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Abstract—A wide variety of graph algorithms expressed as
linear algebra operations, i.e., triangle counting, k-truss anal-
ysis, breath first search, betweenness centrality, depend on the
masked sparse matrix time sparse matrix multiplication (masked-
SpGEMM) kernel. SuiteSparse:GraphBLAS, the de-facto sparse
linear algebra library for graph analytics, offers support for
this specific computation. Under a simple API, the library offers
multiple masked-SpGEMM implementations. While attempting
to provide a flexible solution that adapts to the input graphs/data,
the system uses heuristics to choose between implementations. It
hides the mechanisms behind layers of complex code, making it
hard for users to reason about performance. In this work, we
provide an in-depth analysis of the design choices that affect the
performance of the masked-SpGEMM, using triangle counting as
the benchmark. We look at 1) techniques for load balancing the
sparse computation across multiple threads, 2) the iteration space
for traversing the matrix multiplication and masking operation,
and 3) the implementation of the accumulator used to store
the intermediate results. We discuss the trade-offs and show a
detailed performance analysis of the implementations on shared
memory systems for a wide variety of input graphs, compar-
ing SuiteSparse:GraphBLAS and a highly optimized masked-
SpGEMM implementation, and discuss future research directions
given our observations.

Index Terms—Graph Analytics, Load Balancing, Sparse Ac-
cumulators, Predictable Performance

I. INTRODUCTION

The development of efficient graph analytics frameworks

and algorithms is crucial due to the ever increasing size of data

produced in scientific fields like social networks, recommender

systems and bio-informatics. Over the past years, there have

been a multitude of projects [1]–[6] focused on fast processing

of sparse data represented as graphs. One such project is

GraphBLAS [7] and SuiteSparse:GraphBLAS [8], an API and

framework focused on expressing graph algorithms as sparse

linear algebra operations respectively, analogous to the (dense)

Basic Linear Algebra Subroutines (BLAS). Typically, graphs

are represented using adjacency matrices, where the elements

of the matrix indicate whether pairs of vertices are adjacent

or not in the graph. GraphBLAS proposes graph algorithms to

be expressed as operations applied on the adjacency matrix,

with steps that can be composed to form larger algorithms

such as triangle counting [9]–[11], k-truss calculation [12]–

[14], breath first search [15], and betweenness centrality [16].

The masked sparse-matrix-times-sparse-matrix multiplica-

tion (masked-SpGEMM) operation is one such operation that

is central to multiple graph algorithms. For example, to count

the number of triangles (i.e., three interconnected nodes), one

can multiply the adjacency matrix with itself to determine

the paths of length two between all nodes, and then filter

Fig. 1: Log scale execution times for the masked-SpGEMM

using SuiteSparse:GraphBLAS [8], GrB [17], and our tuned

implementation for a number of input graphs. All runs use a

hash-based accumulator and are parallelized on an AMD CPU

using 64 threads. While for some graphs the implementations

are similar, there are outliers where SuiteSparse:GraphBLAS

under-performs compared GrB, and vice-versa. Our tuned

implementation eliminates most extreme outliers from GrB

but still occasionally underperforms.

the result by requiring an extra path of length one between

the corresponding nodes. The filtering step is performed by

masking the intermediate result with the original adjacency

matrix. In practice, this set of operations is performed in

one step. In addition SuiteSparse:GraphBLAS chooses heuris-

tically the implementation that best suits the input graph.

The library attempts to offer a solution that can adapt to

the diverse set of graph data structures and inputs. Figure 1

shows the execution time for the masked-SpGEMM for dif-

ferent input graphs, using GraphBLAS (or more specifically

SuiteSparse:GraphBLAS) and GrB [17]. The execution time

of the two implementations vary for the different input graphs.

However, given the complexity of the SuiteSparse:GraphBLAS

library, it can be hard to reason about its performance.

In this work, we perform an in-depth analysis on the

trade-offs needed to achieve efficient implementations for the

masked-SpGEMM kernel. We investigate three aspects of the

computation. First, we look at tiling the computation and

distributing the tiles across the threads to achieve a balanced

execution. The work among threads needs to be balanced, but

also the amount of data read from main memory needs to be

reduced. Second, we focus on the iteration space for traversing

the matrix multiplication and masking operation in one single

step. We outline that there are multiple approaches to apply
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Fig. 2: The masked-SpGEMM C = M�(A×B), where � is the element-wise multiplication and × is the usual matrix-matrix

multiplication. The algorithm depicts the saxpy-based masked-SpGEMM, where each row of the C matrix is computed by first

scaling the non-zero values of the corresponding row of A with the appropriate rows of B, and then filtering the intermediate

result with the non-zero values from the corresponding row of M .

the computation. Lastly, we analyze the sparse accumulator

used to store the intermediate results of the computation.

Moreover, we extend the work by Milakovic et. al [17] by

exploring the properties of the masking matrix and modifying

the sparse accumulation. We believe that this study can offer

important insights for library developers and sparse code gen-

erators alike, providing a recipe one needs to obtain efficient

implementations for the masked-SpGEMM.

Contributions. We make the following contributions:

• We provide an in-depth analysis of the trade-offs

for different iteration spaces, sparse accumulators, and

tiling/thread scheduling schemes.

• We perform a performance study for a wide range of

input graphs on a shared memory CPU system.

• We compare the performance against different se-

tups and discuss our observations based on SuiteS-

parse:GraphBLAS and GrB.

The remainder of paper is structured as follows. Section II

briefly describes the masked-SpGEMM kernel. Section III fo-

cuses on the three hypotheses that may influence performance.

Section IV provides the experimental results and the discus-

sion. Section VI we present related work. Finally, Section V

summarizes the findings and outlines future directions.

II. BACKGROUND

In this section, we briefly present the masked sparse-

matrix-time-sparse-matrix (masked-SpGEMM) kernel. We

then outline the current implementations both in the SuiteS-

parse:GraphBLAS library, but also in the GrB library, an

implementation tailored for masked-SpGEMM.

A. Row-wise saxpy Masked SpGEMM

In this paper, we focus our analysis on the row-wise saxpy-

based masked-SpGEMM algorithms, where all operands are

stored in the CSR format.1 By symmetry, our analysis also

applies to column-wise saxpy over CSC operands. In the

remainder of this paper, we refer to the row-wise saxpy simply

as saxpy.

1We write saxpy in the BLAS ax+ y sense.

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # traverse all non-zero elements of A[i, :]
6 for non-zero column k in A[i,:]:

7 a = A[i,k]

8 # fetch non-zero elements of B[k, :]
9 for nonzero column j in B[k,:]:

10 x = B[k,j]

11 y = acc[i,j]

12 acc[i,j] = a * x + y

13 # intersect with mask

14 for non-zero column j in acc[i,:]:

15 if M[i,j] is zero:

16 acc[i,j] = 0

17 # store result to C

18 C[i,:] = acc.gather()

Fig. 3: The saxpy-based masked-SpGEMM. The algorithm

computes each row of the output matrix C in two steps. First,

it scales the non-zero elements in the corresponding row of

A with the appropriate rows of B. Second, the values of the

results are element-wise multiplied with the non-zero elements

of the row of M , via an intersection operation.

Let A ∈ R
m×K , B ∈ R

K×n, M ∈ R
m×n be the input

matrices stored using the CSR format. The masked-SpGEMM

can be written as

C = M � (A×B) (1)

where C ∈ R
m×n represents the sparse output matrix stored

as well in the CSR format, � represents the element-wise

computation, and × represents the typical matrix-matrix mul-

tiplication. We use R here for simplicity, but GraphBLAS

permits the use of any semiring instead.

Pictorially, the saxpy-based masked-SPGEMM is depicted

in Figure 2, where A is a square matrix of size m×m and B

and M are identical to A. Figure 3 outlines the pseudo-code

for the vanilla masked-SpGEMM. The algorithm iterates over
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Fig. 4: The implementation of the masked-SpGEMM using

a sparse accumulator. For each row of output matrix, the

corresponding row from the mask is loaded into the accu-

mulator. Each row loaded from the second matrix operand

is intersected with the values stored in the accumulator. The

non-zero elements of each row are filtered by the non-zero

elements of the mask.

the m rows of output matrix C (line 1). For each row C[i, :],
the computation initializes a sparse accumulator as empty (line

4). For each non-zero element A[i, k] of the corresponding row

A[i, :], the column index k is used to access the k-th row in

matrix B (line 9). The non-zero values in B[k, :] are scaled by

A[i, k] and added to the sparse accumulator (lines 10-12). Note

that both the accumulator and M [i, :] are sparse. Therefore, the

output is obtained as an intersection between the two: masked

elements are cleared from the accumulator. Finally, the result is

packed and stored in C. In the following sections, we present

the recent improved implementations and outline some key

challenges in coming up with such implementations.

B. GraphBLAS and SuiteSparse:GraphBLAS

GraphBLAS is an API specification that defines the standard

building blocks for graph algorithms in the language of linear

algebra. For example, the definition

1 GrB_mxm(GrB_Matrix C,

2 const GrB_Matrix M,

3 const GrB_BinaryOp accum,

4 const GrB_Semiring op,

5 const GrB_Matrix A,

6 const GrB_Matrix B,

7 const GrB_Descriptor desc);

describes the function call and its arguments for computing

a SpGEMM (M is set as GrB_NULL) or a masked-SpGEMM

(M points to an actual GrB_Matrix). GraphBLAS works with

opaque objects GrB_Matrix for the input M, A, B and output

C matrices. Moreover, the function call requires the specifica-

tions of the semiring to outline the concrete operations. More

details about the API can be found in [7], [8].

GraphBLAS specifies the API, SuiteSparse:GraphBLAS

provides the highly optimized implementations for each API

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # load the mask into the accumulator

6 acc.setMask(M[i,:])

7 # traverse all non-zero elements of A[i, :]
8 for non-zero column k in A[i,:]:

9 a = A[i, k]

10 # fetch non-zero elements of B[k, :]
11 for nonzero column j in B[k,:]:

12 # accumulate if M [i, j] �= 0
13 if acc[i,j] is not masked:

14 x = B[k,j]

15 y = acc[i,j]

16 acc[i,j] = a * x + y

17 # store result to C

18 C[i,:] = acc.gather()

Fig. 5: The modified masked-SpGEMM algorithm used by

the GrB library. The algorithm first loads the mask in the

accumulator. Then as each row from the B matrix is loaded,

the non-zero values are checked in the accumulator to verify

the mask is also non-zero. If there is a hit, the corresponding

location is updated, if the mask has a zero element then the

value is discarded.

function. SuiteSparse:GraphBLAS offers multiple implemen-

tations for the masked-SpGEMM computation. The library

chooses between the different implementations using a handful

of heuristics. While SuiteSparse:GraphBLAS attempts to offer

a flexible solution to tackle different input graphs with differ-

ent properties, the process of choosing between the implemen-

tations is automatic and hidden within the complexities of the

library. Therefore, understanding how performance is obtained

becomes a cumbersome task. In this paper, we attempt to offer

insights that may shed some light on this.

C. GrB: an Optimized masked-SpGEMM Implementation

GrB [17] is a standalone library tailored for the masked-

SpGEMM kernel, with a focus on the data structures used

to store the intermediate results. GrB modifies the original

implementation of the algorithm presented in Figure 3, by

making the observation that before computing each row of

C, the corresponding row of M, the mask, is loaded into

the accumulator. Subsequent updates to the accumulator first

verify that the non-zero values loaded from the second matrix

hit within the mask as outlined in Figure 5. If the non-zero

value has a corresponding non-zero in the loaded mask row,

then the location is updated accordingly. If the non-zero value

does not hit in the mask, then the value is discarded. In other

words, this implementation intersects the each B row with

the mask, and only updates the corresponding match in the

accumulator as outlined in Figure 4. This approach is now

used in SuiteSparse:GraphBLAS as well [18].
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Fig. 6: The different tiling strategies for the saxpy-based masked-SpGEMM. Sub-figure (1), tiles the computation in the row

dimension using homogeneous tiles. Each tile roughly has the same number of rows. Sub-figure (2), computes the total number

of operations performed by the masked-SpGEMM. The tiles are then created based on the average number of operations. The

goal of this approach is to load balance the computation.

GrB uses multiple data structures for storing the interme-

diate results. The most effective accumulators are either a

Hash-based or Dense-based accumulators. For more details on

their implementation, we recommend the reader to follow the

paper [17]. The library offers some flexibility in choosing the

different accumulators. However, the current implementation

does not allow to choose different parallelization schemes.

Given p threads, the implementation creates p tiles for the

output C, the mask M and first operand matrices A. The

second operand B is never tiled. The tiles are created by

computing an average on the number of operations for each

input matrix. The goal is to split the computation in tiles that

balance the overall computation. The tiling and parallelization

scheme is hence fixed.

III. THREE DIMENSIONS FOR PERFORMANCE

In this section, we focus on the three main dimensions we

identify as key in achieving efficient implementations for the

masked-SpGEMM kernel. First, we outline techniques to tile

the computation to achieve balanced execution across multiple

threads. Second, we focus on the iteration space used to

traverse the computation. Finally, we talk about the sparse

accumulators used to store the intermediate results.

A. Tiling and Scheduling the Computation

As the regular SpGEMM is already a highly irregular and

data-dependent computation, introducing masking further ex-

acerbates the problem. When computing in parallel, achieving

load balance between threads is critical to ensure effective

hardware utilization. There are two main approaches to load

balancing: (1) dynamic, and (2) static.

In the first case, a runtime system (e.g. OpenMP) schedules

threads to remaining tasks as soon as they complete their

current task. Load balance can be achieved in this case

even when tasks are highly imbalanced, as long as there are

sufficient independent tasks to assign to threads. However, the

runtime system may incur additional overhead. In the second

case, the tasks are scheduled offline and no runtime load

balancing is used. This is common when tasks are balanced.

Ignoring the mask M for the moment, it is possible to com-

pute the number of operations required to compute C = A×B

in O(nnz(A)) time. Specifically, for each nonzero A[i, k],
we require O(nnz(B[k, :])) operations. Since B is stored in

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # traverse all non-zero elements of A[i, :]
6 for non-zero column k in A[i,:]:

7 a = A[i, k]

8 # co-iterate M [i, :] with B[k, :]
9 for nonzero column j in M[i,:]:

10 # look up j in B[k, :]
11 found = binary_search(B[k,:], j)

12 if found:

13 x = B[k, j]

14 y = acc[i, j]

15 acc[i,j] = a * x + y

16 # store result to C

17 C[i,:] = acc.gather()

Fig. 7: The masked-SpGEMM algorithm that co-iterates M [i, :
] with every row B[k, :]. Instead of looking the non-zero ele-

ments in B[k, :], the algorithm looks at the non-zero elements

in M [i, :]. It then uses a binary search to find the column index

j in B[k, :]. If found it performs the computation.

CSR, nnz(B[k, :]) is available in constant time. Following the

algorithm in Figure 5, we can estimate the work for a row as

W [i] = nnz(M [i, :]) +
∑

A[i,k] �=0

nnz(B[k, :]). (2)

Using this, we can partition C into “FLOP-balanced” tiles.

GrB uses this approach to create p tiles.

A simple alternative approach is to simply cut up C into

uniformly sized tiles without regards to work, and let dynamic

runtime scheduling do the balancing. It is also possible to

combine both approaches, by producing T > p balanced

tiles and using dynamic scheduling. Based on our experience,

SuiteSparse:GraphBLAS uses T = 2p balanced tiles this way.

B. Traversing the Computation

The masked-SpGEMM is never implemented as a two step

operation, where the SpGEMM is done first, followed by the

masking operation. Typically, the computation is performed

in one step as outlined in Figure 3 and Figure 5. In the plain

vanilla implementation, the masking operation is performed
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Fig. 8: The implementation of the masked-SpGEMM using

the mask to co-iterate the rows of the A matrix. Only the

common elements between the mask and each row are loaded

and pushed into the accumulator. This approach is preferred,

if the number of non-zeros in the mask is small compared to

the number of non-zero elements in the loaded rows from A.

after all the rows B[k, :] are merged and stored in the accu-

mulator. The masking operation, represented by M [i, :], filters

out the values in the accumulator and outputs the final result

to the C matrix. This approach requires a large buffer to store

all the possible non-zero values obtained from merging the

scaled B[k, :] rows, and incurs many wasted computations.

The second implementation solves this problem by loading

the mask M [i, :] into the accumulator before computation is

started. As the rows B[k, :] are loaded from memory, the

non-zero values from B[k, :] are searched within the mask.

If there is a hit, then the values in the accumulator are update

accordingly, otherwise the non-zero value is discarded. The

approach reads all the non-zero values from each B[k, :],
which may be problematic if nnz(M [i, :]) is significantly

smaller than nnz(B[k, :]).
Using the mask M [i, :] to co-iterate across the B[k, :] rows

as depicted in Figure 8, may reduce the amount of data loaded

from main memory. The algorithm presented in Figure 7

outlines the approach. First, the mask is searched within

the B[k, :] row. If the mask is found within the row, then

only the corresponding values are loaded from main memory.

Unfortunately, this approach is not universally applicable.

Co-iterating the mask M [i, :] with the B[k, :] rows works

for masks with a small nnz(M [i, :]). If the nnz(M [i, :]) is

high then the overhead of searching the mask every time

within each B[k, :] row may introduce a large overhead. More

precisely, the cost to co-iterate M [i, :] with B[k, :] is given by

Wco[i, k] = nnz(M [i, :]) · log nnz(B[k, :]). (3)

In order to intelligently switch between the two approaches,

one can simply compare the cost Wco[i, k] with nnz(B[k, :])
when fetching data from B. This motivates the algorithm

shown in Figure 9. SuiteSparse:GraphBLAS internally uses

this approach, and refers to it as a form of push-pull op-

timization [18]. Note that any co-iteration requires the B

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # load the mask into the accumulator

6 acc.setMask(M[i,:])

7 # traverse all non-zero elements of A[i, :]
8 for non-zero column k in A[i,:]:

9 a = A[i, k]

10 if Wco[i, k] < κ · nnz(B[k, :]):
11 # co-iterate M [i, :] with B[k, :]
12 for nonzero column j in M[i,:]:

13 # look up j in B[k, :]
14 found = binary_search(B[k,:], j)

15 if found:

16 x = B[k, j]

17 y = acc[i, j]

18 acc[i,j] = a * x + y

19 else:

20 # fetch non-zero elements of B[k, :]
21 for nonzero column j in B[k,:]:

22 # accumulate if M [i, j] �= 0
23 if acc[i,j] is not masked:

24 x = B[k,j]

25 y = acc[i,j]

26 acc[i,j] = a * x + y

27 # store result to C

28 C[i,:] = acc.gather()

Fig. 9: Hybrid linear scan and co-iteration. κ is the co-iteration

factor, which trades off more or less co-iteration.

matrix columns to be sorted, which may not be the case in

SuiteSparse:GraphBLAS.

C. Sparse Accumulators

The sparse accumulator stores the partial sums during

the computation of C[i, :], and encodes the mask M [i, :] to

enable linear scanning of the B rows. The most important

requirement of the accumulator is fast random access to

all possible output column indices. There are two popular

approaches to implement this: (1) a dense vector of size

m, and (2) a sufficiently large hash table. Existing im-

plementations, including GrB and SuiteSparse:GraphBLAS,

use the operation count maxi
∑

A[i,k] �=0 nnz(B[k, :]), but we

simply use maxi nnz(M [i, :]) in our implementation. This

is due to the fact that, with masking, we can have at most

maxi nnz(M [i, :]) output nonzeros. Furthermore, we need to

set at least maxi nnz(M [i, :]) elements in the beginning for

the mask. Note that the max can be taken over the subset

of rows owned by the thread, if using static scheduling. The

dense accumulator may be preferred when the dimension of

the matrix is small, or when there is significant spatial locality

in the writes. On the other hand, the hash accumulator is often

more space efficient when the dimensions are large, which can

increase cache locality.

453

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 07,2025 at 16:49:11 UTC from IEEE Xplore.  Restrictions apply. 



Name Kind n nnz

arabic-2005 W 22,744,080 639,999,458
as-Skitter W 1,696,415 22,190,596
circuit5M C 5,558,326 59,524,291

com-LiveJournal S 3,997,962 69,362,378
com-Orkut S 3,072,441 234,370,166

europe_osm R 50,912,018 108,109,320
GAP-road R 23,947,347 57,708,624

hollywood-2009 S 1,139,905 113,891,327
stokes C 11,449,533 349,321,980

uk-2002 W 18,520,486 298,113,762

TABLE I: Matrices used from the SuiteSparse Matrix Collec-

tion. The kinds are: (W) web graph, (C) circuit simulation, (S)

social graph, (R) road graph.

A secondary requirement of the accumulator is fast state

resetting between rows. In GrB, all M [i, j] �= 0 slots of

the accumulator are reset explicitly after each row. With

SuiteSparse:GraphBLAS, a 64-bit marker is used for the dense

accumulator to indicate which values are valid or invalid. After

each row, the marker is incremented accordingly to implicitly

reset the accumulator state. It is assumed that the marker does

not overflow. Our modification of GrB uses the marker-based

approach from SuiteSparse:GraphBLAS, except we relax the

marker to be less than 64 bits. This may lead to overflow

during marker increment, so overflow is detected and the state

is fully reset when it occurs. This trades off the size of the

state vector with the time taken to reset the vector. A smaller

marker type can result in better locality of the state array, but

also results in more time spent resetting the full array.

IV. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup. We

briefly present the matrices used in our experiments. We then

summarize the results for the three dimensions tat influence

performance as described earlier.

A. Experimental Setup

Our evaluation focuses on masked-SpGEMM, where the

input matrices M and B are identical to A. A is a sparse

square matrix of size m×m, where m represents the number

of vertices in the input graph. For all the experiments, we fix

the matrix A (the input graph) and compute C = A�(A×A),
the main kernel used in triangle counting, k-truss. Following

the GraphBLAS API, the mask is treated as Boolean (i.e., its

values are not used).

All of our experiments are executed on a single node of

the CPU partition on the NERSC Perlmutter supercomputer.

Each node has 2 AMD EPYC 7763 CPUs, with 64 cores

per socket partitioned into 4 NUMA domains (so 8 total),

as well as 512GB of DRAM. In order to reduce NUMA

effects, we restrict our experiments to run on a single socket,

using 64 threads pinned to cores via OpenMP environment

variables. Lastly, we use numactl to interleave all memory

allocations across the 4 NUMA domains. We experimented

with different configurations of allocating the memory using

numactl, however all the experiments produced worse results

Fig. 10: Relative performance of different tiling and scheduling

strategies, relative to the best. For each matrix, each configura-

tion (split by accumulator) is compared to the lowest runtime

for that matrix. The percentage corresponds how often each

configuration was within 10% of the best configuration, across

all matrices. Higher percentage is better.

compared to the interleaved case. As such, we do not report

the results for the other configurations.

We have tested the masked-SpGEMM kernel with three dif-

ferent implementations. First, we compile GraphBLAS version

7.3 using the provided configuration file. Second, we use the

GrB library to perform some of the benchmarks. Similar to the

GraphBLAS variant, we compile the code using the predefined

configuration file. Finally, we modify the GrB library and

create our own version of the code. We parameterize this

implementation to change the threads and tiles, and implement

the dynamic approach that chooses between co-iterating the

mask with the rows or loading the mask in the accumulator.

For each experiment, we run the masked-SpGEMM kernel

once for warm-up, then for 5 seconds or 10000 iterations,

whichever comes first. The output is freed after each run.

B. Matrices

The matrices used in our experiments are summarized in Ta-

ble I. We tried to select matrices with different characteristics.

First, we looked at matrices from different domains. Our se-

lection focuses primarily on various network graphs, including

web hyperlink networks and social networks. We also include

graphs from circuit simulation, as well as road graphs which

are known to have unique performance characteristics. Second,

we looked at large matrices that cannot easily fit within the

last level cache of the AMD CPU (128 MB of L3 cache).

Unlike many prior works including [17], we opt for relatively

large matrices with tens to hundreds of millions of non-zeros.

Performance in this regime is increasingly important as data

and graph sizes continue to grow.

C. Tiling and Scheduling

We briefly present the results obtained when tiling the

computation using the two techniques (flop-balanced vs ho-
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(a) europe-osm (b) GAP-road (c) arabic-2005

(d) com-Orkut (e) com-Livejournal (f) hollywood-2009

(g) Stokes (h) uk-2002 (i) as-Skitter

Fig. 11: Results outlining the execution time in milliseconds for the masked-SpGEMM computation on the AMD EPYC CPU

using 64 threads. The output, mask and first operand matrices are tiled. The second operand matrix is left as is. Each plot

represents the execution time for one input graph. For each input graph, we use the hash and dense accumulators and the

flop-balancing and homogeneous tiling. For each case, we increase the number of tiles from 64 to 32768. Moreover, we also

report the different scheduling schemes when using OpenMP, namely static or dynamic. Lower execution time is better.

mogeneous tiling) outlined in Section III. For the masked-

SpGEMM using both hash-based and dense accumulators, we

report execution time in milliseconds. For these experiments,

we did not include the co-iteration approach and focused on

the algorithm presented in Figure 5. For each experiment, we

perform a sweep on the number of tiles, ranging from 64 tiles

to 32768 tiles. In addition, because we are using OpenMP, we

experiment with STATIC and DYNAMIC scheduling of the tasks

on the threads (each tile is assigned to one thread).

The results are shown in Figure 11. Note that some

of the matrices exhibit similar behaviors. For example, the

results for europe-osm and GAP-road are both road net-

works. As expected the experimental results outline that the

two matrices exhibit the same trends. Similarly, com-Orkut,

com-Livejournal and hollywood-2009 are social network

graphs and once again experience the similar behaviors. The

other three matrices are outliers. Stokes is a circuit simulation,

whole arabic-2005 and uk-2002 are directed graphs. For the

circuit5m matrix we do no report tiling results, because the

algorithm takes a significant amount of time and it times out

on Perlmutter. In the following section, we will provide a

discussion about our findings.

D. Hybrid Approach for Masking the Computation

For this set of experiments, we aim at investigating whether

the adaptive algorithm described in Figure 9 provides better

results compared to running the algorithm that does not co-

iterate the mask. Similar to the previous set of experiments,
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Fig. 12: Performance sweep and tuning flow. We sweep over

the tiling and scheduling schemes without co-iteration. We

determine the co-iteration factor κ and then tune the internal

state representation of the accumulators.

we report execution time in milliseconds for both types of

accumulators. We fix the number of tiles, the tiling strategy

and the scheduling strategy. Based on the previous results

we choose the configuration that provides the best execution

time. We vary the co-iteration factor defined in Section III.

We sweep across a range of co-iteration factors for both

accumulators.

The results are shown in Figure 14. In this figure,

we pick four representative matrices. For example, we

choose GAP-road from the road network group of matrices.

europe-osm exhibits the same behaviour. Note that in this set

of experiments, we report execution time for the circuit5M.

Recall that simply tiling the computation and using either

of the accumulators, the algorithm in Figure 5 timed out.

However, using the hybrid algorithm the execution time is

reduced to 0.5 seconds using 64 threads and the co-iteration

factor equal to 0.1. In the following section, we will provide

more details about the results.

E. Accumulator State Tuning

For this experiment, we fix co-iteration factor κ = 1, and

then we sweep over the marker size from 8 to 64 bits. The

goal of this experiment is to try to reduce the size of the

spare accumulators. The results are summarized as a relative

performance plot in Figure 13.

V. DISCUSSION

In this section, we discuss the key takeaways from the

experimental results. Our experimental process follows the

flow shown in Figure 12. We first sweep over the tiling and

scheduling scheme without co-iteration to establish a safe

choice for the remaining parameters. Then, we determine the

ideal co-iteration factor κ. Finally, we tune the internal state

representation for the accumulators, and discuss trade-offs

between hash and dense.

A. Tiling the Computation

Based on Figure 11, we make the following observations:

1) Balanced tiling performs no worse than uniform tiling.

Fig. 13: Relative performance of different accumulator state

bit-widths. The same methodology is used as in Figure 10.

2) Uniform tiling performs poorly with lower tile counts,

and can only match balanced tiling at higher tile counts.

3) Both tiling approaches can suffer at high tile counts.

4) Balanced tiling with an intermediate tile count and

dynamic scheduling works generally well.

This suggests that the work calculation from Equation 2 is in-

deed a good estimate of load. However, there are occasionally

imbalances that necessitate finer tiling, which is then exploited

by dynamic scheduling. Figure 10 summarizes this nicely:

depending on the accumulator, between 80-90% of matrices

run with 2048 tiles, balanced tiling, and dynamic scheduling

are within 10% of the best configuration.

For these experiments, we only focused on tiling the

computation in the row dimension. The matrices are stored

as CSR, therefore no pre-processing steps are needed to

perform expensive tiling operations. In addition, we did not

perform any pre-processing of the data like partitioning the

graphs, or reorganizing the data. For future work, we will

investigate other data formats than CSR and possibly extend

the experimentation to two dimensional tiling.

B. Iterating through the Data

Having fixed the tile count, tiling, and scheduling, we now

turn to tuning the co-iteration factor κ. As seen in Figure 14,

co-iteration has a minimal effect on the GAP-road network,

while both positive and negative effects are present away from

κ ≈ 1 in the other networks. The circuit5M matrix is of

particular interest, as the baseline without co-iteration did not

complete within a reasonable time. The com-Orkut matrix

exhibits a nearly 2× reduction in runtime with the dense

accumulator, matching the hash accumulator. This is likely

due to less cache evictions caused by reading large chunks

of the dense accumulator and B rows. Generally, the results

indicate that the estimate from Equation 3 is accurate relative

to the linear estimate from Equation 2, and that no significant

scaling factor is needed.

C. Accumulator

Finally, we tune the marker bit-width. As Figure 13 shows,

the hash accumulator is somewhat robust to the bit-width,
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(a) GAP-road (b) hollywood-2009

(c) com-Orkut (d) circuit5M

Fig. 14: Results outlining the execution time in milliseconds for the masked-SpGEMM computation with varying the co-

iteration factor. We fix the number of tiles to 2048 tiles, we fix the OpenMP scheduling policy to DYNAMIC, and we use

the FLOP-balanced tiling scheme. We show results for four representative matrices. The thick lines represent the algorithm

that utilized the co-iteration, while the dotted lines represents the execution of the non co-iterate algorithm. For this set of

experiments we report the execution time for circuit5M which timed out for the non co-iteration algorithm.

maintaining similar performance until 8 bits where it degrades.

On the other hand, the dense accumulator suffers at both 8

and 64 bits, with a sweet spot at 32 bits. This reaffirms the

importance of tuning for memory efficiency.

VI. RELATED WORK

A. GraphBLAS API and Implementations

The GraphBLAS project [7] aims to provide a set of

linear-algebraic (i.e. matrix, vector, and scalar) primitives for

expressing graph analytics workloads, in the spirit of the

dense BLAS specification. SuiteSparse:GraphBLAS provides

the canonical implementation of the GraphBLAS API [8],

[18]. GraphBLAST provides a performant implementation of

GraphBLAS on GPUs [19].

B. Masked-SpGEMM

Azad et al. [20] was the first to define the masked-SpGEMM

primitive operation in the context of linear algebraic graph

analytics. As with our analysis, they focused on triangle

counting as the workload. Milaković et al. [17] explore a

large space of sparse accumulators and higher-level algorithms

beyond row-wise saxpy. We use their codebase as our starting

point for exploring additional tiling strategies and the effect

of co-iteration.

C. Database Query Planning and Execution

The masked-SpGEMM kernel can be viewed as a specific

variant of the well-known triangle query in the databases

community. More precisely, if matrices are viewed as binary

relations, then the masked-SpGEMM kernel is equivalent to

C(i, j) =
∏

i,j

M(i, j) �� A(i, k) �� B(k, j),

where joins and projections are interpreted in the framework

of K-relations over semirings [21].

The triangle query is notorious for being inefficient to

compute using binary joins, taking O(m2) time when the

result is of size O(m3/2) where m = nnz(A). Analogously,

post hoc masking an unmasked-SpGEMM (which is really

a binary join) suffers from the same issue. Under this lens,

efficient implementations of masked-SpGEMM are actually

instances of worst-case optimal join [22]. In fact, the dynamic

co-iteration strategy described here is exactly the mechanism

Generic Join [23] uses to achieve worst-case optimality: it-

erate over the smaller of two relations for every intersection

computed (ignoring logarithmic access costs).
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VII. CONCLUSION

In this work, we focused on providing insights into how to

obtain performance for the masked-SpGEMM, a widely used

sparse linear algebra kernel. We started with three dimensions,

namely 1) tiling the computation and distributing the tiles

across threads, 2) deciding on how to iterate through the

data to reduce the amount of data moved from memory and

3) choosing the right accumulator to store the intermediate

results. Based on the experimental results, we can state that for

the saxpy-based implementation tiling the computation using

a good load balancing estimator and using the DYNAMIC

policy for the OpenMP scheduling are important. In addition,

co-iterating across the mask may provide significant improve-

ments for certain input graphs. Finally, designing and tuning

the accumulator can reduce the temporary buffers and improve

execution time.

Stepping back, we have taken a staged approach to ana-

lyzing and tuning the three performance dimensions. These

dimensions are inevitably correlated, and likely in complex

ways. With the data we have gathered, we intend to perform

a more precise analysis of the effects matrix structure and

features have on the different parameters. Ideally, this data

will enable us to build models which can intelligently tune

the parameters at execution time, rather than offline for the

average case.
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