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We analyze restarted PDHG on totally unimodular linear programs. In particular, we show that restarted PDHG
finds an e-optimal solution in O(H m?*/nnz(A) log(Hm, /¢)) matrix-vector multiplies where m, is the number
of constraints, m, the number of variables, nnz(A) is the number of nonzeros in the constraint matrix, H is the
largest absolute coefficient in the right hand side or objective vector, and e is the distance to optimality of the

1. Introduction

Consider the following linear program:

minimize ¢ " x (1a)
xeR™2

Ax=b (1b)

x>0 (1c)

and its dual maximize cgm bTy subject to ATy < ¢, where m; and m,
are positive integers, x and y are the primal and dual variables, and
AeR™M>XM ceRM, heR™ are the problem parameters. Traditional
methods for solving linear programs such as simplex and interior point
methods require linear system factorizations, which have high memory
overhead and are difficult to parallelize. Recently, there has been in-
terest in using first-order methods for solving linear programs that use
matrix-vector multiplication as their key primitive [16,2,19]. The ad-
vantage of matrix-vector multiplication is that it can be efficiently paral-
lelized across multiple cores or machines. Moreover, matrix-vector mul-
tiplication has low memory footprint, using minimal additional memory
beyond storing the problem data. These properties make these first-
order methods suitable for tackling extreme-scale problems.
First-order methods reformulate finding a primal and dual optimal
solution to the linear program (1) as solving a minimax problem:

min max £(x,y)=c x+b'y—y' Ax (2)
x>0 yeR™1
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and then apply methods designed for solving minimax problems such
as primal-dual hybrid gradient (PDHG) [4] or the alternating direction
method of multipliers (ADMM) [9]. See Applegate et al. [1] and Apple-
gate et al. [2] for a more exhaustive introduction and list of references.

Empirically, a promising first-order method for solving linear pro-
grams is primal-dual hybrid gradient for linear programming (PDLP)
[1]. PDLP is based on restarted PDHG, combined with several other
heuristics, for example, preconditioning and adaptively choosing the
primal and dual step sizes. Restarted PDHG was analyzed by Applegate
et al. [2] on linear programs, but their convergence bounds depend on
the Hoffman constant of the KKT system. This bound is difficult to inter-
pret and is not easily computable. Recent work by Lu and Yang [17] and
Xiong and Freund [25] develop different, more interpretable linear con-
vergence bounds for PDHG. However, it is unclear if these new bounds
would be useful for analyzing totally unimodular linear programs.

In this paper, we extend the analysis of Applegate et al. [2] to pro-
vide an explicit complexity bound when this method is applied to totally
unimodular linear programs [12]. Totally unimodular linear programs
are an important subclass of linear programs which, for any integer right
hand side and objective coefficients, all extreme points are integer. This
subclass is of particular interest to the integer programming community
[7]. It also encapsulates the minimum cost flow problem, an important
subclass of linear programs, for which almost linear-time algorithms ex-
ist [5].

This work analyzes a general-purpose linear programming method
on a specialized problem. Many papers perform this style of analysis
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Table 1

Total number of iterations of restarted PDHG un-
til the distance to optimality contracts by a fac-
tor of ten on the totally unimodular linear pro-
gram min, . o(H — Dx; +x, s.t. x; +x, = H.
The restart length is fixed but instance-wise tuned
over the grid 2',22, ..., 22! (with number of total
iterations of the best restart length reported). The
step size # is set to 0.5 and the primal and dual
variables are initialized at the origin.

H 10% 10* 100

# iterations 1.8 X 10? 1.7x 10* 1.7 x 10°

for the simplex method. For example, even though the simplex method
has worst-case exponential runtime on general linear programs, im-
proved guarantees for the simplex method exist for subclasses such as
Markov decision processes [26,22], minimum cost flow [20,8] and to-
tally unimodular linear programs [13,18]. In particular, Kitahara and
Mizuno [13] shows that the number of iterations of the simplex method
to find an exact optimal solution on a totally unimodular linear pro-
gram with a nondegenerate primal is m, [m||b||; log(m2||b||1 )]. Better
complexities for this problem can be achieved by interior point methods
[15], although at the cost of potentially much higher memory usage.
Finally, in independent work, Cole et al. [6] studies the performance
of first-order methods for linear programming on totally unimodular
linear programs. Their work is strongly related to ours. However, there
are a few important differences: (i) our result studies an algorithm with
proven practical performance [1], (ii) their bounds depend on log(H)
instead of H but for a fixed H our bound has better dependence on
m;, m, and nnz(A), and (iii) their results also extend to more general
A matrices (those with bounded max circuit imbalance measure). Our
experiments summarized in Table 1 indicate that restarted PDHG has an
iteration bound of at least Q(H) on totally unimodular linear programs.

Notation Let R be the set of real numbers and N be the set of natu-
ral numbers starting from one. Denote {1,...,m} by [m]. Let nnz(A)
be the number of nonzeros in A. Assume m, > m; and that |b;| < H
for all i € [m,] and |c,.| < H for all j € [m,]. Let || - ||, be the Eu-
clidean norm for vectors and spectral norm for matrices. Let o,,;, (M) :=
min =1 || Mv]l, be the minimum singular value of a matrix M, Z =
{xeR™ : x>0} xR™, W.(z) :={2€ Z : ||z—- 2|, <r}, and
dist(z, Z) := minsey |1z — 2||,. Let X* be the set of optimal primal
solutions to (1) and Y™ be the set of optimal dual solutions. Define
Z* = X* X Y*. Let ¢; be a vector containing a one in the ith entry
and zero elsewhere. Let 1 be a matrix or vector of ones, and 0 be a ma-
trix or vector of zeros. Let (-)* = max{-,0} where the max operator is
applied element-wise.

Paper outline Section 2 provides background on restarted PDHG, Sec-
tion 3 provides a new Hoffman bound that we will find useful and
Section 4 proves the main result.

2. Background on restarted PDHG

This section introduces concepts from Applegate et al. [2] that will
be useful for our analysis. For ease of exposition, we specialize PDHG to
linear programming (Algorithm 1). See Chambolle and Pock [4] for the
general PDHG formula.

A key concept for restarted PDHG is the normalized duality gap [2]
defined for r > 0 as

maxszey, ;) £, 9) — L(X,y)

r

pr(z) =

where for conciseness, we use the notation (&, ) = Z (this notation is
used throughout the paper, i.e., we also have (x, y) = z), and for com-
pleteness define py(z) :=limsup,_, o+ p,(z). The normalized duality gap
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Algorithm 1: One step of PDHG on (2).

function OneStepOfPDHG (z,7)
X'« projg (x —nic—ATy)) ;
Y «y=nb—AQRX —x));
return (x',)’)

end

is preferable over the standard duality gap, max,c, £(x, ) — L(X,y),
because when Z is unbounded the standard duality gap can be infi-
nite even when we are arbitrarily close to an optimal solution in both
the primal and dual. Next, we introduce the definition of a primal-dual
problem being sharp (Definition 1) and PDHG with adaptive restarts
(Algorithm 2) along with three results from Applegate et al. [2] that we
will use in this paper.

Definition 1 (Definition 1 of Applegate et al. [2]). We say a primal-dual
problem (2) is a-sharp on the set S C Z if for all r € (0, diam(S)] and
z € S that adist(z, Z*) < p,(2).

Algorithm 2: PDHG with adaptive restarts [2, Algorithm 1].

Input: z°°,7% g, 5
forn=0,...,00 do
t<0
repeat
z"*! « OneStepOfPDHG (z™,7) ;
Zn.1+l - HLI Z::: Zmi ;
te—t+1
until [n=0 and t > 7°7 0F pyzui_zuoy, (™) < Bpyzno_zroy, (20
zn+l.() — 2;1.r;

end

Lemma 1. Algorithm 2 for 200 € Z satisfies 20 € W) gigq (.00, 7+ (2"0) for
[ LnllAllp
0=24/—=2>.
1-nl|All;
Proof. Proposition 9 of Applegate et al. [2] (which uses the norm
zll,a :=lIxlI5 = 2nxT Ay + [Iyl13) states that [|z0 — 20|, , <2||z%0 —
z*||,4 for any starting point 200 € Z and optimal solution z* € Z*.
Proposition 7 of Applegate et al. [2] states that (1 — ;1||A||2)||z||2 <
Izll,0 < (1+ 17||A||2)||z||§ for all z € Z. Combining these two statements
yields (1= nllAllp)|2"0 = 20013 < []270 = 2002, <2200 — %2, <

22(1 + || A2 - z*||§ for all z* € Z*. Rearranging gives the re-
sult. [

Theorem 1 (Applegate et al. [2]). Consider the sequence {z"*o};‘,":0 and
{z" }:’=1 generated by Algorithm 2 with n € (0,1/||Al|,) and g € (0, 1). Sup-
pose that there exists a set S C Z such that z"° € S for any n > 0 and the
primal-dual problem (2) is a-sharp on the set S. Then, for each outer itera-
tion n € N we have

* The restart length, ", is upper bounded by t*: t" < t* := [_zc(aqﬂﬂ)]
. 2 . g HnllAlL
with C 2= Sy @44 =40,

« The distance to the primal-dual optimal solution set decays linearly:
dist(z"0, Z*) < p 5 dist(z0, Z*).

Proof. See Theorem 2 and Corollary 2 of Applegate et al. [2]. []

Lemma 2. For all R € (0,»), z € Z, and r € (0, R] with ||z]l, < R we
have
%(ch —bTy)*
Ax—b
ATy-o*

N —

<p(2).
2
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Proof. This is a variant of Lemma 4 of Applegate et al. [2]. To prove
the result it suffices to combine Equation (22) and (25) of [2]. []

3. A Hoffman bound that explicitly takes into account
nonnegativity and inequality constraints

Hoffman bounds guarantee how much the distance to feasibility de-
creases as the constraint violation decreases. Typical Hoffman bounds
consider a linear inequality system of the form: Kz < k where K is a
matrix and k is a vector. For example, [10, Theorem 4.2.] states that for
any matrix K, vector k and vector z we have: dist(z, {w : Kw <k}) <
a||(Kz — k)*||, where a > 0 is the minimum singular value across all
nonsingular submatrices of K.

In Applegate et al. [2], the authors employ Hoffman bounds to show
that

(c"™x=bTy*
Ax—b
ATy-ot

2

is bounded below by a constant times the distance to optimality. Using
Lemma 2, this establishes that p, is sharp.

Corollary 1 is a Hoffman bound that explicitly handles both inequal-
ity and nonnegativity constraints. Similar types of Hoffman bounds exist
in the literature (e.g., [21]) but we were unable to find a bound that
could be readily adapted to our purpose. The proof of Corollary 1 is
a blackbox reduction to standard Hoffman bounds [10, Theorem 4.2.].
In contrast, Applegate et al. [2] treats the nonnegativity constraints as
generic inequality constraints. However, in this paper we take advan-
tage of the fact that the nonnegativity constraints on x are never violated
(due to PDHG performing a projection). Explicitly handling these non-
negativity constraints improves the quality of the Hoffman constant.
In particular, the nonsingular submatrices considered in the calcula-
tion are smaller (because they do not contain the identity block that
[2, Equation (20)] introduces). If we did employ the strategy of Ap-
plegate et al. [2] the remainder of the paper would remain essentially
unchanged but the iteration bound in Theorem 2 would contain m; 4+ m
instead of just m; because the nonsingular submatrix G could be much
bigger. This alternative worst-case bound is inferior for m, > m;.

To prove Corollary 1 we will find the following Lemma useful.

M, Mp

0 AiMy
and assume M ; is nonsingular for some A € (0, 00). Then M, and M,, are

nonsingular and

-1
lim M;' = <M11 0) .

Lemma 3. Define M := ( > where M, is a square matrix,

A—o0 0 0

Proof. Since M, is nonsingular and M, is square we deduce that M,
u
0
which implies that M, is nonsingular. Similarly, for all v # 0 we have

is also square. Also, we have for all u # 0 that 0 # M, =M u
0£M] 0 = AM v which implies that M,, is nonsingular. Next
)= »Y c plies that M,, is nonsingular. Next,

the Schur complement of M, with respect to the AM,, block is .S :=
My - O%Ml‘l1 M, = My,. Using the Schur complement [11] we have

-1 Llas-1 -1

M;1:<M11 EMl%Mll’an).
0 My,

Taking A — oo yields the desired result. []

Corollary 1. For any nonnegative integers m, n and p consider matrices D €

R™", F € R™" and vectors d € R", f € RP. Let Ug :={u € R" : u; >
0,Vi € S} for some S C [n]. Define the polytope, P :={u€ Ug : Du <
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d,Fu= f}. Let G be the set of all nonsingular submatrices of the matrix

D _ 1
<F> and let a = o 16T Then, for all u € Ug we have

(Du—d)*
Fu—f

Proof. Consider the system

adist(u, P) <

2

D d
K, := _I; u< _ff =k
-AE 0

for A € (0,0), where —AEu < 0 corresponds to the constraint u € Ug
with each row of E containing exactly one entry (i.e., a one). Let Q be
a nonsingular submatrix of K, decomposed into submatrices of D, F,
—F and E which we call Qp,QF,Q_p, Of respectively such that

As each row of E contains exactly one nonzero entry, each row of O

must contain at most one nonzero entry. Since Q is nonsingular it fol-

lows that Q1Ts” # 0 for all v # 0. By choosing v = ¢; for each row i, we

deduce each row of Q; must contain exactly one nonzero entry. There-

fore there exist matrices M, M, and M,, such that M;; and M, are
D

submatrices of | F |, M5, is a nonsingular square submatrix of Q,
-F

and

HQ — Ml 1 M|2

0 iM,,
where I is some permutation matrix; let M represent the set of all such
matrices. Note that since Q is square and M,, is square, we must have
M, is square.

Applying [10, Theorem 4.2.] gives a; dist(u, P) < ||(Ku — k)*||, for
allu € Ug with

-1
M, Mp
0 M) |

It follows by Lemma 3 that
-1
M, M,

-1
M, My
0 My,

-1
= max |M .
MEM” 11 “2

lim a; = lim max
A—=o00 A—oco MEM

2

= max lim
MeM i—x

2

Recall that M,, is square, and that Q and therefore I1Q is nonsingular.
Therefore by Lemma 3 we deduce M, is nonsingular and consequently
either the row —F; . or F; appears in M|,. Moreover, negating rows
of My, does not effect its maximum singular value. Hence, there exists
G € G such that ||G7!||, = ||M1*11 . O

4. Analysis of restarted PDHG on totally unimodular linear
programs

This section analyzes the worst-case convergence rate of restarted
PDHG on totally unimodular linear programs. For completeness, we first
define what it means for a linear program to be totally unimodular.

Definition 2 ([12]). A matrix A is totally unimodular if every square
submatrix is unimodular (i.e., has determinant O, 1, or —1). The linear
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program (2) is totally unimodular if A is totally unimodular and the
entries of ¢ and b are all integers.

The following standard result will be useful. We include the proof
for completeness.

Lemma 4. If A € R™*™ s q totally unimodular matrix then (i) [A e;] for
any i € [m], (i) AT and (iii) <3 £T> are totally unimodular matrices.

Moreover, (iv) if A is a nonsingular then (A‘l)ij e {-1,0,1} forall i €
[my], j € [my) and | A~ |l < my =m,.

Proof. The proof of (ii) follows from the fact that the determinant is
invariant to transpose. For (i) and (iii), we use the well-known formula
for the determinant of block matrices (e.g., [23]),

det < g g > = det(P)det(S).

Thus (i) follows by setting P = (1), Q to be the ith row of A and .S the
remaining portion (also using that the absolute value of the determinant
is preserved by row and column permutations). Next, (iii) follows by
setting 0 =0, P=A and S = AT.

To see (iv), note by Cramer’s rule and Lemma 4.i, the inverse of a
square nonsingular totally unimodular matrix has all entries equal to
either —1, 0 or 1, and therefore |A7!||, < [[A7 |z <my=m,. [

The key insight of this paper is Lemma 5, which allows us to reason
about matrices that are nonsingular and after removing one row totally
unimodular. The proof uses Lemma 4 to decompose the matrix into the
sum of a totally unimodular matrix and a rank one component. The
Sherman-Morrison formula is then applied to analyze the inverse and
its spectral norm.

vl

Lemma 5. Suppose the matrix is nonsingular where V' is a totally

unimodular matrix with n rows, and v is a vector of length n+ 1 with rational
entries. Let M be a positive integer such that for each i € [n+ 1], there exists
an integer k; such that v; = k;/ M. Then

)

T el
Proof. First observe that <l;/ > = < J ) +e(v— ej)T where j is cho-

<n+1+M((n+ Dol +n+1).
2

v
el
sen such that W := < I; ) is nonsingular. Such a j exists because the

rows of V' are linearly independent and V' has n rows. Therefore, there
must exist some e; that is not in the span of the rows of V', making the
dimension of the subspace spanned by the rows of W equal to n + 1,
which implies it is nonsingular.

Note that by Lemma 4, W is totally unimodular. By the Sherman-

Morrison formula [24]:

<UT>_1 o Wleaw—epTw!

. 3
14 L+ (v—e)TW-le @

As W~le, is an integer vector, and v; = k;/M where k; is an integer
and M is a positive integer then there exists some integer z such that
1+@—e)"Wle; =z/M.Since 1 +(v—e;)"W™'e; #0 it follows that

l+(U—ej)TW_lel > 4

1
R
Using Lemma 4.iv we have |[W ™|, <n+1,

-1 -1 -1 -1
W= e oW =l < IW ™ el loW ™ |l
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<+ D™ Lloll,
<+ DM@+ Dol

and ||W‘1e1ejTW‘1 ll, <IW e ll,lW ~te;ll, < n+ 1. Therefore, by (3)
and (4) we get

)

Lemma 6 characterizes the sharpness constant of the normalized du-
ality gap. The proof uses Lemma 2 and Lemma 5.

<n+l+M@@n+ Do), +n+1). O
2

Lemma6. LetR := [8m}‘5 H. If (1) is a totally unimodular linear program

with an optimal solution, then there exists a > 0 such that a = Q (ﬁ)
1

and a dist(z, Z*) < p,.(z) for dll z € Wg(0) and r € (0, R]. Moreover, there

exists z* € Z* such that ||z*||, < R/4.

Proof. First, we get a bound on the norm of an optimal solution.
As there is an optimal solution to the linear program there exists
an optimal basic feasible solution [3, Chapter 2]. Let B be an op-
timal basis with corresponding optimal solutions x* and y*. It fol-
lows that [|lx*[|, = [lx}ll, = 145 6ll, < 145" 21611, < my [1Bll, < m! S H
and [yl = (A5 el < NAGH Il lleplly < myllell, < m}* H where
||AE1 [l, < my by Lemma 4.iv. With z* = (x*, y*) we conclude ||z*||, <
lx* Nl + l1y*ll, <2m " H < R/4.

T
. . (v .
Consider a square nonsingular submatrix < v ) of the matrix
LT 1,7
r¢ &
A 0
0 AT

T

where v is a subvector of (%c —]EbT) and V is a submatrix of

A
< 0 I:)T > Note that V is totally unimodular by Lemma 4.

We now prove V' contains at most 2m; rows. Note A contains at
most m; rows by definition and the submatrix of V' corresponding to
AT contains at most m, columns. Consequently, the submatrix of V' cor-

responding to AT contains at most m, rows; otherwise, it would be row
T

rank-deficient rendering (U

v > row rank-deficient and contradicting

T
. v . .
our assumption that < v > 1S nonsmgular.

By Lemma 5with M =R = O(Hmi's), n =2m, and using that ||v||, <
~(llelly + 1bll,) < 2Hm’3 / R we get

T\
v
This implies by Corollary 1 that

1
>Q
<m%-5H
2

Combining this inequality with Lemma 2 shows
adist(z, Z*) < p.(z). O

<n+ 1+ M@+ Dol +n+1)
2

=0(m~’H).

2(cTx = bTy)*
Ax—b
ATy—o)*

>dist(z, zZ*).

We are now ready to prove the main result, Theorem 2. Note that
[[A]l, can be readily estimated by power iteration with high probability
in O(1) matrix-vector multiplications [14]. Therefore, it is possible to
select a step size that meets the requirements of the theorem.
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Theorem 2. If (1) is a totally unimodular linear program with an optimal

solution, then Algorithm 2 starting from z%0 = 0 with m <n< m

and 7° = 1 requires at most
myH
o (Hm§~5 \/nnz(A)log (27 ) )

matrix-vector multiplications to obtain a point satisfying dist(Z*, z"%) < e.

Proof. ByLemma 1, we have 2" € Wy dist(200 z)(0) for 6 =24 / % <

2v/2 < 4. By Lemma 6, p,(z) is Q (m;*>H~")-sharp for all ||z, <
4dist(0, Z*) and r < 4 dist(0, Z*). Combining this with Theorem 1 (us-

ing 70 = 1) gives 1* = [%’ﬂ“)] = O(m} H||Al),) and dist(z"", Z*) <

pt* dist(z90, Z*). Hence, for n > logl/ﬁ(t*/e) we have dist(z"?, Z*) <
€ and the total number of iterations is O (H mf's [[A]l, log (w ) )
From this bound, we obtain the result since ||A||, < [|A|lf < \/m
and log (%”A”z) < log <m§TH> < 2log (@) because ||Al, <

v/nnz(A) < /m;m, < m, where the last inequality uses the assump-
tion that my <m,. [
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