ | ġ

〉
−

K∑

i=1

ιiλ
′
i

〈
A(λ j ).Wλi | ġ

〉
−
〈
A(λ j )φ(u, ν) | ġ

〉

= −ι jλ′j
〈
A(λ j ).Wλ j | ġ

〉
−
∑

i <= j

ιiλ
′
i

〈
A(λ j ).Wλi | ġ

〉
−
〈
A(λ j )φ(u, ν) | ġ

〉

where we used that
〈
A(λ j )ġ | ġ

〉
= 0. Finally, using (5.62) we have,

−
〈
A(λ j )g | ∂t ġ

〉
= −

〈
A(λ j )g | #g

〉
−
〈
A(λ j )g | fi(ι, /λ)

〉

−
〈
A(λ j )g | f̃q(/ι, /λ, g)

〉
−
〈
A(λ j )g | φ̇(u, ν)

〉
.
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Plugging these back into (5.67) and rearranging we have,

‖.W‖2L2β
′
j = −

ι j

λ j

〈
.Wλ j | fi(ι, /λ)

〉
−
〈
A(λ j )g | #g

〉

+
〈
(A(λ j )− A(λ j ))g | f̃q(/ι, /λ, g)

〉

+
〈
.Wλ j | (LW − Lλ j )g

〉
+ ι j

λ′j
λ j

〈( 1
λ j

.− A(λ j )
)
.Wλ j | ġ

〉

−
〈

A(λ j )

K∑

i=1

ιiWλi | fq(/ι, /λ, g)
〉

−
〈
A(λ j )g | f̃q(/ι, /λ, g)

〉

+ι j

〈
(A(λ j )−

1
λ j

.)Wλ j | fq(/ι, /λ, g)
〉
−

λ′j
λ j

〈
λ j∂λ j A(λ j )g | ġ

〉

+
∑

i <= j

ιi

〈
A(λ j )Wλi | fq(/ι, /λ, g)

〉

−
∑

i <= j

ιiλ
′
i

〈
A(λ j ).Wλi | ġ

〉
−
〈
A(λ j )g | fi(ι, /λ)

〉

−ι j
〈
.Wλ j | φ̇(u, ν)

〉
−
〈
A(λ j )φ(u, ν) | ġ

〉
−
〈
A(λ j )g | φ̇(u, ν)

〉
.

(5.68)

We examine each of the terms on the right-hand side above. The leading order contri-
bution comes from the first term, i.e., by Lemma 2.21

− ι j

λ j‖.W‖2L2

〈
.Wλ j | fi(ι, /λ)

〉

= −(ω2 + O(η20))
ι j ι j+1

λ j

( λ j

λ j+1

) D−2
2 + (ω2 + O(η20))

ι j ι j−1
λ j

(λ j−1
λ j

) D−2
2
.

The second and third terms together will have a sign, up to an acceptable error. First,
using (5.44) we have,

〈
A(λ j )g | −#g

〉
≥ − c0

λ j
‖g‖2H + 1

λ j

∫ Rλ j

R−1λ j

(∂r g)2 r D−1dr .

To treat the third term, we start by using the definition (5.63) to observe the identity,

f̃q(/ι, /λ, g) = fq(/ι, /λ, g)+
(
f ′(W(/ι, /λ))− f ′(Wλ j )

)
g + f ′(Wλ j )g.

The first two terms above contribute acceptable errors. Indeed, using (5.60),

∣∣∣
〈
(A(λ j )− A 1

2
(λ j ))g | fq(/ι, /λ, g)

〉∣∣∣ ! 1
λ j

(
‖g‖3E + ‖g‖

2D
D−2
E

)
,
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and since ‖ f ′(W(/ι, /λ))− f ′(Wλ j )‖L D
2

! η0, we have,

∣∣∣
〈
λ

1
2
j (A(λ j )− A 1

2
(λ j ))g | ( f ′(W(/ι, /λ))− f ′(Wλ j ))g

〉∣∣∣ ≤ c0
λ j
‖g‖2E.

Putting this together with the fact that (A(λ j ) − A(λ j ))g = − 1
Dλ j

#q(·/λ j )g we
have,

〈
(A(λ j )− A 1

2
(λ j ))g | f̃q(/ι, /λ, g)

〉

≥ − 1
Dλ j

∫ ∞

0
#q(r/λ j ) f ′(Wλ j )g

2 r D−1 dr − c0
λ j
‖g‖2E.

We show that the remaining terms contribute acceptable errors. For the fourth term
a direct calculation gives,

‖.Wλ j ( f
′(W(/ι, /λ)− f ′(Wλ j ))‖L 2D

D+2
!
( λ j

λ j+1

) D−2
2 +

(λ j−1
λ j

) D−2
2

and hence,

∣∣∣
〈
.Wλ j | (LW − Lλ j )g

〉∣∣∣ ! 1
λ j
‖g‖H

(( λ j

λ j+1

) D−2
2 +

(λ j−1
λ j

) D−2
2
)
.

By (5.45) along with (5.26) we have,

∣∣∣∣∣ι j
λ′j
λ j

〈( 1
λ j

.− A(λ j )
)
.Wλ j | ġ

〉∣∣∣∣∣ ! c0
λ j

d(t)‖g‖E.

For the sixth term on the right-hand side of (5.68) we note that

A(λ j )

K∑

i=1

ιiWλi = A(λ j )W(/ι, /λ),

and hence we may apply (5.43) with g1 = W(/ι, /λ) and g2 = g to conclude that

〈
A(λ j )

K∑

i=1

ιiWλi | fq(/ι, /λ, g)
〉
+
〈
A(λ j )g | f̃q(/ι, /λ, g)

〉
= 0,

which takes care of the sixth and seventh terms. Next we consider the eighth term. We
claim the estimate,

∣∣∣∣

〈
(A(λ j )−

1
λ j

.)Wλ j | fq(/ι, /λ, g)
〉∣∣∣∣ ≤

c0
λ j

d(t)2. (5.69)
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When D = 6 this follows directly from (5.46) and (5.60). For dimensions D ≥ 7 the
brutal estimate (5.60) is not sufficient and we require a more careful analysis, based
on the point-wise estimate (5.61). First, recalling the definition of A(λ j ) we note that

∣∣∣
〈
(A(λ j )−

1
λ j

.)Wλ j | fq(/ι, /λ, g)
〉∣∣∣ ! 1

λ j

∫ 1
R λ j

0
|.Wλ j || fq(/ι, /λ, g)| r D−1dr

+ 1
λ j

∫ ∞

Rλ j

|.Wλ j || fq(/ι, /λ, g)| r D−1dr .

(5.70)

For the first integral on the right we introduce an auxiliary large parameter L > 0 and
divide the integral into two regions r ∈ (0, L

√
λ j−1λ j ) and r ∈ [L√λ j−1λ j , R−1λ j ].

In the first regionweuse the first estimate in (5.61) for x1 = W(/ι, /λ; r) and x2 = g(·, r)
to obtain

1
λ j

∫ L
√

λ j−1λ j

0
|.Wλ j || fq(/ι, /λ, g)| r D−1dr

! 1
λ j

∫ L
√

λ j−1λ j

0
|.Wλ j | |g|

D+2
D−2 r D−1 dr

! 1
λ j

( ∫ L
√

λ j−1λ j

0
|.Wλ j |

2D
D−2 r D−1 dr

) D−2
2 ‖g‖

D+2
D−2
E

! 1
λ j

L
D−2
2

(λ j−1
λ j

) D−2
4 ‖g‖

D+2
D−2
E ≤ c0

λ j
d(t)2

by ensuring η0 is sufficiently small relative to L . Next we observe that L > 0 can be
taken sufficiently large so that the point-wise estimate,

∣∣W(/ι, /λ; r)
∣∣ " λ

− D−2
2

j

holds uniformly in r ∈ [L√λ j−1λ j , R−1λ j ]. Using the second inequality in (5.61)
we then have,

1
λ j

∫ 1
R λ j

L
√

λ j−1λ j

|.Wλ j || fq(/ι, /λ, g)| r D−1dr

! 1
λ j

∫ 1
R λ j

L
√

λ j−1λ j

|.Wλ j ||W(/ι, /λ; r)|− D−6
D−2 |g|2 r D−1 dr

! 1
λ j

1
R2

∫ 1
R λ j

0

g2

r2
r D−1 dr ≤ c0

λ j
d(t)2,

where the last line follows from taking R sufficiently large. The analysis of the
second integral in (5.70) is analogous, this time dividing the region of integration
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r ∈ [Rλ j ,∞] into the regions r ∈ [Rλ j , L−1
√
λ jλ j+1] and r ∈ (L−1

√
λ jλ j+1,∞),

and using the point-wise estimate

∣∣W(/ι, /λ; r)
∣∣ " λ

D−2
2

j r−(D−2)

in the region r ∈ [Rλ j , L−1
√
λ jλ j+1], which holds as long as L is taken sufficiently

large. This proves (5.69).
Using the first bullet point in Lemma 5.16 and (5.26) we estimate the ninth term as

follows,

∣∣∣∣∣
λ′j
λ j

〈
λ j∂λ j A(λ j )g | ġ

〉
∣∣∣∣∣ ! 1

λ j
d(t)‖g‖2E.

Next, using (5.47) and (5.60) we have,

∣∣∣
∑

i <= j

ιi

〈
A(λ j )Wλi | fq(/ι, /λ, g)

〉 ∣∣∣ ≤ c0
λ j

d(t)2.

An application of (5.47) and (5.26) gives

∑

i <= j

∣∣∣λ′i
〈
A(λ j ).Wλi | ġ

〉∣∣∣ ≤ c0
λ j
‖g‖2H .

Next, consider the twelfth term. Using the first bullet point in Lemma 5.16, and in
particular the spatial localization of A(λ j ) we obtain

∣∣∣
〈
A(λ j )g | fi(ι, /λ)

〉∣∣∣ ! ‖g‖H‖ fi(ι, /λ)‖L2(R̃−1λ j≤r≤R̃λ j )
.

Using the estimate,

‖ fi(ι, /λ)‖L2(R̃−1λ j≤r≤R̃λ j )
! 1

λ j

( λ j

λ j+1

) D−2
2 + 1

λ j

(λ j−1
λ j

) D−2
2
,

we obtain

∣∣∣
〈
A(λ j )g | fi(ι, /λ)

〉∣∣∣ ! 1
λ j
‖g‖H

(( λ j

λ j+1

) D−2
2 + 1

λ j

(λ j−1
λ j

) D−2
2
)
.

Finally, we treat the last line of (5.68). First, using Lemma 5.9 and the definition of φ̇
in (5.59) we have

∣∣∣
〈
.Wλ j | φ̇(u, ν)

〉∣∣∣ ! 1
λ j

(λ j

ν

) D−2
2 ‖u(t)‖E(ν(t),2ν(t)) ! θn

λ j

(λ j

ν

) D−2
2
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for some sequence θn → 0 as n→∞. The last two terms in (5.68) vanish due to the
support properties of A(λ j ),φ(u, ν), φ̇(u, ν) and the fact that λ j ≤ λK 4 ν.

Combining these estimates in (5.68) we obtain the inequality,

β ′ ≥
(
−ι j ι j+1ω

2 − c0
) 1
λ j

(
λ j

λ j+1

) D−2
2

+
(
ι j ι j−1ω2 − c0

) 1
λ j

(
λ j−1
λ j

) D−2
2

+ 1
λ j

∫ Rλ j

R−1λ j

(∂r g)2 rdr −
1

Dλ j

∫ ∞

0
#q(r/λ j ) f ′(Wλ j )g

2 r D−1 dr − c0
d(t)2

λ j
.

Finally, we use the localized coercivity estimate (5.48) on the second line above along
with the estimates

〈 1
λ j
Yλ j | g

〉2 ! (a+j )
2 + (a−j )

2 to see that

1
λ j

∫ Rλ j

R−1λ j

(∂r g)2 rdr −
1

Dλ j

∫ ∞

0
#q(r/λ j ) f ′(Wλ j )g

2 r D−1 dr

≥ −c0
‖g‖2H
λ j

− C0

λ j

(
(a+j )

2 + (a−j )
2
)
.

This completes the proof of (5.55).
Finally, (5.57) follows from (5.28) and our choice of δn . 89

Finally, we prove that, by again enlarging εn , we can control the error in the virial
identity, see Lemma 2.1, by d.

Lemma 5.19 There exist C0, η0 > 0 depending only on D and N and a decreasing
sequence εn → 0 such that

|*1,ρ(t)(u(t))+
D − 2
2

*2,ρ(t)(u(t))| ≤ C0d(t)

for all t ∈ [an, bn] such that εn ≤ d(t) ≤ η0, ρ(t) ≤ ν(t) and |ρ′(t)| ≤ 1.

Proof Since limn→∞ supt∈[an ,bn ] ‖u(t)‖E(ν(t),2ν(t)) = 0, Lemma 5.12 yields

‖u(t)−W(/ι, /λ(t))− g(t)‖E(0,2ν(t))→ 0, as n→∞.

Using Remark 5.18, (5.51) and (5.52) we have ‖g(t)‖E ! d(t), hence, after choosing
εn → 0 sufficiently large, it suffices to check that

|*1,ρ(t)(W(/ι, /λ(t)))+ D − 2
2

*2,ρ(t)(W(/ι, /λ(t)))| ≤ C0d(t),
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which in turn will follow from

∣∣∣
∫ ∞

0

(1
2
(∂rW(/ι, /λ))2 + D − 2

2D
|W(/ι, /λ)| 2D

D−2 + D − 2
2

∂rW(/ι, /λ)W(/ι, /λ)
r

)

(r∂rχ)(r/ρ)r D−1 dr
∣∣∣

≤ C0d(t).

Noting the identity,

1
2
(∂rW (r))2 + D − 2

2D
|W (r)| 2D

D−2 + D − 2
2

∂rW (r)
W (r)
r

= 0

it suffices to estimates the cross terms in the integral above, and the desired bound
follows from an explicit computation. 89

6 Conclusion of the Proof

6.1 The Scale of the K-th Bubble

As mentioned in the Introduction, the K -th bubble is of particular importance. We
introduce a functionµwhich is well-defined on every [an, bn], and of size comparable
with λK on time intervals where the solution approaches a multi-bubble configuration.

Definition 6.1 (The scale of the K -th bubble) Fix κ1 > 0 small enough. For all t ∈ I ,
we set

µ(t) := sup
{
r ≤ ν(t) : ‖u(t)‖E(r ,ν(t)) = κ1

}
. (6.1)

Note that, if κ1 is sufficiently small, then K > 0 implies ‖u(t)‖E(0,ν(t)) ≥ 2κ1, hence
µ(t) is a well-defined finite positive number for all t ∈ I . Since in the definition ofµ(t)
we can restrict to rational r , µ is a measurable function. Even if µ is not necessarily a
continuous function, still µ(t) is well-defined for each individual value of t . We stress
that µ(t) ≤ ν(t) for all n large enough and t ∈ [an, bn], thus µ(t) 4 µK+1(t) as
n→∞.

We also introduce a specific “regularization” of µ. For a given collision interval
[an, bn], we set

µ∗ : [an, bn] :→ (0,∞), µ∗(t) := inf
s∈[an ,bn ]

(
4µ(s)+ |s − t |

)
.

We choose not to include n in the notation. We stress that µ∗ depends on n, which
will be known from the context.

Lemma 6.2 The function µ∗ has the following properties:

(i) its Lipschitz constant is ≤ 1,
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(ii) there exist δ, κ2 > 0 and n0 ∈ N depending on κ1 such that t ∈ [an, bn] with
n ≥ n0 and d(t) ≤ δ imply κ2λK (t) ≤ µ∗(t) ≤ κ−12 λK (t), where λK (t) is the
modulation parameter defined in Lemma 5.12,

(iii) if tn ∈ [an, bn], 14 rn 4 µK+1(tn)/µ∗(tn) and limn→∞ δrnµ∗(tn)(tn) = 0, then
limn→∞ d(tn) = 0.

Proof Statement (i) is clear.
Recall that 4µ(t) ≤ 4ν(t), hence the definition of µ∗(t) yields

µ∗(t) = inf
{
4µ(s)+ |s − t | : s ∈ [an, bn] ∩ [t − 4ν(t), t + 4ν(t)]

}
.

Let s ∈ [an, bn] ∩ [t − 4ν(t), t + 4ν(t)]. By the definition of µ and (5.19), we have,
for n large enough,

‖u(t)‖E(µ(s),16ν(s)) ≤ 2κ1,

hence Lemma 2.6 yields

‖u(t)‖E(4µ(s)+|t−s|,4ν(s)−|t−s|) ≤ Cκ1.

From (5.13) and |s − t | ≤ 4ν(t), we deduce that ν(t) ≤ 4ν(s)− |t − s|, thus

‖u(t)‖E(4µ(s)+|t−s|,ν(t)) ≤ Cκ1.

Taking the supremum with respect to s ∈ [an, bn]∩ [t − 4ν(t), t + 4ν(t)], we obtain

‖u(t)‖E(µ∗(t),ν(t)) ≤ Cκ1. (6.2)

Statement (iii) now follows from Lemma 5.11 with µn = rnµ∗(tn), provided that we
choose κ1 ≤ η0/C .

Let κ2 > 0 be such that

‖W‖H(r≥(4κ2)−1) ≤
1
2
κ1, ‖W‖H(r≥κ2) ≥ 2Cκ1,

where C is the constant in (6.2). It is clear that 1
4µ∗(t) ≤ µ(t), hence (6.1) yields

‖u(t)‖E( 14µ∗(t),ν(t)) ≥ κ1.

Thus, in order to prove that µ∗(t) ≤ κ−12 λK (t), it suffices to check that

‖u(t)‖E((4κ2)−1λK (t),ν(t)) < κ1.

We use (5.22). By (5.24), ‖g‖E 4 1 when δ 4 1 and n0 6 1. Thus, it suffices to see
that

‖W(/ι, /λ)‖E((4κ2)−1λK (t),ν(t)) < κ1,

123



   18 Page 78 of 117 J. Jendrej, A. Lawrie

whenever
∑K

j=1 λ j (t)/λ j+1(t) 4 1, which is obtained directly from the definitions
of W and κ2.

Similarly, using (6.2), we will have µ∗(t) ≥ κ2λK (t) if we can prove that

‖u(t)‖E(κ2λK (t),ν(t)) > Cκ1.

But the last bound follows from

‖W(/ι, /λ)‖E(κ2λK (t),ν(t)) > Cκ1

whenever
∑K

j=1 λ j (t)/λ j+1(t)4 1. 89

Our next goal is to prove that the minimality of K (see Definition 5.5) implies a
lower bound on the length of the collision intervals.

Lemma 6.3 If η1 > 0 is small enough, then for any η ∈ (0, η1] there exist ε ∈ (0, η)
and Cu > 0 having the following property. If [c, d] ⊂ [an, bn], d(c) ≤ ε, d(d) ≤ ε

and there exists t0 ∈ [c, d] such that d(t0) ≥ η, then

d − c ≥ C−1u max(µ∗(c), µ∗(d)).

Proof We argue by contradiction. If the statement is false, then there exist η > 0,
a decreasing sequence (εn) tending to 0, an increasing sequence (Cn) tending to∞
and intervals [cn, dn] ⊂ [an, bn] (up to passing to a subsequence in the sequence
of the collision intervals [an, bn]) such that d(cn) ≤ εn , d(dn) ≤ εn , there exists
tn ∈ [cn, dn] such that d(tn) ≥ η and dn − cn ≤ C−1n max(µ∗(cn), µ∗(dn)). We
will check that, up to adjusting the sequence εn , [cn, dn] ∈ CK−1(εn, η) for all n,
contradicting Definition 5.5.

The first and second requirement in Definition 5.4 are clearly satisfied. It remains
to construct a function ρK−1 : [cn, dn]→ [0,∞) such that

lim
n→∞ sup

t∈[cn ,dn ]
dK−1(t; ρK−1(t)) = 0. (6.3)

Assume µ∗(cn) ≥ µ∗(dn) (the proof in the opposite case is very similar). Let rn be
a sequence such that λK−1(cn) 4 rn 4 λK (cn) (recall that κ2µ∗(cn) ≤ λK (cn) ≤
κ−12 µ∗(cn) and that λ0(t) = 0 by convention). Set ρK−1(t) := rn + (t − cn) for
t ∈ [cn, dn]. Recall that /σn ∈ {−1, 1}N−K and /µ(t) ∈ (0,∞)N−K are defined in
Lemma 5.9. Let ιn be the sign of the K -th bubble at time cn , and set σ̃ := (ιn, /σn) ∈
{−1, 1}N−(K−1) and µ̃(t) := (λK (cn), /µ(t)) ∈ (0,∞)N−(K−1). Let Rn be a sequence
such that νn(cn) 4 Rn 4 µK+1(cn). Applying Lemma 2.9 with these sequences
rn, Rn and un(t) := u(cn + t), we obtain

lim
n→∞ sup

t∈[cn ,dn ]
‖u(t)−W(̃σn, µ̃(t))‖E(ρK−1(t),∞) = 0,

implying (6.3) 89
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Remark 6.4 We denote the constant Cu to stress that it depends on the solution u and
is obtained in a non-constructive way as a consequence of the assumption that u does
not satisfy the continuous time soliton resolution.

6.2 Demolition of theMulti-bubble

This paragraph is devoted to the analysis of theODEsystem satisfied by themodulation
parameters. We apply here the “weighted sum” trick from [26, Section 6].

Lemma 6.5 Let D ≥ 6. If η0 is small enough, then there exists C0 ≥ 0 depending only
on D and N such that the following is true. If [t1, t2] ⊂ I∗ is a finite time interval such
that d(t) ≤ η0 for all t ∈ [t1, t2], then

sup
t∈[t1,t2]

λK (t) ≤
4
3

inf
t∈[t1,t2]

λK (t), (6.4)

∫ t2

t1
d(t)dt ≤ C0

(
d(t1)

4
D−2 λK (t1)+ d(t2)

4
D−2 λK (t2)

)
. (6.5)

Remark 6.6 Since d(t) ≤ η0 is small, Lemma 6.2 (iii) yields λK (t) 5 µ∗(t), so in the
formulation of the lemma we could just as well write µ∗ instead of λK .

Proof of Lemma 6.5 Step 1. First, we argue that (6.4) follows from (6.5). Without
loss of generality, assume λK (t1) ≥ λK (t2). Since |λ′K (t)| ! d(t), see (5.26), and

d(t)
4

D−2 ! η
4

D−2
0 is small, (6.5) implies

∫ t2

t1
|λ′K (t)|dt ≤

1
7
λK (t1),

thus inf t∈[t1,t2] λK (t) ≥ 6
7λK (t1) and supt∈[t1,t2] λK (t) ≤ 8

7λK (t1), so (6.4) follows. It
remains to prove (6.5).
Step 2.LetC1 > 0 be a large number chosen below and consider the auxiliary function

φ(t) :=
∑

j∈S
2− jξ j (t)β j (t)− C1

K∑

j=1

λ j (t)a
−
j (t)

2 + C1

K∑

j=1

λ j (t)a
+
j (t)

2,

inspired by the function A(t) from [26, Section 6]. We claim that for all t ∈ [t1, t2]

φ′(t) ≥ c2d(t)2, (6.6)

with c2 > 0 depending only on D and N . The remaining part of Step 1 is devoted to
proving this bound.
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Using (5.54), (5.57) and recalling that |λ′K (t)| ! d(t), see (5.26), we obtain

φ′(t) ≥
∑

j∈S
2− jβ2j (t)+

∑

j∈S
2− jλ j (t)β

′
j (t)+ C1ν

K∑

j=1

(
a−j (t)

2 + a+j (t)
2)− c0d(t)2.

(6.7)

We focus on the second term of the right hand side. Applying (5.55), we have

∑

j∈S
λ j (t)β ′j (t) ≥ ω2

∑

j∈S
2− j

(
ι j ι j+1

( λ j (t)
λ j+1(t)

) D−2
2 − ι j ι j−1

(λ j−1(t)
λ j (t)

) D−2
2
)

− C2

K∑

k=1

(
a−j (t)

2 + a+j (t)
2)− c0d(t)2.

Noting that ι j ι j+1 = 1 if j ∈ S, we rewrite the first sum on the right hand side as

∑

j∈S
2− j

( λ j (t)
λ j+1(t)

) D−2
2 −

∑

j∈S
2− j ι j ι j−1

(λ j−1(t)
λ j (t)

) D−2
2
.

Splitting the first sum into two equal terms, and shifting the index in the second sum,
we obtain

∑

j∈S
2− j−1

( λ j (t)
λ j+1(t)

) D−2
2

+
[∑

j∈S
2− j−1

( λ j (t)
λ j+1(t)

) D−2
2 −

∑

j+1∈S
2− j−1ι j ι j+1

( λ j (t)
λ j+1(t)

) D−2
2
]
.

We will check that the number inside the square parenthesis is nonnegative. To see
this, we rewrite it as

∑

j

2− j−1
( λ j (t)
λ j+1(t)

) D−2
2 [

1S( j)− ι j ι j+11S( j + 1)
]
.

If j /∈ S, then ι j ι j+1 = −1, hence all the terms in the above sum are nonnegative. We
have thus proved that

∑

j∈S
λ j (t)β

′
j (t) ≥ 2−N−1ω2

∑

j∈S

( λ j (t)

λ j+1(t)

) D−2
2 − C2

K∑

k=1

(
a−j (t)

2 + a+j (t)
2)− c0d(t)2.

Taking C1 > C2/ν and using (6.7) together with (5.52), we get (6.6).
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Step 3. Since φ is increasing, it has at most one zero, which we denote t3 ∈ [t1, t2]. If
φ(t) > 0 for all t ∈ [t1, t2], we set t3 := t1, and if φ(t) < 0 for all t ∈ [t1, t2], then
we set t3 := t2. We will show that

∫ t2

t3
d(t)dt ≤ C0d(t2)

4
D−2 λK (t2). (6.8)

By the symmetry of the problem, one can similarly bound the integral over [t1, t3],
and summing the two we get (6.5). Without loss of generality, we can assume t3 < t2,
since otherwise (6.8) is trivial.

Observe that for all t ∈ (t3, t2] we have

φ(t)
λK (t)

!
∑

j∈S

λ j (t)
λK (t)

|β j (t)| +
K∑

j=1

λ j (t)
λK (t)

(
a−j (t)

2 + a+j (t)
2)

!
∑

j∈S

λ j (t)
λ j+1(t)

|β j (t)| + d(t)2 ! d(t)
D+2
D−2 .

(6.9)

Combining this bound with (6.6), for all t ∈ (t3, t2] we get

φ′(t) ≥ c2
(
φ(t)/λK (t)

) D−2
D+2 d(t),

thus

λK (t)
D−2
D+2

(
φ(t)

4
D+2

)′ " d(t). (6.10)

Using (6.9) and |λ′K (t)| ! d(t), we get

(
λK (t)

D−2
D+2 φ(t)

4
D+2

)′ − λK (t)
D−2
D+2

(
φ(t)

4
D+2

)′

= D − 2
D + 2

λ′K (t)
(
φ(t)/λK (t)

) 4
D+2 " −d(t) D+2

D−2 .

Since d(t)
4

D−2 ! η
4

D−2
0 is small, (6.10) yields

(
λK (t)

D−2
D+2 φ(t)

4
D+2

)′ " d(t)

which, integrated, gives

∫ t2

t3
d(t)dt ! λK (t2)

D−2
D+2 φ(t2)

4
D+2 − λK (t3)

D−2
D+2 φ(t3)

4
D+2 ≤ λK (t2)

D−2
D+2 φ(t2)

4
D+2 .

Invoking (6.9), we obtain (6.8). 89
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Starting from now, η0 > 0 is fixed so that Lemma 6.5 holds and Lemma 6.3 can
be applied with η = η0. We also fix ε > 0 to be the value given by Lemma 6.3 for
η = η0. Recall that d(an) = d(bn) = εn and d(t) ≥ εn for all t ∈ [an, bn].
Lemma 6.7 There exists θ0 > 0 such that for any sequence satisfying εn 4 θn ≤ θ0
and for all n large enough there exist an Nn ∈ N∗ and a partition of the interval
[an, bn]

an = eLn,0 ≤ eRn,0 ≤ cRn,0 ≤ dRn,0 ≤ f Rn,0 ≤ f Ln,1 ≤ dLn,1 ≤ cLn,1 ≤ eLn,1 ≤ . . . ≤ eRn,Nn
= bn,

having the following properties.

(1) For all m ∈ {0, 1, . . . , Nn} and t ∈ [eLn,m, eRn,m], d(t) ≤ η0, and

∫ eRn,m

eLn,m
d(t)dt ≤ C2θ

4/(D−2)
n min(µ∗(eLn,m), µ∗(e

R
n,m)), (6.11)

where C2 ≥ 0 depends only on k and N.
(2) For all m ∈ {0, 1, . . . , Nn − 1} and t ∈ [eRn,m, cRn,m] ∪ [ f Rn,m, f Ln,m+1] ∪

[cLn,m+1, e
L
n,m+1], d(t) ≥ θn.

(3) For all m ∈ {0, 1, . . . , Nn−1} and t ∈ [cRn,m, f Rn,m]∪ [ f Ln,m+1, c
L
n,m+1], d(t) ≥ ε.

(4) For all m ∈ {0, 1, . . . , Nn − 1}, d(dR
n,m) ≥ η0 and d(dL

n,m+1) ≥ η0.
(5) For all m ∈ {0, 1, . . . , Nn − 1}, d(cRn,m) = d(cLn,m+1) = ε.
(6) For all m ∈ {0, 1, . . . , Nn − 1}, either d(t) ≥ ε for all t ∈ [cRn,m, cLn,m+1], or

d( f Rn,m) = d( f Ln,m+1) = ε.
(7) For all m ∈ {0, 1, . . . , Nn − 1},

sup
t∈[eLn,m ,cRn,m ]

µ∗(t) ≤ 2κ−22 inf
t∈[eLn,m ,cRn,m ]

µ∗(t),

sup
t∈[cLn,m+1,e

R
n,m+1]

µ∗(t) ≤ 2κ−22 inf
t∈[cLn,m+1,e

R
n,m+1]

µ∗(t).

Remark 6.8 The purpose of the Lemma 6.7 above is to partition any collision interval
[an, bn] into subintervals, depending on the values of d(t). On the intervals [eLn, j , eRn, j ],
the bound (6.11) will always be invoked. Outside of these intervals, the lower bounds
on d(t), combined with a more or less direct application of Lemma 3.1, will be used.
Of special importance are the intervals [cRn, j , f Rn, j ] and [ f Ln, j , cLn, j ], since they allow
to apply Lemma 6.3, leading to the crucial bound (6.21).

Lemma 6.3 could not be applied directly on the intervals [eRn, j , eLn, j+1], because
there is no uniform (independent of n) lower bound on d(t) on these intervals, unless
θn " 1. But, in our application of (6.11) in the proof of Theorem 1, it will be necessary
to have θn → 0, see (6.22). For this reason, the contribution of the intervals [eRn, j , cRn, j ],
[ f Rn, j , f Ln, j+1] and [cLn, j+1, e

L
n, j+1] will be estimated differently, see (6.18)–(6.20).

The intervals [cRn, j , f Rn, j ] and [ f Ln, j , cLn, j ] correspond to what were called “compact-
ness intervals” [cn, dn] in the summary of the proof in Section 1.3, whereas [eLn, j , eRn, j ]
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correspond to the “modulation intervals”. For simplicity, we have not mentioned the
remaining intervals in Section 1.3. They are the “intermediate intervals,” on which we
will use both Lemma 3.1 and estimates of the modulation parameters leading to the
property (7) above.

A part of Lemma 6.7 will also play a role in the construction of an appropriate
time-dependent cut-off radius for the virial identity, in Lemma 6.9 below.

Proof For all t0 ∈ [an, bn] such that d(t0) < η0, let J (t0) ⊂ [an, bn] be the union of all
the open (relatively in [an, bn]) intervals containing t0 on which d < η0. Equivalently,
we have one of the following three cases:

• J (t0) = (̃an, b̃n), t0 ∈ (̃an, b̃n), d(̃an) = d(̃bn) = η0 and d(t) < η0 for all
t ∈ (̃an, b̃n),

• J (t0) = [an, b̃n), t0 ∈ [an, b̃n), d(̃bn) = η0 and d(t) < η0 for all t ∈ [an, b̃n),
• J (t0) = (̃an, bn], t0 ∈ (̃an, bn], d(̃an) = η0 and d(t) < η0 for all t ∈ (̃an, bn].

Note that θn 6 εn implies ãn > an and b̃n < bn . Clearly, any two such intervals are
either equal or disjoint.

Consider the set

A := {t ∈ [an, bn] : d(t) ≤ θn}.

Since A is a compact set, there exists a finite sequence

an ≤ sn,0 < sn,1 < . . . < sn,Nn ≤ bn

such that

sn,m ∈ A, A ⊂
Nn⋃

m=0

J (sn,m). (6.12)

Without loss of generality, we can assume J (sn,m)∩ J (sn,m′) = ∅ whenever m <= m′

(it suffices to remove certain elements from the sequence).
Let m ∈ {0, 1, . . . , Nn − 1}. Since J (sn,m) ∩ J (sn,m+1) = ∅, there exists t ∈

(sn,m, sn,m+1) such that d(t) ≥ η0. Let dR
n,m be the smallest such t , and dL

n,m+1
the largest one. Let cRn,m be the smallest number such that d(t) ≥ ε for all t ∈
(cRn,m, d

R
n,m). Similarly, let cLn,m+1 be the biggest number such that d(t) ≥ ε for all

t ∈ (dL
n,m+1, c

L
n,m+1). Next, let e

R
n,m be the smallest number such thatd(t) ≥ 2θn for all

t ∈ (eRn,m, c
R
n,m). If we take θn < ε

2 , then we have e
R
n,m < cRn,m . Since d(sn,m) ≤ θn , we

have eRn,m > sn,m . Similarly, let eLn,m+1 be the biggest number such that d(t) ≥ 2θn for
all t ∈ (cLn,m+1, e

L
n,m+1) (again, it follows that e

L
n,m+1 < sn,m+1). Finally, if d(t) ≥ ε

for all t ∈ (dR
n,m, d

L
n,m+1), we set f

R
n,m and f Ln,m+1 arbitrarily, for example f Rn,m := dR

n,m

and f Ln,m+1 := dL
n,m+1. If, on the contrary, there exists t ∈ (dR

n,m, d
L
n,m+1) such that

d(t) < ε, we let f Rn,m be the biggest number such that d(t) ≥ ε for all t ∈ (dR
n,m, f

R
n,m),

and f Ln,m+1 be the smallest number such that d(t) ≥ ε for all t ∈ ( f Ln,m+1, d
L
n,m+1).
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We check all the desired properties. For all n ∈ {0, 1, . . . , Nn}, we have eLn,m ≤
sn,m ≤ eRn,m . Since d(e

L
n,m) ≤ 2θn and d(eRn,m) ≤ 2θn , the property (1) follows from

Lemma 6.5. The properties (3), (4), (5) and (6) follow directly from the construction.
The property (2) is now equivalent to the following statement: if d(t0) < θn , then there
exists m ∈ {0, 1, . . . , Nn} such that t0 ∈ [eLn,m, eRn,m]. But (6.12) implies that t0 ∈
J (sn,m) for some m and, by construction, d(t) > θn for all t ∈ J (sn,m) \ [eLn,m, eRn,m],
so we obtain t ∈ [eLn,m, eRn,m]. Finally, note that d(t) ≤ η0 for all t ∈ [eLn,m, cRn,m] ∪
[cLn,m+1, e

R
n,m+1], hence, using again Lemma 6.5, but on the time intervals [eLn,m, cRn,m]

and [cLn,m+1, e
R
n,m+1], we deduce the property (7) from (6.4) and Lemma 6.2 (ii).

89

6.3 End of the Proof: Virial Inequality with a Cut-Off

In this section, we conclude the proof, by integrating the virial identity on the time
interval [an, bn]. The radius where the cut-off is imposed has to be carefully chosen,
which is the object of the next lemma.

Lemma 6.9 There exist θ0 > 0 and a locally Lipschitz function ρ : ∪∞n=1[an, bn] →
(0,∞) having the following properties:

(1) max(ρ(an)‖∂t u(an)‖L2 , ρ(bn)‖∂t u(bn)‖L2) 4 max(µ∗(an), µ∗(bn)) as n →
∞,

(2) limn→∞ inf t∈[an ,bn ]
(
ρ(t)/µ∗(t)

)
=∞and limn→∞ supt∈[an ,bn ]

(
ρ(t)/µK+1(t)

)

= 0,
(3) if d(t0) ≤ 1

2θ0, then |ρ′(t)| ≤ 1 for almost all t in a neighborhood of t0,
(4) limn→∞ supt∈[an ,bn ] |*ρ(t)(u(t))| = 0.

Proof We will define two functions ρ(a), ρ(b), and then set ρ := min(ρ(a), ρ(b), ν).
First, we let

ρ(a)(an) := min(Rnµ∗(an), ν(an)),

where 14 Rn 4 ‖∂t u(an)‖−1L2 . Consider an auxiliary sequence

δn := sup
t∈[an ,bn ]

‖u(t)‖E(min(ρ(a)(an)+t−an ,ν(t));2ν(t)).

We claim that limn→∞ δn = 0. Indeed, if ρ(a)(an)+ t − an ≥ ν(t), then it suffices to
recall (5.19). In the opposite case, (5.13) yields t − an ≤ ν(t) ≤ ν(an) + o(t − an),
hence t − an ≤ 2ν(an). Since we have

lim
n→∞‖u(an)‖E( 14ρ(a)(an);4ν(an)) = 0,

it suffices to apply Lemma 2.6.
Let θ0 > 0 be given by Lemma 6.7, and divide [an, bn] into subintervals applying

this lemma for the constant sequence θn = θ0. We let ρ(a) be the piecewise affine
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function such that

d
dt

ρ(a)(t) := 1 if t ∈ [eLn,m, eRn,m],
d
dt

ρ(a)(t) := δ
− 1

2
n otherwise.

We check that limn→∞ inf t∈[an ,bn ]
(
ρ(a)(t)/µ∗(t)

)
= ∞. First, suppose that t ∈

[eRn,m, eLn,m+1] and t−eRn,m " µ∗(eRn,m). Thenµ∗(t) ≤ µ∗(eRn,m)+(t−eRn,m) ! t−eRn,m
and ρ(a)(t) ≥ δ

− 1
2

n (t − eRn,m), so ρ(a)(t)6 µ∗(t).
By Lemma 6.3, eLn,m+1 − eRn,m ≥ Cuµ∗(eRn,m), so in particular we obtain

ρ(a)(eLn,m+1) 6 µ∗(eLn,m+1) for all m ∈ {0, 1, . . . , Nn − 1}. Note that we also have
ρ(a)(eLn,0) = ρ(a)(an)6 µ∗(an) = µ∗(eLn,0), by the choice of ρ

(a)(an). Since, by the
property (7) of Lermma 6.7, µ∗ changes at most by a factor 2κ−22 on [eLn,m, eRn,m] and
ρ(a) is increasing, we have ρ(a)(eRn,m)6 µ∗(eRn,m).

Finally, if t − eRn,m ≤ µ∗(eRn,m), then µ∗(t) ≤ 2µ∗(eRn,m), which again implies
ρ(a)(t)6 µ∗(t).

The functionρ(b) is defined similarly, but integrating from bn backwards. Properties
(1), (2), (3) are clear. By the expression for *ρ(t)(u(t)), see Lemma 2.1, we have

|*ρ(t)(u(t))| ! (1+ |ρ′(t)|)‖u(t)‖2E(ρ(t),2ρ(t)) !
√
δn → 0,

which proves the property (4).
89

We need one more elementary result.

Lemma 6.10 If µ∗ : [a, b]→ (0,∞) is a 1-Lipschitz function and b − a ≥ 1
4µ∗(a),

then there exists a sequence a = a0 < a1 < . . . < al < al+1 = b such that

1
4
µ∗(ai ) ≤ ai+1 − ai ≤

3
4
µ∗(ai ), for all i ∈ {1, . . . , l}. (6.13)

Proof We define inductively ai+1 := ai + 1
4µ∗(ai ), as long as b− ai > 3

4µ∗(ai ). We
need to prove that b − ai > 3

4µ∗(ai ) implies b − ai+1 >
1
4µ∗(ai+1).

Since µ∗ is 1-Lipschitz, µ∗(ai+1) = µ∗(ai + µ∗(ai )/4) ≤ µ∗(ai ) + µ∗(ai )/4 =
5
4µ∗(ai ), thus

b − ai+1 = b − ai −
1
4
µ∗(ai ) >

3
4
µ∗(ai )−

1
4
µ∗(ai ) >

5
16

µ∗(ai ) ≥
1
4
µ∗(ai+1).

89
Remark 6.11 Note that (6.13) and the fact that µ∗ is 1-Lipschitz imply
inf t∈[ai ,ai+1] µ∗(t) ≥ 1

4µ∗(ai ) and supt∈[ai ,ai+1] µ∗(t) ≤ 7
4µ∗(ai ), thus

1
7

sup
t∈[ai ,ai+1]

µ∗(t) ≤ ai+1 − ai ≤ 3 inf
t∈[ai ,ai+1]

µ∗(t),
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in other words the length of each subinterval is comparable with both the smallest and
the largest value of µ∗ on this subinterval.

Lemma 6.12 Let ρ be the function given by Lemma 6.9 and set

v(t) :=
∫ ∞

0
∂t u(t)r∂r u(t)χρ(t) rdr . (6.14)

1. There exists a sequence θn → 0 such that the following is true. If [̃an, b̃n] ⊂
[an, bn] is such that

b̃n − ãn ≥
1
4
µ∗(̃an) and d(t) ≥ θn for all t ∈ [̃an, b̃n],

then

v(̃bn) < v(̃an). (6.15)

2. For any c, θ > 0 there exists δ > 0 such that if n is large enough, [̃an, b̃n] ⊂
[an, bn],

cµ∗(̃an) ≤ b̃n − ãn and d(t) ≥ θ for all t ∈ [̃an, b̃n],

then

v(̃bn)− v(̃an) ≤ −δ sup
t∈[̃an ,̃bn ]

µ∗(t). (6.16)

Proof By the virial identity, we obtain

v′(t) = −
∫ ∞

0
(∂t u(t))2χρ(t) r D−1dr + on(1). (6.17)

We argue by contradiction. If the claim is false, then there exists θ > 0 and an infinite
sequence [̃an, b̃n] ⊂ [an, bn] (as usual, we pass to a subsequence in nwithout changing
the notation) such that

b̃n − ãn ≥
1
4
µ∗(̃an) and d(t) ≥ θ for all t ∈ [̃an, b̃n],

and

v(̃bn)− v(̃an) ≥ 0.

ByLemma6.10, there exists a subinterval of [̃an, b̃n], whichwe still denote [̃an, b̃n],
such that

1
4
µ∗(̃an) ≤ b̃n − ãn ≤

3
4
µ∗(̃an) and v(̃bn)− v(̃an) ≥ 0.
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Let ρ̃n := inf t∈[̃an ,̃bn ] ρ(t). From (6.17), we have

lim
n→∞

1

b̃n − ãn

∫ b̃n

ãn

∫ 1
2 ρ̃n

0
(∂t u(t))2 r D−1dr = 0.

By Lemma 6.9, inf t∈[̃an ,̃bn ] µK+1(t) 6 ρ̃n 6 inf t∈[̃an ,̃bn ] µ∗(t) 5 supt∈[̃an ,̃bn ] µ∗(t),
so Lemma 3.1 yields sequences tn ∈ [̃an, b̃n] and 1 4 rn 4 µK+1(tn)/µ∗(tn) such
that

lim
n→∞ δrnµ∗(tn)(u(tn)) = 0,

which is impossible by Lemma 6.2 (iii). The first part of the lemma is proved.
In the second part, we can assume without loss of generality b̃n − ãn ≤ 3

4µ∗(̃an).
Indeed, in the opposite case, we apply Lemma 6.10 and keep only one of the subin-
tervals where µ∗ attains its supremum, and on the remaining subintervals we use
(6.15).

After this preliminary reduction, we argue again by contradiction. If the claim is
false, then there exist c, θ > 0, a sequence δn → 0 and a sequence [̃an, b̃n] ⊂ [an, bn]
(after extraction of a subsequence) such that

cµ∗(̃an) ≤ b̃n − ãn ≤
3
4
µ∗(̃an) and d(t) ≥ θ for all t ∈ [̃an, b̃n],

and

v(̃bn)− v(̃an) ≥ −δnµ∗(̃an)

(we use the fact that µ∗(̃an) is comparable to supt∈[̃an ,̃bn ] µ∗(t), see Remark 6.11).
Let ρ̃n := inf t∈[̃an ,̃bn ] ρ(t). From (6.17), we have

lim
n→∞

1

b̃n − ãn

∫ b̃n

ãn

∫ 1
2 ρ̃n

0
(∂t u(t))2 r D−1dr = 0.

We now conclude as in the first part. 89

Proof of Theorem 1 Let θn be the sequence given by Lemma 6.12, part 1. We partition
[an, bn] applying Lemma 6.7 for this sequence θn . Note that this partition is different
than the one used in the proof of Lemma 6.9.We claim that for allm ∈ {0, 1, . . . , Nn−
1}

v(cRn,m)− v(eRn,m) ≤ on(1)µ∗(cRn,m), (6.18)

v( f Ln,m+1)− v( f Rn,m) ≤ on(1)µ∗( f Rn,m), (6.19)

v(eLn,m+1)− v(cLn,m+1) ≤ on(1)µ∗(cLn,m+1). (6.20)
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Here, on(1) denotes a sequence of positive numbers converging to 0 when n → ∞.
In order to prove the first inequality, we observe that if cRn,m − eRn,m ≥ 1

4µ∗(e
R
n,m),

then (6.15) applies and yields v(cRn,m) − v(eRn,m) < 0. We can thus assume cRn,m −
eRn,m ≤ 1

4µ∗(e
R
n,m) ≤

κ−22
2 µ∗(cRn,m), where the last inequality follows fromLemma 6.7,

property (7). But then (6.17) again implies the required bound. The proofs of the second
and third bound are analogous.

We now analyse the compactness intervals [cRn, j , f Rn, j ] and [ f Ln, j+1, c
L
n, j+1]. We

claim that there exists δ > 0 such that for all n large enough and m ∈ {0, 1, . . . , Nn}

v(cLn,m+1)− v(cRn,m) ≤ −δmax(µ∗(cRn,m), µ∗(c
L
n,m+1)). (6.21)

We consider separately the two cases mentioned in Lemma 6.7, property (6). If d(t) ≥
ε for all t ∈ [cRn,m, cLn,m+1], then Lemma 6.3 yields cLn,m+1 − cRn,m ≥ C−1u µ∗(cRn,m),
so we can apply (6.16), which proves (6.21). If d( f Rn,m) = ε, then we apply the same
argument on the time interval [cRn,m, f Rn,m] and obtain

v( f Rn,m)− v(cRn,m) ≤ −δmax(µ∗(cRn,m), µ∗( f
R
n,m)),

and similarly

v(cLn,m+1)− v( f Ln,m+1) ≤ −δmax(µ∗(cLn,m+1), µ∗( f
L
n,m+1)).

The bound (6.19) yields (6.21).
Finally, on the intervals [eLn,m, eRn,m], for n large enough Lemma 6.9 yields |ρ′(t)| ≤

1 for almost all t , and Lemma 5.19 implies |v′(t)| ! d(t). By Lemma 6.7, properties
(1) and (7), we obtain

v(eRn,m)− v(eLn,m) ≤ on(1)µ∗(cRn,m), for all m ∈ {0, 1, . . . , Nn − 1},
v(eRn,m)− v(eLn,m) ≤ on(1)µ∗(cLn,m), for all m ∈ {1, . . . , Nn − 1, Nn}.

(6.22)

Taking the sum inm of (6.18), (6.20), (6.21) and (6.22), we deduce that there exists
δ > 0 and n arbitrarily large such that

v(bn)− v(an) ≤ −δmax(µ∗(cRn,0), µ∗(c
L
n,Nn

)).

But µ∗(an) 5 µ∗(cRn,0) and µ∗(bn) 5 µ∗(cLn,Nn
), hence

v(bn)− v(an) ≤ −δ̃max(µ∗(an), µ∗(bn)).

Lemma 6.9 (1) and (6.14) yield

|v(an)|4 µ∗(an), |v(bn)|4 µ∗(bn),

a contradiction which finishes the proof. 89
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6.4 Absence of Elastic Collisions

This section is devoted to proving Proposition 1.7 Our proof closely follows Step 3 in
our proof of [40, Theorem 1.6].

Proof of Proposition 1.7 Suppose that a solution u of (1.1), defined on its maximal
time of existence t ∈ (T−, T+), is a pure multi-bubble in both time directions in the
sense of Definition 1.6, in other words

lim
t→T+

d(t) = 0, and lim
t→T−

d(t) = 0,

and the radiation u∗ = u∗L or u∗ = u∗0 in both time directions satisfies u∗ ≡ 0. In
this proof, all the N bubbles can be thought of as “interior” bubbles thus, whenever
we invoke the results from the preceding sections, it should always be understood that
K = N . Applying Lemma 2.17 with θ = 0 and M = N , we obtain from (2.16) and
(2.15) that

d(t)2 ≤ C
(∑

j∈S

( λ j (t)
λ j+1(t)

) D−2
2 +

K∑

k=1

(
a−k (t)

2 + a+k (t)
2)
)
.

Inspecting the proof of Lemma 5.12, it follows that the last inequality and the fact that
u∗ = 0 imply that Lemma 5.12 holds with ζn = 0. Similarly, Lemma 5.17 holds with
δn = 0.

Let η > 0 be a small number to be chosen later and t+ be such that d(t) ≤ η for all
t ≥ t+. Lemma 6.5 yields

∫ t

t+
d(t)dt ≤ C0

(
d(t+)

4
D−2 λN (t+),d(t)

4
D−2 λN (t)

)

and passing to the limit t → T+ we get

∫ T+

t+
d(t)dt ≤ C0d(t+)

4
D−2 λN (t+). (6.23)

From the bound |λ′N (t)| ! d(t), see (5.26) with ζn = 0, together with (6.23), implies
that limt→T+ λN (t) is a finite positive number, thus T+ = +∞.

Analogously, T− = −∞ and limt→−∞ λN (t) ∈ (0,+∞) exists.
The remaining part of the argument is exactly the same as in [40], but we reproduce

it here for the reader’s convenience.
Let δ > 0 be arbitrary. Inspecting the proof of Lemma 5.19, we see that in the

present case it holds with εn = 0, thus for any R > 0 we have
∣∣*1,R(u(t)) +

D−2
2 *2,R(u(t))

∣∣ ≤ C0d(t). From this bound and the estimates above, we obtain
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existence of T1, T2 ∈ R such that

∫ T1

−∞

∣∣∣*1,R(u(t))+
D − 2
2

*2,R(u(t))
∣∣∣dt ≤ 1

3
δ,

∫ +∞

T2

∣∣∣*1,R(u(t))+
D − 2
2

*2,R(u(t))
∣∣∣dt ≤ 1

3
δ

for any R > 0. On the other hand, because of the bound |* j,R(u(t))| ≤
C0‖u(t)‖E(R,2R) and since [T1, T2] is a finite time interval, for all R sufficiently large
we have

∫ T2

T1

∣∣∣*1,R(u(t))+
D − 2
2

*2,R(u(t))
∣∣∣dt ≤ 1

3
δ,

in other words
∫

R

∣∣∣*1,R(u(t))+
D − 2
2

*2,R(u(t))
∣∣∣dt ≤ δ.

Integrating the virial identity (2.4) with ρ(t) = R over the real line, we obtain

∫ +∞

−∞

∫ ∞

0
(∂t u(t, r)χR(r))2 r D−1drdt ≤ δ.

By letting R→ +∞, we get

∫ +∞

−∞

∫ ∞

0
(∂t u(t, r))2 r D−1drdt ≤ δ,

which implies the u is stationary since δ is arbitrary. 89

Appendix A. Modifications to the Argument in the CaseD = 5

In this section we outline the technical changes to the arguments in Section 5 needed
to prove Theorem 1 dimensions D = 5.

A.1 Decomposition of the Solution

The set-up in Sections 5.1 holds without modification for D = 5. The number K ≥ 1
is defined as in Lemma 5.6, the collision intervals [an, bn] ∈ CK (η, εn) are as in Def-
inition 5.5, and the sequences of signs /σn ∈ {−1, 1}N−K , scales /µ(t) ∈ (0,∞)N−K ,
and the sequence νn → 0 and the function ν(t) = νnµK+1(t) are as in Lemma 5.9.

Lemma 5.12 also holds with a minor modification to the stable/unstable compo-
nents. Let J ⊂ [an, bn] be any time interval on which d(t) ≤ η0, where η0 is as in
Lemma 5.12. Let /ι ∈ {−1, 1}K , /λ(t) ∈ (0,∞)K , g(t) ∈ E, and a±j (t) be as in the
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statement of Lemma 5.12. Define for each 1 ≤ j ≤ K , the modified stable/unstable
components,

ã±j (t) :=
〈
α±
λ j (t)

| g(t)+
∑

i< j

ιiWλi (t)
〉
.

The estimate (5.28) will hold for ã±j (t) rather than for a±j (t), see (A.7) and (A.8)
below. We make a similar modification (i.e., removing the interior bubbles from g(t))
to the refined modulation parameter ξ j (t). For each j ∈ {1, . . . , K − 1}, we set

ξ j (t) = λ j (t)−
ι j

‖.W‖2L2

〈
χ(·/Lλ j (t)).Wλ j (t) | g(t)+

∑

i< j

ιiWλi (t)
〉

where L > 0 is a large parameter to be determined below. The refined modulation
parameter β j (t) requires no modifications and is defined as in (5.50) for all j ∈
{1, . . . , K − 1}.

With these definitions, the following analogue of Lemma 5.17 holds.

Proposition A.1 (Refined modulation, D = 5) Let c0 ∈ (0, 1). There exists constants
L0 = L0(c0) > 0, η0 = η0(c0), as well as c = c(c0) and R = R(c0) > 1 as in
Lemma 5.14, a constant C0 > 0, and a decreasing sequence εn → 0 so that the
following is true.

Suppose L > L0 and J ⊂ [an, bn] is an open time interval with εn ≤ d(t) ≤ η0
for all t ∈ J , where S := { j ∈ {1, . . . , K − 1} | ι j = ι j+1}. Then, for all t ∈ J ,

‖g(t)‖E +
∑

i /∈S
(λi (t)/λi+1(t))

3
4 ≤ max

i∈S
(λi (t)/λi+1(t))

3
4 + max

1≤i≤K
|a±i (t)| (A.1)

and,

1
C0

d(t) ≤ max
i∈S

(λi (t)/λi+1(t))
3
4 + max

1≤i≤K
|a±i (t)| ≤ C0d(t), (A.2)

and,

∣∣∣
ξ j (t)
λ j (t)

− 1
∣∣∣ ≤ c0. (A.3)

Moreover, for all t ∈ J ,

∣∣∣ξ ′j (t)
∣∣∣ ≤ C0d(t), (A.4)

∣∣∣ξ ′j (t)− β j (t)
∣∣∣ ≤ c0d(t), (A.5)
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and,

β ′j (t) ≥
(
ι j ι j+1ω

2 − c0
) 1
λ j (t)

(
λ j (t)

λ j+1(t)

) 3
2

+
(
−ι j ι j−1ω2 − c0

) 1
λ j (t)

(
λ j−1(t)
λ j (t)

) 3
2

− c0
λ j (t)

d(t)2 − C0

λ j (t)

(
(a+j (t))

2 + (a−j (t))
2
)
,

(A.6)

where, by convention, λ0(t) = 0, λK+1(t) = ∞ for all t ∈ J , and ω2 > 0 is as
in (5.56) Finally, for each j ∈ {1, . . . , K },

∣∣∣̃a±j (t)− a±j (t)
∣∣∣ ≤ C0d(t)2 (A.7)

and

∣∣∣
d
dt

ã±j (t)∓
κ

λ j (t)
ã±j (t)

∣∣∣ ≤ C0

λ j (t)
d(t)2. (A.8)

Proof The estimates (A.1) and (A.2) follow as in the proofs of the corresponding
estimates in Lemma 5.17. Next, we have,

∣∣∣
ξ j

λ j
− 1

∣∣∣ ! 1
λ j
‖χ(·/Lλ j ).Wλ j ‖L 10

7
‖g‖

L
10
3
+
∑

i< j

1
λ j

∣∣∣
〈
χ(·/Lλ j ).Wλ j | Wλi

〉∣∣∣

! L
1
2 ‖g‖E + L2

∑

i< j

( λi

λ j

) 3
2
,

which proves (A.3) as long as η0 is sufficiently small compared to L .
Next, we compute ξ ′j (t). We have,

ξ ′j = λ′j −
ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ∂t g

〉

+ ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j |

∑

i< j

ιiλ
′
i.Wλi

〉

+ ι j

‖.W‖2L2

λ′j
λ j

〈
(r∂rχ)(·/Lλ j ).Wλ j | g +

∑

i< j

ιiWλi (t)
〉

+ ι j

‖.W‖2L2

λ′j
λ j

〈
χ(·/Lλ j )..Wλ j | g +

∑

i< j

ιiWλi (t)
〉
. (A.9)
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The last two terms above are acceptable errors. Indeed,

∣∣∣
λ′j
λ j

〈
(r∂rχ)(·/Lλ j ).Wλ j | g +

∑

i< j

ιiWλi (t)
〉∣∣∣

!
|λ′j |
λ j

(
‖(r∂rχ)(·/Lλ j ).Wλ j ‖L 10

7
‖g‖

L
10
3
+
∑

i< j

∣∣∣
〈
(r∂rχ)(·/Lλ j ).Wλ j | Wλi

〉∣∣∣
)

!
(
L

1
2 ‖g‖E + L2

∑

i< j

( λi

λ j

) 3
2
)
d(t)

and similarly,

∣∣∣
λ′j
λ j

〈
χ(·/Lλ j )..Wλ j | g +

∑

i< j

ιiWλi (t)
〉∣∣∣ !

(
L

1
2 ‖g‖E + L2

∑

i< j

( λi

λ j

) 3
2
)
d(t).

Using (5.58) in the second term in (A.9) gives

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ∂t g

〉
= − ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ġ

〉

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j |

K∑

i=1

ιiλ
′
i.Wλi

〉

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | φ(u, ν)

〉
.

The first term on the right satisfies,

− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ġ

〉

= − ι j

‖.W‖2L2

〈
.Wλ j | ġ

〉
+ ι j

‖.W‖2L2

〈
(1− χ(·/Lλ j )).Wλ j | ġ

〉

= − ι j

‖.W‖2L2

〈
.Wλ j | ġ

〉
+ oL(1)‖g‖E

where the oL(1) term can be made as small as we like by taking L > 0 large.
Using (5.64), the second term yields,
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− ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j |

K∑

i=1

ιiλ
′
i.Wλi

〉

= −λ′j −
∑

i <= j

ι j ιiλ
′
i

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | .Wλi

〉

+
λ′j

‖.W‖2L2

〈
(1− χ(·/Lλ j )).Wλ j | .Wλ j

〉

= −λ′j −
∑

i< j

ι j ιiλ
′
i

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | .Wλi

〉

+ O((λ j/λ j+1)
5
2 + oL(1))d(t).

Finally, the third term vanishes due to the fact that for each j < K , Lλ j 4 λK 4 ν,
and hence

〈
χ(·/Lλ j ).Wλ j | φ(u, ν)

〉
= 0.

Plugging this all back into (A.9) gives,

∣∣∣ξ ′j +
ι j

‖.W‖2L2

〈
χ(·/Lλ j ).Wλ j | ġ

〉∣∣∣ ≤ c0d(t)

after first choosing L sufficiently large, and then η0 sufficiently small. The esti-
mates (A.4) is immediate, and (A.5) now follows as in the proof of (5.54) in
Lemma 5.17.

The estimate (A.6) is proved exactly as in the proof of (5.55) in Lemma 5.17.
Next, we have,

∣∣∣a±j − ã±j
∣∣∣ !

∣∣∣
〈
α±
λ j

|
∑

i< j

ιiWλi

〉∣∣∣ !
∑

i< j

λi

λ j

∣∣∣
〈
Yλ j | Wλi

〉∣∣∣ !
∑

i< j

( λi

λ j

) 3
2
,

which proves (A.7).
Lastly, we prove (A.8), which is analogous to the proof of (5.28), but now

using (A.1) and (A.2), and noting an extra cancellation of the contribution of the
interior bubbles. We compute,

d
dt

ã−j =
〈
∂tα
−
λ j

| g +
∑

i< j

ιiWλi

〉
+
〈
α−λ j

| ∂t g
〉
−
∑

i< j

ιi
κ

2
λ′i
λ j

〈
Yλ j | .Wλi

〉
. (A.10)
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Expanding the first term on the right gives,

〈
∂tα
−
λ j

| g
〉
= κ

2

〈
∂t (λ

−1
j Yλ j ) | g +

∑

i< j

ιiWλi

〉
+ 1

2

〈
∂t (Yλ j ) | ġ

〉

= −κ

2

λ′j
λ j

〈
λ−1j Yλ j +

1
λ j

(.Y)λ j | g +
∑

i< j

ιiWλi

〉
− 1

2

λ′j
λ j

〈
(.Y)λ j ) | ġ

〉

and thus,

∣∣∣
〈
∂tα
−
λ j

| g
〉∣∣∣ ! 1

λ j
d(t)2.

We use (5.39) to expand the second term,

〈
α−λ j

| ∂t g
〉
=
〈
α−λ j

| J ◦ D2 E(W(/ι, /λ))g
〉

+
〈
α−λ j

| J ◦
(
D E(W(/ι, /λ)+ g)− D2 E(W(/ι, /λ))g

)〉

−
〈
α−λ j

| ∂tW(/ι, /λ)
〉

+
〈
α−λ j

|
(
χ(·/ν)J ◦ D E(u)− J ◦ D E(χ(·/ν)u)

)〉

−ν′

ν

〈
α−λ j

| (r∂rχ)(·/ν)u
〉
. (A.11)

By (2.11) the first term on the right gives the leading order,

〈
α−λ j

| J ◦ D2 E(W(/ι, /λ))g
〉
= − κ

λ j
a−j .

Next, we expand,

〈
α−λ j

| J ◦
(
D E(W(/ι, /λ)+ g)− D2 E(W(/ι, /λ))g

)〉

= −1
2

〈
Yλ j

| f (W(/ι, /λ)+ g)− f (W(/ι, /λ))− f ′(W(/ι, /λ))g
〉

− 1
2

〈
Yλ j

| f (W(/ι, /λ))−
K∑

i=1

ιi f (Wλi )
〉
.

The first line satisfies,

∣∣∣
〈
Yλ j

| f (W(/ι, /λ)+ g)− f (W(/ι, /λ))− f ′(W(/ι, /λ))g
〉∣∣∣ ! 1

λ j
(d(t)2 + on(1)).
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Noting that f (W(/ι, /λ))−∑K
i=1 ιi f (Wλi ) = fi(/ι, /λ), the same argument used to prove

Lemma 2.21 gives,

∣∣∣
〈
Yλ j

| fi(/ι, /λ)
〉∣∣∣ ! 1

λ j

(( λ j

λ j+1

) 3
2 +

(λ j−1
λ j

) 3
2
)

! 1
λ j

d(t)2.

Consider now the third line in (A.11).

−
〈
α−λ j

| ∂tW(/ι, /λ)
〉
= κ

2
ι j
λ′j
λ j

〈
Yλ j | .Wλ j

〉
+
∑

i <= j

ιi
κ

2
λ′i
λ j

〈
Yλ j | .Wλi

〉

=
∑

i <= j

ιi
κ

2
λ′i
λ j

〈
Yλ j | .Wλi

〉

where in the last equality we used the vanishing
〈
Y | .W

〉
. Noting the estimates,

∣∣∣
〈
Yλ j | .Wλi

〉∣∣∣ !
( λi

λ j

) 5
2 if i > j

we obtain,

∣∣∣−
〈
α−λ j

| ∂tW(/ι, /λ)
〉
−
∑

i <= j

ιi
κ

2
λ′i
λ j

〈
Yλ j | .Wλi

〉∣∣∣ ! 1
λ j

d(t)2.

Using (5.10) and (5.13) we see that the last two lines of (A.11) satisfy,

∣∣∣
〈
α−λ j

|
(
χ(·/ν)J ◦ D E(u)− J ◦ D E(χ(·/ν)u)

)〉∣∣∣ ! 1
λ j

on(1),

∣∣∣
ν′

ν

〈
α−λ j

| (r∂rχ)(·/ν)u
〉∣∣∣ ! 1

λ j
on(1).

Plugging this all back into (A.10) and using (A.7) we obtain,

∣∣∣̃a−j + κ

λ j
ã−j

∣∣∣ ! 1
λ j

(d(t)2 + on(1)).

This completes the proof after ensuring εn is large enough so that the on(1) term above
can be absorbed into d(t). 89

A.2 Conclusion of the Proof

Using the modulation estimates above, we can prove the following analog of
Lemma 6.5.
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Lemma A.2 Let D = 5. If η0 is small enough, then there exists C0 ≥ 0 depending
only on N such that the following is true. If [t1, t2] ⊂ I∗ is a finite time interval such
that d(t) ≤ η0 for all t ∈ [t1, t2], then

sup
t∈[t1,t2]

λK (t) ≤
4
3

inf
t∈[t1,t2]

λK (t),

∫ t2

t1
d(t)dt ≤ C0

(
d(t1)λK (t1)+ d(t2)λK (t2)

)
.

Sketch of a proof Step 1. is exactly the same as for Lemma 6.5.
Step 2.LetC1 > 0 be a large number chosen below and consider the auxiliary function

φ(t) :=
∑

j∈S
2− jξ j (t)β j (t)− C1

K∑

j=1

λ j (t )̃a
−
j (t)

2 + C1

K∑

j=1

λ j (t )̃a
+
j (t)

2.

We claim that for all t ∈ [t1, t2]

φ′(t) ≥ c2d(t)2, (A.12)

with c2 > 0 depending only on N . The remaining part of Step 1 is devoted to proving
this bound.

Using (A.5), (A.8) and recalling that |λ′K (t)| ! d(t), we obtain

φ′(t) ≥
∑

j∈S
2− jβ2

j (t)+
∑

j∈S
2− jλ j (t)β ′j (t)+ C1ν

K∑

j=1

(
ã−j (t)

2 + ã+j (t)
2)− c0d(t)2,

(A.13)

where c0 > 0 can be made arbitrarily small. We focus on the second term of the right
hand side. Like in Step 2. of the proof of Lemma 6.5, only using (A.6) instead of
(5.55), we obtain

∑

j∈S
λ j (t)β

′
j (t) ≥ 2−N−1ω2

∑

j∈S

( λ j (t)

λ j+1(t)

) D−2
2 − C2

K∑

k=1

(
a−j (t)

2 + a+j (t)
2)− c0d(t)2.

The bound (A.7) implies that (A.13) holds with with ã±j replaced by a±j . Taking
C1 > C2/ν and using (A.2), we get (A.12).
Step 3. As in Step 3. of the proof of Lemma 6.5, it suffices to check that if t3 ∈ [t1, t2]
and φ(t) > 0 for all t ∈ (t3, t2], then

∫ t2

t3
d(t)dt ≤ C0d(t2)λK (t2). (A.14)
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Observe that for all t ∈ (t3, t2] we have

φ(t)
λK (t)

!
∑

j∈S

λ j (t)
λK (t)

|β j (t)| +
K∑

j=1

λ j (t)
λK (t)

(
ã−j (t)

2 + ã+j (t)
2)

!
∑

j∈S

λ j (t)
λ j+1(t)

|β j (t)| + d(t)2 ! d(t)
4
3+1 + d(t)2 ! d(t)2.

(A.15)

Combining this bound with (A.12), for all t ∈ (t3, t2] we get

φ′(t) ≥ c2
√
φ(t)/λK (t)d(t),

thus

√
λK (t)

(√
φ(t)

)′ " d(t). (A.16)

Using (A.15) and |λ′K (t)| ! d(t), we get

(√
λK (t)φ(t)

)′ −
√
λK (t)

(√
φ(t)

)′ = 1
2
λ′K (t)

√
φ(t)/λK (t) " −d(t)2.

Since d(t) is small, (A.16) yields

(√
λK (t)φ(t)

4
D+2

)′ " d(t)

which, integrated, gives

∫ t2

t3
d(t)dt !

√
λK (t2)φ(t2)−

√
λK (t3)φ(t3) ≤

√
λK (t2)φ(t2).

Invoking (A.15), we obtain (A.14). 89

Using LemmaA.2 in lieu of Lemma 6.5, the remaining arguments in Section 6 hold
for D = 5 without changes.

Appendix B. Modifications to the Argument in the CaseD = 4

In this section we outline the changes to the arguments in Section 5 and Section 6
needed to prove Theorem 1 dimension D = 4.

B.1 Decomposition of the Solution

The set-up in Sections 5.1 holds without modification for D = 4. The number K ≥ 1
is defined as in Lemma 5.6, the collision intervals [an, bn] ∈ CK (η, εn) are as in Def-
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inition 5.5, and the sequences of signs /σn ∈ {−1, 1}N−K , scales /µ(t) ∈ (0,∞)N−K ,
and the sequence νn → 0 and the function ν(t) = νnµK+1(t) are as in Lemma 5.9.

Lemma 5.12 also holds with a minor modification to the stable/unstable compo-
nents. Let J ⊂ [an, bn] be any time interval on which d(t) ≤ η0, where η0 is as in
Lemma 5.12. Let /ι ∈ {−1, 1}K , /λ(t) ∈ (0,∞)K , g(t) ∈ E, and a±j (t) be as in the
statement of Lemma 5.12. Define for each 1 ≤ j ≤ K , the modified stable/unstable
components,

ã±j (t) :=
〈
α±
λ j (t)

| g(t)+
∑

i< j

ιiWλi (t)
〉
.

Let L > 0 be a parameter to be fixed below and for each j ∈ {1, . . . , K − 1} set,

ξ j (t) := λ j (t)−
ι j

8 log(λ j+1(t)
λ j (t)

)

〈
χL
√

λ j (t)λ j+1(t)
.Wλ j (t) | g(t)+

∑

i< j

ιiWλi (t)
〉
,

and,

β j (t) := −ι j
〈
χL
√

ξ j (t)λ j+1(t)
.Wλ j (t) | ġ(t)

〉
−
〈
A(λ j (t))g(t) | ġ(t)

〉
. (B.1)

Proposition B.1 (Refinedmodulation, D = 4) Let c0 ∈ (0, 1) and c1 > 0. There exists
L0 = L0(c0, c1) > 0, η0 = η0(c0, c1), as well as c = c(c0, c1) and R = R(c0, c1) >
1 as in Lemma 5.14, a constant C0 > 0 and a decreasing sequence εn → 0 so that
the following is true.

Suppose L > L0 and J ⊂ [an, bn] is an open time interval with εn ≤ d(t) ≤ η0
for all t ∈ J , where S := { j ∈ {1, . . . , K − 1} | ι j = ι j+1}. Then, for all t ∈ J ,

‖g(t)‖E +
∑

i /∈S
(λi (t)/λi+1(t))

1
2 ≤ max

i∈S
(λi (t)/λi+1(t))

1
2 + max

1≤i≤K
|a±i (t)|, (B.2)

and,

1
C0

d(t) ≤ max
i∈S

(λi (t)/λi+1(t))
1
2 + max

1≤i≤K
|a±i (t)| ≤ C0d(t), (B.3)

∣∣∣
ξ j (t)

λ j+1(t)
− λ j (t)

λ j+1(t)

∣∣∣ ≤ C0
d(t)2

log(λ j+1/λ j )
, (B.4)

as well as,
∣∣∣a±j (t)− ã±j (t)

∣∣∣ ≤ C0d(t)2, (B.5)

and,

∣∣∣
d
dt

ã±j (t)∓
κ

λ j (t)
ã±j (t)

∣∣∣ ≤ C0

λ j (t)
d(t)2. (B.6)
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Moreover, let j ∈ S be such that for all t ∈ J

c1d(t) ≤
( λ j (t)
λ j+1(t)

) 1
2
. (B.7)

Then for all t ∈ J ,

∣∣∣ξ ′j (t)
∣∣∣
(
log

(λ j+1(t)
λ j (t)

)) 1
2 ≤ C0d(t), (B.8)

∣∣∣ξ ′j (t)8 log(
λ j+1(t)
λ j (t)

)− β j (t)
∣∣∣ ≤ C0d(t), (B.9)

and,

β ′j (t) ≥
(
ι j ι j+116− c0

) 1
λ j+1(t)

+
(
−ι j ι j−116− c0

)λ j−1(t)
λ j (t)2

− c0
λ j (t)

d(t)2 − C0

λ j (t)

(
(a+j (t))

2 + (a−j (t))
2
)

(B.10)

where, by convention, λ0(t) = 0, λK+1(t) =∞ for all t ∈ J .

Remark B.2 Proposition B.1 and its proof are nearly identical to [41, Proposition A.1]
and its proof, which treat the case k = 1 for the energy-critical equivariant wave map
equation.

Proof The estimates (B.2) and (B.3) follow as in the proofs of the corresponding
estimates in Lemma 5.17. We next prove (B.4). From the definition of ξ j (t),

∣∣∣∣
ξ j

λ j+1
− λ j

λ j+1

∣∣∣∣ !
∣∣∣

1

log(λ j+1
λ j

)
λ−1j+1

〈
χL
√

λ jλ j+1
.Wλ j | g

〉∣∣∣

+
∣∣∣

1

log(λ j+1
λ j

)
λ−1j+1

〈
χL
√

λ jλ j+1
.Wλ j |

∑

i< j

Wλi

〉∣∣∣.

For the first term on the right we have,

∣∣∣
1

log(λ j+1
λ j

)
λ−1j+1

〈
χL
√

λ jλ j+1
.Wλ j | g

〉∣∣∣ !L
1

log(λ j+1
λ j

)
‖g‖H (λ j/λ j+1)

1
2 .

Next, for any i < j we have,

λ−1j+1|
〈
χL
√

λ jλ j+1
.Wλ j | Wλi

〉
| !L

λ j

λ j+1

∫ L(λ j+1/λ j )
1
2

0
|.W (r)||Wλi/λ j (r)| r3 dr

!L
λ j

λ j+1

λi

λ j
log(λ j+1/λ j )
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and hence,

∣∣∣
1

log(λ j+1
λ j

)
λ−1j+1

〈
χL
√

λ jλ j+1
.Wλ j |

∑

i< j

Wλi

〉∣∣∣ !L
λ j

λ j+1

∑

i< j

λi

λ j

and (B.4) follows.
Next using (B.2) and (5.26) for each j , we have

∣∣∣λ′j
∣∣∣ ! d(t). (B.11)

We show that in fact ξ ′j satisfies the improved estimate (B.8). We compute,

ξ ′j = λ′j −
ι j

8(log(λ j+1
λ j

))2
(
λ′j
λ j
−

λ′j+1

λ j+1
)
〈
χ(·/L

√
λ jλ j+1).Wλ j | g +

∑

i< j

ιiWλi

〉

+ ι j

16 log(λ j+1
λ j

)

(λ′j
λ j

+
λ′j+1

λ j+1

)〈
(r∂rχ)(·/L

√
λ jλ j+1).Wλ j | g +

∑

i< j

ιiWλi

〉

+ ι j

8 log(λ j+1
λ j

)

λ′j
λ j

〈
χ(·/L

√
λ jλ j+1)..Wλ j | g +

∑

i< j

ιiWλi

〉

− ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | ∂t g

〉

+
∑

i< j

ιi ι j

8 log(λ j+1
λ j

)
λ′i
〈
χ(·/L

√
λ jλ j+1).Wλ j | .Wλi

〉
. (B.12)

The second, third, and fourth terms on the right above contribute acceptable errors.
Indeed,

∣∣∣
ι j

8(log(λ j+1
λ j

))2
(
λ′j
λ j
−

λ′j+1

λ j+1
)
〈
χ(·/L

√
λ jλ j+1).Wλ j | g +

∑

i< j

ιiWλi

〉∣∣∣

! d(t)

c1(log(
λ j+1
λ j

))2

∣∣∣
ι j

16 log(λ j+1
λ j

)

(λ′j
λ j

+
λ′j+1

λ j+1

)〈
(r∂rχ)(·/L

√
λ jλ j+1).Wλ j | g +

∑

i< j

ιiWλi

〉∣∣∣

! d(t)

c1 log(
λ j+1
λ j

)

∣∣∣
ι j

8 log(λ j+1
λ j

)

λ′j
λ j

〈
χ(·/L

√
λ jλ j+1)..Wλ j | g +

∑

i< j

ιiWλi

〉∣∣∣

! d(t)2

log(λ j+1
λ j

)
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with the gain in the last line arising from the fact that ..W ∈ L
4
3 ; see (2.8). The

leading order comes from the second to last term in (B.12). Using (5.58) gives

− ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | ∂t g

〉

= − ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | ġ

〉

− λ′j
1

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | .Wλ j

〉

− ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j |

∑

i <= j

ιiλ
′
i.Wλi

〉

− ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | φ(u, ν)

〉
.

We estimate the contribution of each of the terms on the right above to (B.12). The
last term above vanishes due to the support properties of φ(u, ν). Using (2.9), (B.11)
on the second term above, gives

∣∣∣− λ′j
1

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | .Wλ j

〉
+ λ′j | ! d(t)

log(λ j+1
λ j

)
,

which means this terms cancels the term λ′ on the right-hand side of (B.12) up to an
acceptable error. Next we write,

− ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j |

∑

i <= j

ιiλ
′
i.Wλi

〉

= −
∑

i< j

ιi ι j

8 log(λ j+1
λ j

)
λ′i
〈
χ(·/L

√
λ jλ j+1).Wλ j | .Wλi

〉

−
∑

i> j

ιi ι j

8 log(λ j+1
λ j

)
λ′i
〈
χ(·/L

√
λ jλ j+1).Wλ j | .Wλi

〉
.

The first term cancels the last term in (B.12). For the second term we estimate, if
i > j ,

|
〈
χ(·/L

√
λ jλ j+1).Wλ j | .Wλi

〉
| ! λ j/λ j+1

and thus, using (B.11) the second term in the previous equation contributes an accept-
able error. Plugging all of these estimates back into (B.12) gives the estimate,

∣∣∣ξ ′j +
ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | ġ

〉∣∣∣ ! d(t)

c1 log(
λ j+1
λ j

)
. (B.13)
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Using (B.2) and ‖χ(·/L√λ jλ j+1).Wλ j ‖L2 !L (log(λ j+1
λ j

))
1
2 , we deduce the esti-

mate,

∣∣∣
ι j

8 log(λ j+1
λ j

)

〈
χ(·/L

√
λ jλ j+1).Wλ j | ġ

〉∣∣∣ !L
d(t)

(log(λ j+1
λ j

))
1
2

,

which completes the proof of (B.8).
Next we compare β j and 2ξ ′j log(λ j+1/λ j ). Using (B.1) we have,

∣∣∣
〈
A(λ j (t))g(t) | ġ(t)

〉 ∣∣∣ ! ‖g‖2E ! d(t)2.

We also note the estimate

∣∣∣
〈
(χ(·/L

√
λ jλ j+1)− χ(·/L

√
λ jλ j+1).Qλ j | ġ

〉∣∣∣ ≤ 1

c21
d(t)2,

which is a consequence of (B.4). Using (B.13) the estimate (B.9) follows.
Finally, the proof of the estimate (B.10) is nearly identical to the argument used to

prove (5.55), differing only in a few places where the cut-off χL
√

ξ jλ j+1
is involved.

Arguing as in the proof of (5.55) we arrive at the formula,

β ′j = −
ι j

λ j

〈
.Wλ j | fi(ι, /λ)

〉
+
〈
A(λ j )g | −#g

〉

+
〈
(A(λ j )− A(λ j ))g | f̃q(/ι, /λ, g)

〉

+
〈
χ(·/L

√
ξ jλ j+1).Wλ j | (LW − Lλ j )g

〉

+ι j
λ′j
λ j

〈( 1
λ j

.− A(λ j )
)
.Wλ j | ġ

〉

−
〈

A(λ j )

K∑

i=1

ιiWλi | fq(/ι, /λ, g)
〉

−
〈
A(λ j )g | f̃q(/ι, /λ, g)

〉

+ι j

〈
(A(λ j )−

1
λ j

χ(·/L
√
ξ jλ j+1).)Wλ j | fq(/ι, /λ, g)

〉

−
λ′j
λ j

〈
λ j∂λ j A(λ j )g | ġ

〉

+
∑

i <= j

ιi

〈
A(λ j )Wλi | fq(/ι, /λ, g)

〉
−
∑

i <= j

ιiλ
′
i

〈
A(λ j ).Wλi | ġ

〉

−
〈
A(λ j )g | fi(ι, /λ)

〉
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−ι j
〈
χ(·/L

√
ξ jλ j+1).Wλ j | φ̇(u, ν)

〉
−
〈
A(λ j )φ(u, ν) | ġ

〉

−
〈
A(λ j )g | φ̇(u, ν)

〉

+ ι j

λ j

〈
(1− χ(·/L

√
ξ jλ j+1)).Wλ j | fi(ι, /λ)

〉

−ι j
λ′j
λ j

〈
(1− χ(·/L

√
ξ jλ j+1))..Wλ j | ġ

〉

+
〈
Lλ j (χ(·/L

√
ξ jλ j+1).Wλ j ) | g

〉

+ ι j

2

(ξ ′j
ξ j

+
λ′j+1

λ j+1

)〈
.χ(·/L

√
ξ jλ j+1).Wλ j | ġ

〉
.

All but the last four terms above are treated exactly as in the proof of (5.55). For the
fourth-to-last term a direct computation gives,

∣∣∣
ι j

λ j

〈
(1− χ(·/L

√
ξ jλ j+1)).Wλ j | fi(ι, /λ)

〉 ∣∣∣4 1
λ j

( λ j

λ j+1
+ λ j−1

λ j

)
.

For the third-to-last term, we use that ..W ∈ L2 (see (2.8)), (B.11), and (B.2) to
deduce that,

∣∣∣ι j
λ′j
λ j

〈
(1− χ(·/L

√
ξ jλ j+1))..Wλ j | ġ

〉 ∣∣∣4 1
λ j

d(t)2.

The size of the constant L > 0 becomes relevant only in the second-to-last term.
Indeed, since L.W = 0, we have,

Lλ j (χL
√

ξ jλ j+1
.Wλ j )

= 1
L2ξ jλ j+1

(#χ)(·/L
√
ξ jλ j+1).Wλ j +

2
L
√
ξ jλ j+1

χ ′(·/L
√
ξ jλ j+1)

(r∂r.W )λ j

r
.

And therefore, using (B.2) and (B.4) we obtain the estimate,

∣∣∣
〈
Lλ j (χ(·/L

√
ξ jλ j+1).Wλ j ) | g

〉 ∣∣∣ ! 1
L

1
λ j

d(t)2

for a uniform constant, independent of L . Taking L > 1 large enough relative to
c0 makes this an acceptable error. Finally, for the last term we use the improved
estimate (B.8) for ξ ′j and (B.4) to obtain,

∣∣∣∣∣
ξ ′j
ξ j

+
λ′j+1

λ j+1

∣∣∣∣∣ ! 1
λ j

( ∣∣∣ξ ′j
∣∣∣+ λ j

λ j+1

∣∣∣λ′j+1

∣∣∣
)
4 1

λ j
d(t),
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and hence,

∣∣∣
ι j

2

(ξ ′j
ξ j

+
λ′j+1

λ j+1

)〈
(r∂rχ)(·/L

√
ξ jλ j+1).Wλ j | ġ

〉∣∣∣4 1
λ j

d(t).

This completes the proof of (B.10). Lastly, we note that the estimates (B.5) and (B.6)
follow from exactly the same arguments used to prove (A.7) and (A.8) in Proposi-
tion A.1. 89

We note that Lemma 5.19 and its proof remain valid for D = 4.

B.2 Conclusion of the Proof

We have the following analog of Lemma 6.5.

Lemma B.3 Let D = 4. If η0 is small enough, then there exists C0 ≥ 0 depending
only on N such that the following is true. If [t1, t2] ⊂ I∗ is a finite time interval such
that d(t) ≤ η0 for all t ∈ [t1, t2], then

sup
t∈[t1,t2]

λK (t) ≤
4
3

inf
t∈[t1,t2]

λK (t), (B.14)

∫ t2

t1
d(t)dt ≤ C0

(
d(t1)λK (t1)+ d(t2)λK (t2)

)
. (B.15)

Due to the fact that some of the estimates in Proposition B.1 hold only under the
additional assumption (B.7), we were not able to adapt to the current setting the proof
for D ≥ 5 given above. We will provide a different proof, closer to [41, Section 5].

We introduce below the notion of ignition condition. We stress that the definition
which follows is meaningful for any continuous functions, not necessarily the ones
given by the modulation.

Definition B.4 Let I be a time interval, K ∈ N, ι j ∈ {−1, 1} and λ j , a−j , a
+
j ∈ C(I )

for all 1 ≤ j ≤ K . Set

S := {i : 1 ≤ i ≤ K − 1 and ιi = ιi+1},

dpar(t) :=
√√√√
∑

i∈S

λi (t)
λi+1(t)

+
∑

1≤i≤K

(
a+i (t)

2 + a−i (t)
2
)
.

We say that ι1, . . . , ιK , λ1, . . . , λK , a−1 , . . . , a
−
K , a

+
1 , . . . , a

+
K satisfy the ignition con-

ditionwith parameters c1, c2,C2 > 0 if for any I = [t1, t2], t0 ∈ I and j ∈ {1, . . . , K }
satisfying at least one of the two pairs of conditions:

•

∑

i∈S,i< j

λi (t)
λi+1(t)

+
j−1∑

i=1

a±i (t)
2 ≤ c2dpar(t)2, for all t ∈ [t1, t2], (B.16)
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and

a+j (t0)
2 + a−j (t0)

2 ≥ c1dpar(t0)2, (B.17)

•

∑

i∈S,i< j−1

λi (t)
λi+1(t)

+
j−1∑

i=1

a±i (t)
2 ≤ c2dpar(t)2, for all t ∈ [t1, t2], (B.18)

and

ι j−1ι j
λ j−1(t0)
λ j (t0)

≥ c1dpar(t0)2, (B.19)

there is at least one of the bounds:

∫ t0

t1
dpar(t)dt ≤ C2dpar(t1)λK (t1) (B.20)

or

∫ t2

t0
dpar(t)dt ≤ C2dpar(t2)λK (t2). (B.21)

Remark B.5 If the ignition condition is satisfied with given parameters c1, c2,C2 > 0,
then it is also satisfied with any parameters (̃c1, c̃2, C̃2) such that c̃1 ≥ c1, c̃2 ≤ c2
and C̃2 ≥ C2.

Remark B.6 By convention, λ0(t) = 0 for all t ∈ [t1, t2], thus (B.19) never holds for
j = 1. Clearly, (B.19) cannot hold either if j − 1 /∈ S.

Lemma B.7 If (ι1, . . . , ιK , λ1, . . . , λK , a−1 , . . . , a
−
K , a

+
1 , . . . , a

+
K ) satisfy the ignition

condition with parameters c1, c2,C2 and I is a time interval such that

ι1ι2 + 1
2

λ1(t)
λ2(t)

+ a−1 (t)
2 + a+1 (t)

2 ≤ 1
2
min(1, c2)dpar(t)2 for all t ∈ I ,

(B.22)

then (ι2, . . . , ιK , λ2, . . . , λK , a−2 , . . . , a
−
K , a

+
2 , . . . , a

+
K ) satisfy the ignition condition

with parameters (2c1, 1
2 min(1, c2), 2C2) on the interval I .
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Proof Set

d?(t) :=
√

ι1ι2 + 1
2

λ1(t)
λ2(t)

+ a−1 (t)2 + a+1 (t)2,

d@(t) :=

√√√√√
∑

i∈S\{1}

λi (t)
λi+1(t)

+
K∑

i=2

(
a+i (t)

2 + a−i (t)
2
)
=
√
dpar(t)2 − d?(t)2.

By assumption (B.22), we have d?(t)2 ≤ 1
2dpar(t)

2, which implies dpar(t) ≤
√
2d@(t).

We verify the ignition condition for (ι2, . . . , ιK , λ2, . . . , λK , a−2 , . . . , a
−
K , a

+
2 ,

. . . , a+K ). If j ≥ 2 and

∑

i∈S,1<i< j

λi (t)
λi+1(t)

+
j−1∑

i=2

a±i (t)
2 ≤ 1

2
min(1, c2)d@(t)2, for all t ∈ [t1, t2],

then adding d?(t)2 to both sides and using (B.22), we get (B.16). Also, a+j (t0)
2 +

a−j (t0)
2 ≥ 2c1d@(t0) implies (B.17). Since we assume (ι j , λ j , a−j , a

+
j )

K
j=1 satisfy

the ignition condition, we obtain at least one of the bounds (B.20), (B.21). Since
d@(t) ≤ dpar(t) ≤

√
2d@(t), we obtain the same bound with with d@ instead of dpar

and 2C2 instead of C2. The case where bounds (B.18) and (B.19) hold is similar. 89

Lemma B.8 For all K ∈ N and functions c2,C2 : (0, c∗1] → (0,∞), increasing
and decreasing respectively, there exist c1,min,C1 > 0 such that if for all c1 ≥ c1,min,
(ι j , λ j , a−j , a

+
j )

K
j=1 satisfy the ignition condition with parameters (c1, c2(c1),C2(c1))

on a time interval I = [t1, t2], then
∫

I
dpar(t)dt ≤ C1(λK (t1)dpar(t1)+ λK (t2)dpar(t2)).

Proof Induction with respect to K .
Step 1. For K = 1, we let c1,min = 1

2 . We will only use the fact that the ignition
condition is satisfied with parameters c1 = 1

2 , c2,C2 for some c2,C2 > 0. The
conditions (B.16) and (B.17) hold for j = 1, thus for all t0 we have (B.20) or (B.21).
Let

A− := {t0 ∈ I : (B.20) holds}, A+ := {t0 ∈ I : (B.21) holds},

so that A− and A+ are closed sets, and I = A− ∪ A+. We define

t?1 := max A−, t?2 := min A+.
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We adopt the convention that t?1 = t1 if A− = ∅, and similarly t?2 = t2 if A+ = ∅.
With these conventions, we find that t?1 ≥ t?2 . By the ignition condition, we have

∫ t2

t1
dpar(t)dt ≤

∫ t?1

t1
dpar(t)dt +

∫ t2

t?2

dpar(t)dt

≤ C2(c1,min)
(
dpar(t1)λK (t1)+ dpar(t2)λK (t2)

)
,

which settles the base case K = 1.
Step 2. We continue with the induction step. Set c@2(c1) := 1

2 min(1, c2(c1/2)) and
C@
2(c1) := 2C2(c1/2) for all c1 ∈ (0, c∗1]. Let c

@
1,min > 0 be the number given by the

induction hypothesis (for K − 1 instead of K ) for these functions c@2 and C@
2. We set

c3 := 1
2c

@
2(c

@
1,min) and c1,min := min

( 1
2c

@
2(c

@
1,min), c2(c3)

)
.

Assume (ι j , λ j , a
−
j , a

+
j )

K
j=1 satisfy the ignition condition for all c1 ≥ c1,min, and

let

A := {t ∈ [t1, t2] : a+1 (t)2 + a−1 (t)
2 ≥ c1,mindpar(t)2}.

By the ignition condition, (B.20) or (B.21) holds for all t0 ∈ A, withC2 = C2(c1,min).
Let

A− := {t0 ∈ A : (B.20) holds}, A+ := {t0 ∈ A : (B.21) holds},

so that A− and A+ are closed sets, and A = A− ∪ A+. We define

t?1 := max A−, t?2 := min A+.

We adopt the convention that t?1 = t1 if A− = ∅, and similarly t?2 = t2 if A+ = ∅. It
is not excluded either that t?1 ≥ t?2 .

By the ignition condition, we have

∫ t?1

t1
dpar(t)dt +

∫ t2

t?2

dpar(t)dt ≤ C2(c1,min)
(
dpar(t1)λK (t1)+ dpar(t2)λK (t2)

)
,

so it remains to consider the interval (t?1, t
?
2). Notice that (t

?
1, t

?
2) ⊂ I \ A.

Step 3. We treat separately the cases ι1ι2 = −1 and ι1ι2 = 1. In the former case, we
set t@1 = t?1 , t

@
2 = t?2 , and go to the next step.

Assume ι1ι2 = 1 and let

B :=
{
t ∈ [t?1, t

?
2] :

λ1(t)
λ2(t)

≥ c3dpar(t)2
}
.

We have c1,min ≤ c2(c3), thus a+1 (t)
2+a−1 (t)

2 ≤ c2(c3) for all t ∈ [t?1, t
?
2], so that the

ignition condition implies that (B.20) or (B.21) holds for all t0 ∈ A, with c2 = c2(c3)
and C2 = C2(c3). Let
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B− := {t0 ∈ B : (B.20) holds}, B+ := {t0 ∈ B : (B.21) holds},

so that B− and B+ are closed sets, and B = B− ∪ B+. We define

t@1 := max B−, t@2 := min B+.

We adopt the convention that t@1 = t?1 if B− = ∅, and similarly t@2 = t?2 if B+ = ∅. It
is not excluded either that t@1 ≥ t@2.

By the ignition condition, we have

∫ t@1

t?1

dpar(t)dt +
∫ t?2

t@2

dpar(t)dt ≤ C2(c3)
(
dpar(t

?
1)λK (t

?
1)+ dpar(t

?
2)λK (t

?
2)
)
,

so it remains to consider the interval (t@1, t
@
2). Notice that (t

@
1, t

@
2) ⊂ I \ (A ∪ B).

Step 4. We check that for all c@1 ≥ c@1,min, (ι j , λ j , a
−
j , a

+
j )

K
j=2 satisfy the ignition

condition with parameters (c@1, c
@
2(c

@
1),C

@
2(c

@
1)) on the interval [t

@
1, t

@
2]. We have

a+1 (t)
2 + a−1 (t)

2 + ι1ι2 + 1
2

λ1(t)
λ2(t)

≤ (c1,min + c3)dpar(t)2 ≤ c@2(c
@
1,min)dpar(t)

2.

(B.23)

By the definition of c@2, we also have

c@2(c
@
1,min) ≤

1
2
min(1, c2(c

@
1,min/2)) ≤

1
2
min(1, c2(c

@
1/2)),

where in the last step we used the fact that c2 is an increasing function. Thus, by
Lemma B.7, (ι j , λ j , a−j , a

+
j )

K
j=2 satisfy the ignition condition with parameters c@1,

1
2 min(1, c2(c

@
1/2)) = c@2(c

@
1), 2C2(c

@
1/2) = C@

2(c
@
1).

By the induction hypothesis, we have

∫ t@2

t@1

d@(t)dt ≤ C@
1 sup
t@1≤t≤t

@
2

(λK (t)d@(t)),

where

d@(t) :=

√√√√√
∑

i∈S\{1}

λi (t)
λi+1(t)

+
K∑

i=2

(
a+i (t)

2 + a−i (t)
2
)
.

The bound (B.23) and c@2(c
@
1,min) ≤ 1 imply dpar(t) ≤

√
2d@(t) for all t ∈ [t@1, t

@
2], and

the desired bound follows. 89
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Next, we prove that the modulation parameters satisfy the ignition condition.

Lemma B.9 For any c1 ∈ (0, c∗1] there exist η0, c2,C2 > 0 such that the following is
true. Let u be a solution of (1.1) for D = 4, let d be defined by (1.6), I a time interval
such that d(t) ≤ η0 for all t ∈ I , and let (ι j , λ j , a−j , a

+
j )

K
j=1 be the modulation

parameters as in Lemma 5.12. Then (ι j , λ j , a−j , a
+
j )

K
j=1 satisfy the ignition condition

with parameters (c1, c2,C2) on I .

Proof Assume first that (B.16) and (B.17) hold. We have |a+j (t0)| ≥ |a−j (t0)| or
|a+j (t0)| ≤ |a−j (t0)|. We will show that the former implies (B.21), and the latter
implies (B.20). Since the two cases are analogous, we only consider the first one. To
fix ideas, assume a+j (t0) > 0, the case a+j (t0) < 0 being analogous, so that

a+j (t0) ≥
√
c1√
2
dpar(t0) ⇒ ã+j (t0) ≥

2
√
c1
3

dpar(t0),

where the last inequality follows from (B.5).
Set

t3 := sup
{
t ∈ [t0, t2] : ã+j (t) ≥

√
c1
4

dpar(t) for all t ∈ [t0, t3]
}
.

If η0 is small enough, then (B.6) yields

(
ã+j

)′
(t) ≥ κ

2λ j (t)
ã+j (t), for all t ∈ [t0, t3].

Integrating, and using again the inequality defining t3, we obtain

∫ t3

t0
dpar(t)dt ! dpar(t3) sup

t∈[t0,t3]
λ j (t). (B.24)

Since |λ′k(t)| ! d(t) ! dpar(t), for all k ≥ j we obtain

sup
t∈[t0,t3]

λk(t) ≤ (1+ c4) inf
t∈[t0,t3]

λk(t), (B.25)

where c4 can be made arbitrarily small upon adjusting η0. Similarly, for k > j (B.6)
yields

∣∣(ã±k
)′
(t)

∣∣ ! dpar(t)/λk(t),

so (B.24) together with (B.25) yield

|̃a±k (t3)− ã±k (t0)| ≤ c4dpar(t3), for all k > j .
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Also, (B.6) yields

max
(
0,

d
dt

|̃a−j (t)|
)

! dpar(t)2/λ j (t),

thus using again (B.24) and (B.25) with k = j , we have

|̃a−j (t3)|− |̃a−j (t0)| ≤ c4dpar(t3).

Set

d?(t)2 :=
∑

i∈S,i< j

λi (t)
λi+1(t)

+
j−1∑

i=1

a±i (t)
2,

d@(t)2 :=
∑

i∈S,i≥ j

λi (t)
λi+1(t)

+
K∑

i= j+1

a±i (t)
2 + a−j (t)

2.

From the bounds above, we obtain d@(t3)2 ≤ d@(t0)2 + c4dpar(t3)2, with c4 small. By
(B.16), we have d?(t3)2 ≤ c2dpar(t3). Since ã+j is increasing on [t0, t3], we obtain

dpar(t3)2 = d?(t3)2 + d@(t3)2 + a+j (t3)
2 ≤ c2dpar(t3)2 + d@(t0)2 + c4dpar(t3)2 + a+j (t3)

2

≤ (c2 + c4)dpar(t3)2 +
(
1+ 9/(4c1)

)
a+j (t3)

2.

If c1, c2 and c4 are small enough, this implies a+j (t3) ≥
√
c1
2 dpar(t3), thus t3 = t2 and

(B.24) yields (B.21).
Assume now that (B.18) and (B.19) hold. We will prove that β j−1(t0) ≥ 0 implies

(B.21). An analogous argument would show that β j−1(t0) ≤ 0 implies (B.20).
Set

t3 := sup
{
t ∈ [t0, t2] : ξ j−1(t)/λ j (t) ≥

c1
4
dpar(t)2

}
.

Then, choosing c2 in (B.18) small enough, (B.10) yields

β ′j−1(t) ≥ 8λ j (t)−1, for all t ∈ [t0, t3].

For 0 < x 4 1, set A(x) := √−x log x . Note that
√
x ∼ A(x)/

√
− logA(x),

A′(x) =
√− log x
2
√
x

+ O((−x log x)−1/2) > 0.

With c3 > 0 to be determined, consider the auxiliary function

φ(t) := β j−1(t)+ c3A
(
ξ j−1(t)/λ j (t)

)
.
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The Chain Rule gives

φ′(t) = β ′j−1(t)+ c3
ξ ′j−1(t)

λ j (t)
A′
(ξ j−1(t)

λ j (t)

)
.

By (B.8), we have |ξ ′j−1(t)| ! (ξ j−1(t)/λ j (t))
1
2 log(−ξ j−1(t)/λ j (t))−1/2, hence we

can choose c3 such that

φ′(t) ≥ 4λ j (t)−1, for all t ∈ [t0, t3]. (B.26)

If we consider φ̃(t) := β j−1(t) + c3
2 A

(
ξ j−1(t)/λ j (t)

)
instead of φ, then the com-

putation above shows that φ̃ is increasing. We have φ̃(t0) ≥ 0, so φ̃(t) ≥ 0 for all
t ∈ [t0, t3], implying

d(t) !
√
ξ j−1(t)/λ j (t) ! φ(t)/

√
− logφ(t). (B.27)

The bound (B.26) yields

(
λ j (t)φ(t)2/

√
− logφ(t)

)′ " φ(t)/
√
− logφ(t).

We observe that |φ(t)| ! A(d(t)2), hence φ(t)2/
√
− logφ(t) ! d(t)2

√
− log d(t)

and

∫ t3

t0
φ(t)/

√
− logφ(t)dt ! λ j (t3)φ(t3)2/

√
− logφ(t3) ! d(t3)2

√
− logd(t3)λ j (t3).

Thus, (B.27) yields

∫ t3

t0
d(t)dt ! d(t3)2

√
− logd(t3)λ j (t3). (B.28)

The argument from the first part of the proof yields (B.25), for all k ≥ j . Also, (B.6)
gives

∣∣(ã±j
)′
(t)

∣∣ ! λ j (t)−1d(t), thus using again (B.27) and (B.25) we get, for all
k ≥ j ,

|̃a±k (t3)− ã±k (t0)| ≤ c4dpar(t3)

with c4 small, since the right hand side of (B.28) is 4 d(t3)λ j (t3) if η0 is small.
Finally, (B.9) and β j−1(t) ≥ 0 imply, again using (B.28),

ξ j−1(t3)
λ j (t3)

≥ (1− c4)
ξ j−1(t0)
λ j (t0)

⇒ λ j−1(t3)
λ j (t3)

≥ (1− c4)
λ j−1(t0)
λ j (t0)

, (B.29)
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where in the last step we use (B.4). Set

d?(t)2 :=
∑

i∈S,i< j−1

λi (t)
λi+1(t)

+
j−1∑

i=1

a±i (t)
2,

d@(t)2 :=
∑

i∈S,i≥ j

λi (t)
λi+1(t)

+
K∑

i= j

a±i (t)
2.

From the bounds above, we obtain d@(t3)2 ≤ d@(t0)2 + c4dpar(t3)2, with c4 small. By
(B.16), we have d?(t3)2 ≤ c2dpar(t3). Applying (B.29), we obtain

dpar(t3)2 = d?(t3)2 + d@(t3)2 + λ j−1(t3)/λ j (t3)

≤ c2dpar(t3)2 + d@(t0)2 + c4dpar(t3)2 + λ j−1(t3)/λ j (t3)

≤ (c2 + c4)dpar(t3)2 +
(
(1− c4)−1 + c−11

)
λ j−1(t3)/λ j (t3).

If c1, c2 and c4 are small enough, this implies ξ j−1(t3)/λ j (t3) ≥ c1
2 dpar(t3)

2, thus
t3 = t2 and (B.28) yields (B.21). 89

Proof of Lemma B.3 It suffices to prove (B.15), and (B.14) will follow by the same
argument as in the proof of Lemma 6.5.

We claim that there exist inreasing functions c2, η0 : (0, c∗1] → (0,∞), and a
decreasing functionC2 : (0, c∗1]→ (0,∞), such that for all c1 the modulation param-
eters satisfy the ignition condition with parameters (c1, c2(c1),C2(c1)) on any time
interval on which d(t) ≤ η0(c1). Indeed, take a strictly decreasing sequence of values
c(n)1 converging to zero, and let

c(n)2 := c2(c
(n)
1 ), η

(n)
0 := η0(c

(n)
1 ), C (n)

2 := C2(c
(n)
1 )

by Lemma B.9. By Remark B.5, one can always decrease η
(n)
0 and c(n)2 , and increase

C (n)
2 , so we can assume that η(n)0 and c(n)2 are decreasing sequences, and C (n)

2 is an
increasing sequence. We now set

c2(c1) := c2(c
(n)
1 ), η0(c1) := η0(c

(n)
1 ), C2(c1) := C2(c

(n)
1 ), for all c1 ∈ (c(n+1)

1 , c(n)1 ].

The conclusion follows from Lemma B.8 and the fact that dpar(t) 5 d(t) for all
t ∈ I , see (B.3). 89
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