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We analyze restarted PDHG on totally unimodular linear programs. In particular, we show that restarted PDHG 
finds an 𝜖-optimal solution in 𝑂(𝐻𝑚2.5

1

√
nnz(𝐴) log

(
𝐻𝑚2∕𝜖

)
) matrix-vector multiplies where 𝑚1 is the number 

of constraints, 𝑚2 the number of variables, nnz(𝐴) is the number of nonzeros in the constraint matrix, 𝐻 is the 
largest absolute coefficient in the right hand side or objective vector, and 𝜖 is the distance to optimality of the 
outputted solution.

1. Introduction

Consider the following linear program:

minimize
𝑥∈ℝ𝑚2

𝑐⊤𝑥 (1a)

𝐴𝑥 = 𝑏 (1b)

𝑥 ≥ 0 (1c)

and its dual maximize𝑦∈ℝ𝑚1 𝑏
⊤𝑦 subject to 𝐴⊤𝑦 ≤ 𝑐, where 𝑚1 and 𝑚2

are positive integers, 𝑥 and 𝑦 are the primal and dual variables, and 
𝐴 ∈ℝ

𝑚1×𝑚2 , 𝑐 ∈ℝ
𝑚2 , 𝑏 ∈ℝ

𝑚1 are the problem parameters. Traditional 
methods for solving linear programs such as simplex and interior point 
methods require linear system factorizations, which have high memory 
overhead and are difficult to parallelize. Recently, there has been in-
terest in using first-order methods for solving linear programs that use 
matrix-vector multiplication as their key primitive [16,2,19]. The ad-
vantage of matrix-vector multiplication is that it can be efficiently paral-
lelized across multiple cores or machines. Moreover, matrix-vector mul-
tiplication has low memory footprint, using minimal additional memory 
beyond storing the problem data. These properties make these first-
order methods suitable for tackling extreme-scale problems.

First-order methods reformulate finding a primal and dual optimal 
solution to the linear program (1) as solving a minimax problem:

min
𝑥≥0

max
𝑦∈ℝ𝑚1

(𝑥, 𝑦) = 𝑐⊤𝑥+ 𝑏⊤𝑦− 𝑦⊤𝐴𝑥 (2)

E-mail address: ohinder@pitt.edu.

and then apply methods designed for solving minimax problems such 
as primal-dual hybrid gradient (PDHG) [4] or the alternating direction 
method of multipliers (ADMM) [9]. See Applegate et al. [1] and Apple-
gate et al. [2] for a more exhaustive introduction and list of references.

Empirically, a promising first-order method for solving linear pro-
grams is primal-dual hybrid gradient for linear programming (PDLP) 
[1]. PDLP is based on restarted PDHG, combined with several other 
heuristics, for example, preconditioning and adaptively choosing the 
primal and dual step sizes. Restarted PDHG was analyzed by Applegate 
et al. [2] on linear programs, but their convergence bounds depend on 
the Hoffman constant of the KKT system. This bound is difficult to inter-
pret and is not easily computable. Recent work by Lu and Yang [17] and 
Xiong and Freund [25] develop different, more interpretable linear con-
vergence bounds for PDHG. However, it is unclear if these new bounds 
would be useful for analyzing totally unimodular linear programs.

In this paper, we extend the analysis of Applegate et al. [2] to pro-
vide an explicit complexity bound when this method is applied to totally 
unimodular linear programs [12]. Totally unimodular linear programs 
are an important subclass of linear programs which, for any integer right 
hand side and objective coefficients, all extreme points are integer. This 
subclass is of particular interest to the integer programming community 
[7]. It also encapsulates the minimum cost flow problem, an important 
subclass of linear programs, for which almost linear-time algorithms ex-
ist [5].

This work analyzes a general-purpose linear programming method 
on a specialized problem. Many papers perform this style of analysis 
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Table 1
Total number of iterations of restarted PDHG un-
til the distance to optimality contracts by a fac-
tor of ten on the totally unimodular linear pro-
gram min𝑥1 ,𝑥2≥0(𝐻 − 1)𝑥1 + 𝑥2 s.t. 𝑥1 + 𝑥2 = 𝐻 . 
The restart length is fixed but instance-wise tuned 
over the grid 21, 22, … , 221 (with number of total 
iterations of the best restart length reported). The 
step size 𝜂 is set to 0.5 and the primal and dual 
variables are initialized at the origin.

𝐻 102 104 106

# iterations 1.8 × 102 1.7 × 104 1.7 × 106

for the simplex method. For example, even though the simplex method 
has worst-case exponential runtime on general linear programs, im-
proved guarantees for the simplex method exist for subclasses such as 
Markov decision processes [26,22], minimum cost flow [20,8] and to-
tally unimodular linear programs [13,18]. In particular, Kitahara and 
Mizuno [13] shows that the number of iterations of the simplex method 
to find an exact optimal solution on a totally unimodular linear pro-
gram with a nondegenerate primal is 𝑚2⌈𝑚1‖𝑏‖1 log

(
𝑚2‖𝑏‖1

)⌉. Better 
complexities for this problem can be achieved by interior point methods 
[15], although at the cost of potentially much higher memory usage.

Finally, in independent work, Cole et al. [6] studies the performance 
of first-order methods for linear programming on totally unimodular 
linear programs. Their work is strongly related to ours. However, there 
are a few important differences: (i) our result studies an algorithm with 
proven practical performance [1], (ii) their bounds depend on log(𝐻)

instead of 𝐻 but for a fixed 𝐻 our bound has better dependence on 
𝑚1, 𝑚2 and nnz(𝐴), and (iii) their results also extend to more general 
𝐴 matrices (those with bounded max circuit imbalance measure). Our 
experiments summarized in Table 1 indicate that restarted PDHG has an 
iteration bound of at least Ω(𝐻) on totally unimodular linear programs.

Notation Let ℝ be the set of real numbers and ℕ be the set of natu-
ral numbers starting from one. Denote {1, … , 𝑚} by [𝑚]. Let nnz(𝐴)
be the number of nonzeros in 𝐴. Assume 𝑚2 ≥ 𝑚1 and that ||𝑏𝑖|| ≤ 𝐻

for all 𝑖 ∈ [𝑚1] and 
|||𝑐𝑗

||| ≤ 𝐻 for all 𝑗 ∈ [𝑚2]. Let ‖ ⋅ ‖2 be the Eu-
clidean norm for vectors and spectral norm for matrices. Let 𝜎min(𝑀) ∶=
min‖𝑣‖2=1 ‖𝑀𝑣‖2 be the minimum singular value of a matrix 𝑀 , 𝑍 =

{𝑥 ∈ ℝ
𝑚2 ∶ 𝑥 ≥ 0} × ℝ

𝑚1 , 𝑊𝑟(𝑧) ∶= {𝑧̂ ∈ 𝑍 ∶ ‖𝑧 − 𝑧̂‖2 ≤ 𝑟}, and 
𝐝𝐢𝐬𝐭(𝑧, 𝑍) ∶= min𝑧̂∈𝑍 ‖𝑧 − 𝑧̂‖2. Let 𝑋⋆ be the set of optimal primal 
solutions to (1) and 𝑌 ⋆ be the set of optimal dual solutions. Define 
𝑍⋆ = 𝑋⋆ × 𝑌 ⋆. Let 𝑒𝑖 be a vector containing a one in the 𝑖th entry 
and zero elsewhere. Let 𝟏 be a matrix or vector of ones, and 𝟎 be a ma-
trix or vector of zeros. Let (⋅)+ = max{⋅, 𝟎} where the max operator is 
applied element-wise.

Paper outline Section 2 provides background on restarted PDHG, Sec-
tion 3 provides a new Hoffman bound that we will find useful and 
Section 4 proves the main result.

2. Background on restarted PDHG

This section introduces concepts from Applegate et al. [2] that will 
be useful for our analysis. For ease of exposition, we specialize PDHG to 
linear programming (Algorithm 1). See Chambolle and Pock [4] for the 
general PDHG formula.

A key concept for restarted PDHG is the normalized duality gap [2]
defined for 𝑟 > 0 as

𝜌𝑟(𝑧) ∶=
max𝑧̂∈𝑊𝑟(𝑧)

(𝑥, 𝑦̂) −(𝑥̂, 𝑦)

𝑟

where for conciseness, we use the notation (𝑥̂, 𝑦̂) = 𝑧̂ (this notation is 
used throughout the paper, i.e., we also have (𝑥, 𝑦) = 𝑧), and for com-
pleteness define 𝜌0(𝑧) ∶= limsup𝑟→0+ 𝜌𝑟(𝑧). The normalized duality gap 

Algorithm 1: One step of PDHG on (2).

function OneStepOfPDHG(𝑧, 𝜂)
𝑥′ ← 𝐩𝐫𝐨𝐣𝑥≥0

(
𝑥− 𝜂(𝑐 −𝐴⊤𝑦)

)
;

𝑦′ ← 𝑦 − 𝜂(𝑏 −𝐴(2𝑥′ − 𝑥)) ;
return (𝑥′, 𝑦′)

end

is preferable over the standard duality gap, max𝑧∈𝑍 (𝑥, 𝑦̂) − (𝑥̂, 𝑦), 
because when 𝑍 is unbounded the standard duality gap can be infi-
nite even when we are arbitrarily close to an optimal solution in both 
the primal and dual. Next, we introduce the definition of a primal-dual 
problem being sharp (Definition 1) and PDHG with adaptive restarts 
(Algorithm 2) along with three results from Applegate et al. [2] that we 
will use in this paper.

Definition 1 (Definition 1 of Applegate et al. [2]). We say a primal-dual 
problem (2) is 𝛼-sharp on the set 𝑆 ⊆ 𝑍 if for all 𝑟 ∈ (0, 𝐝𝐢𝐚𝐦(𝑆)] and 
𝑧 ∈ 𝑆 that 𝛼 𝐝𝐢𝐬𝐭(𝑧, 𝑍⋆) ≤ 𝜌𝑟(𝑧).

Algorithm 2: PDHG with adaptive restarts [2, Algorithm 1].

Input: 𝑧0,0, 𝜏0, 𝛽, 𝜂
for 𝑛 = 0, … , ∞ do

𝑡 ← 0

repeat
𝑧𝑛,𝑡+1 ← OneStepOfPDHG(𝑧𝑛,𝑡, 𝜂) ;
𝑧̄𝑛,𝑡+1 ←

1

𝑡+1

∑𝑡+1

𝑖=1
𝑧𝑛,𝑖 ;

𝑡 ← 𝑡 + 1
until [𝑛 = 0 and 𝑡 ≥ 𝜏0] or 𝜌‖𝑧̄𝑛,𝑡−𝑧𝑛,0‖2 (𝑧̄

𝑛,𝑡) ≤ 𝛽𝜌‖𝑧𝑛,0−𝑧𝑛−1,0‖2 (𝑧
𝑛,0);

𝑧𝑛+1,0 ← 𝑧̄𝑛,𝑡;

end

Lemma 1. Algorithm 2 for 𝑧0,0 ∈𝑍 satisfies 𝑧𝑛,0 ∈𝑊𝜃 𝐝𝐢𝐬𝐭(𝑧0,0 ,𝑍⋆)(𝑧
0,0) for 

𝜃 = 2

√
1+𝜂‖𝐴‖2
1−𝜂‖𝐴‖2 .

Proof. Proposition 9 of Applegate et al. [2] (which uses the norm 
‖𝑧‖𝜂𝐴 ∶= ‖𝑥‖2

2
− 2𝜂𝑥⊤𝐴𝑦 + ‖𝑦‖2

2
) states that ‖𝑧𝑛,0 − 𝑧0,0‖𝜂𝐴 ≤ 2‖𝑧0,0 −

𝑧⋆‖𝜂𝐴 for any starting point 𝑧0,0 ∈ 𝑍 and optimal solution 𝑧⋆ ∈ 𝑍⋆. 
Proposition 7 of Applegate et al. [2] states that (1 − 𝜂‖𝐴‖2)‖𝑧‖22 ≤

‖𝑧‖𝜂𝐴 ≤ (1 +𝜂‖𝐴‖2)‖𝑧‖22 for all 𝑧 ∈𝑍 . Combining these two statements 
yields (1 − 𝜂‖𝐴‖2)‖𝑧𝑛,0 − 𝑧0,0‖2

2
≤ ‖𝑧𝑛,0 − 𝑧0,0‖2

𝜂𝐴
≤ 22‖𝑧0,0 − 𝑧⋆‖2

𝜂𝐴
≤

22(1 + 𝜂‖𝐴‖2)‖𝑧0,0 − 𝑧⋆‖2
2
for all 𝑧⋆ ∈ 𝑍⋆. Rearranging gives the re-

sult. □

Theorem 1 (Applegate et al. [2]). Consider the sequence {𝑧𝑛,0}∞
𝑛=0

and 
{𝜏𝑛}∞

𝑛=1
generated by Algorithm 2 with 𝜂 ∈ (0, 1∕‖𝐴‖2) and 𝛽 ∈ (0, 1). Sup-

pose that there exists a set 𝑆 ⊆ 𝑍 such that 𝑧𝑛,0 ∈ 𝑆 for any 𝑛 ≥ 0 and the 
primal-dual problem (2) is 𝛼-sharp on the set 𝑆 . Then, for each outer itera-
tion 𝑛 ∈ℕ we have

• The restart length, 𝜏𝑛, is upper bounded by 𝑡⋆: 𝜏𝑛 ≤ 𝑡⋆ ∶=
⌈
2𝐶(𝑞+2)

𝛼𝛽

⌉

with 𝐶 ∶=
2

𝜂(1−𝜂‖𝐴‖2) and 𝑞 ∶= 4
1+𝜂‖𝐴‖2
1−𝜂‖𝐴‖2 .

• The distance to the primal-dual optimal solution set decays linearly: 
𝐝𝐢𝐬𝐭(𝑧𝑛,0, 𝑍⋆) ≤ 𝛽𝑛

𝑡⋆

𝜏0
𝐝𝐢𝐬𝐭(𝑧0,0, 𝑍⋆).

Proof. See Theorem 2 and Corollary 2 of Applegate et al. [2]. □

Lemma 2. For all 𝑅 ∈ (0, ∞), 𝑧 ∈ 𝑍 , and 𝑟 ∈ (0, 𝑅] with ‖𝑧‖2 ≤ 𝑅 we 
have

1

2

‖‖‖‖‖‖‖

⎛⎜⎜⎝

1

𝑅
(𝑐⊤𝑥− 𝑏⊤𝑦)+

𝐴𝑥− 𝑏

(𝐴⊤𝑦− 𝑐)+

⎞⎟⎟⎠

‖‖‖‖‖‖‖2
≤ 𝜌𝑟(𝑧).
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Proof. This is a variant of Lemma 4 of Applegate et al. [2]. To prove 
the result it suffices to combine Equation (22) and (25) of [2]. □

3. A Hoffman bound that explicitly takes into account 
nonnegativity and inequality constraints

Hoffman bounds guarantee how much the distance to feasibility de-
creases as the constraint violation decreases. Typical Hoffman bounds 
consider a linear inequality system of the form: 𝐾𝑧 ≤ 𝑘 where 𝐾 is a 
matrix and 𝑘 is a vector. For example, [10, Theorem 4.2.] states that for 
any matrix 𝐾 , vector 𝑘 and vector 𝑧 we have: 𝐝𝐢𝐬𝐭(𝑧, {𝑤 ∶𝐾𝑤 ≤ 𝑘}) ≤
𝛼‖(𝐾𝑧 − 𝑘)+‖2 where 𝛼 > 0 is the minimum singular value across all 
nonsingular submatrices of 𝐾 .

In Applegate et al. [2], the authors employ Hoffman bounds to show 
that

‖‖‖‖‖‖‖

⎛⎜⎜⎝

(𝑐⊤𝑥− 𝑏⊤𝑦)+

𝐴𝑥− 𝑏

(𝐴⊤𝑦− 𝑐)+

⎞⎟⎟⎠

‖‖‖‖‖‖‖2
is bounded below by a constant times the distance to optimality. Using 
Lemma 2, this establishes that 𝜌𝑟 is sharp.

Corollary 1 is a Hoffman bound that explicitly handles both inequal-
ity and nonnegativity constraints. Similar types of Hoffman bounds exist 
in the literature (e.g., [21]) but we were unable to find a bound that 
could be readily adapted to our purpose. The proof of Corollary 1 is 
a blackbox reduction to standard Hoffman bounds [10, Theorem 4.2.]. 
In contrast, Applegate et al. [2] treats the nonnegativity constraints as 
generic inequality constraints. However, in this paper we take advan-
tage of the fact that the nonnegativity constraints on 𝑥 are never violated 
(due to PDHG performing a projection). Explicitly handling these non-
negativity constraints improves the quality of the Hoffman constant. 
In particular, the nonsingular submatrices considered in the calcula-
tion are smaller (because they do not contain the identity block that 
[2, Equation (20)] introduces). If we did employ the strategy of Ap-
plegate et al. [2] the remainder of the paper would remain essentially 
unchanged but the iteration bound in Theorem 2 would contain 𝑚2+𝑚1

instead of just 𝑚1 because the nonsingular submatrix 𝐺 could be much 
bigger. This alternative worst-case bound is inferior for 𝑚2 ≫𝑚1.

To prove Corollary 1 we will find the following Lemma useful.

Lemma 3. Define 𝑀𝜆 ∶=

(
𝑀11 𝑀12

𝟎 𝜆𝑀22

)
where 𝑀22 is a square matrix, 

and assume 𝑀𝜆 is nonsingular for some 𝜆 ∈ (0, ∞). Then 𝑀11 and 𝑀22 are 
nonsingular and

lim
𝜆→∞

𝑀−1
𝜆

=

(
𝑀−1

11
𝟎

𝟎 𝟎

)
.

Proof. Since 𝑀𝜆 is nonsingular and 𝑀22 is square we deduce that 𝑀11

is also square. Also, we have for all 𝑢 ≠ 𝟎 that 𝟎 ≠ 𝑀𝜆

(
𝑢

𝟎

)
= 𝑀11𝑢

which implies that 𝑀11 is nonsingular. Similarly, for all 𝑣 ≠ 𝟎 we have 

𝟎 ≠ 𝑀⊤
𝜆

(
𝟎

𝑣

)
= 𝜆𝑀⊤

22
𝑣 which implies that 𝑀22 is nonsingular. Next, 

the Schur complement of 𝑀𝜆 with respect to the 𝜆𝑀22 block is 𝑆 ∶=

𝑀11 − 𝟎
1

𝜆
𝑀−1

11
𝑀12 =𝑀11. Using the Schur complement [11] we have

𝑀−1
𝜆

=

(
𝑀−1

11

1

𝜆
𝑀−1

11
𝑀12𝑀

−1
22

𝟎
1

𝜆
𝑀−1

22

)
.

Taking 𝜆 →∞ yields the desired result. □

Corollary 1. For any nonnegative integers 𝑚, 𝑛 and 𝑝 consider matrices 𝐷 ∈

ℝ
𝑚×𝑛, 𝐹 ∈ ℝ

𝑝×𝑛 and vectors 𝑑 ∈ ℝ
𝑚, 𝑓 ∈ ℝ

𝑝. Let 𝑈𝑆 ∶= {𝑢 ∈ ℝ
𝑛 ∶ 𝑢𝑖 ≥

0, ∀𝑖 ∈ 𝑆} for some 𝑆 ⊆ [𝑛]. Define the polytope, 𝑃 ∶= {𝑢 ∈ 𝑈𝑆 ∶ 𝐷𝑢 ≤

𝑑, 𝐹𝑢 = 𝑓}. Let  be the set of all nonsingular submatrices of the matrix (
𝐷

𝐹

)
and let 𝛼 =

1

max𝐺∈ ‖𝐺−1‖2 . Then, for all 𝑢 ∈𝑈𝑆 we have

𝛼 𝐝𝐢𝐬𝐭(𝑢,𝑃 ) ≤
‖‖‖‖‖

(
(𝐷𝑢− 𝑑)+

𝐹𝑢− 𝑓

)‖‖‖‖‖2
.

Proof. Consider the system

⎡⎢⎢⎢⎣
𝐾𝜆 ∶=

⎛⎜⎜⎜⎝

𝐷

𝐹

−𝐹

−𝜆𝐸

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
𝑢 ≤

⎛⎜⎜⎜⎝

𝑑

𝑓

−𝑓

𝟎

⎞⎟⎟⎟⎠
=∶ 𝑘

for 𝜆 ∈ (0, ∞), where −𝜆𝐸𝑢 ≤ 𝟎 corresponds to the constraint 𝑢 ∈ 𝑈𝑆

with each row of 𝐸 containing exactly one entry (i.e., a one). Let 𝑄 be 
a nonsingular submatrix of 𝐾𝜆 decomposed into submatrices of 𝐷, 𝐹 , 
−𝐹 and 𝐸 which we call 𝑄𝐷, 𝑄𝐹 , 𝑄−𝐹 , 𝑄𝐸 respectively such that

𝑄 =

⎛⎜⎜⎜⎝

𝑄𝐷

𝑄𝐹

𝑄−𝐹

−𝜆𝑄𝐸

⎞⎟⎟⎟⎠
.

As each row of 𝐸 contains exactly one nonzero entry, each row of 𝑄𝐸

must contain at most one nonzero entry. Since 𝑄 is nonsingular it fol-
lows that 𝑄⊤

𝐸
𝑣 ≠ 𝟎 for all 𝑣 ≠ 𝟎. By choosing 𝑣 = 𝑒𝑖 for each row 𝑖, we 

deduce each row of 𝑄𝐸 must contain exactly one nonzero entry. There-
fore there exist matrices𝑀11, 𝑀12 and 𝑀22 such that 𝑀11 and 𝑀12 are 

submatrices of 
⎛⎜⎜⎝

𝐷

𝐹

−𝐹

⎞⎟⎟⎠
, 𝑀22 is a nonsingular square submatrix of 𝑄𝐸 , 

and

Π𝑄 =

(
𝑀11 𝑀12

𝟎 𝜆𝑀22

)

where Π is some permutation matrix; let  represent the set of all such 
matrices. Note that since 𝑄 is square and 𝑀22 is square, we must have 
𝑀11 is square.

Applying [10, Theorem 4.2.] gives 𝛼𝜆 𝐝𝐢𝐬𝐭(𝑢, 𝑃 ) ≤ ‖‖(𝐾𝑢− 𝑘)+‖‖2 for 
all 𝑢 ∈ 𝑈𝑆 with

𝛼𝜆 ∶= max
𝑀∈

‖‖‖‖‖

(
𝑀11 𝑀12

𝟎 𝜆𝑀22

)−1‖‖‖‖‖2
.

It follows by Lemma 3 that

lim
𝜆→∞

𝛼𝜆 = lim
𝜆→∞

max
𝑀∈

‖‖‖‖‖

(
𝑀11 𝑀12

𝟎 𝜆𝑀22

)−1‖‖‖‖‖2
= max

𝑀∈
lim
𝜆→∞

‖‖‖‖‖

(
𝑀11 𝑀12

𝟎 𝜆𝑀22

)−1‖‖‖‖‖2
= max

𝑀∈
‖𝑀−1

11
‖2.

Recall that 𝑀22 is square, and that 𝑄 and therefore Π𝑄 is nonsingular. 
Therefore by Lemma 3 we deduce 𝑀11 is nonsingular and consequently 
either the row −𝐹𝑖,⋅ or 𝐹𝑖,⋅ appears in 𝑀11. Moreover, negating rows 
of 𝑀11 does not effect its maximum singular value. Hence, there exists 
𝐺 ∈  such that ‖𝐺−1‖2 = ‖𝑀−1

11
‖2. □

4. Analysis of restarted PDHG on totally unimodular linear 
programs

This section analyzes the worst-case convergence rate of restarted 
PDHG on totally unimodular linear programs. For completeness, we first 
define what it means for a linear program to be totally unimodular.

Definition 2 ([12]). A matrix 𝐴 is totally unimodular if every square 
submatrix is unimodular (i.e., has determinant 0, 1, or −1). The linear 
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program (2) is totally unimodular if 𝐴 is totally unimodular and the 
entries of 𝑐 and 𝑏 are all integers.

The following standard result will be useful. We include the proof 
for completeness.

Lemma 4. If 𝐴 ∈ℝ
𝑚1×𝑚2 is a totally unimodular matrix then (i) [𝐴 𝑒𝑖] for 

any 𝑖 ∈ [𝑚1], (ii) 𝐴
⊤ and (iii) 

(
𝐴 0

0 𝐴⊤

)
are totally unimodular matrices. 

Moreover, (iv) if 𝐴 is a nonsingular then (𝐴−1)𝑖𝑗 ∈ {−1, 0, 1} for all 𝑖 ∈
[𝑚1], 𝑗 ∈ [𝑚2] and ‖𝐴−1‖2 ≤𝑚2 =𝑚1.

Proof. The proof of (ii) follows from the fact that the determinant is 
invariant to transpose. For (i) and (iii), we use the well-known formula 
for the determinant of block matrices (e.g., [23]),

det

(
𝑃 𝑄

0 𝑆

)
= det(𝑃 ) det(𝑆).

Thus (i) follows by setting 𝑃 =
(
1
)
, 𝑄 to be the 𝑖th row of 𝐴 and 𝑆 the 

remaining portion (also using that the absolute value of the determinant 
is preserved by row and column permutations). Next, (iii) follows by 
setting 𝑄 = 𝟎, 𝑃 =𝐴 and 𝑆 =𝐴⊤.

To see (iv), note by Cramer’s rule and Lemma 4.i, the inverse of a 
square nonsingular totally unimodular matrix has all entries equal to 
either −1, 0 or 1, and therefore ‖𝐴−1‖2 ≤ ‖𝐴−1‖𝐹 ≤𝑚2 =𝑚1. □

The key insight of this paper is Lemma 5, which allows us to reason 
about matrices that are nonsingular and after removing one row totally 
unimodular. The proof uses Lemma 4 to decompose the matrix into the 
sum of a totally unimodular matrix and a rank one component. The 
Sherman-Morrison formula is then applied to analyze the inverse and 
its spectral norm.

Lemma 5. Suppose the matrix 
(
𝑣⊤

𝑉

)
is nonsingular where 𝑉 is a totally 

unimodular matrix with 𝑛 rows, and 𝑣 is a vector of length 𝑛 +1 with rational 
entries. Let 𝑀 be a positive integer such that for each 𝑖 ∈ [𝑛 +1], there exists 
an integer 𝑘𝑖 such that 𝑣𝑖 = 𝑘𝑖∕𝑀 . Then

‖‖‖‖‖

(
𝑣⊤

𝑉

)−1‖‖‖‖‖2
≤ 𝑛+ 1 +𝑀

(
(𝑛+ 1)1.5‖𝑣‖2 + 𝑛+ 1

)
.

Proof. First observe that 
(
𝑣⊤

𝑉

)
=

(
𝑒⊤
𝑗

𝑉

)
+ 𝑒1(𝑣 − 𝑒𝑗 )

⊤ where 𝑗 is cho-

sen such that 𝑊 ∶=

(
𝑒⊤
𝑗

𝑉

)
is nonsingular. Such a 𝑗 exists because the 

rows of 𝑉 are linearly independent and 𝑉 has 𝑛 rows. Therefore, there 
must exist some 𝑒𝑗 that is not in the span of the rows of 𝑉 , making the 
dimension of the subspace spanned by the rows of 𝑊 equal to 𝑛 + 1, 
which implies it is nonsingular.

Note that by Lemma 4, 𝑊 is totally unimodular. By the Sherman-
Morrison formula [24]:
(
𝑣⊤

𝑉

)−1

=𝑊 −1 −
𝑊 −1𝑒1(𝑣− 𝑒𝑗 )

⊤𝑊 −1

1 + (𝑣− 𝑒𝑗 )
⊤𝑊 −1𝑒1

. (3)

As 𝑊 −1𝑒1 is an integer vector, and 𝑣𝑖 = 𝑘𝑖∕𝑀 where 𝑘𝑖 is an integer 
and 𝑀 is a positive integer then there exists some integer 𝑧 such that 
1 +(𝑣 − 𝑒𝑗 )

⊤𝑊 −1𝑒1 = 𝑧∕𝑀 . Since 1 +(𝑣 − 𝑒𝑗 )
⊤𝑊 −1𝑒1 ≠ 0 it follows that

|||1 + (𝑣− 𝑒𝑗 )
⊤𝑊 −1𝑒1

||| ≥
1

𝑀
. (4)

Using Lemma 4.iv we have ‖𝑊 −1‖2 ≤ 𝑛 + 1,

‖𝑊 −1𝑒1𝑣𝑊
−1‖2 ≤ ‖𝑊 −1𝑒1‖2‖𝑣𝑊 −1‖2

≤ (𝑛+ 1)0.5‖𝑊 −1‖2‖𝑣‖2
≤ (𝑛+ 1)0.5(𝑛+ 1)‖𝑣‖2,

and ‖𝑊 −1𝑒1𝑒
⊤
𝑗
𝑊 −1‖2 ≤ ‖𝑊 −1𝑒1‖2‖𝑊 −1𝑒𝑗‖2 ≤ 𝑛 +1. Therefore, by (3)

and (4) we get

‖‖‖‖‖

(
𝑣⊤

𝑉

)−1‖‖‖‖‖2
≤ 𝑛+ 1 +𝑀((𝑛+ 1)1.5‖𝑣‖2 + 𝑛+ 1). □

Lemma 6 characterizes the sharpness constant of the normalized du-
ality gap. The proof uses Lemma 2 and Lemma 5.

Lemma 6. Let 𝑅 ∶= ⌈8𝑚1.5
1

𝐻⌉. If (1) is a totally unimodular linear program 

with an optimal solution, then there exists 𝛼 > 0 such that 𝛼 = Ω 
(

1

𝑚2.5
1

𝐻

)

and 𝛼 𝐝𝐢𝐬𝐭(𝑧, 𝑍⋆) ≤ 𝜌𝑟(𝑧) for all 𝑧 ∈𝑊𝑅(𝟎) and 𝑟 ∈ (0, 𝑅]. Moreover, there 
exists 𝑧⋆ ∈𝑍⋆ such that ‖𝑧⋆‖2 ≤𝑅∕4.

Proof. First, we get a bound on the norm of an optimal solution. 
As there is an optimal solution to the linear program there exists 
an optimal basic feasible solution [3, Chapter 2]. Let 𝐵 be an op-
timal basis with corresponding optimal solutions 𝑥⋆ and 𝑦⋆. It fol-
lows that ‖𝑥⋆‖2 = ‖𝑥⋆

𝐵
‖2 = ‖𝐴−1

𝐵
𝑏‖2 ≤ ‖𝐴−1

𝐵
‖2‖𝑏‖2 ≤ 𝑚1‖𝑏‖2 ≤ 𝑚1.5

1
𝐻

and ‖𝑦⋆‖2 = ‖(𝐴−1
𝐵
)⊤𝑐𝐵‖2 ≤ ‖(𝐴−1

𝐵
)⊤‖2‖𝑐𝐵‖2 ≤𝑚1‖𝑐‖2 ≤𝑚1.5

1
𝐻 where 

‖𝐴−1
𝐵

‖2 ≤ 𝑚1 by Lemma 4.iv. With 𝑧
⋆ = (𝑥⋆, 𝑦⋆) we conclude ‖𝑧⋆‖2 ≤

‖𝑥⋆‖2 + ‖𝑦⋆‖2 ≤ 2𝑚1.5
1

𝐻 ≤𝑅∕4.

Consider a square nonsingular submatrix 
(
𝑣⊤

𝑉

)
of the matrix

⎛⎜⎜⎝

1

𝑅
𝑐⊤ −

1

𝑅
𝑏⊤

𝐴 0

0 𝐴⊤

⎞⎟⎟⎠
where 𝑣 is a subvector of 

(
1

𝑅
𝑐⊤ −

1

𝑅
𝑏⊤

)
and 𝑉 is a submatrix of (

𝐴 0

0 𝐴⊤

)
. Note that 𝑉 is totally unimodular by Lemma 4.

We now prove 𝑉 contains at most 2𝑚1 rows. Note 𝐴 contains at 
most 𝑚1 rows by definition and the submatrix of 𝑉 corresponding to 
𝐴⊤ contains at most 𝑚1 columns. Consequently, the submatrix of 𝑉 cor-
responding to 𝐴⊤ contains at most 𝑚1 rows; otherwise, it would be row 

rank-deficient rendering 
(
𝑣⊤

𝑉

)
row rank-deficient and contradicting 

our assumption that 
(
𝑣⊤

𝑉

)
is nonsingular.

By Lemma 5with 𝑀 =𝑅 =𝑂(𝐻𝑚1.5
1
), 𝑛 = 2𝑚1 and using that ‖𝑣‖2 ≤

1

𝑅
(‖𝑐‖2 + ‖𝑏‖2) ≤ 2𝐻𝑚0.5

1
∕𝑅 we get

‖‖‖‖‖

(
𝑣⊤

𝑉

)−1‖‖‖‖‖2
≤ 𝑛+ 1 +𝑀((𝑛+ 1)1.5‖𝑣‖2 + 𝑛+ 1)

=𝑂
(
𝑚2.5
1

𝐻
)
.

This implies by Corollary 1 that

‖‖‖‖‖‖‖

⎛⎜⎜⎝

1

𝑅
(𝑐⊤𝑥− 𝑏⊤𝑦)+

𝐴𝑥− 𝑏

(𝐴⊤𝑦− 𝑐)+

⎞⎟⎟⎠

‖‖‖‖‖‖‖2
≥Ω

(
1

𝑚2.5
1

𝐻

)
𝐝𝐢𝐬𝐭(𝑧,𝑍⋆).

Combining this inequality with Lemma 2 shows
𝛼 𝐝𝐢𝐬𝐭(𝑧, 𝑍⋆) ≤ 𝜌𝑟(𝑧). □

We are now ready to prove the main result, Theorem 2. Note that 
‖𝐴‖2 can be readily estimated by power iteration with high probability 
in 𝑂̃(1) matrix-vector multiplications [14]. Therefore, it is possible to 
select a step size that meets the requirements of the theorem.
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Theorem 2. If (1) is a totally unimodular linear program with an optimal 
solution, then Algorithm 2 starting from 𝑧0,0 = 𝟎 with 1

4‖𝐴‖2 ≤ 𝜂 ≤
1

2‖𝐴‖2
and 𝜏0 = 1 requires at most

𝑂

(
𝐻𝑚2.5

1

√
nnz(𝐴) log

(
𝑚2𝐻

𝜖

))

matrix-vector multiplications to obtain a point satisfying 𝐝𝐢𝐬𝐭(𝑍⋆, 𝑧𝑛,0) ≤ 𝜖.

Proof. By Lemma 1, we have 𝑧𝑛,0 ∈𝑊𝜃 𝐝𝐢𝐬𝐭(𝑧0,0 ,𝑍⋆)(𝟎) for 𝜃 = 2

√
1+𝜂‖𝐴‖2
1−𝜂‖𝐴‖2 ≤

2
√
2 ≤ 4. By Lemma 6, 𝜌𝑟(𝑧) is Ω 

(
𝑚−2.5
1

𝐻−1
)
-sharp for all ‖𝑧‖2 ≤

4 𝐝𝐢𝐬𝐭(𝟎, 𝑍⋆) and 𝑟 ≤ 4 𝐝𝐢𝐬𝐭(𝟎, 𝑍⋆). Combining this with Theorem 1 (us-

ing 𝜏0 = 1) gives 𝑡⋆ =
⌈
2𝐶(𝑞+2)

𝛼𝛽

⌉
= 𝑂(𝑚2.5

1
𝐻‖𝐴‖2) and 𝐝𝐢𝐬𝐭(𝑧𝑛,0, 𝑍⋆) ≤

𝛽𝑛𝑡⋆ 𝐝𝐢𝐬𝐭(𝑧0,0, 𝑍⋆). Hence, for 𝑛 ≥ log1∕𝛽 (𝑡
⋆∕𝜖) we have 𝐝𝐢𝐬𝐭(𝑧𝑛,0, 𝑍⋆) ≤

𝜖 and the total number of iterations is 𝑂
(
𝐻𝑚2.5

1
‖𝐴‖2 log

(
𝑚1𝐻‖𝐴‖2

𝜖

))
. 

From this bound, we obtain the result since ‖𝐴‖2 ≤ ‖𝐴‖𝐹 ≤
√
nnz(𝐴)

and log
(
𝑚1𝐻‖𝐴‖2

𝜖

)
≤ log

(
𝑚2
2
𝐻

𝜖

)
≤ 2 log

(
𝑚2𝐻

𝜖

)
because ‖𝐴‖2 ≤

√
nnz(𝐴) ≤

√
𝑚1𝑚2 ≤ 𝑚2 where the last inequality uses the assump-

tion that 𝑚1 ≤𝑚2. □
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