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Abstract

Transformer-based models, such as BERT and
ViT, have achieved state-of-the-art results across
different natural language processing (NLP) and
computer vision (CV) tasks. However, these mod-
els are extremely memory intensive during their
fine-tuning process, making them difficult to de-
ploy on GPUs with limited memory resources.
To address this issue, we introduce a new tool
called SLIMFIT that reduces the memory require-
ments of these models by dynamically analyz-
ing their training dynamics and freezing less-
contributory layers during fine-tuning. The layers
to freeze are chosen using a runtime inter-layer
scheduling algorithm. This allows SLIMFIT to
freeze up to 95% of layers and reduce the overall
on-device GPU memory usage of transformer-
based models such as ViT and BERT by an av-
erage of 2.2x, across different NLP and CV
benchmarks/datasets such as GLUE, SQuAD 2.0,
CIFAR-10, CIFAR-100 and ImageNet with an
average degradation of 0.2% in accuracy. For
such NLP and CV tasks, SLIMFIT can reduce up
to 3.1x the total on-device memory usage with
an accuracy degradation of only up to 0.4%. As a
result, while fine-tuning of ViT on ImageNet and
BERT on SQuAD 2.0 with a batch size of 128
requires 3 and 2 32GB GPUs, respectively, SLIM-
FIT enables fine-tuning them on a single 32GB
GPU without any significant accuracy degrada-
tion. The code of SLIMFIT is available at https:
//github.com/arashardakani/SlimFit.

1 Introduction

Over the past few years, various transformer-based
models have been developed with the adoption of the
attention mechanism that weighs the importance of
each part of the input data differently. Pre-training of
such transformer-based models on large data has led
to a significant boost in accuracy when fine-tuned on
various natural language processing (NLP) and com-
puter vision (CV) downstream tasks (Devlin et al.,
2018; Dosovitskiy et al., 2021). Despite their great
performance in achieving state-of-the-art (SOTA)
accuracy, these models are memory intensive and
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Figure 1: The breakdown of memory usage of BERT
when fine-tuned on different batch sizes including 32, 64,
and 128.

require a considerably large amount of on-device
GPU memory during their fine-tuning phase when
compared to the conventional convolutional and re-
current neural networks (Jain et al., 2020). The
memory requirement of current transformer-based
models has made them difficult to fine-tune even
on powerful GPUs. With the introduction of larger
transformer-based models over the past few years,
the on-device GPU memory has become a major
bottleneck for their fine-tuning process (Jain et al.,
2020; Liu et al., 2022; Chen et al., 2023).

The total on-device memory usage of GPUs con-
sists primarily of activations, parameters, gradients,
optimizer states, and the CUDA context. Among
these factors, activations account for most of the
memory usage due to batch processing (Liu et al.,
2022; Chen et al., 2021; Jain et al., 2020) as shown
in Fig. 1. Therefore, activation compressed train-
ing (ACT) has emerged as the primary solution for
memory-efficient fine-tuning (Chen et al., 2021; Liu
et al., 2022). This approach first compresses activa-
tions during the forward pass and then decompresses
them during the backward pass. In this way, the
memory footprint can be significantly reduced by
caching the compressed activations. In ACT, quan-
tization (Chakrabarti and Moseley, 2019; Fu et al.,
2020; Chen et al., 2021; Liu et al., 2022) has been a
popular choice to compress activations among other
compressors such as JPEG (Evans et al., 2020) or
pruning (Chen et al., 2023). The current SOTA ACT
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adaptively assigns quantization bits to each layer
for a given architecture (Liu et al., 2022). While
the SOTA ACT successfully reduces the memory
footprint of activations, its overall on-device GPU
memory reduction is not significant. For instance,
the total on-device GPU memory reduction of the
SOTA ACT is limited to 0.1GB despite its 6.4x
reduction in the memory of activations when fine-
tuning BERT on CoL A dataset with a batch size of
32. It is worth mentioning that we refer to the mem-
ory usage reported by “nvidia-smi” as the overall
on-device memory in this paper (see Appendix A
for more information on memory management).

Tensor rematerialization (Jain et al., 2020; Chen
et al., 2016; Beaumont et al., 2021; Kirisame et al.,
2021), also known as gradient checkpointing, is
another prominent approach to reducing activation
memory by trading computations for memory. In
tensor rematerialization, only specific activations
are stored during the forward pass, while the rest
are recomputed in the backward pass. Of course,
recomputing activations requires more operations,
resulting in a longer fine-tuning process (Liu et al.,
2022). Reduced precision training, as another ap-
proach, performs the computations of both forward
and backward passes in low-precision (Micikevicius
et al., 2017; Wu et al., 2018; Wang et al., 2018b;
Banner et al., 2018). While these works can suc-
cessfully train conventional models, few-bit model
fine-tuning is not trivial. For instance, 8-bit quanti-
zation of BERT for inference results in a significant
precision loss (Zafrir et al., 2019), which makes
fine-tuning on few bits a challenging task.

Low-rank adaptation (LoRA) (Hu et al., 2022)
is another key approach to reducing the overall on-
device GPU memory where the transformer-based
models are fine-tuned by inserting a small number of
trainable parameters into each layer while keeping
the pre-trained model parameters frozen. Such an ap-
proach enables fine-tuning transformer-based mod-
els with significantly less number of trainable param-
eters, leading to a reduction in the memory footprint
of optimizer states and gradients. Such a memory
reduction becomes significant for large transformer
models such as GPT (Brown et al., 2020) with bil-
lions of parameters.

Different from these methods, we put forward
a new approach to reducing the overall on-device
memory usage by analyzing training dynamics.
More precisely, we dynamically analyze the gra-
dient contributions of layers in transformer-based
models and perform parameter updates for specific
layers only while the rest of layers are kept frozen.

Training dynamics have been used to analyze the
behavior of a model during its training/fine-tuning
process (Swayamdipta et al., 2020; Teehan et al.,
2022; Fang et al., 2022). However, our work uses
training dynamics to detect and discard unimpor-
tant activations during fine-tuning by freezing their
associated layers, leading to a reduction of the mem-
ory footprint. Our method is orthogonal to existing
approaches including rematerialization, LoRA and
fused operations (Dao et al., 2022; Rabe and Staats,
2021), which could be combined for further reduc-
tions.

Freezing layers or parameters has been studied
in different domains, including transformer-based
models to preserve previously learned information
during fine-tuning (Lee et al., 2022; Shen et al.,
2021). Freezing parameters have also been used
to regularize fine-tuning (e.g., over-fitting reduction)
in pre-trained models (Ramasesh et al., 2021). Re-
cently, freezing has been used to accelerate fine-
tuning by progressively freezing model blocks (Liu
et al., 2021; Li et al., 2023; He et al., 2021; Yuan
et al., 2022). However, since such an approach starts
the fine-tuning process without freezing at least for a
few training iterations/epochs, its overall on-device
memory requirement remains similar to that of train-
ing without freezing. For instance, fine-tuning ViT
on ImageNet with a batch size of 128 using such a
freezing approach on a single 32GB GPU results in
an out-of-memory error (see Appendix B for more
details).

To orchestrate effective layer-freezing decisions,
we introduce a runtime inter-layer scheduling (ILS)
algorithm. Our method finds and freezes a set of
layers at each training iteration in transformer-based
models that are less contributory, i.e., layers with
fewer updates in their parameters, to the fine-tuning
process at each iteration. While the ILS algorithm
successfully detects and freezes unimportant layers,
its memory reduction is not proportional to the freez-
ing rate. The reason behind this disproportionality
is twofold: the imbalanced number of activations
among layers and the existence of static activations.
Static activations refer to those that cannot be dis-
carded regardless of freezing (e.g., activations of
non-linear functions such as GELU). We address
these two issues using quantization and pruning to
even out the number of activations across all lay-
ers and to reduce the memory overhead of static
activations. We use quantization and pruning for
a few specific layers of transformer-based models
as opposed to reduced precision training methods
where all the layers are quantized. As a result, the
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impact of quantization and pruning on accuracy is
insignificant in our work. For instance, the accuracy
degradation due to quantization and pruning is only
0.1% on the MRPC dataset.

By combining ILS with quantization and prun-
ing, we introduce a performance tool called SLIM-
FIT for reducing the on-device GPU memory us-
age of transformer-based models during fine-tuning.
We demonstrate the effectiveness of SLIMFIT in re-
ducing the memory footprint on popular models of
BERT and ViT. We show that SLIMFIT can freeze
up to 95% of layers and reduce the overall on-device
memory usage by an average of 2.2x when fine-
tuning BERT and ViT models on different bench-
marks and datasets, such as GLUE, SQuAD 2.0,
CIFAR-10, CIFAR-100 and ImageNet with an aver-
age accuracy degradation of 0.2%. More precisely,
SLIMFIT reduces the overall on-device memory us-
age of the fine-tuning process on GLUE from 6.1GB
to 4.0GB (1.5x reduction) with a batch size of 32,
on SQuAD 2.0 from 58.5GB to 19.1GB (3.1x re-
duction) with a batch size of 128, on CIFAR-10 from
7.2GB to 4.3GB (1.7 x reduction) with a batch size
of 32, on CIFAR-100 from 7.2GB to 4.5GB (1.6 %
reduction) with a batch size of 32, and on ImageNet
from 77.4GB to 26.1GB (3.0x) with a batch size of
128 at the cost of up to 0.4% accuracy degradation.
As aresult, SLIMFIT enables performing memory-
intensive fine-tuning processes on a single 32GB
GPU such as fine-tuning ViT on ImageNet with a
batch size of 128 while this normally requires three
32GB GPUs.

2 Preliminaries

Over the past few years, pre-training of attention-
based models has led to significant advances on
many NLP and CV tasks with the popular BERT
(Devlin et al., 2018) and ViT (Dosovitskiy et al.,
2021) models. The pre-training process provides
a good initialization point such that these models
can better generalize on unseen data of downstream
tasks. Therefore, these models can achieve state-
of-the-art results by fine-tuning through small ad-
justments to their parameters. Architecturally, these
models consist of an initial embedding layer, fol-
lowed by repeated blocks of multi-head attention
(MHA) fed into a feed-forward network (FFN) mod-
ule (see Appendix C for more details). The base
architectures of BERT and ViT contain over a hun-
dred layers built up in this manner.

Despite the large number of layers, not all need

to be updated during fine-tuning to achieve decent
6

performance on downstream tasks, as shown in (Mer-
chant et al., 2020). Notably, the authors found that
freezing approximately 60% of early attention layers
in BERT led to negligible performance degradation.
This suggests that the fine-tuned model tends to pre-
serve generic features learned during pre-training.
Motivated by this study, we seek to analyze the train-
ing dynamics of pre-trained models and to automat-
ically detect layers with less contributions to the
fine-tuning process.

3 Learning the Importance of Layers

Training dynamics is an active field of research that
provides insight about the behavior of pre-trained
models when fine-tuning on downstream tasks. The
convergence proof of optimization algorithms such
as stochastic gradient descent (Shalev-Shwartz and
Ben-David, 2014) shows that the distance between
the parameters and the optimal solution is reduced
over training iterations and accordingly, the weight
distance (or the weight update amount) between
consecutive iterations decreases. Therefore, it is
possible that some layers can only receive minimal
changes to their parameters as we approach the end
of the training process. Of course, detecting and
freezing such layers, when they show minimal up-
dates, will not affect accuracy. Since transformer-
based models are pre-trained, they already show
small updates during fine-tuning compared to pre-
training. As such, detecting and freezing layers with
minimal updates (i.e., weight distance values) will
not significantly affect the fine-tuning process and
accordingly the final accuracy. Based on the above
observations, we consider the ¢1-norm of the update
received by parameters of each layer through all the
fine-tuning iterations as the training dynamics in
this paper. It is also worth mentioning that freezing
layers has no impact on training convergence as it
causes a pause in the training procedure of frozen
layers as shown by our theoretical analysis in Ap-
pendix D.1.

3.1 Training Dynamics

Let us consider a pre-trained model with a set of
parameters W where the parameters associated with
the ith layer at iteration 7 is denoted as W € RMI
The training dynamics of for the ith layer at iteration
t is defined as the ¢;-norm of the distance between
W?‘l and Wi, i.e.,
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Figure 2: The distance values of query weight matrix for
the first, fifth and eleventh attention layers of BERT-base
fine-tuned on (a) CoLA and (b) MRPC datasets for 3
epochs.

where d’ € R’ containing all d;s at iteration ¢ is
referred to as distance vector, and »n denotes the total
number of layers. In fact, Eq. (1) calculates the
normalized change in the parameters of the ith layer.

3.2 Inter-Layer Scheduling Algorithm

We use the distance values as training dynamics
to analyze the fine-tuning behavior of pre-trained
models. For instance, consider the distance values
across all the fine-tuning iterations for the CoLA
(Warstadt et al., 2018) and MRPC (Wang et al.,
2018a) datasets. Fig. 2a shows the distance val-
ues of the query weight matrix for the first, fifth and
eleventh attention layers of BERT-base fine-tuned on
CoL A dataset whereas Fig. 2b depicts those of the
same layers for BERT-based fine-tuned on MRPC
dataset.

We observe the following based on the experi-
mental results of these two datasets. First, the up-
dated amount for each layer becomes smaller over
fine-tuning iterations. Second, the updated amount
of each layer is task-specific and is independent of
its position. Third, there are some layers showing

Training Iteration 1

Training Iteration 0 Training Iteration n-1

Transformer Model Transformer Model Transformer Model

D Frozen D Active —> Freezing decision —Training dynamics

Figure 3: The overview of ILS algorithm. ILS freezes a
certain number of layers depending on the freezing rate at
every single iteration throughout the fine-tuning process
for the total of n training iterations.

smaller distance values w.r.t. other layers across al-
most all the iterations. Finally, layers with a higher
distance value in the beginning can become smaller
over the fine-tuning iterations than layers starting
with a lower distance value.

Given the above observations, we introduce an
ILS algorithm to decide on updating priority of lay-
ers using their distance values. Fig. 3 shows an
overview of the ILS algorithm. At each iteration
ranging from the first iteration to the last iteration,
our ILS algorithm selects those layers with large
distance values to be updated and those with small
distance values to be frozen. More precisely, layers
are first ranked based on their distance values at each
training iteration and then those with small distance
values are kept frozen according to the freezing rate
as a hyper-parameter. The intuition is that layers
with small distance values are less contributory to
the fine-tuning process as their parameters are not
being updated much. On the other hand, the layers
with large distance values are learning task-specific
patterns by making more significant adjustments to
their parameters. Note that freezing middle layers
does not interrupt the gradient propagation to the
early layers of the network as shown through an
example in Appendix D.2.

The freezing rate of the ILS algorithm can be de-
cided based on the on-device GPU memory budget.
Of course, using an extremely high freezing rate may
result in a performance degradation depending on
the downstream task, providing a worthwhile trade-
off between accuracy and on-device GPU memory.
On the other hand, while performance degradation is
unlikely with a very small freezing rate, the memory
reduction is insignificant as well.

Since there is no prior knowledge about the dis-
tance values of each layer at the beginning of the
fine-tuning process, our ILS algorithm initializes
the distance vector with large random values. De-
pending on the freezing rate, each layer along with
its distance value are updated during the first few
iterations once until all random numbers in the dis-
tance vector are substituted with an actual distance
value. Afterwards, layers are kept frozen according
to their actual distance value. The distance value
of the active layers is only updated at each iteration
while that of the frozen layers remains unchanged.
The pseudo code of our ILS algorithm performing
iterative freezing is shown in Algorithm 1.

To better understand the ILS algorithm, we il-
lustrate the iterative freezing process using an ex-
ample as shown in Fig. 4a. Suppose we have an
8-layer transformer-based model and accordingly an
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Figure 4: (a) An example of the iterative freezing process using our ILS algorithm. (b) An example of a model with
imbalanced number of activations and its impact on the memory reduction.

Algorithm 1 The pseudo code of the ILS algorithm
performing iterative freezing.

Input: model, number of iterations as itr, number
of layers as L, freezing rate F
d =rand(L)
for iin itr do
idx = argsort(d)[:int(L*F)]
for j in idx do
model.layer[ j].requires_grad = False
end for
model.train()
Update d
end for

8-element distance vector at iteration ¢. Considering
the freezing rate of 50% for this example, 4 layers
with the lowest distance values are kept frozen and
the rest are updated at each iteration.

4 Inter-Layer Load-Balancing

So far, we have introduced our ILS algorithm that
prioritizes updating particular layers while keeping
the rest of layers frozen according to their distance
value. For the given freezing rate of 50% as an exam-
ple, we expect to see a 2 reduction in the memory
footprint of activations. However, this is not the
case in transformer-based models due to the imbal-
anced the number of activations across all the layers.
In fact, the imbalance in the number of activations
undermines the ability of our ILS algorithm in re-
ducing the memory footprint during the fine-tuning
as shown in Fig. 4b.

Since the focus of this paper is on transformer-
based models such as BERT and ViT, we analyze
their architecture for imbalanced layers. Table 1
summarizes the number of activations associated
to the input of layers with trainable parameters in

Table 1: The number of activations associated to the input
of layers with trainable parameters in BERT where B, T,
H denote the batch size, sequence length, hidden size,
respectively. ViT has the same structure with different
descriptions.

Type of Layer Description # Activations Status
Dense attention.self.query BxTxH Balance
Dense attention.self key BxT«H Balance
Dense attention.self.value BxTxH Balance
Dense attention.output BxT«H Balance

LayerNorm attention.output BxTxH Balance
Dense intermediate B+xT+H Balance
Dense output B+«Tx4+H | Imbalance

LayerNorm output BxT«H Balance

BERT or ViT. Among all trainable layers, there is
only one imbalanced layer in the attention block
which contains 4 x more activations than other lay-
ers.

To address the load-balancing issue in the num-
ber of activations for the aforementioned layer, we
use quantization. Since the imbalance factor among
layers is 4x, we adopt 8-bit quantization for acti-
vations of the imbalanced layer where 4 bits are
used for both the integer and fractional parts. In this
way, the memory cost of the activations are evened
out using quantization. In our quantization scheme,
we cache the activations of the imbalanced layer
using 8 bits during the forward pass. In the back-
ward pass, we convert the 8-bit activations to 32-bit
floating-point format. Therefore, all the forward and
backward computations are still performed using
single-precision floating-point format. The conver-
sion process between 8-bit fixed-point and 32-bit
floating-point formats are provided in Appendix E.

S Dynamic and Static Activations

Assuming that the backpropagation is performed
from the last to the first layer, the type of activations
in transformer-based models can be divided into two
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categories: dynamic and static. We refer to the acti-
vations that can be discarded by freezing their layer
as dynamic activations. On the other hand, static ac-
tivations cannot be discarded regardless of freezing.
Among different types of layers, GELU, MatMul,
Softmax and LayerNorm contain static activations
as shown Table 2. Note that MatMul and Softmax
share the same activations. For the backward com-
putations of Softmax, its output during the forward
pass is saved as its activations. On the other hand,
the input to MatMul is required for its backward
computations as activations. Since the output of
Softmax is an input to MatMul in the forward pass,
they share the same activations.

GELU and MatMul/Softmax do not have any
trainable parameters and accordingly cannot be
frozen. Therefore, these two layers hold on to their
activations throughout the fine-tuning process. The
best approach to reduce their memory cost is quanti-
zation. We use 4 and 8 bits for quantization of acti-
vations in GELU and MatMul/Softmax, respectively.
Since there is no 4-bit tensor support in PyTorch, we
store each two 4-bit activations as a single 8-bit acti-
vations using shift operations. Note that using such
bit-levels result in a negligible accuracy degradation
while further quantization of those activations incurs
a significant accuracy loss.

As opposed to GELU and MatMul/Softmax, Lay-
erNorm contains trainable parameters and can be
frozen by the ILS algorithm. However, its activa-
tions are still static. The forward pass of LayerNorm
is computed by:

< x — E(x) @)
-~ Var(x) €
y=Xxy+p, 3)

where y and 3 are trainable parameters. The input
and output to LayerNorm are denoted by x € R¥ and
y € R, respectively. E(-) and Var(-) compute the
average and variance, respectively. The derivative

Table 2: The type of activations of layers in MHA and
FFN of BERT and ViT.

Type of Layer # Activations Type of Activations
Dense BxT«H Dynamic
MatMul B+Tx+H (2x) Static
Softmax BxTx*T Static
MatMul B+xT+H&B*xT*T Static
Dense BxTxH Dynamic
LayerNorm B+Tx+H Static
Dense BxTxH Dynamic
GELU BxTx4xH Static
Dense BxTx4xH Dynamic
LayerNorm B+Tx+H Static

of the loss with respect to ¥ (i.e., ¥) is computed by

7=XxY, 4)

and with respect to 3 (i.e., E) by:

~

B =Y, (5)

where y denotes the derivative of the loss w.r.t. y.
We also need to compute the derivative of the loss
with respect to x (i.e., X) as:

g 1Y ©)
Hx/Var(x) +€
X=Hxg—) g—Xx) (g8+X). (7)
H H

When LayerNorm is frozen, there is no need to com-
pute Eq. (4). However, the activations of this layer
cannot be discarded since they are still a part of the
computations in Eq. (7). More precisely, the stan-
dardized version of x (i.e., X) is required even when
this layer is frozen.

The contribution of the last term in Eq. (7) (i.e.,
Y n(g+X)) is significant for large values of X only.
Therefore, the small values of X can be discarded.
Ideally, we want to have all the activations of this
layer to be discarded when this layer is frozen. How-
ever, this will results in an accuracy degradation.
As such, we prune away the small values in X and
keep the top 10% largest values. In this way, the
memory load of activations is significantly reduced.
Of course, when this layer is not frozen, the back-
propagation is performed without any approxima-
tion. Such a trick converts LayerNorm from a static
layer to a semi-static one. It is worth mentioning
that the indices to pruned activations are also stored
along with activations. The details of the pruning
procedure is provided in Appendix F.

6 SLIMFIT

SLIMFIT is a performance tool that exploits our ILS
algorithm along with quantization and pruning to
reduce the memory footprint of activations through
an iterative freezing process. The total on-device
GPU memory reduction of SLIMFIT is a result of the
memory reduction in both dynamic and static acti-
vations. Static activations contribute a fixed amount
of memory whereas the memory usage of dynamic
activations depends on the freezing rate. Given a
high freezing rate, the memory footprint of activa-
tions and accordingly the total on-device GPU mem-
ory usage can be significantly reduced. The choice
of freezing rate depends on the memory budget of
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the user. By increasing the freezing rate up to a
certain point, there will be no performance degra-
dation. However, using an extremely high freezing
rate trades off memory for accuracy. Finding the
breaking point of the method is task dependent and
varies from one dataset to another.

7 Experimental Results

We use the base version of BERT and ViT for our
experiments. We fine-tune these two models us-
ing SLIMFIT which is implemented on PyTorch.
We evaluate BERT (Devlin et al., 2018) using the
GLUE benchmark (Wang et al., 2018a) and SQuAD
2.0 (Rajpurkar et al., 2016). For ViT (Dosovitskiy
et al., 2021), we use CIFAR-10, CIFAR-100 and
ImageNet datasets (Krizhevsky, 2009; Deng et al.,
2009) for evaluation purposes. We discuss the mem-
ory usage of activations and the overall on-device
GPU memory on the 32GB NVIDIA V100 GPU.
We report the total on-device GPU memory usage
using “nvidia-smi”. For all the experiments in this
section, we use 3 epochs for fine-tuning. The de-
tails about the CV/NLP tasks, measurements and
hyper-parameter settings are provided in Appendix
G.

7.1 Accuracy Evaluation on GLUE and
SQuAD 2.0

To evaluate the language understanding ability of
BERT models, the GLUE benchmark is formed
by a series of downstream tasks including senti-
ment classification (SST-2), natural language infer-
ence (RTE, QNLI, and MNLI), paraphrase detection
(MRPC, QQP, and STS-B), and linguistic accept-
ability (CoLA). We use Spearman correlation for
STS-B, Matthew’s correlation for CoLLA, percentage
accuracy for RTE, MRPC, SST-2, QQP, QNLI and
MNLL,,, and F1 score for SQuUAD 2.0. In this work,
we fine-tune the BERT-base model using SLIMFIT
on the downstream tasks of the GLUE benchmark
as well as the question answering task on SQuAD
2.0. Table 3 shows the accuracy on the validation
set of the aforementioned tasks and memory usage
of SLIMFIT compared to the baseline. The results
of the baseline were obtained without freezing. We
report the results along with its statistics associated
with the highest freezing rate that can achieve a sim-
ilar accuracy to that of the baseline by varying the
learning rate over 10 random runs. The experimen-
tal results on the GLUE benchmark show that up to
95% of dynamic activations can be discarded with
up to 0.4% accuracy degradation, leading to an aver-
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Figure 5: The total on-device GPU memory usage of
SLIMFIT compared to the baseline across different batch
sizes including 32, 64 and 128 on NLP and CV datasets.

age of 1.9GB reduction in the total on-device GPU
memory usage. On the other hand, while fine-tuning
SQuAD 2.0 without freezing requires the minimum
of 2 32GB NVIDIA V100 GPUs on a batch size
of 128, SLIMFIT enables its fine-tuning on a sin-
gle 32GB NVIDIA V100 GPU, reducing the total
on-device memory requirement of such a task from
58.5GB down to 19.1GB (3.1 x reduction).

Figure 5 shows the total on-device GPU memory
usage of BERT-base when fine-tuned using SLIM-
FIT for different batch sizes at the freezing rate of
95% on the GLUE benchmark and 80% on SQuAD
2.0. According to the experimental results, SLIMFIT
enables a reduction ranging from 1.5x to 3.1x in
the total on-device GPU memory on NLP tasks. The
reduction in the total on-device memory usage is
more significant for larger batch sizes since the acti-
vations dominate the memory footprint. It is worth
mentioning that the memory benefits of SLIMFIT
is not limited to BERT-base for NLP tasks. In fact,
similar memory reductions can be obtained when
fine-tuning other NLP models such as BERT-large
and GPT-2 using SLIMFIT. The experimental results
of such models are provided in Appendix H.

7.2 Accuracy Evaluation on CIFAR and
ImageNet

To assess the effectiveness of our method on CV
tasks, we fine-tune the ViT-base model on CIFAR-
10, CIFAR-100 and ImageNet datasets. We use
the test set of CIFAR-10/CIFAR-100 and the val-
idation set of ImageNet to evaluate their accuracy
on ViT. Table 3 shows that SLIMFIT can fine-tune
the ViT-base model with the freezing rate of up to
95% with up to 0.3% loss in accuracy while signif-
icantly reducing the overall on-device GPU mem-
ory usage. More specifically, SLIMFIT reduces the
overall memory usage of the fine-tuning process on
CIFAR-10 from 7.2GB to 4.3GB (1.7 x reduction)
with a batch size of 32, on CIFAR-100 from 7.2GB
to 4.5GB (1.6 x reduction) with a batch size of 32,

and on ImageNet from 77.4GB to 26.1GB (3x re-
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Table 3: The accuracy and memory performance of SLIMFIT on the GLUE benchmark and SQuAD 2.0 using BERT
over 10 random runs. The batch size of 32 and 128 were used for GLUE benchmark and SQuAD 2.0, respectively.
The top-1 accuracy and memory performance of SLIMFIT are also reported for CV benchmarks with the batch size of
32 for CIFAR datasets and 128 for ImageNet dataset on ViT.

BERT ViT
Method Metric MNLIL, | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE SQuAD 2.0 CIFAR-10 | CIFAR-100 ImageNet
Accuracy 834 90.8 | 90.5 92.1 58.9 89.5 86.4 70.2 74.0 98.8 91.2 833
Basline Memory of Activations (GB) 3.2 3.2 3.2 32 3.2 3.2 3.2 3.2 55.1 4.5 4.5 69.5
Total On-chip GPU Memory (GB) 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 58.5 (2 GPUs) 7.2 7.2 77.4 (3 GPUs)
Best Accuracy 833 90.6 | 90.6 | 925 59.9 89.6 86.5 70.5 74.2 98.6 91.2 83.4
Average Accuracy 83.3 90.4 | 90.3 92.1 58.7 89.2 86.1 70.1 74.0 98.5 91.0 83.3
SLIMFIT Standard Deviation of Accuracy 0.155 | 0.168 | 0.173 | 0.185 | 1.258 | 0.323 0.27 | 0.632 0.115 0.089 0.125 0.071
Freezing Rate (%) 80 80 95 95 90 85 91 90 80 90 75 95
Memory of Activations (GB) 0.7 0.7 0.5 0.5 0.6 0.7 0.6 0.6 10 0.8 1.0 11.9
Total On-chip GPU Memory (GB) 44 44 4.0 4.0 4.3 4.3 4.3 4.3 19.1 4.3 4.5 26.1
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Figure 6: The trade-off curve between accuracy and freez-
ing rate for three different iterative freezing approaches
(i.e., ILS, random and progressive methods) on (a) CoLA
and (b) MRPC datasets.

duction) with a batch size of 128. Fig. 5 also shows
the total on-device GPU memory usage of SLIMFIT
across different batch sizes on CV tasks.

8 Ablation Studies

Due to limited space, we only discuss the impact of
the freezing rate on accuracy of SLIMFIT in this sec-
tion. We provide further discussions on the impact of
quantization/pruning, the total wall-clock time and
the frequency of update occurrence in Appendices
L, J, and K, respectively. For all the experiments in
this section, we use a batch size of 32 and 3 epochs
for fine-tuning.

Our ILS algorithm orchestrates the freezing sched-
ule based on a simple rule: layers with largest dis-
tance values are updated whereas those with lowest
distance values are kept frozen for the given freezing
rate. Of course, such an iterative freezing approach
trades off between accuracy and freezing rate. To
better show this trade-off, we measured and illus-

trated accuracy of CoLA and MRPC datasets across
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different freezing rates in Fig. 6. The trade-off curve
shows our ILS algorithm can maintain the accuracy
at the same level of the baseline by freezing up to
95% of layers.

Besides our ILS algorithm, the freezing schedule
can be decided using random or progressive freez-
ing approaches. In the random scheduling method,
frozen layers are randomly selected at each itera-
tion. In the progressive approach, on the other hand,
early layers are progressively kept frozen whereas
later layers are being updated throughout the fine-
tuning process. Among these approaches, our ILS
algorithm significantly stands out in terms of both
accuracy and freezing rate as shown in Fig. 6. The
reason behind its superior performance is that ILS
allows more updates for layers with large distance
values by keeping layers with minimal distance val-
ues frozen for a specific number of iterations. On the
other hand, in the random approach, the layers are
randomly selected to be updated. Therefore, layers
with large distance values receive less number of
updates in the random approach compared to ILS.
Of course, the chance of layers with large distance
values being randomly selected as active layers de-
creases as the freezing rate increases, which explains
the accuracy gap between ILS and the random ap-
proach with freezing rate higher than 70% freezing
rate. In the progressive freezing approach, the early
layers receive no update during the fine-tuning pro-
cess, resulting in a significant accuracy degradation
for large freezing rates.

9 Comparison With SOTA Techniques

Next, we compare SLIMFIT with state-of-the-art
compression methods targeting memory reduction,
i.e., 4-bit GACT (Liu et al., 2022) and DropIT (Chen
et al., 2023). Table 4 summarizes the comparison re-
sults in terms of accuracy, memory and latency. For
fair comparison, we measure their performance un-
der the same framework and hyper-parameters (i.e.,
the batch size and the number of training epochs)



Table 4: Comparison with state-of-the-arts, i.e., 4-bit
GACT (Liu et al., 2022) and DropIT (Chen et al., 2023)
when fine-tuning BERT on CoL A dataset.

Model Metric Baseline | GACT | DropIT | SLIMFIT
Accuracy (Matthew’s Corr.) 58.9 59.0 575 59.9
Freezing Rate (%) NA NA NA 90%
BERT | Memory of Activations (GB) 3.2 0.5 24 0.6
Total Memory (GB) 6.1 6.0 5.7 4.3
Latency (Seconds) 251 455 367 281

during fine-tuning of BERT on CoLA. The experi-
mental results of GACT and DropIT were obtained
using their official PyTorch libraries. According to
the experimental results, GACT shows the lowest
memory amount for activations. However, in terms
of on-device GPU memory usage, SLIMFIT outper-
forms GACT. In terms of accuracy, all models show
a comparable accuracy on CoLA w.r.t. the baseline.
Finally, in terms of speed, SLIMFIT shows the fastest
fine-tuning speed among existing works while it still
falls short w.r.t. the baseline (see Appendix J for
more details on SLIMFIT’s computing speed). It
is worth mentioning that our method is orthogonal
to commonly-used memory reduction techniques
such as activation checkpointing, gradient accumu-
lation and LoRA. In fact, these techniques can be
used along with SLIMFIT to further reduce the mem-
ory. For instance, activation checkpointing can be
applied to SLIMFIT to further reduce the total on-
device GPU memory usage by the factor of 1.3x
while SLIMFIT equipped with gradient accumula-
tion can reduce it by a factor of 1.8 x at the cost of
an increase in the wall-clock time when fine-tuning
GPT-2. The detailed discussions and experimental
findings of these techniques, equipped with SLIM-
FI1T, are presented in Appendix L.

10 Conclusion

In this paper, we presented a performance tool called
SLIMFIT that reduces the memory usage of activa-
tions and accordingly the overall on-device GPU
memory usage of transformer-based models through
an iterative freezing of layers during fine-tuning.
SLIMFIT adopts an inter-layer scheduling method
to orchestrate the freezing schedule at each itera-
tion. To balance the number of activations across
all layers and to reduce the memory usage of static
activations, SLIMFIT uses quantization and pruning
for a few specific layers. We evaluated the perfor-
mance of SLIMFIT across different NLP and CV
tasks. We showed that SLIMFIT significantly re-
duces the on-device GPU memory usage of the fine-
tuning process by up to 3.1 x when using a batch
size of 128.
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12 Limitations

This paper is an attempt to reduce the total on-device
GPU memory usage of the whole fine-tuning pro-
cess of transformers such as BERT and ViT. Despite
the significant reduction in the total on-device GPU
memory within the acceptable range of performance
cost, our method has the following limitations:

* Introducing a new hyper-parameter: To con-
trol the performance of SLIMFIT, we intro-
duced a new hyper-parameter called freezing
rate. The choice of freezing rate varies for dif-
ferent downstream tasks and directly impacts
the total on-device GPU memory usage and ac-
curacy. Therefore, the freezing rate needs to
be adjusted by the user similar to other hyper-
parameters in transformers.

* Integration with deep learning optimization li-
braries developed for large language models
(LLMs): Due to the large size of LLMs, train-
ing such models using sharding methods such
as DeepSpeed library (Rajbhandari et al., 2020)
is a common approach. However, the integra-
tion of SLIMFIT with such deep learning op-
timization libraries is non-trivial, preventing
us from exploiting the potentials of our tools
in reducing the on-device GPU memory usage
of LLMs. In the future, we will develop the
software required for the aforementioned inte-
gration to reduce the memory requirement of
sharded LLMs across multiple GPUs.

13 Ethics Statement

This research was conducted in accordance to the
academic and professional ethics guidelines. All
the datasets used in this paper are publicly available
and we ensured to acknowledge their data source
using a citation. Moreover, all the results reported
in this work are reproducible using the source code
provided in the supplementary material. The tool
developed in this work is for research purposes only
and may not be suitable for production services with-
out further scrutiny.

6226



References

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.
2018. Scalable methods for 8-bit training of neural
networks. NIPS’18, page 5151-5159, Red Hook, NY,
USA. Curran Associates Inc.

Olivier Beaumont, Lionel Eyraud-Dubois, and Alena
Shilova. 2021. Efficient combination of rematerializa-
tion and offloading for training dnns. In Advances in
Neural Information Processing Systems, volume 34,
pages 23844-23857. Curran Associates, Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877-1901. Curran Associates, Inc.

Ayan Chakrabarti and Benjamin Moseley. 2019. Back-
prop with approximate activations for memory-
efficient network training.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan
Wang, lon Stoica, Michael Mahoney, and Joseph Gon-
zalez. 2021. Actnn: Reducing training memory foot-
print via 2-bit activation compressed training. In In-
ternational Conference on Machine Learning, pages
1803-1813. PMLR.

Joya Chen, Kai Xu, Yuhui Wang, Yifei Cheng, and
Angela Yao. 2023. DroplT: Dropping intermediate
tensors for memory-efficient DNN training. In The
Eleventh International Conference on Learning Repre-
sentations.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra,
and Christopher Re. 2022. Flashattention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248-255. Teee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
Cite arxiv:1810.04805Comment: 13 pages.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
2021. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International
Conference on Learning Representations.

R. David Evans, Lufei Liu, and Tor M. Aamodt. 2020.
Jpeg-act: Accelerating deep learning via transform-
based lossy compression. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Archi-
tecture (ISCA), pages 860-873.

Zilin Fang, Mohamad Shahbazi, Thomas Probst,
Danda Pani Paudel, and Luc Van Gool. 2022. Train-
ing dynamics aware neural network optimization with
stabilization. In Proceedings of the Asian Conference
on Computer Vision (ACCV), pages 4276-4292.

Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang,
Yingxia Shao, Ce Zhang, and Bin Cui. 2020. Don’t
waste your bits! Squeeze activations and gradients
for deep neural networks via TinyScript. In Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 3304-3314. PMLR.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and
Salman Avestimehr. 2021. Pipetransformer: Auto-
mated elastic pipelining for distributed training of
large-scale models. In Proceedings of the 38th In-
ternational Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research,
pages 4150-4159. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer,
and Ion Stoica. 2020. Checkmate: Breaking the mem-
ory wall with optimal tensor rematerialization. In Pro-
ceedings of Machine Learning and Systems, volume 2,
pages 497-511.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jen-
nifer Brennan, Mike He, Jared Roesch, Tianqi Chen,
and Zachary Tatlock. 2021. Dynamic tensor remate-
rialization. In International Conference on Learning
Representations.

Alex Krizhevsky. 2009. Learning multiple layers of fea-
tures from tiny images. pages 32-33.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Ku-
mar, Huaxiu Yao, Percy Liang, and Chelsea Finn. 2022.
Surgical fine-tuning improves adaptation to distribu-
tion shifts. arXiv preprint arXiv:2210.11466.

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi
Wang, and Xulong Tang. 2023. SmartFRZ: An effi-
cient training framework using attention-based layer
freezing. In The Eleventh International Conference on
Learning Representations.

227



Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo
Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu,
Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin
Cheung. 2022. GACT: Activation compressed training
for generic network architectures. In Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 14139-14152. PMLR.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkatara-
man. 2021. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning.  CoRR,
abs/2102.01386.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to BERT embed-
dings during fine-tuning? In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 33—44, Online.
Association for Computational Linguistics.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2017. Mixed precision train-
ing. Cite arxiv:1710.03740Comment: Published as a
conference paper at ICLR 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In CUDA
semantics - PyTorch 2.0 documentation.

Markus N. Rabe and Charles Staats. 2021. Self-attention
does not need o(nz) memory. CoRR, abs/2112.05682.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. 2020. Zero: Memory optimizations to-
ward training trillion parameter models. SC *20. IEEE
Press.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. arXiv e-prints, page
arXiv:1606.05250.

Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra
Raghu. 2021. Anatomy of catastrophic forgetting:
Hidden representations and task semantics. In Inter-
national Conference on Learning Representations.

Shai Shalev-Shwartz and Shai Ben-David. 2014. Under-
standing Machine Learning - From Theory to Algo-
rithms. Cambridge University Press.

Zhiqgiang Shen, Zechun Liu, Jie Qin, Marios Savvides,
and Kwang-Ting Cheng. 2021. Partial is better than all:
revisiting fine-tuning strategy for few-shot learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9594-9602.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Map-
ping and diagnosing datasets with training dynamics.

In Proceedings of the 2020 Conference on Empirical
622

Methods in Natural Language Processing (EMNLP),
pages 9275-9293, Online. Association for Computa-
tional Linguistics.

Ryan Teehan, Miruna Clinciu, Oleg Serikov, Eliza
Szczechla, Natasha Seelam, Shachar Mirkin, and
Aaron Gokaslan. 2022. Emergent structures and train-
ing dynamics in large language models. In Proceed-
ings of BigScience Episode #5 — Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 146—159, virtual+Dublin. Association
for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel Bowman. 2018a. GLUE: A
multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 353-355,
Brussels, Belgium. Association for Computational Lin-
guistics.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. 2018b. Training
deep neural networks with 8-bit floating point num-
bers. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Shuang Wu, Guogqi Li, Feng Chen, and Luping Shi. 2018.
Training and inference with integers in deep neural
networks. In International Conference on Learning
Representations.

Geng Yuan, Yanyu Li, Sheng Li, Zhenglun Kong, Sergey
Tulyakov, Xulong Tang, Yanzhi Wang, and Jian Ren.
2022. Layer freezing & data sieving: Missing pieces
of a generic framework for sparse training. In Ad-
vances in Neural Information Processing Systems.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. QS8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS Edi-
tion (EMC2-NIPS), pages 36-39.

Appendix
A  Memory Management

The on-device memory of modern GPUs is limited
to a few tens of gigabytes depending on their model
(e.g., 32GB NVIDIA V100). If the memory require-
ment of the training/fine-tuning of neural networks
goes beyond the available memory on GPUs, an out-
of-memory error will occur. The memory require-
ment of the under-run code on GPUs can be viewed
by “nvidia-smi”. For a training/fine-tuning process,
this memory requirement is determined by the size

of the model, cached activations, gradients, gradient
8



moments from the optimizer and CUDA contents af-
ter the first training iterations. It is worth mentioning
that the memory usage of the training/fine-tuning
process remains constant after the first iteration if the
following iterations are performing the same com-
putations (see Fig. 7). If the memory requirement of
each iteration is different from others, PyTorch re-
ports the memory requirement of the iteration using
the maximum memory among other iterations as the
total on-device GPU memory usage of the program
in “nvidia-smi” (Paszke et al., 2017). Therefore, the
unused memory of tensors in progressive memory
optimization over training iterations will still show
as used in “nvidia-smi”. To reduce the overall mem-
ory usage of the training/fine-tuning process given
the above explanations, we need to balance the mem-
ory usage of all iterations from the first iterations to
the last one (see Fig. 7). SLIMFIT aims at reducing
the overall memory usage of large transformer-based
models during fine-tuning.

B Comparison with Existing Freezing
Approaches

Here, we describe the main differences between
SLIMFIT and other freezing approaches including
SmartFRZ (Li et al., 2023), PipeTransformer (He
et al., 2021) and AutoFreeze (Liu et al., 2021). The
main difference is that the aforementioned works
mainly focus on exploiting freezing to accelerate the
training/fine-tuning process. Conceptually, Smart-
FRZ, PipeTransformer and AutoFreeze progres-
sively freeze layers as the training process proceeds.
In these methods, the first training iteration starts
without freezing where all layers are updated. In
the following iterations, these methods then progres-
sively start freezing from the early layers down to the
latest layers in the model in an orderly fashion. For
instance, AutoFreeze performs the first epoch with-
out freezing, the second epoch while freezing the
first 5 layers, the third epoch while freezing the first
8 layers and the fourth epoch while freezing the first
11 layers when fine-tuning BERT. In this example,
the memory and computation requirement of each
epoch is different from others as each epoch presents
a different degree of freezing. This allows to exploit
the unused computing and memory resources to fur-
ther accelerate the process by increasing batch sizes
as the memory decreases throughout the training it-
erations (Liu et al., 2021) or increasing data-parallel
width through pipelining (He et al., 2021). Since
the first training iteration (or even epoch) of these
methods performs the training process without freez-

Table 5: The details of layers in MHA and FFN modules
of BERT where B, T, H denote the batch size, sequence
length, hidden size, respectively. ViT has the same struc-
ture with different descriptions.

Module | Type of Layer Description # Activations
Dense attention.query B+TxH
Dense attention.key BxTxH
Dense attention.value BxTxH
MatMul NA BxT xH(2X)
MHA Softmax NA BxTxT
MatMul NA BxTxH&B+T«*T
Dense attention.output BxTxH
LayerNorm | attention.output BxTxH
Dense intermediate BxTxH
FEN GELU NA B+xTx4xH
Dense output BxTx4xH
LayerNorm output B+xTxH

ing, their overall memory requirement reported by
“nvidia-smi” is similar to that of training without
freezing as discussed in Appendix A. In other words,
the under-use GPU must still be able to meet the
memory requirement of training without freezing.
For instance, fine-tuning of ViT with a batch size
of 128 on a single 32GB NVIDIA V100 using such
methods results in an out-of-memory error.

SLIMFIT, on the other hand, focuses on reducing
the overall memory requirement of the fine-tuning
process using freezing. As opposed to the aforemen-
tioned methods (i.e., SmartFRZ, PipeTransformer
and AutoFreeze), SLIMFIT freezes layers at every
single training iterations from the first iteration to
the last one with a fixed freezing rate. With load-
balancing using quantization, SLIMFIT ensures that
the memory requirement of every single iteration re-
mains roughly the same throughout the fine-tuning
process. This enables SLIMFIT performing memory-
intensive fine-tuning processes with large batch sizes
on a single 32GB GPU such as ViT on ImageNet
with a batch size of 128 while this normally requires
three 32GB GPUs.

C Architecture of Transformer-based
Models

Fig. 8 shows the overall architecture of transformer-
based models including an initial embedding layer,
followed by repeated blocks of multi-head attention
(MHA) and feed-forward network (FFN). The de-
tails of each layer inside the MHA and FFN modules
are provided in Table 5.



S5 70 | s 4 g& 12} {
S5 68| 1 &E - b
3z SZ115
2 660 w | 2 : -
0 5 10 15 0 5 10 15
Training Iteration Training Iteration
(a) Memory of Activations
g - g~ 30 w w
58 ol e !
<< 60 1 =< 20 3
g 2 I | g&
°cg W SE 10 |
0 5 10 15 0 5 10 15

Training Iteration Training Iteration

(b) Total On-device Memory
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Figure 8: The main architecture of BERT. Note that ViT
has a similar architecture with LayerNorms located be-
fore the MHA block. L denotes the number of attention
layers.

D Theoretical Analysis

D.1 Convergence Analysis

In this section, we provide a convergence analysis
for our freezing strategy. More precisely, we prove
convergence of stochastic gradient descent (SGD)
when considering freezing during update iterations.
Given the loss function f, we assume that the param-
eters are initialized with some value and denoted as
the vector wo € R?. Given the training example, the
parameters are updated by

Wit =W, — %V f(w), (8)

where w; denotes the parameter vector at time ¢, ¥
is the learning rate, and V f represents the gradient
of the loss function. We assume that the magnitude
of the gradient samples are bounded by a constant
G > 0 for all x in the space such that

IV <G. ©)

Also, we assume that there exists a constant L > 0
for any vector u € R? where we have

[u” V2 f(x)u] < L[u]>. (10)

Given Eq. (9) and Eq. (10), performing Taylor
expansion on Eq. (8) similar to (Shalev-Shwartz and
Ben-David, 2014) results in

E[f (1)) < E[f(we)] = %E[ [V (wo)|*] +

where [E denotes the expected value.

Now, let us assume that the layer containing the
parameter vector is frozen at the training iteration ¢.
In this case, V f(w;) is equal to 0 and consequently

w;11 is equal to w;. In this freezing scenario, Eq.
G°L

2
@, (11)

(11) still holds true since -

By rearranging the terms in Eq. (11), summing
over T iterations and telescoping the sum, we obtain

is greater than 0.

T-1 T—1

HE[[VA(wi)[] <
0 t

1=
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where w, indicates an optimal solution. Given the
above inequality, we showed that the convergence
proof of SGD remains intact while introducing freez-
ing for specific training iterations.

D.2 Backpropagation With a Frozen Layer

Here, we provide a simple example demonstrating
how gradients are backpropagated to the first layer of
a neural network while its middle layer is frozen. To
this end, let us perform the backpropagation using
a 3-layer network as an example. Mathematically,
the architecture of this network can be described as
follows:

Yy =xW;+by, (15)
Y2 =y Wa+by, (16)
y3 =Y, W3 +bs, (17

where Wi, W,, W3, by, by and b3 are the weights
and biases of the network. In this example, x, y; and
y, are inputs to the first layer, the second layer and
the third layer, respectively. Now, let us derive the
backpropagation equations with the loss . using
the chain rule as follows (please note that we obtain

Z
—— by computing the loss where d denotes the

9)’3

partial derivative):

08 0% dyy 0L

IW; ~ dy; OWs  Jy3° %

0L _9%9ys 9L, 9%
db;  dy; dby  dy;  dys’
8_2’ (93 ay3 Byz af T
R R RS PR R A 20
dW,  dy; dy, Wy dy; 3 20

0L 0Ly dy, 0L . 0L

(18)

19

g2 9293902 92 Wl 22wl 21
TS A T Tl PR Rl TS @D
8.,? 3.§f 9y3 8y2 ay] (9.,? T T

oL _ 9= 0V39V) OV _ 0L WIwTy, 22
IW, ~ Jy; Jy, 9y, IW;  dyy 32N 22
8.,5,” 3,2” aYg 8y2 ayl 8.,5,” T T 3.,? T T
- = 2 YL~ — _ WiW;1l=—WiW;.
db; — Jy3; dy, dy, db;  dyz ° 2 dyy O 2

(23)

Given the above equations, to update the network
weights (i.e., Wi, W5, and W3), we need to store
X, y; and y, during the forward computations since
they are required in Eq. (18), Eq. (20) and Eq. (22)
during the back computations.

Now, suppose the middle layer is frozen. In this
case, there is no need to compute Eq. (20) and there-
fore there is no need to store y; during the forward
computations. Of course, discarding y; does not
affect the backward computations of the first layer
since Eq. (22) and Eq. (23) are independent of y; .

E Conversion Between 8-bit Integer and
32-bit Floating-point

Algorithm 2 shows the conversion process between
8-bit fixed-point and 32-bit floating-point formats.
It is worth mentioning that the same procedure can
be used for the conversion between 4-bit fixed-point
and 32-bit floating-point formats. Moreover, the
quantization function is used to compress the cached
tensors during the forward propagation only. Of
course, both the forward and backward computa-
tions are still performed using 32-bit floating-point
computations as shown in Algorithm 4 where the
“compress” function in this case is the quantization
function (i.e., the conversion from 32-bit floating-
point to 8-bit integer) and the “decompress” function
performs the reverse computations (i.e., the conver-
sion from 8-bit integer to 32-bit floating-point).

Algorithm 2 The conversion between 8-bit integer
and 32-bit floating-point.

Description: number of integer bits as ib, number
of fractional bits as fb, input x, output y

32 bits to 8 bits conversion:

y = clamp(round(x x 2/0), —2/b+ib=1 o fb+ib=1_ 1

8 bits to 32 bits conversion:

Y

X:ﬁ

F Pruning Algorithm

The pruning algorithm is performed in a few steps.
In the first step, the input vector is sorted from largest
to smallest values along with their indices and the
size of the dense vector. We then only keep and
cache the top 10% largest values of the input vector
for the backward computations as the second step.
It is worth mentioning that pruning beyond 90% re-
sults in a significant accuracy degradation. During
backpropagation, we create a zero-valued tensor us-
ing the size of the dense vector and then replace zero
values with the top 10% largest values using their
corresponding indices. Algorithm 3 shows the prun-
ing process during the forward computations and the
restoring process during the backward computations.
It is worth mentioning that the pruning function is
used to compress the cached tensors during the for-
ward propagation only. Of course, both the forward
and backward computations are still performed us-

ing 32-bit floating-point computations as shown in
1



Algorithm 3 The description of the pruning process during the forward computations and the restoring

process during the backward computations.

Description: x: input vector, X: sorted input vector, X,4,: indices of the sorted input vector, y,: top 10%
largest values, y;;,: indices of top 10% largest values, y: output vector, sort: sorting function, zeros:
function to create zero-valued tensor, and scatter: function to replace zero values with the tensor values

from y, according to the indices.
Pruning process:

Xs; Xidx = SOI‘t(X)

Yo Viax = Xs[0 @ int (x.numel () x 0.1)],X;4,[0 : int (x.numel () % 0.1)]

Restoring process:

y = zeros(x.numel())
y = scatter(y, ¥y, Yigy)

Algorithm 4 where the “compress” function in this
case is the pruning function and the “decompress”
function performs the restoring computations.

G Details of CV/NLP Tasks,
Measurements and Hyper-parameter
Settings

For language understanding tasks and CV tasks,
we used BERT-base-cased and ViT-base through-
out this paper, respectively. The BERT-base and
ViT-base pre-trained on ImageNet-21k were config-
ured according to (Devlin et al., 2018) and (Doso-
vitskiy et al., 2021), respectively. We used AdamW
(B1 =0.9, B, =0.999 and L2 weight decay of 0.01)
as the optimizer and linear decay of the learning rate
with warmup ranging from 0 to 0.1 for both models.
We evaluate BERT-base on several downstream tasks
from the GLUE benchmark and SQuAD 2.0. We
use Spearman correlation for STS-B, Matthews cor-
relation for CoLA, accuracy for RTE, MRPC, SST-2
QQP, QNLI and MNLI,, (matched), and F1 score
for SQUAD 2.0. For the downstream tasks from the
GLUE benchmark, we used the sequence length of
128 whereas we adopted the sequence length of 384
for the question answering task on SQuAD 2.0. For
CIFAR-10, CIFAR-100 and ImageNet, we use top-1
accuracy as our evaluation metric. For the image
classification tasks, we used the patch size of 16 with
the resolution of 224 for CIFAR-10/CIFAR-100 and
the resolution of 384 for ImageNet. Depending on
the task, the learning rate varies from 4e-5 to 1.8e-
4. For all the experiments in this paper, we used 3
epochs for fine-tuning. The hyper-parameter settings
of each task are summarized in Table 6. It is worth
mentioning that ViT models can also be fine-tuned

using SGD. However, fine-tuning ViT models using
6

SGD requires more epochs w.r.t. AdamW to obtain
a similar accuracy.

In this paper, we measured our experimental re-
sults directly from 32GB NVIDIA V100 GPU(s)
without any memory swapping between CPU and
GPU(s). The total on-device GPU memory usage of
the fine-tuning process is measured using “nvidia-
smi”. We measured the wall-clock time (i.e., la-
tency) of the fine-tuning process using the CUDA’s
event API in PyTorch (i.e., “torch.cuda.Event”). The
memory footprint of activations on the GPU(s) was
measured using the PyTorch’s memory management
API (i.e., “torch.cuda.memory_allocated™).

H Experimental Results on BERT-large
and GPT-2

Here, we provide the results of the fine-tuning exper-
iments with BERT-large on the GLUE benchmark
(see Table 7) and GPT-2 for language modeling on
WikiText-2 (see Table 8) to demonstrate the benefits
of SLIMFIT when applied to different NLP models
and tasks. We report the best, average and standard
deviation of the results over 10 random runs for our
experiments in this section. We used the batch size
of 8, the block size of 1024 and the learning rate
of 2e-4 for GPT-2 fine-tuning. For BERT-large, we
used the batch size of 32 and the learning rate of Se-
5. We fine-tuned both of these models for 3 epochs.
For these experiments, SLIMFIT can provide up to
2.1 x reduction in the total on-device GPU memory
usage without any noticeable performance degrada-
tion.

I Impact of Quantization and Pruning

In this work, we used quantization and pruning for
a few specific layers to balance the number of acti-



Table 6: The hyper-parameter settings of each NLP/CV task.

Dataset Model Optimizer | Learning Rate | Warmup Evaluation Metric
MNLI, bert-base-cased AdamW 4e-5 0 percentage accuracy
QQP bert-base-cased AdamW Se-5 0 percentage accuracy
QNLI bert-base-cased AdamW 5e-5 0 percentage accuracy
SST-2 bert-base-cased AdamW 8e-5 0 percentage accuracy
CoLA bert-base-cased AdamW 8e-5 0.1 Matthew’s correlation
STS-B bert-base-cased AdamW 8e-5 0 Spearman correlation
MRPC bert-base-cased AdamW 1.25e-4 0 percentage accuracy
RTE bert-base-cased AdamW 1.2e-4 0 percentage accuracy
SQuAD 2.0 bert-base-uncased AdamW 1.8e-4 0.1 F1 score
CIFAR-10 | vit-base-patch16-224-in21k | AdamW 7.5e-5 0 percentage accuracy
CIFAR-100 | vit-base-patch16-224-in21k | AdamW 5.5e-5 0 percentage accuracy
ImageNet vit-base-patch16-384 AdamW Se-5 0 percentage accuracy

Table 7: The experimental results of SLIMFIT on the GLUE benchmark using BERT-large over 10 random runs.

BERT

Method Metric MNLIL, | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE
Basline Accuracy 85.9 91.2 | 922 93.8 61.5 89.6 86.9 71.6
Total On-chip GPU Memory (GB) 15.0 150 | 15.0 15.0 15.0 15.0 15.0 15.0

Best Accuracy 86.0 91.3 | 922 94 63.2 89.9 87.7 73.3

Average Accuracy 85.8 91.1 92.1 93.6 61.3 89.5 86.6 71.5
SLIMFIT | Standard Deviation of Accuracy 0.115 | 0.158 | 0.097 | 0.282 | 0.955 | 0.363 | 0.775 | 1.344

Freezing Rate (%) 80 80 90 90 90 85 80 80

Total On-chip GPU Memory (GB) 8.2 8.2 7.7 7.7 7.7 8.0 8.2 8.2

Table 8: The experimental results of SLIMFIT for lan-
guage modeling on WikiText-2 using GPT-2 over 10
random runs.

Table 9: The impact of quantization and pruning on the
accuracy evaluation.

Dataset | Baseline Quantization of Pruning of All
Method Metric GPT-2 (WikiText-2) S — L;ge;“ M:(‘)“g‘” Cz%LOU Laysegl‘;"rm ‘°§;‘f7ler
. Accuracy (Perplexity) 21.3 o . or ’ ’ ’ ’
baseline Total On-chip GPU Memory (GB) 29.9 MRPC 86.4 86.4 86.3 86.3 86.3 86.3
Best Accuracy (Perplexity) 214
Average Accuracy (Perplexity) 21.3 J Discussion on Wall-Clock Time
SLIMFIT | Standard Deviation of Accuracy 0.127
Freezing Rate (%) 75 .. . .
Total On-chip GPU Memory (GB) 145 Compared to training without freezing, SLIMFIT

vations across all layers and to reduce the memory
footprint of static activations. We used 8-bit quan-
tization for the activations of the imbalanced linear
layer and MatMul. We also quantized the activations
of GELU using 4 bits. The pruning of LayerNorm
was performed when this layer is kept frozen. It is
worth mentioning that both quantization and pruning
have no impact on the forward computations. They
are only used to compress activations for caching.
To show the impact of such compression methods,
we report the accuracy evaluation of BERT on CoLA
and MRPC datasets with and without quantization
or pruning in Table 9. The experimental results show
no notable performance loss due to the compression
techniques.

introduces extra computations and also skips weight
gradient computations for the frozen layers at the
same time. The main source of computational over-
head in SLIMFIT is quantization and pruning of
activations. The quantization overhead is due to the
conversion between different precision levels (i.e.,
between 8 bits and 32-bit floating-point format) as
discussed in Appendix E. Pruning also requires sort-
ing of values to keep their top 10% largest values,
which causes an additional computational overhead.
Computing the weight distance metric is another
source of computational overhead.

On the other hand, SLIMFIT skips the weight gra-
dients computations of frozen layers using PyTorch
“requires_grad” as shown in Algorithm 4. When an
activate layer is frozen, there is no need to compute
its weight gradients as discussed in Appendix D.2,
which reduces the wall-clock time. The amount of
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Algorithm 4 The description of skipping weight gradient computations when the layer is frozen. In this
example, we assume the activations of the frozen layer require compression (e.g., an imbalanced linear layer
or LayerNorm). Activations are denoted as “input” and are cached using either quantization or pruning
depending on the type of the layer as a compression method. The compression and decompression functions
are denoted as “compress” and “decompress”. Since weights are defined as ‘“Parameter” in PyTorch, caching

weights does not introduce any extra memory.

class ILSFunction(torch.autograd.Function):
@staticmethod

def forward(ctx, input: torch.Tensor, weight: torch.nn.Parameter, requires_grad):
# Compute forward computations to obtain out

if requires_grad:

ctx.save_for_backward(compress(input), weight)

else:
ctx.save_for_backward(weight)
ctx.requires_grad = requires_grad
return out
@staticmethod

def backward(ctx, grad_output: torch.Tensor):

if ctx.requires_grad:

input, weight = decompress(ctx.saved_tensors[0]), ctx.saved_tensors[1]
# Compute backward computations to obtain grad_input and grad_weight

else:
weight = ctx.saved_tensors[1]
grad_weight = None

# Compute backward computations to obtain grad_input

return grad_input, grad_weight, None
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Figure 9: Wall-clock time of fine-tuning ViT on Ima-
geNet with a batch size of 32 across different freezing
rates.

speedup due to the skipped computations highly de-
pends on the hyper-parameters of the networks such
as freezing rate. Therefore, the wall-clock time of
each network varies from one to another depending
on the hyper-parameters. For instance, Fig. 9 shows
the wall-clock time of fine-tuning ViT on ImageNet
using a batch size of 32 across different freezing
rates. According to the experimental results, the
computational overhead of SLIMFIT is dominant for
small freezing rates. However, as the freezing rate
increases, the speedup of the skipped gradient com-

Layers
Layers

0 20 40 60 80 40 60

Freezing Rate (%) Freezing Rate (%)
(a) CoLA (b) MRPC

Figure 10: The frequency of update occurrence for each
layer as a heatmap on (a) CoLA and (b) MRPC datasets.

putations overcomes the computational overhead of
SLIMFIT where SLIMFIT with the freezing rate of
95% results in a similar wall-clock time as of the
baseline. It is worth mentioning that the baseline is
the point at the freezing rate of 0 where no freezing
was used during the fine-tuning process.

K Frequency of Update Occurrence

To visualize the frequency of update occurrence for
each layer, we use a heatmap as shown in Fig. 10 for
both CoL A and MRPC datasets where larger counts
are associated with darker colorings. As shown in



Algorithm 5 The description of layers associated to the indices in Fig. 10.

bert.embeddings.word_embeddings.weight
bert.embeddings.position_embeddings.weight
bert.embeddings.token_type_embeddings.weight
bert.embeddings.LayerNorm.weight
fori=0to 11: do
bert.encoder.layer[i
bert.encoder.layer[i
bert.encoder.layer[i
bert.encoder.layer[i
bert.encoder.layer[i
bert.encoder.layer[i
bert.encoder.layer[i
bert.encoder.layer[i
end for
bert.pooler.dense.weight
classifier.weight

.attention.self key.weight

.output.dense.weight

e e e e bd bd

.attention.self.query.weight

.attention.self.value.weight
.attention.output.dense.weight
.attention.output.LayerNorm.weight
.intermediate.dense.weight

.output.LayerNorm.weight

the heatmap, the dense layers inside the MHA mod-
ule receive more updates than other layers for both
datasets. Moreover, the update patterns of these
datasets are similar for small freezing rates whereas
they become more task-specific for high freezing
rates. In fact, the ILS algorithm prioritizes the up-
date of some specific layers over others for high
freezing rates.

The description of layers associated to the in-
dices in Fig. 10 is provided in Algorithm 5. It
is worth mentioning that the layers denoted by
“bert.encoder.layer([i].attention” belong to the MHA
module whereas the remaining layers inside the loop
belong to the FFN module.

L. Comparison With Memory-Efficient
Techniques

In this section, we provide experimental results of
SLIMFIT applied to basic memor-efficient training
methods including gradient accumulation (GA), gra-
dient checkpointing (GC), and parameter-efficient
fine-tuning (PEFT). We fine-tune the GPT-2 model
on WikiText-2 for three epochs using the batch size
of 8 with the freezing rate of 75% for comparison
purposes.

GA is a technique which allows dividing the train-
ing data into smaller micro-batches and then accu-
mulating the gradients from each micro-batch before
applying them to update the model. We set the size
of the micro-batch for GA to one which yields the
lowest GPU memory usage. With this configuration,
the GA step size is equal to 8. While GA can signifi-
cantly reduce the memory usage of the fine-tuning

Table 10: The experimental results of GA equipped with
SLIMFIT when fine-tuning GPT-2 on WikiText-2.

Method Metric GPT-2 (WikiText-2)

Accuracy (Perplexity) 214

SLIMFIT Total On-chip GPU Memory (GB) 14.5
Time per epoch (s) 241.7

Accuracy (Perplexity) 214

GA Total On-chip GPU Memory (GB) 5.7
Time per epoch (s) 257.3

Accuracy (Perplexity) 214

SLIMFIT + GA | Total On-chip GPU Memory (GB) 3.2
Time per epoch (s) 261.5

Table 11: The experimental results of GC equipped with
SLIMFIT when fine-tuning GPT-2 on WikiText-2.

Method Metric GPT-2 (WikiText-2)
Accuracy (Perplexity) 214
SLIMFIT Total On-chip GPU Memory (GB) 14.5
Time per epoch (s) 241.7
Accuracy (Perplexity) 214
GC Total On-chip GPU Memory (GB) 10.2
Time per epoch (s) 307.4
Accuracy (Perplexity) 214
SLIMFIT + GC | Total On-chip GPU Memory (GB) 8.1
Time per epoch (s) 319

process at a slight increase in run-time performance,
its reduction is limited by the size of the micro-batch
being 1 as shown in Table 10. SLIMFIT equipped
with GA can further reduce the GPU memory usage
from 5.7GB down to 3.2GB.

GC can reduce activation memory by trading com-
putations for memory. In this method, only specific
activations are stored during the forward pass, while
the rest are recomputed in the backward pass. Of
course, the recomputation of activations comes at
the cost of an increase in the run-time performance
while significantly reducing the memory usage as
shown in the table below. SLIMFIT equipped with

GC can further reduce the memory usage of GC by
35



Table 12: The experimental results of LoRA (with the
rank of 16) equipped with SLIMFIT when fine-tuning
GPT-2 on WikiText-2.

Method Metric GPT-2 (WikiText-2)
Accuracy (Perplexity) 214
SLIMFIT Total On-chip GPU Memory (GB) 14.5
Time per epoch (s) 241.7
Accuracy (Perplexity) 214
PEFT (LoRA) Total On-chip GPU Memory (GB) 29.5
Time per epoch (s) 2153
Accuracy (Perplexity) 21.4
SLIMFIT + PEFT (LoRA) | Total On-chip GPU Memory (GB) 14.2
Time per epoch (s) 233.1

21% when fine-tuning GPT-2 on WikiText-2 (See
Table 11).

PEFT approaches rely on updating the prepended
trainable parameters to the input of the layers. In
other words, adapter modules containing a small
number of parameters are inserted to each layer of
the model and only the parameters of these mod-
ules are adjusted during the fine-tuning process. It
is worth mentioning that the number of activations
for such a method remains the same. The main
memory saving of PEFT approaches comes from
the memory saving in optimizer states and gradients.
AdamW, which is commonly used as the optimizer
for fine-tuning, stores two states of the trainable pa-
rameters of the model. Since PEFT approaches train
the model on the prepended parameters, the size of
optimizer states would be the same as the size of the
prepended parameters. As such, the memory saving
of PEFT methods is significant only when the GPU
memory usage is dominated by the size of the model
parameters, which is the case for LLMs. However,
for small-size models where the memory of activa-
tions is dominant, the memory reduction of PEFT
approaches is not significant. For instance, fine-
tuning the GPT-2 model on WikiText-2 results in a
non-significant reduction in the GPU memory us-
age as shown in Table 12. As such, PEFT equipped
with SLIMFIT does not also provide a significant re-
duction in memory compared to regular fine-tuning
using SLIMFIT as shown in Table 12.
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