
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers), pages 6218–6236

June 16-21, 2024 ©2024 Association for Computational Linguistics

SLIMFIT: Memory-Efficient Fine-Tuning of Transformer-based Models
Using Training Dynamics

Arash Ardakani1 Altan Haan1 Shangyin Tan1 Doru Thom Popovici2

Alvin Cheung1 Costin Iancu2 Koushik Sen1

University of California, Berkeley1 Lawrence Berkeley National Laboratory2

{arash.ardakani,altanh,shangyin,akcheung,ksen}@berkeley.edu

{dtpopovici,cciancu}@lbl.gov

Abstract

Transformer-based models, such as BERT and

ViT, have achieved state-of-the-art results across

different natural language processing (NLP) and

computer vision (CV) tasks. However, these mod-

els are extremely memory intensive during their

fine-tuning process, making them difficult to de-

ploy on GPUs with limited memory resources.

To address this issue, we introduce a new tool

called SLIMFIT that reduces the memory require-

ments of these models by dynamically analyz-

ing their training dynamics and freezing less-

contributory layers during fine-tuning. The layers

to freeze are chosen using a runtime inter-layer

scheduling algorithm. This allows SLIMFIT to

freeze up to 95% of layers and reduce the overall

on-device GPU memory usage of transformer-

based models such as ViT and BERT by an av-

erage of 2.2×, across different NLP and CV

benchmarks/datasets such as GLUE, SQuAD 2.0,

CIFAR-10, CIFAR-100 and ImageNet with an

average degradation of 0.2% in accuracy. For

such NLP and CV tasks, SLIMFIT can reduce up

to 3.1× the total on-device memory usage with

an accuracy degradation of only up to 0.4%. As a

result, while fine-tuning of ViT on ImageNet and

BERT on SQuAD 2.0 with a batch size of 128

requires 3 and 2 32GB GPUs, respectively, SLIM-

FIT enables fine-tuning them on a single 32GB

GPU without any significant accuracy degrada-

tion. The code of SLIMFIT is available at https:

//github.com/arashardakani/SlimFit.

1 Introduction

Over the past few years, various transformer-based

models have been developed with the adoption of the

attention mechanism that weighs the importance of

each part of the input data differently. Pre-training of

such transformer-based models on large data has led

to a significant boost in accuracy when fine-tuned on

various natural language processing (NLP) and com-

puter vision (CV) downstream tasks (Devlin et al.,

2018; Dosovitskiy et al., 2021). Despite their great

performance in achieving state-of-the-art (SOTA)

accuracy, these models are memory intensive and

Batch Size: 32 Batch Size: 64 Batch Size: 128
0

5

10

15

6
.1

9
.1

1
5
.4

3
.2

6
.4

1
2
.8

4
·1

0
−

1

4
·1

0
−

1

4
·1

0
−

1

2
.4

2
.3

2
.2

M
em

o
ry

(G
B

y
te

)
Total Activations Parameters Others

Figure 1: The breakdown of memory usage of BERT

when fine-tuned on different batch sizes including 32, 64,

and 128.

require a considerably large amount of on-device

GPU memory during their fine-tuning phase when

compared to the conventional convolutional and re-

current neural networks (Jain et al., 2020). The

memory requirement of current transformer-based

models has made them difficult to fine-tune even

on powerful GPUs. With the introduction of larger

transformer-based models over the past few years,

the on-device GPU memory has become a major

bottleneck for their fine-tuning process (Jain et al.,

2020; Liu et al., 2022; Chen et al., 2023).

The total on-device memory usage of GPUs con-

sists primarily of activations, parameters, gradients,

optimizer states, and the CUDA context. Among

these factors, activations account for most of the

memory usage due to batch processing (Liu et al.,

2022; Chen et al., 2021; Jain et al., 2020) as shown

in Fig. 1. Therefore, activation compressed train-

ing (ACT) has emerged as the primary solution for

memory-efficient fine-tuning (Chen et al., 2021; Liu

et al., 2022). This approach first compresses activa-

tions during the forward pass and then decompresses

them during the backward pass. In this way, the

memory footprint can be significantly reduced by

caching the compressed activations. In ACT, quan-

tization (Chakrabarti and Moseley, 2019; Fu et al.,

2020; Chen et al., 2021; Liu et al., 2022) has been a

popular choice to compress activations among other

compressors such as JPEG (Evans et al., 2020) or

pruning (Chen et al., 2023). The current SOTA ACT
6218

adaptively assigns quantization bits to each layer

for a given architecture (Liu et al., 2022). While

the SOTA ACT successfully reduces the memory

footprint of activations, its overall on-device GPU

memory reduction is not significant. For instance,

the total on-device GPU memory reduction of the

SOTA ACT is limited to 0.1GB despite its 6.4×
reduction in the memory of activations when fine-

tuning BERT on CoLA dataset with a batch size of

32. It is worth mentioning that we refer to the mem-

ory usage reported by “nvidia-smi” as the overall

on-device memory in this paper (see Appendix A

for more information on memory management).

Tensor rematerialization (Jain et al., 2020; Chen

et al., 2016; Beaumont et al., 2021; Kirisame et al.,

2021), also known as gradient checkpointing, is

another prominent approach to reducing activation

memory by trading computations for memory. In

tensor rematerialization, only specific activations

are stored during the forward pass, while the rest

are recomputed in the backward pass. Of course,

recomputing activations requires more operations,

resulting in a longer fine-tuning process (Liu et al.,

2022). Reduced precision training, as another ap-

proach, performs the computations of both forward

and backward passes in low-precision (Micikevicius

et al., 2017; Wu et al., 2018; Wang et al., 2018b;

Banner et al., 2018). While these works can suc-

cessfully train conventional models, few-bit model

fine-tuning is not trivial. For instance, 8-bit quanti-

zation of BERT for inference results in a significant

precision loss (Zafrir et al., 2019), which makes

fine-tuning on few bits a challenging task.

Low-rank adaptation (LoRA) (Hu et al., 2022)

is another key approach to reducing the overall on-

device GPU memory where the transformer-based

models are fine-tuned by inserting a small number of

trainable parameters into each layer while keeping

the pre-trained model parameters frozen. Such an ap-

proach enables fine-tuning transformer-based mod-

els with significantly less number of trainable param-

eters, leading to a reduction in the memory footprint

of optimizer states and gradients. Such a memory

reduction becomes significant for large transformer

models such as GPT (Brown et al., 2020) with bil-

lions of parameters.

Different from these methods, we put forward

a new approach to reducing the overall on-device

memory usage by analyzing training dynamics.

More precisely, we dynamically analyze the gra-

dient contributions of layers in transformer-based

models and perform parameter updates for specific

layers only while the rest of layers are kept frozen.

Training dynamics have been used to analyze the

behavior of a model during its training/fine-tuning

process (Swayamdipta et al., 2020; Teehan et al.,

2022; Fang et al., 2022). However, our work uses

training dynamics to detect and discard unimpor-

tant activations during fine-tuning by freezing their

associated layers, leading to a reduction of the mem-

ory footprint. Our method is orthogonal to existing

approaches including rematerialization, LoRA and

fused operations (Dao et al., 2022; Rabe and Staats,

2021), which could be combined for further reduc-

tions.

Freezing layers or parameters has been studied

in different domains, including transformer-based

models to preserve previously learned information

during fine-tuning (Lee et al., 2022; Shen et al.,

2021). Freezing parameters have also been used

to regularize fine-tuning (e.g., over-fitting reduction)

in pre-trained models (Ramasesh et al., 2021). Re-

cently, freezing has been used to accelerate fine-

tuning by progressively freezing model blocks (Liu

et al., 2021; Li et al., 2023; He et al., 2021; Yuan

et al., 2022). However, since such an approach starts

the fine-tuning process without freezing at least for a

few training iterations/epochs, its overall on-device

memory requirement remains similar to that of train-

ing without freezing. For instance, fine-tuning ViT

on ImageNet with a batch size of 128 using such a

freezing approach on a single 32GB GPU results in

an out-of-memory error (see Appendix B for more

details).

To orchestrate effective layer-freezing decisions,

we introduce a runtime inter-layer scheduling (ILS)

algorithm. Our method finds and freezes a set of

layers at each training iteration in transformer-based

models that are less contributory, i.e., layers with

fewer updates in their parameters, to the fine-tuning

process at each iteration. While the ILS algorithm

successfully detects and freezes unimportant layers,

its memory reduction is not proportional to the freez-

ing rate. The reason behind this disproportionality

is twofold: the imbalanced number of activations

among layers and the existence of static activations.

Static activations refer to those that cannot be dis-

carded regardless of freezing (e.g., activations of

non-linear functions such as GELU). We address

these two issues using quantization and pruning to

even out the number of activations across all lay-

ers and to reduce the memory overhead of static

activations. We use quantization and pruning for

a few specific layers of transformer-based models

as opposed to reduced precision training methods

where all the layers are quantized. As a result, the
6219

impact of quantization and pruning on accuracy is

insignificant in our work. For instance, the accuracy

degradation due to quantization and pruning is only

0.1% on the MRPC dataset.

By combining ILS with quantization and prun-

ing, we introduce a performance tool called SLIM-

FIT for reducing the on-device GPU memory us-

age of transformer-based models during fine-tuning.

We demonstrate the effectiveness of SLIMFIT in re-

ducing the memory footprint on popular models of

BERT and ViT. We show that SLIMFIT can freeze

up to 95% of layers and reduce the overall on-device

memory usage by an average of 2.2× when fine-

tuning BERT and ViT models on different bench-

marks and datasets, such as GLUE, SQuAD 2.0,

CIFAR-10, CIFAR-100 and ImageNet with an aver-

age accuracy degradation of 0.2%. More precisely,

SLIMFIT reduces the overall on-device memory us-

age of the fine-tuning process on GLUE from 6.1GB

to 4.0GB (1.5× reduction) with a batch size of 32,

on SQuAD 2.0 from 58.5GB to 19.1GB (3.1× re-

duction) with a batch size of 128, on CIFAR-10 from

7.2GB to 4.3GB (1.7× reduction) with a batch size

of 32, on CIFAR-100 from 7.2GB to 4.5GB (1.6×
reduction) with a batch size of 32, and on ImageNet

from 77.4GB to 26.1GB (3.0×) with a batch size of

128 at the cost of up to 0.4% accuracy degradation.

As a result, SLIMFIT enables performing memory-

intensive fine-tuning processes on a single 32GB

GPU such as fine-tuning ViT on ImageNet with a

batch size of 128 while this normally requires three

32GB GPUs.

2 Preliminaries

Over the past few years, pre-training of attention-

based models has led to significant advances on

many NLP and CV tasks with the popular BERT

(Devlin et al., 2018) and ViT (Dosovitskiy et al.,

2021) models. The pre-training process provides

a good initialization point such that these models

can better generalize on unseen data of downstream

tasks. Therefore, these models can achieve state-

of-the-art results by fine-tuning through small ad-

justments to their parameters. Architecturally, these

models consist of an initial embedding layer, fol-

lowed by repeated blocks of multi-head attention

(MHA) fed into a feed-forward network (FFN) mod-

ule (see Appendix C for more details). The base

architectures of BERT and ViT contain over a hun-

dred layers built up in this manner.

Despite the large number of layers, not all need

to be updated during fine-tuning to achieve decent

performance on downstream tasks, as shown in (Mer-

chant et al., 2020). Notably, the authors found that

freezing approximately 60% of early attention layers

in BERT led to negligible performance degradation.

This suggests that the fine-tuned model tends to pre-

serve generic features learned during pre-training.

Motivated by this study, we seek to analyze the train-

ing dynamics of pre-trained models and to automat-

ically detect layers with less contributions to the

fine-tuning process.

3 Learning the Importance of Layers

Training dynamics is an active field of research that

provides insight about the behavior of pre-trained

models when fine-tuning on downstream tasks. The

convergence proof of optimization algorithms such

as stochastic gradient descent (Shalev-Shwartz and

Ben-David, 2014) shows that the distance between

the parameters and the optimal solution is reduced

over training iterations and accordingly, the weight

distance (or the weight update amount) between

consecutive iterations decreases. Therefore, it is

possible that some layers can only receive minimal

changes to their parameters as we approach the end

of the training process. Of course, detecting and

freezing such layers, when they show minimal up-

dates, will not affect accuracy. Since transformer-

based models are pre-trained, they already show

small updates during fine-tuning compared to pre-

training. As such, detecting and freezing layers with

minimal updates (i.e., weight distance values) will

not significantly affect the fine-tuning process and

accordingly the final accuracy. Based on the above

observations, we consider the ℓ1-norm of the update

received by parameters of each layer through all the

fine-tuning iterations as the training dynamics in

this paper. It is also worth mentioning that freezing

layers has no impact on training convergence as it

causes a pause in the training procedure of frozen

layers as shown by our theoretical analysis in Ap-

pendix D.1.

3.1 Training Dynamics

Let us consider a pre-trained model with a set of

parameters W where the parameters associated with

the ith layer at iteration t is denoted as Wt
i ∈ R

M×I .

The training dynamics of for the ith layer at iteration

t is defined as the ℓ1-norm of the distance between

Wt−1
i and Wt

i , i.e.,

dt
i =

1

M× I

∥∥∥∥
W t

i −W t−1
i

W t−1
i

∥∥∥∥
ℓ1

, (1)

6220

0 100 200 300 400 500 600 700 800
0

2

4

6

Iteration

D
is

ta
n

ce
V

al
u

e Query Weights (layer #1)

Query Weights (layer #5)

Query Weights (layer #11)

(a) CoLA

0 50 100 150 200 250 300
0

5

10

Iteration

D
is

ta
n

ce
V

al
u

e Query Weights (layer #1)

Query Weights (layer #5)

Query Weights (layer #11)

(b) MRPC

Figure 2: The distance values of query weight matrix for

the first, fifth and eleventh attention layers of BERT-base

fine-tuned on (a) CoLA and (b) MRPC datasets for 3

epochs.

where dt ∈ R
n
+ containing all dis at iteration t is

referred to as distance vector, and n denotes the total

number of layers. In fact, Eq. (1) calculates the

normalized change in the parameters of the ith layer.

3.2 Inter-Layer Scheduling Algorithm

We use the distance values as training dynamics

to analyze the fine-tuning behavior of pre-trained

models. For instance, consider the distance values

across all the fine-tuning iterations for the CoLA

(Warstadt et al., 2018) and MRPC (Wang et al.,

2018a) datasets. Fig. 2a shows the distance val-

ues of the query weight matrix for the first, fifth and

eleventh attention layers of BERT-base fine-tuned on

CoLA dataset whereas Fig. 2b depicts those of the

same layers for BERT-based fine-tuned on MRPC

dataset.

We observe the following based on the experi-

mental results of these two datasets. First, the up-

dated amount for each layer becomes smaller over

fine-tuning iterations. Second, the updated amount

of each layer is task-specific and is independent of

its position. Third, there are some layers showing

ILS ILS ILS

Transformer Model Transformer Model Transformer Model

Training Iteration 0 Training Iteration 1 Training Iteration n-1

Frozen Active Freezing decision Training dynamics

Figure 3: The overview of ILS algorithm. ILS freezes a

certain number of layers depending on the freezing rate at

every single iteration throughout the fine-tuning process

for the total of n training iterations.

smaller distance values w.r.t. other layers across al-

most all the iterations. Finally, layers with a higher

distance value in the beginning can become smaller

over the fine-tuning iterations than layers starting

with a lower distance value.

Given the above observations, we introduce an

ILS algorithm to decide on updating priority of lay-

ers using their distance values. Fig. 3 shows an

overview of the ILS algorithm. At each iteration

ranging from the first iteration to the last iteration,

our ILS algorithm selects those layers with large

distance values to be updated and those with small

distance values to be frozen. More precisely, layers

are first ranked based on their distance values at each

training iteration and then those with small distance

values are kept frozen according to the freezing rate

as a hyper-parameter. The intuition is that layers

with small distance values are less contributory to

the fine-tuning process as their parameters are not

being updated much. On the other hand, the layers

with large distance values are learning task-specific

patterns by making more significant adjustments to

their parameters. Note that freezing middle layers

does not interrupt the gradient propagation to the

early layers of the network as shown through an

example in Appendix D.2.

The freezing rate of the ILS algorithm can be de-

cided based on the on-device GPU memory budget.

Of course, using an extremely high freezing rate may

result in a performance degradation depending on

the downstream task, providing a worthwhile trade-

off between accuracy and on-device GPU memory.

On the other hand, while performance degradation is

unlikely with a very small freezing rate, the memory

reduction is insignificant as well.

Since there is no prior knowledge about the dis-

tance values of each layer at the beginning of the

fine-tuning process, our ILS algorithm initializes

the distance vector with large random values. De-

pending on the freezing rate, each layer along with

its distance value are updated during the first few

iterations once until all random numbers in the dis-

tance vector are substituted with an actual distance

value. Afterwards, layers are kept frozen according

to their actual distance value. The distance value

of the active layers is only updated at each iteration

while that of the frozen layers remains unchanged.

The pseudo code of our ILS algorithm performing

iterative freezing is shown in Algorithm 1.

To better understand the ILS algorithm, we il-

lustrate the iterative freezing process using an ex-

ample as shown in Fig. 4a. Suppose we have an

8-layer transformer-based model and accordingly an
6221

Layer #1

Layer #2

Layer #3

Layer #4

Layer #5

Layer #6

Layer #7

Layer #8

10.5

12.3

8.5

9.4

11.4

3.5

6.7

13

Transformer Model

Distance Vector

ILS

Iteration t −1

Layer #1

Layer #2

Layer #3

Layer #4

Layer #5

Layer #6

Layer #7

Layer #8

8.1

5.3

8.5

9.4

7.1

3.5

6.7

11

Transformer Model

Distance Vector

ILS

Iteration t

Layer #1

Layer #2

Layer #3

Layer #4

Layer #5

Layer #6

Layer #7

Layer #8

4.2

5.3

4.9

6.4

7.1

3.5

6.7

10

Transformer Model

Distance Vector

Iteration t +1

Frozen Frozen layers are not being updated. Active Active layers are being updated.

(a)

Layer #1 (Size: B * 128 * 768)

Layer #2 (Size: B * 128 * 3072)

Layer #3 (Size: B * 128 * 768)

Layer #4 (Size: B * 128 * 3072)

Transformer-based Model

Frozen

Active

B: Batch Size

Memory Reduction = 1.25×

(b)

Figure 4: (a) An example of the iterative freezing process using our ILS algorithm. (b) An example of a model with

imbalanced number of activations and its impact on the memory reduction.

Algorithm 1 The pseudo code of the ILS algorithm

performing iterative freezing.

Input: model, number of iterations as itr, number

of layers as L, freezing rate F

d = rand(L)

for i in itr do

idx = argsort(d)[:int(L*F)]

for j in idx do

model.layer[j].requires_grad = False

end for

model.train()

Update d

end for

8-element distance vector at iteration t. Considering

the freezing rate of 50% for this example, 4 layers

with the lowest distance values are kept frozen and

the rest are updated at each iteration.

4 Inter-Layer Load-Balancing

So far, we have introduced our ILS algorithm that

prioritizes updating particular layers while keeping

the rest of layers frozen according to their distance

value. For the given freezing rate of 50% as an exam-

ple, we expect to see a 2× reduction in the memory

footprint of activations. However, this is not the

case in transformer-based models due to the imbal-

anced the number of activations across all the layers.

In fact, the imbalance in the number of activations

undermines the ability of our ILS algorithm in re-

ducing the memory footprint during the fine-tuning

as shown in Fig. 4b.

Since the focus of this paper is on transformer-

based models such as BERT and ViT, we analyze

their architecture for imbalanced layers. Table 1

summarizes the number of activations associated

to the input of layers with trainable parameters in

Table 1: The number of activations associated to the input

of layers with trainable parameters in BERT where B, T ,

H denote the batch size, sequence length, hidden size,

respectively. ViT has the same structure with different

descriptions.

Type of Layer Description # Activations Status

Dense attention.self.query B∗T ∗H Balance

Dense attention.self.key B∗T ∗H Balance

Dense attention.self.value B∗T ∗H Balance

Dense attention.output B∗T ∗H Balance

LayerNorm attention.output B∗T ∗H Balance

Dense intermediate B∗T ∗H Balance

Dense output B∗T∗4∗H Imbalance

LayerNorm output B∗T ∗H Balance

BERT or ViT. Among all trainable layers, there is

only one imbalanced layer in the attention block

which contains 4× more activations than other lay-

ers.

To address the load-balancing issue in the num-

ber of activations for the aforementioned layer, we

use quantization. Since the imbalance factor among

layers is 4×, we adopt 8-bit quantization for acti-

vations of the imbalanced layer where 4 bits are

used for both the integer and fractional parts. In this

way, the memory cost of the activations are evened

out using quantization. In our quantization scheme,

we cache the activations of the imbalanced layer

using 8 bits during the forward pass. In the back-

ward pass, we convert the 8-bit activations to 32-bit

floating-point format. Therefore, all the forward and

backward computations are still performed using

single-precision floating-point format. The conver-

sion process between 8-bit fixed-point and 32-bit

floating-point formats are provided in Appendix E.

5 Dynamic and Static Activations

Assuming that the backpropagation is performed

from the last to the first layer, the type of activations

in transformer-based models can be divided into two
6222

categories: dynamic and static. We refer to the acti-

vations that can be discarded by freezing their layer

as dynamic activations. On the other hand, static ac-

tivations cannot be discarded regardless of freezing.

Among different types of layers, GELU, MatMul,

Softmax and LayerNorm contain static activations

as shown Table 2. Note that MatMul and Softmax

share the same activations. For the backward com-

putations of Softmax, its output during the forward

pass is saved as its activations. On the other hand,

the input to MatMul is required for its backward

computations as activations. Since the output of

Softmax is an input to MatMul in the forward pass,

they share the same activations.

GELU and MatMul/Softmax do not have any

trainable parameters and accordingly cannot be

frozen. Therefore, these two layers hold on to their

activations throughout the fine-tuning process. The

best approach to reduce their memory cost is quanti-

zation. We use 4 and 8 bits for quantization of acti-

vations in GELU and MatMul/Softmax, respectively.

Since there is no 4-bit tensor support in PyTorch, we

store each two 4-bit activations as a single 8-bit acti-

vations using shift operations. Note that using such

bit-levels result in a negligible accuracy degradation

while further quantization of those activations incurs

a significant accuracy loss.

As opposed to GELU and MatMul/Softmax, Lay-

erNorm contains trainable parameters and can be

frozen by the ILS algorithm. However, its activa-

tions are still static. The forward pass of LayerNorm

is computed by:

x̃ =
x−E(x)√
Var(x)+ ε

, (2)

y = x̃∗ γ +β , (3)

where γ and β are trainable parameters. The input

and output to LayerNorm are denoted by x∈R
H and

y ∈ R
H , respectively. E(·) and Var(·) compute the

average and variance, respectively. The derivative

Table 2: The type of activations of layers in MHA and

FFN of BERT and ViT.

Type of Layer # Activations Type of Activations

Dense B∗T ∗H Dynamic

MatMul B∗T∗H (2×) Static

Softmax B∗T∗T Static

MatMul B∗T∗H & B∗T∗T Static

Dense B∗T ∗H Dynamic

LayerNorm B∗T∗H Static

Dense B∗T ∗H Dynamic

GELU B∗T∗4∗H Static

Dense B∗T ∗4∗H Dynamic

LayerNorm B∗T∗H Static

of the loss with respect to γ (i.e., γ̂) is computed by

γ̂ = x̃∗ ŷ, (4)

and with respect to β (i.e., β̂) by:

β̂ = ŷ, (5)

where ŷ denotes the derivative of the loss w.r.t. y.

We also need to compute the derivative of the loss

with respect to x (i.e., x̂) as:

g =
γ ∗ ŷ

H ∗
√

Var(x)+ ε
, (6)

x̂ = H ∗g−∑
H

g− x̃∗∑
H

(g∗ x̃). (7)

When LayerNorm is frozen, there is no need to com-

pute Eq. (4). However, the activations of this layer

cannot be discarded since they are still a part of the

computations in Eq. (7). More precisely, the stan-

dardized version of x (i.e., x̃) is required even when

this layer is frozen.

The contribution of the last term in Eq. (7) (i.e.,

∑H(g ∗ x̃)) is significant for large values of x̃ only.

Therefore, the small values of x̃ can be discarded.

Ideally, we want to have all the activations of this

layer to be discarded when this layer is frozen. How-

ever, this will results in an accuracy degradation.

As such, we prune away the small values in x̃ and

keep the top 10% largest values. In this way, the

memory load of activations is significantly reduced.

Of course, when this layer is not frozen, the back-

propagation is performed without any approxima-

tion. Such a trick converts LayerNorm from a static

layer to a semi-static one. It is worth mentioning

that the indices to pruned activations are also stored

along with activations. The details of the pruning

procedure is provided in Appendix F.

6 SLIMFIT

SLIMFIT is a performance tool that exploits our ILS

algorithm along with quantization and pruning to

reduce the memory footprint of activations through

an iterative freezing process. The total on-device

GPU memory reduction of SLIMFIT is a result of the

memory reduction in both dynamic and static acti-

vations. Static activations contribute a fixed amount

of memory whereas the memory usage of dynamic

activations depends on the freezing rate. Given a

high freezing rate, the memory footprint of activa-

tions and accordingly the total on-device GPU mem-

ory usage can be significantly reduced. The choice

of freezing rate depends on the memory budget of
6223

the user. By increasing the freezing rate up to a

certain point, there will be no performance degra-

dation. However, using an extremely high freezing

rate trades off memory for accuracy. Finding the

breaking point of the method is task dependent and

varies from one dataset to another.

7 Experimental Results

We use the base version of BERT and ViT for our

experiments. We fine-tune these two models us-

ing SLIMFIT which is implemented on PyTorch.

We evaluate BERT (Devlin et al., 2018) using the

GLUE benchmark (Wang et al., 2018a) and SQuAD

2.0 (Rajpurkar et al., 2016). For ViT (Dosovitskiy

et al., 2021), we use CIFAR-10, CIFAR-100 and

ImageNet datasets (Krizhevsky, 2009; Deng et al.,

2009) for evaluation purposes. We discuss the mem-

ory usage of activations and the overall on-device

GPU memory on the 32GB NVIDIA V100 GPU.

We report the total on-device GPU memory usage

using “nvidia-smi”. For all the experiments in this

section, we use 3 epochs for fine-tuning. The de-

tails about the CV/NLP tasks, measurements and

hyper-parameter settings are provided in Appendix

G.

7.1 Accuracy Evaluation on GLUE and

SQuAD 2.0

To evaluate the language understanding ability of

BERT models, the GLUE benchmark is formed

by a series of downstream tasks including senti-

ment classification (SST-2), natural language infer-

ence (RTE, QNLI, and MNLI), paraphrase detection

(MRPC, QQP, and STS-B), and linguistic accept-

ability (CoLA). We use Spearman correlation for

STS-B, Matthew’s correlation for CoLA, percentage

accuracy for RTE, MRPC, SST-2, QQP, QNLI and

MNLIm, and F1 score for SQuAD 2.0. In this work,

we fine-tune the BERT-base model using SLIMFIT

on the downstream tasks of the GLUE benchmark

as well as the question answering task on SQuAD

2.0. Table 3 shows the accuracy on the validation

set of the aforementioned tasks and memory usage

of SLIMFIT compared to the baseline. The results

of the baseline were obtained without freezing. We

report the results along with its statistics associated

with the highest freezing rate that can achieve a sim-

ilar accuracy to that of the baseline by varying the

learning rate over 10 random runs. The experimen-

tal results on the GLUE benchmark show that up to

95% of dynamic activations can be discarded with

up to 0.4% accuracy degradation, leading to an aver-

GLUE SQuAD 2.0 CIFAR-10 CIFAR-100 ImageNet
0

20

40

60

80

6
.1 1

6
.4

7
.2

7
.2

2
0
.5

4 7
.3

4
.3

4
.5 8
.9

9
.1

2
9
.6

1
1
.4

1
1
.4

4
0
.1

5
.1 1
1
.1

5
.8

6
.3 1

4
.9

1
5
.4

5
8
.5

2
0
.3

2
0
.3

7
7
.4

6
.8 1

9
.1

8
.7 9
.6

2
6
.1

T
o

ta
l

O
n

-d
ev

ic
e

G
P

U
M

em
o

ry
(G

B
)

Baseline-32 SLIMFIT-32 Baseline-64

SLIMFIT-64 Baseline-128 SLIMFIT-128

Figure 5: The total on-device GPU memory usage of

SLIMFIT compared to the baseline across different batch

sizes including 32, 64 and 128 on NLP and CV datasets.

age of 1.9GB reduction in the total on-device GPU

memory usage. On the other hand, while fine-tuning

SQuAD 2.0 without freezing requires the minimum

of 2 32GB NVIDIA V100 GPUs on a batch size

of 128, SLIMFIT enables its fine-tuning on a sin-

gle 32GB NVIDIA V100 GPU, reducing the total

on-device memory requirement of such a task from

58.5GB down to 19.1GB (3.1× reduction).

Figure 5 shows the total on-device GPU memory

usage of BERT-base when fine-tuned using SLIM-

FIT for different batch sizes at the freezing rate of

95% on the GLUE benchmark and 80% on SQuAD

2.0. According to the experimental results, SLIMFIT

enables a reduction ranging from 1.5× to 3.1× in

the total on-device GPU memory on NLP tasks. The

reduction in the total on-device memory usage is

more significant for larger batch sizes since the acti-

vations dominate the memory footprint. It is worth

mentioning that the memory benefits of SLIMFIT

is not limited to BERT-base for NLP tasks. In fact,

similar memory reductions can be obtained when

fine-tuning other NLP models such as BERT-large

and GPT-2 using SLIMFIT. The experimental results

of such models are provided in Appendix H.

7.2 Accuracy Evaluation on CIFAR and

ImageNet

To assess the effectiveness of our method on CV

tasks, we fine-tune the ViT-base model on CIFAR-

10, CIFAR-100 and ImageNet datasets. We use

the test set of CIFAR-10/CIFAR-100 and the val-

idation set of ImageNet to evaluate their accuracy

on ViT. Table 3 shows that SLIMFIT can fine-tune

the ViT-base model with the freezing rate of up to

95% with up to 0.3% loss in accuracy while signif-

icantly reducing the overall on-device GPU mem-

ory usage. More specifically, SLIMFIT reduces the

overall memory usage of the fine-tuning process on

CIFAR-10 from 7.2GB to 4.3GB (1.7× reduction)

with a batch size of 32, on CIFAR-100 from 7.2GB

to 4.5GB (1.6× reduction) with a batch size of 32,

and on ImageNet from 77.4GB to 26.1GB (3× re-
6224

Table 3: The accuracy and memory performance of SLIMFIT on the GLUE benchmark and SQuAD 2.0 using BERT

over 10 random runs. The batch size of 32 and 128 were used for GLUE benchmark and SQuAD 2.0, respectively.

The top-1 accuracy and memory performance of SLIMFIT are also reported for CV benchmarks with the batch size of

32 for CIFAR datasets and 128 for ImageNet dataset on ViT.

BERT ViT

Method Metric MNLIm QQP QNLI SST-2 CoLA STS-B MRPC RTE SQuAD 2.0 CIFAR-10 CIFAR-100 ImageNet

Basline

Accuracy 83.4 90.8 90.5 92.1 58.9 89.5 86.4 70.2 74.0 98.8 91.2 83.3

Memory of Activations (GB) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 55.1 4.5 4.5 69.5

Total On-chip GPU Memory (GB) 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 58.5 (2 GPUs) 7.2 7.2 77.4 (3 GPUs)

SLIMFIT

Best Accuracy 83.3 90.6 90.6 92.5 59.9 89.6 86.5 70.5 74.2 98.6 91.2 83.4

Average Accuracy 83.3 90.4 90.3 92.1 58.7 89.2 86.1 70.1 74.0 98.5 91.0 83.3

Standard Deviation of Accuracy 0.155 0.168 0.173 0.185 1.258 0.323 0.27 0.632 0.115 0.089 0.125 0.071

Freezing Rate (%) 80 80 95 95 90 85 91 90 80 90 75 95

Memory of Activations (GB) 0.7 0.7 0.5 0.5 0.6 0.7 0.6 0.6 10 0.8 1.0 11.9

Total On-chip GPU Memory (GB) 4.4 4.4 4.0 4.0 4.3 4.3 4.3 4.3 19.1 4.3 4.5 26.1

0 10 20 30 40 50 60 70 80 90 100
40

50

60

Freezing Rate (%)

M
at

th
ew

’s
C

o
rr

el
at

io
n

ILS

Random

Progressive

(a) CoLA

0 10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

Freezing Rate (%)

A
cc

u
ra

cy
(%

)

ILS

Random

Progressive

(b) MRPC

Figure 6: The trade-off curve between accuracy and freez-

ing rate for three different iterative freezing approaches

(i.e., ILS, random and progressive methods) on (a) CoLA

and (b) MRPC datasets.

duction) with a batch size of 128. Fig. 5 also shows

the total on-device GPU memory usage of SLIMFIT

across different batch sizes on CV tasks.

8 Ablation Studies

Due to limited space, we only discuss the impact of

the freezing rate on accuracy of SLIMFIT in this sec-

tion. We provide further discussions on the impact of

quantization/pruning, the total wall-clock time and

the frequency of update occurrence in Appendices

I, J, and K, respectively. For all the experiments in

this section, we use a batch size of 32 and 3 epochs

for fine-tuning.

Our ILS algorithm orchestrates the freezing sched-

ule based on a simple rule: layers with largest dis-

tance values are updated whereas those with lowest

distance values are kept frozen for the given freezing

rate. Of course, such an iterative freezing approach

trades off between accuracy and freezing rate. To

better show this trade-off, we measured and illus-

trated accuracy of CoLA and MRPC datasets across

different freezing rates in Fig. 6. The trade-off curve

shows our ILS algorithm can maintain the accuracy

at the same level of the baseline by freezing up to

95% of layers.

Besides our ILS algorithm, the freezing schedule

can be decided using random or progressive freez-

ing approaches. In the random scheduling method,

frozen layers are randomly selected at each itera-

tion. In the progressive approach, on the other hand,

early layers are progressively kept frozen whereas

later layers are being updated throughout the fine-

tuning process. Among these approaches, our ILS

algorithm significantly stands out in terms of both

accuracy and freezing rate as shown in Fig. 6. The

reason behind its superior performance is that ILS

allows more updates for layers with large distance

values by keeping layers with minimal distance val-

ues frozen for a specific number of iterations. On the

other hand, in the random approach, the layers are

randomly selected to be updated. Therefore, layers

with large distance values receive less number of

updates in the random approach compared to ILS.

Of course, the chance of layers with large distance

values being randomly selected as active layers de-

creases as the freezing rate increases, which explains

the accuracy gap between ILS and the random ap-

proach with freezing rate higher than 70% freezing

rate. In the progressive freezing approach, the early

layers receive no update during the fine-tuning pro-

cess, resulting in a significant accuracy degradation

for large freezing rates.

9 Comparison With SOTA Techniques

Next, we compare SLIMFIT with state-of-the-art

compression methods targeting memory reduction,

i.e., 4-bit GACT (Liu et al., 2022) and DropIT (Chen

et al., 2023). Table 4 summarizes the comparison re-

sults in terms of accuracy, memory and latency. For

fair comparison, we measure their performance un-

der the same framework and hyper-parameters (i.e.,

the batch size and the number of training epochs)
6225

Table 4: Comparison with state-of-the-arts, i.e., 4-bit

GACT (Liu et al., 2022) and DropIT (Chen et al., 2023)

when fine-tuning BERT on CoLA dataset.

Model Metric Baseline GACT DropIT SLIMFIT

BERT

Accuracy (Matthew’s Corr.) 58.9 59.0 57.5 59.9

Freezing Rate (%) NA NA NA 90%

Memory of Activations (GB) 3.2 0.5 2.4 0.6

Total Memory (GB) 6.1 6.0 5.7 4.3

Latency (Seconds) 251 455 367 281

during fine-tuning of BERT on CoLA. The experi-

mental results of GACT and DropIT were obtained

using their official PyTorch libraries. According to

the experimental results, GACT shows the lowest

memory amount for activations. However, in terms

of on-device GPU memory usage, SLIMFIT outper-

forms GACT. In terms of accuracy, all models show

a comparable accuracy on CoLA w.r.t. the baseline.

Finally, in terms of speed, SLIMFIT shows the fastest

fine-tuning speed among existing works while it still

falls short w.r.t. the baseline (see Appendix J for

more details on SLIMFIT’s computing speed). It

is worth mentioning that our method is orthogonal

to commonly-used memory reduction techniques

such as activation checkpointing, gradient accumu-

lation and LoRA. In fact, these techniques can be

used along with SLIMFIT to further reduce the mem-

ory. For instance, activation checkpointing can be

applied to SLIMFIT to further reduce the total on-

device GPU memory usage by the factor of 1.3×
while SLIMFIT equipped with gradient accumula-

tion can reduce it by a factor of 1.8× at the cost of

an increase in the wall-clock time when fine-tuning

GPT-2. The detailed discussions and experimental

findings of these techniques, equipped with SLIM-

FIT, are presented in Appendix L.

10 Conclusion

In this paper, we presented a performance tool called

SLIMFIT that reduces the memory usage of activa-

tions and accordingly the overall on-device GPU

memory usage of transformer-based models through

an iterative freezing of layers during fine-tuning.

SLIMFIT adopts an inter-layer scheduling method

to orchestrate the freezing schedule at each itera-

tion. To balance the number of activations across

all layers and to reduce the memory usage of static

activations, SLIMFIT uses quantization and pruning

for a few specific layers. We evaluated the perfor-

mance of SLIMFIT across different NLP and CV

tasks. We showed that SLIMFIT significantly re-

duces the on-device GPU memory usage of the fine-

tuning process by up to 3.1× when using a batch

size of 128.

11 Acknowledgements

This work is supported in part by the National

Science Foundation through grants IIS-1955488,

IIS-2027575, DOE awards DE-SC0016260, DE-

SC0021982, ARO award W911NF2110339, and

ONR award N00014-21-1-2724.

12 Limitations

This paper is an attempt to reduce the total on-device

GPU memory usage of the whole fine-tuning pro-

cess of transformers such as BERT and ViT. Despite

the significant reduction in the total on-device GPU

memory within the acceptable range of performance

cost, our method has the following limitations:

• Introducing a new hyper-parameter: To con-

trol the performance of SLIMFIT, we intro-

duced a new hyper-parameter called freezing

rate. The choice of freezing rate varies for dif-

ferent downstream tasks and directly impacts

the total on-device GPU memory usage and ac-

curacy. Therefore, the freezing rate needs to

be adjusted by the user similar to other hyper-

parameters in transformers.

• Integration with deep learning optimization li-

braries developed for large language models

(LLMs): Due to the large size of LLMs, train-

ing such models using sharding methods such

as DeepSpeed library (Rajbhandari et al., 2020)

is a common approach. However, the integra-

tion of SLIMFIT with such deep learning op-

timization libraries is non-trivial, preventing

us from exploiting the potentials of our tools

in reducing the on-device GPU memory usage

of LLMs. In the future, we will develop the

software required for the aforementioned inte-

gration to reduce the memory requirement of

sharded LLMs across multiple GPUs.

13 Ethics Statement

This research was conducted in accordance to the

academic and professional ethics guidelines. All

the datasets used in this paper are publicly available

and we ensured to acknowledge their data source

using a citation. Moreover, all the results reported

in this work are reproducible using the source code

provided in the supplementary material. The tool

developed in this work is for research purposes only

and may not be suitable for production services with-

out further scrutiny.

6226

References

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.
2018. Scalable methods for 8-bit training of neural
networks. NIPS’18, page 5151–5159, Red Hook, NY,
USA. Curran Associates Inc.

Olivier Beaumont, Lionel Eyraud-Dubois, and Alena
Shilova. 2021. Efficient combination of rematerializa-
tion and offloading for training dnns. In Advances in
Neural Information Processing Systems, volume 34,
pages 23844–23857. Curran Associates, Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

Ayan Chakrabarti and Benjamin Moseley. 2019. Back-
prop with approximate activations for memory-
efficient network training.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan
Wang, Ion Stoica, Michael Mahoney, and Joseph Gon-
zalez. 2021. Actnn: Reducing training memory foot-
print via 2-bit activation compressed training. In In-
ternational Conference on Machine Learning, pages
1803–1813. PMLR.

Joya Chen, Kai Xu, Yuhui Wang, Yifei Cheng, and
Angela Yao. 2023. DropIT: Dropping intermediate
tensors for memory-efficient DNN training. In The
Eleventh International Conference on Learning Repre-
sentations.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra,
and Christopher Re. 2022. Flashattention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
Cite arxiv:1810.04805Comment: 13 pages.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
2021. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International
Conference on Learning Representations.

R. David Evans, Lufei Liu, and Tor M. Aamodt. 2020.
Jpeg-act: Accelerating deep learning via transform-
based lossy compression. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Archi-
tecture (ISCA), pages 860–873.

Zilin Fang, Mohamad Shahbazi, Thomas Probst,
Danda Pani Paudel, and Luc Van Gool. 2022. Train-
ing dynamics aware neural network optimization with
stabilization. In Proceedings of the Asian Conference
on Computer Vision (ACCV), pages 4276–4292.

Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang,
Yingxia Shao, Ce Zhang, and Bin Cui. 2020. Don’t
waste your bits! Squeeze activations and gradients
for deep neural networks via TinyScript. In Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 3304–3314. PMLR.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and
Salman Avestimehr. 2021. Pipetransformer: Auto-
mated elastic pipelining for distributed training of
large-scale models. In Proceedings of the 38th In-
ternational Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research,
pages 4150–4159. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer,
and Ion Stoica. 2020. Checkmate: Breaking the mem-
ory wall with optimal tensor rematerialization. In Pro-
ceedings of Machine Learning and Systems, volume 2,
pages 497–511.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jen-
nifer Brennan, Mike He, Jared Roesch, Tianqi Chen,
and Zachary Tatlock. 2021. Dynamic tensor remate-
rialization. In International Conference on Learning
Representations.

Alex Krizhevsky. 2009. Learning multiple layers of fea-
tures from tiny images. pages 32–33.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Ku-
mar, Huaxiu Yao, Percy Liang, and Chelsea Finn. 2022.
Surgical fine-tuning improves adaptation to distribu-
tion shifts. arXiv preprint arXiv:2210.11466.

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi
Wang, and Xulong Tang. 2023. SmartFRZ: An effi-
cient training framework using attention-based layer
freezing. In The Eleventh International Conference on
Learning Representations.

6227

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo
Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu,
Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin
Cheung. 2022. GACT: Activation compressed training
for generic network architectures. In Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 14139–14152. PMLR.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkatara-
man. 2021. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. CoRR,
abs/2102.01386.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to BERT embed-
dings during fine-tuning? In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 33–44, Online.
Association for Computational Linguistics.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2017. Mixed precision train-
ing. Cite arxiv:1710.03740Comment: Published as a
conference paper at ICLR 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In CUDA
semantics - PyTorch 2.0 documentation.

Markus N. Rabe and Charles Staats. 2021. Self-attention
does not need o(n2) memory. CoRR, abs/2112.05682.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. 2020. Zero: Memory optimizations to-
ward training trillion parameter models. SC ’20. IEEE
Press.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. arXiv e-prints, page
arXiv:1606.05250.

Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra
Raghu. 2021. Anatomy of catastrophic forgetting:
Hidden representations and task semantics. In Inter-
national Conference on Learning Representations.

Shai Shalev-Shwartz and Shai Ben-David. 2014. Under-
standing Machine Learning - From Theory to Algo-
rithms. Cambridge University Press.

Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides,
and Kwang-Ting Cheng. 2021. Partial is better than all:
revisiting fine-tuning strategy for few-shot learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9594–9602.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Map-
ping and diagnosing datasets with training dynamics.
In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Ryan Teehan, Miruna Clinciu, Oleg Serikov, Eliza
Szczechla, Natasha Seelam, Shachar Mirkin, and
Aaron Gokaslan. 2022. Emergent structures and train-
ing dynamics in large language models. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 146–159, virtual+Dublin. Association
for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel Bowman. 2018a. GLUE: A
multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium. Association for Computational Lin-
guistics.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. 2018b. Training
deep neural networks with 8-bit floating point num-
bers. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. 2018.
Training and inference with integers in deep neural
networks. In International Conference on Learning
Representations.

Geng Yuan, Yanyu Li, Sheng Li, Zhenglun Kong, Sergey
Tulyakov, Xulong Tang, Yanzhi Wang, and Jian Ren.
2022. Layer freezing & data sieving: Missing pieces
of a generic framework for sparse training. In Ad-
vances in Neural Information Processing Systems.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS Edi-
tion (EMC2-NIPS), pages 36–39.

Appendix

A Memory Management

The on-device memory of modern GPUs is limited

to a few tens of gigabytes depending on their model

(e.g., 32GB NVIDIA V100). If the memory require-

ment of the training/fine-tuning of neural networks

goes beyond the available memory on GPUs, an out-

of-memory error will occur. The memory require-

ment of the under-run code on GPUs can be viewed

by “nvidia-smi”. For a training/fine-tuning process,

this memory requirement is determined by the size

of the model, cached activations, gradients, gradient
6228

moments from the optimizer and CUDA contents af-

ter the first training iterations. It is worth mentioning

that the memory usage of the training/fine-tuning

process remains constant after the first iteration if the

following iterations are performing the same com-

putations (see Fig. 7). If the memory requirement of

each iteration is different from others, PyTorch re-

ports the memory requirement of the iteration using

the maximum memory among other iterations as the

total on-device GPU memory usage of the program

in “nvidia-smi” (Paszke et al., 2017). Therefore, the

unused memory of tensors in progressive memory

optimization over training iterations will still show

as used in “nvidia-smi”. To reduce the overall mem-

ory usage of the training/fine-tuning process given

the above explanations, we need to balance the mem-

ory usage of all iterations from the first iterations to

the last one (see Fig. 7). SLIMFIT aims at reducing

the overall memory usage of large transformer-based

models during fine-tuning.

B Comparison with Existing Freezing

Approaches

Here, we describe the main differences between

SLIMFIT and other freezing approaches including

SmartFRZ (Li et al., 2023), PipeTransformer (He

et al., 2021) and AutoFreeze (Liu et al., 2021). The

main difference is that the aforementioned works

mainly focus on exploiting freezing to accelerate the

training/fine-tuning process. Conceptually, Smart-

FRZ, PipeTransformer and AutoFreeze progres-

sively freeze layers as the training process proceeds.

In these methods, the first training iteration starts

without freezing where all layers are updated. In

the following iterations, these methods then progres-

sively start freezing from the early layers down to the

latest layers in the model in an orderly fashion. For

instance, AutoFreeze performs the first epoch with-

out freezing, the second epoch while freezing the

first 5 layers, the third epoch while freezing the first

8 layers and the fourth epoch while freezing the first

11 layers when fine-tuning BERT. In this example,

the memory and computation requirement of each

epoch is different from others as each epoch presents

a different degree of freezing. This allows to exploit

the unused computing and memory resources to fur-

ther accelerate the process by increasing batch sizes

as the memory decreases throughout the training it-

erations (Liu et al., 2021) or increasing data-parallel

width through pipelining (He et al., 2021). Since

the first training iteration (or even epoch) of these

methods performs the training process without freez-

Table 5: The details of layers in MHA and FFN modules

of BERT where B, T , H denote the batch size, sequence

length, hidden size, respectively. ViT has the same struc-

ture with different descriptions.

Module Type of Layer Description # Activations

MHA

Dense attention.query B∗T ∗H

Dense attention.key B∗T ∗H

Dense attention.value B∗T ∗H

MatMul NA B∗T ∗H(2×)
Softmax NA B∗T ∗T

MatMul NA B∗T ∗H & B∗T ∗T

Dense attention.output B∗T ∗H

LayerNorm attention.output B∗T ∗H

FFN

Dense intermediate B∗T ∗H

GELU NA B∗T ∗4∗H

Dense output B∗T ∗4∗H

LayerNorm output B∗T ∗H

ing, their overall memory requirement reported by

“nvidia-smi” is similar to that of training without

freezing as discussed in Appendix A. In other words,

the under-use GPU must still be able to meet the

memory requirement of training without freezing.

For instance, fine-tuning of ViT with a batch size

of 128 on a single 32GB NVIDIA V100 using such

methods results in an out-of-memory error.

SLIMFIT, on the other hand, focuses on reducing

the overall memory requirement of the fine-tuning

process using freezing. As opposed to the aforemen-

tioned methods (i.e., SmartFRZ, PipeTransformer

and AutoFreeze), SLIMFIT freezes layers at every

single training iterations from the first iteration to

the last one with a fixed freezing rate. With load-

balancing using quantization, SLIMFIT ensures that

the memory requirement of every single iteration re-

mains roughly the same throughout the fine-tuning

process. This enables SLIMFIT performing memory-

intensive fine-tuning processes with large batch sizes

on a single 32GB GPU such as ViT on ImageNet

with a batch size of 128 while this normally requires

three 32GB GPUs.

C Architecture of Transformer-based

Models

Fig. 8 shows the overall architecture of transformer-

based models including an initial embedding layer,

followed by repeated blocks of multi-head attention

(MHA) and feed-forward network (FFN). The de-

tails of each layer inside the MHA and FFN modules

are provided in Table 5.
6229

0 5 10 15

66
68
70
72
74

Training Iteration

M
em

o
ry

o
f

A
ct

iv
at

io
n

s
(G

B
)

Baseline

0 5 10 15
11

11.5

12

12.5

13

Training Iteration

M
em

o
ry

o
f

A
ct

iv
at

io
n

s
(G

B
)

SlimFit

(a) Memory of Activations

0 5 10 15
0

20
40
60
80

Training Iteration

T
o

ta
l

O
n

-d
ev

ic
e

m
em

o
ry

(G
B

)

Baseline

0 5 10 15
0

10

20

30

Training Iteration

T
o

ta
l

O
n

-d
ev

ic
e

m
em

o
ry

(G
B

)

SlimFit

(b) Total On-device Memory

Figure 7: The total on-device GPU memory and memory of activations during different training iterations when

fine-tuning ViT on ImageNet with a batch size of 128 with the freezing rate of 95% compared to the baseline. SLIMFIT

balances the memory usage of activations using freezing to reduce the total on-device memory usage of the fine-tuning

process. While the memory usage of activations changes at each iteration when using SLIMFIT, the changes are

relatively small thanks to the load-balancing technique described in Section 4.

Embedding

Multi-head attention

Add & Layernorm

Feed-forward network

Add & Layernorm

MHA

FFN

×L

Figure 8: The main architecture of BERT. Note that ViT

has a similar architecture with LayerNorms located be-

fore the MHA block. L denotes the number of attention

layers.

D Theoretical Analysis

D.1 Convergence Analysis

In this section, we provide a convergence analysis

for our freezing strategy. More precisely, we prove

convergence of stochastic gradient descent (SGD)

when considering freezing during update iterations.

Given the loss function f , we assume that the param-

eters are initialized with some value and denoted as

the vector w0 ∈ R
d . Given the training example, the

parameters are updated by

wt+1 = wt − γt∇ f (wt), (8)

where wt denotes the parameter vector at time t, γt

is the learning rate, and ∇ f represents the gradient

of the loss function. We assume that the magnitude

of the gradient samples are bounded by a constant

G > 0 for all x in the space such that

||∇ f (x)|| ≤ G. (9)

Also, we assume that there exists a constant L > 0

for any vector u ∈ R
d where we have

|uT ∇2 f (x)u| ≤ L||u||2. (10)

Given Eq. (9) and Eq. (10), performing Taylor

expansion on Eq. (8) similar to (Shalev-Shwartz and

Ben-David, 2014) results in

E[f (wt+1)]≤ E[f (wt)]− γtE[||∇ f (wt)||
2]+

γ2
t G2L

2
, (11)

where E denotes the expected value.

Now, let us assume that the layer containing the

parameter vector is frozen at the training iteration t.

In this case, ∇ f (wt) is equal to 0 and consequently

wt+1 is equal to wt . In this freezing scenario, Eq.

(11) still holds true since
γ2

t G2L

2
is greater than 0.

By rearranging the terms in Eq. (11), summing
over T iterations and telescoping the sum, we obtain

T−1

∑
t=0

γtE[||∇ f (wt)||
2]≤

T−1

∑
t=0

(E[f (wt)]−E[f (wt+1)])+
T−1

∑
t=0

γ2
t G2L

2
, (12)

= f (w0)− f (wT)+
G2L

2

T−1

∑
t=0

γ2
t , (13)

≤ f (w0)− f (w∗)+
G2L

2

T−1

∑
t=0

γ2
t , (14)

6230

where w∗ indicates an optimal solution. Given the

above inequality, we showed that the convergence

proof of SGD remains intact while introducing freez-

ing for specific training iterations.

D.2 Backpropagation With a Frozen Layer

Here, we provide a simple example demonstrating

how gradients are backpropagated to the first layer of

a neural network while its middle layer is frozen. To

this end, let us perform the backpropagation using

a 3-layer network as an example. Mathematically,

the architecture of this network can be described as

follows:

y1 = xW1 +b1, (15)

y2 = y1W2 +b2, (16)

y3 = y2W3 +b3, (17)

where W1, W2, W3, b1, b2 and b3 are the weights
and biases of the network. In this example, x, y1 and
y2 are inputs to the first layer, the second layer and
the third layer, respectively. Now, let us derive the
backpropagation equations with the loss L using
the chain rule as follows (please note that we obtain
∂L

∂y3

by computing the loss where ∂ denotes the

partial derivative):

∂L

∂W3
=

∂L

∂y3

∂y3

∂W3
=

∂L

∂y3

y2, (18)

∂L

∂b3
=

∂L

∂y3

∂y3

∂b3
=

∂L

∂y3

1 =
∂L

∂y3

, (19)

∂L

∂W2
=

∂L

∂y3

∂y3

∂y2

∂y2

∂W2
=

∂L

∂y3

WT
3 y1, (20)

∂L

∂b2
=

∂L

∂y3

∂y3

∂y2

∂y2

∂b2
=

∂L

∂y3

WT
3 1 =

∂L

∂y3

WT
3 , (21)

∂L

∂W1
=

∂L

∂y3

∂y3

∂y2

∂y2

∂y1

∂y1

∂W1
=

∂L

∂y3

WT
3 WT

2 x, (22)

∂L

∂b1
=

∂L

∂y3

∂y3

∂y2

∂y2

∂y1

∂y1

∂b1
=

∂L

∂y3

WT
3 WT

2 1 =
∂L

∂y3

WT
3 WT

2 .

(23)

Given the above equations, to update the network

weights (i.e., W1, W2, and W3), we need to store

x, y1 and y2 during the forward computations since

they are required in Eq. (18), Eq. (20) and Eq. (22)

during the back computations.

Now, suppose the middle layer is frozen. In this

case, there is no need to compute Eq. (20) and there-

fore there is no need to store y1 during the forward

computations. Of course, discarding y1 does not

affect the backward computations of the first layer

since Eq. (22) and Eq. (23) are independent of y1.

E Conversion Between 8-bit Integer and

32-bit Floating-point

Algorithm 2 shows the conversion process between

8-bit fixed-point and 32-bit floating-point formats.

It is worth mentioning that the same procedure can

be used for the conversion between 4-bit fixed-point

and 32-bit floating-point formats. Moreover, the

quantization function is used to compress the cached

tensors during the forward propagation only. Of

course, both the forward and backward computa-

tions are still performed using 32-bit floating-point

computations as shown in Algorithm 4 where the

“compress” function in this case is the quantization

function (i.e., the conversion from 32-bit floating-

point to 8-bit integer) and the “decompress” function

performs the reverse computations (i.e., the conver-

sion from 8-bit integer to 32-bit floating-point).

Algorithm 2 The conversion between 8-bit integer

and 32-bit floating-point.

Description: number of integer bits as ib, number

of fractional bits as f b, input x, output y

32 bits to 8 bits conversion:

y = clamp(round(x∗2 f b),−2 f b+ib−1, 2 f b+ib−1−1)

8 bits to 32 bits conversion:

x =
y

2 f b

F Pruning Algorithm

The pruning algorithm is performed in a few steps.

In the first step, the input vector is sorted from largest

to smallest values along with their indices and the

size of the dense vector. We then only keep and

cache the top 10% largest values of the input vector

for the backward computations as the second step.

It is worth mentioning that pruning beyond 90% re-

sults in a significant accuracy degradation. During

backpropagation, we create a zero-valued tensor us-

ing the size of the dense vector and then replace zero

values with the top 10% largest values using their

corresponding indices. Algorithm 3 shows the prun-

ing process during the forward computations and the

restoring process during the backward computations.

It is worth mentioning that the pruning function is

used to compress the cached tensors during the for-

ward propagation only. Of course, both the forward

and backward computations are still performed us-

ing 32-bit floating-point computations as shown in
6231

Algorithm 3 The description of the pruning process during the forward computations and the restoring

process during the backward computations.

Description: x: input vector, xs: sorted input vector, xidx: indices of the sorted input vector, ys: top 10%

largest values, yidx: indices of top 10% largest values, y: output vector, sort: sorting function, zeros:

function to create zero-valued tensor, and scatter: function to replace zero values with the tensor values

from ys according to the indices.

Pruning process:

xs,xidx = sort(x)

ys,yidx = xs[0 : int(x.numel()∗0.1)],xidx[0 : int(x.numel()∗0.1)]

Restoring process:

y = zeros(x.numel())
y = scatter(y,ys,yidx)

Algorithm 4 where the “compress” function in this

case is the pruning function and the “decompress”

function performs the restoring computations.

G Details of CV/NLP Tasks,

Measurements and Hyper-parameter

Settings

For language understanding tasks and CV tasks,

we used BERT-base-cased and ViT-base through-

out this paper, respectively. The BERT-base and

ViT-base pre-trained on ImageNet-21k were config-

ured according to (Devlin et al., 2018) and (Doso-

vitskiy et al., 2021), respectively. We used AdamW

(β1 = 0.9, β2 = 0.999 and L2 weight decay of 0.01)

as the optimizer and linear decay of the learning rate

with warmup ranging from 0 to 0.1 for both models.

We evaluate BERT-base on several downstream tasks

from the GLUE benchmark and SQuAD 2.0. We

use Spearman correlation for STS-B, Matthews cor-

relation for CoLA, accuracy for RTE, MRPC, SST-2

QQP, QNLI and MNLIm (matched), and F1 score

for SQuAD 2.0. For the downstream tasks from the

GLUE benchmark, we used the sequence length of

128 whereas we adopted the sequence length of 384

for the question answering task on SQuAD 2.0. For

CIFAR-10, CIFAR-100 and ImageNet, we use top-1

accuracy as our evaluation metric. For the image

classification tasks, we used the patch size of 16 with

the resolution of 224 for CIFAR-10/CIFAR-100 and

the resolution of 384 for ImageNet. Depending on

the task, the learning rate varies from 4e-5 to 1.8e-

4. For all the experiments in this paper, we used 3

epochs for fine-tuning. The hyper-parameter settings

of each task are summarized in Table 6. It is worth

mentioning that ViT models can also be fine-tuned

using SGD. However, fine-tuning ViT models using

SGD requires more epochs w.r.t. AdamW to obtain

a similar accuracy.

In this paper, we measured our experimental re-

sults directly from 32GB NVIDIA V100 GPU(s)

without any memory swapping between CPU and

GPU(s). The total on-device GPU memory usage of

the fine-tuning process is measured using “nvidia-

smi”. We measured the wall-clock time (i.e., la-

tency) of the fine-tuning process using the CUDA’s

event API in PyTorch (i.e., “torch.cuda.Event”). The

memory footprint of activations on the GPU(s) was

measured using the PyTorch’s memory management

API (i.e., “torch.cuda.memory_allocated”).

H Experimental Results on BERT-large

and GPT-2

Here, we provide the results of the fine-tuning exper-

iments with BERT-large on the GLUE benchmark

(see Table 7) and GPT-2 for language modeling on

WikiText-2 (see Table 8) to demonstrate the benefits

of SLIMFIT when applied to different NLP models

and tasks. We report the best, average and standard

deviation of the results over 10 random runs for our

experiments in this section. We used the batch size

of 8, the block size of 1024 and the learning rate

of 2e-4 for GPT-2 fine-tuning. For BERT-large, we

used the batch size of 32 and the learning rate of 5e-

5. We fine-tuned both of these models for 3 epochs.

For these experiments, SLIMFIT can provide up to

2.1× reduction in the total on-device GPU memory

usage without any noticeable performance degrada-

tion.

I Impact of Quantization and Pruning

In this work, we used quantization and pruning for

a few specific layers to balance the number of acti-
6232

Table 6: The hyper-parameter settings of each NLP/CV task.

Dataset Model Optimizer Learning Rate Warmup Evaluation Metric

MNLIm bert-base-cased AdamW 4e-5 0 percentage accuracy

QQP bert-base-cased AdamW 5e-5 0 percentage accuracy

QNLI bert-base-cased AdamW 5e-5 0 percentage accuracy

SST-2 bert-base-cased AdamW 8e-5 0 percentage accuracy

CoLA bert-base-cased AdamW 8e-5 0.1 Matthew’s correlation

STS-B bert-base-cased AdamW 8e-5 0 Spearman correlation

MRPC bert-base-cased AdamW 1.25e-4 0 percentage accuracy

RTE bert-base-cased AdamW 1.2e-4 0 percentage accuracy

SQuAD 2.0 bert-base-uncased AdamW 1.8e-4 0.1 F1 score

CIFAR-10 vit-base-patch16-224-in21k AdamW 7.5e-5 0 percentage accuracy

CIFAR-100 vit-base-patch16-224-in21k AdamW 5.5e-5 0 percentage accuracy

ImageNet vit-base-patch16-384 AdamW 5e-5 0 percentage accuracy

Table 7: The experimental results of SLIMFIT on the GLUE benchmark using BERT-large over 10 random runs.

BERT

Method Metric MNLIm QQP QNLI SST-2 CoLA STS-B MRPC RTE

Basline
Accuracy 85.9 91.2 92.2 93.8 61.5 89.6 86.9 71.6

Total On-chip GPU Memory (GB) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

SLIMFIT

Best Accuracy 86.0 91.3 92.2 94 63.2 89.9 87.7 73.3

Average Accuracy 85.8 91.1 92.1 93.6 61.3 89.5 86.6 71.5

Standard Deviation of Accuracy 0.115 0.158 0.097 0.282 0.955 0.363 0.775 1.344

Freezing Rate (%) 80 80 90 90 90 85 80 80

Total On-chip GPU Memory (GB) 8.2 8.2 7.7 7.7 7.7 8.0 8.2 8.2

Table 8: The experimental results of SLIMFIT for lan-

guage modeling on WikiText-2 using GPT-2 over 10

random runs.

Method Metric GPT-2 (WikiText-2)

baseline
Accuracy (Perplexity) 21.3

Total On-chip GPU Memory (GB) 29.9

SLIMFIT

Best Accuracy (Perplexity) 21.4

Average Accuracy (Perplexity) 21.3

Standard Deviation of Accuracy 0.127

Freezing Rate (%) 75

Total On-chip GPU Memory (GB) 14.5

vations across all layers and to reduce the memory

footprint of static activations. We used 8-bit quan-

tization for the activations of the imbalanced linear

layer and MatMul. We also quantized the activations

of GELU using 4 bits. The pruning of LayerNorm

was performed when this layer is kept frozen. It is

worth mentioning that both quantization and pruning

have no impact on the forward computations. They

are only used to compress activations for caching.

To show the impact of such compression methods,

we report the accuracy evaluation of BERT on CoLA

and MRPC datasets with and without quantization

or pruning in Table 9. The experimental results show

no notable performance loss due to the compression

techniques.

Table 9: The impact of quantization and pruning on the

accuracy evaluation.

Dataset Baseline
Quantization of Pruning of All

Linear MatMul GELU LayerNorm together

CoLA 58.9 58.9 60.6 60.0 59.7 59.7

MRPC 86.4 86.4 86.3 86.3 86.3 86.3

J Discussion on Wall-Clock Time

Compared to training without freezing, SLIMFIT

introduces extra computations and also skips weight

gradient computations for the frozen layers at the

same time. The main source of computational over-

head in SLIMFIT is quantization and pruning of

activations. The quantization overhead is due to the

conversion between different precision levels (i.e.,

between 8 bits and 32-bit floating-point format) as

discussed in Appendix E. Pruning also requires sort-

ing of values to keep their top 10% largest values,

which causes an additional computational overhead.

Computing the weight distance metric is another

source of computational overhead.

On the other hand, SLIMFIT skips the weight gra-

dients computations of frozen layers using PyTorch

“requires_grad” as shown in Algorithm 4. When an

activate layer is frozen, there is no need to compute

its weight gradients as discussed in Appendix D.2,

which reduces the wall-clock time. The amount of
6233

Algorithm 4 The description of skipping weight gradient computations when the layer is frozen. In this

example, we assume the activations of the frozen layer require compression (e.g., an imbalanced linear layer

or LayerNorm). Activations are denoted as “input” and are cached using either quantization or pruning

depending on the type of the layer as a compression method. The compression and decompression functions

are denoted as “compress” and “decompress”. Since weights are defined as “Parameter” in PyTorch, caching

weights does not introduce any extra memory.

class ILSFunction(torch.autograd.Function):

@staticmethod

def forward(ctx, input: torch.Tensor, weight: torch.nn.Parameter, requires_grad):

Compute forward computations to obtain out

if requires_grad:

ctx.save_for_backward(compress(input), weight)

else:

ctx.save_for_backward(weight)

ctx.requires_grad = requires_grad

return out

@staticmethod

def backward(ctx, grad_output: torch.Tensor):

if ctx.requires_grad:

input, weight = decompress(ctx.saved_tensors[0]), ctx.saved_tensors[1]

Compute backward computations to obtain grad_input and grad_weight

else:

weight = ctx.saved_tensors[1]

grad_weight = None

Compute backward computations to obtain grad_input

return grad_input, grad_weight, None

0 20 40 60 80 100

18

20

22

24

Freezing Rate (%)

H
o

u
rs

p
er

ep
o

ch

SlimFit

Figure 9: Wall-clock time of fine-tuning ViT on Ima-

geNet with a batch size of 32 across different freezing

rates.

speedup due to the skipped computations highly de-

pends on the hyper-parameters of the networks such

as freezing rate. Therefore, the wall-clock time of

each network varies from one to another depending

on the hyper-parameters. For instance, Fig. 9 shows

the wall-clock time of fine-tuning ViT on ImageNet

using a batch size of 32 across different freezing

rates. According to the experimental results, the

computational overhead of SLIMFIT is dominant for

small freezing rates. However, as the freezing rate

increases, the speedup of the skipped gradient com-

0 20 40 60 80
Freezing Rate (%)

0

20

40

60

80

100

La
ye

rs

(a) CoLA

0 20 40 60 80
Freezing Rate (%)

0

20

40

60

80

100

La
ye

rs

(b) MRPC

Figure 10: The frequency of update occurrence for each

layer as a heatmap on (a) CoLA and (b) MRPC datasets.

putations overcomes the computational overhead of

SLIMFIT where SLIMFIT with the freezing rate of

95% results in a similar wall-clock time as of the

baseline. It is worth mentioning that the baseline is

the point at the freezing rate of 0 where no freezing

was used during the fine-tuning process.

K Frequency of Update Occurrence

To visualize the frequency of update occurrence for

each layer, we use a heatmap as shown in Fig. 10 for

both CoLA and MRPC datasets where larger counts

are associated with darker colorings. As shown in
6234

Algorithm 5 The description of layers associated to the indices in Fig. 10.

bert.embeddings.word_embeddings.weight

bert.embeddings.position_embeddings.weight

bert.embeddings.token_type_embeddings.weight

bert.embeddings.LayerNorm.weight

for i = 0 to 11: do

bert.encoder.layer[i].attention.self.query.weight

bert.encoder.layer[i].attention.self.key.weight

bert.encoder.layer[i].attention.self.value.weight

bert.encoder.layer[i].attention.output.dense.weight

bert.encoder.layer[i].attention.output.LayerNorm.weight

bert.encoder.layer[i].intermediate.dense.weight

bert.encoder.layer[i].output.dense.weight

bert.encoder.layer[i].output.LayerNorm.weight

end for

bert.pooler.dense.weight

classifier.weight

the heatmap, the dense layers inside the MHA mod-

ule receive more updates than other layers for both

datasets. Moreover, the update patterns of these

datasets are similar for small freezing rates whereas

they become more task-specific for high freezing

rates. In fact, the ILS algorithm prioritizes the up-

date of some specific layers over others for high

freezing rates.

The description of layers associated to the in-

dices in Fig. 10 is provided in Algorithm 5. It

is worth mentioning that the layers denoted by

“bert.encoder.layer[i].attention” belong to the MHA

module whereas the remaining layers inside the loop

belong to the FFN module.

L Comparison With Memory-Efficient

Techniques

In this section, we provide experimental results of

SLIMFIT applied to basic memor-efficient training

methods including gradient accumulation (GA), gra-

dient checkpointing (GC), and parameter-efficient

fine-tuning (PEFT). We fine-tune the GPT-2 model

on WikiText-2 for three epochs using the batch size

of 8 with the freezing rate of 75% for comparison

purposes.

GA is a technique which allows dividing the train-

ing data into smaller micro-batches and then accu-

mulating the gradients from each micro-batch before

applying them to update the model. We set the size

of the micro-batch for GA to one which yields the

lowest GPU memory usage. With this configuration,

the GA step size is equal to 8. While GA can signifi-

cantly reduce the memory usage of the fine-tuning

Table 10: The experimental results of GA equipped with

SLIMFIT when fine-tuning GPT-2 on WikiText-2.

Method Metric GPT-2 (WikiText-2)

SLIMFIT

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 14.5

Time per epoch (s) 241.7

GA

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 5.7

Time per epoch (s) 257.3

SLIMFIT + GA

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 3.2

Time per epoch (s) 261.5

Table 11: The experimental results of GC equipped with

SLIMFIT when fine-tuning GPT-2 on WikiText-2.

Method Metric GPT-2 (WikiText-2)

SLIMFIT

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 14.5

Time per epoch (s) 241.7

GC

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 10.2

Time per epoch (s) 307.4

SLIMFIT + GC

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 8.1

Time per epoch (s) 319

process at a slight increase in run-time performance,

its reduction is limited by the size of the micro-batch

being 1 as shown in Table 10. SLIMFIT equipped

with GA can further reduce the GPU memory usage

from 5.7GB down to 3.2GB.

GC can reduce activation memory by trading com-

putations for memory. In this method, only specific

activations are stored during the forward pass, while

the rest are recomputed in the backward pass. Of

course, the recomputation of activations comes at

the cost of an increase in the run-time performance

while significantly reducing the memory usage as

shown in the table below. SLIMFIT equipped with

GC can further reduce the memory usage of GC by
6235

Table 12: The experimental results of LoRA (with the

rank of 16) equipped with SLIMFIT when fine-tuning

GPT-2 on WikiText-2.

Method Metric GPT-2 (WikiText-2)

SLIMFIT

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 14.5

Time per epoch (s) 241.7

PEFT (LoRA)

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 29.5

Time per epoch (s) 215.3

SLIMFIT + PEFT (LoRA)

Accuracy (Perplexity) 21.4

Total On-chip GPU Memory (GB) 14.2

Time per epoch (s) 233.1

21% when fine-tuning GPT-2 on WikiText-2 (See

Table 11).

PEFT approaches rely on updating the prepended

trainable parameters to the input of the layers. In

other words, adapter modules containing a small

number of parameters are inserted to each layer of

the model and only the parameters of these mod-

ules are adjusted during the fine-tuning process. It

is worth mentioning that the number of activations

for such a method remains the same. The main

memory saving of PEFT approaches comes from

the memory saving in optimizer states and gradients.

AdamW, which is commonly used as the optimizer

for fine-tuning, stores two states of the trainable pa-

rameters of the model. Since PEFT approaches train

the model on the prepended parameters, the size of

optimizer states would be the same as the size of the

prepended parameters. As such, the memory saving

of PEFT methods is significant only when the GPU

memory usage is dominated by the size of the model

parameters, which is the case for LLMs. However,

for small-size models where the memory of activa-

tions is dominant, the memory reduction of PEFT

approaches is not significant. For instance, fine-

tuning the GPT-2 model on WikiText-2 results in a

non-significant reduction in the GPU memory us-

age as shown in Table 12. As such, PEFT equipped

with SLIMFIT does not also provide a significant re-

duction in memory compared to regular fine-tuning

using SLIMFIT as shown in Table 12.

6236

