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Abstract: Incentive design problems entail hierarchical decision-making where a leader crafts
a strategy to induce a desired response from a follower. Such dynamic games with decentralized
information structures have been well-studied under three assumptions—the leader must have
access to the follower’s observations, actions, and the objective function. Lack of knowledge
on any of these can potentially lead to performance loss for the leader. In this paper, we first
study a setup where the leader observes the follower’s action through a random monitoring
channel and learns about the follower’s observation through a follower-designed signal. In this
setup, we establish the existence of a signaling-based incentive equilibrium strategy for the
leader that induces honest reporting and desired control response from the follower. Then, we
study a setting, where the follower’s costs are parametric, but the parameters are not known
to the leader. We construct an incentive strategy that reduces the sensitivity of the leader’s
performance to uncertainty in the parameter, close to an initial estimate. More generally, for
the case when the leader’s knowledge about the follower’s cost and distributions of cost-relevant
random variables is inaccurate, we establish the existence of a robust incentive equilibrium

strategy that bounds the performance loss from the inaccuracy in the model.
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Incentive design problems entail hierarchical decision-
making between at least two agents, a leader and a fol-
lower with different objectives. These are dynamic games
where the leader starts by announcing a strategy, then
the follower acts, following which the leader implements
her announced strategy, based on the action taken by
the follower. Stochastic incentive design problems add an
element of richness to this setup and allow costs and
observations of both players to depend on an uncertain
state of nature and/or observations that may be public
or private. The goal of incentive design is to find leader’s
strategies that induce a desired response from the follower.
Such problems have found applications in various domains,
e.g., in the design of tax codes, environmental regulations,
and demand response.

Stochastic incentive design problems can be cast as
stochastic Stackelberg games with dynamic information.
Direct equilibrium characterization in such games is often
challenging; rather, an indirect approach to equilibrium
characterization becomes tractable. Specifically, one starts

* This research was supported in part by grant FA9550-19-1-0353
from AFOSR, and in part by the National Science Foundation under
the grant CPS-2038403.

by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Bagar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Basar (1984); Cansever and Bagar (1985a);
Bagar (1983); Basgar (1989); Basar and Olsder (1999);
Ho et al. (1982); Zheng and Basgar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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incentive strategy that leverages the follower’s monitored
actions/observations with accurate knowledge of the fol-
lower’s cost structure. In practice, the leader may not
have access to the follower’s actions and observations. She
might also lack accurate knowledge of the follower’s cost
structure. In this paper, we address incentive design under
such lack of accurate information about the follower.

In Sections 2 and 3, we consider a randomized channel for
monitoring observations and actions of the follower. With-
out the ability to perfectly monitor, one might surmise
that the leader can never incentivize the follower to act in
the leader’s favor, at least with smooth incentive strate-
gies. However, we show that this is not always the case.
We allow the follower to design a signaling mechanism
containing information regarding the follower’s private ob-
servation, and send it to the leader. This signal is utilized
by the leader to design a signaling-based incentive strat-
egy. The follower may benefit from deceiving the leader,
depending on her cost. This element of belief-shaping via
signaling is not new in the literature on decentralized con-
trol and games, e.g., see Kamenica and Gentzkow (2011);
Groves (1973); Fudenberg and Tirole (1991); Groves and
Loeb (1979), and Dasgupta et al. (1979). In this work, we
introduce signaling into the incentive design literature. In
particular, in Theorem 1, under continuity and convexity
of the follower’s cost, we show that there exists an incentive
equilibrium strategy for the leader that leads to extraction
of an honest mechanism from the follower, in turn leading
to revelation of the follower’s private observation, and a
leader-aligned response from the follower.

In Sections 4 and 5, we study robustness of incentive
design to incorrect follower models. That is, we assume
that the leader is no longer privy to the follower’s true
cost structure and/or the distributions of various cost-
relevant random variables. We seek strategies that perform
well, from the leader’s vantage point, even when they are
designed using possibly incorrect follower models. When
the assumed models are “close” to the true models, then
a robust incentive strategy leads to a performance that is
close to that under the correct model. For such problems,
in Theorems 2 and 3, we establish the existence of a ro-
bust signaling-based incentive equilibrium strategy under
sufficient conditions on the convergence of a sequence of
incorrect models. Our study of such problems is inspired
by the literature on robust control design in stochastic
control and game theory, e.g., in Bagar and Bernhard
(2008); Khalil et al. (1996); Kara and Yiiksel (2020, 2019);
Wiesemann et al. (2013); Hansen and Sargent (2001);
Yiiksel and Linder (2012).

Due to space limitations, the proofs of the results are not
included here; they are available in an extended arXiv
version of the paper.

2. STOCHASTIC STACKELBERG GAME P

We study a single-stage Stackelberg game with dynamic
information structure (IS) between leader L and follower
F. L first announces a strategy at the start of the game.
Then, F acts by taking an action and sending a signal
to L regarding her private information. The realized costs
of L and F depend on L’s announced strategy as well as
the actions and the signaling mechanism selected by F'.
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In this section, we formally define this game and describe
relevant equilibrium/optimality notions that we study in
the sequel.

Let (Q, F,P) be the underlying probability space describ-
ing the system’s distinguishable events. Let Y be a subset
of a finite-dimensional Euclidean space, endowed with its
Borel o-field Y% that describes the possible private ob-
servations of L. Let (Y, YF) describe the same for F.
Also, let U be a subset of a finite-dimensional Euclidean
space, that together with the Borel o-field U, describes
the space of control actions u” for L. Similarly, define
(U, UF) and u® for F. Each player selects a control
action via an admissible strategy—a measurable map of her
available information. F is privy to her own observation,
i.e., the information is I¥ = {y%'} for F for an exogenous
random variable y¥. Let I'F' denote her set of admissible
strategies as a set of all measurable functions % from
(Y, V) to (UF,u"). F also designs a signal s that L
observes. In other words, F' designs a stochastic kernel
77&;|yF ) that induces s. We assume that s takes values in
Y*. Let II denote the space of signaling strategies 7. For
L, we consider the following two ISs.

e Randomized observation- and control-sharing: L ob-
serves her private information y” and the signal s sent
by F; however, L only observes ¥ and uf" via random-
ized channels. The status of these channels is determined
by two binary random variables z¥ and 2%, i.e., if 2¥ =1
(2% = 1), L observes yI" (u!"), otherwise, L does not
observe y%' (uf"). Let IX.q be L’s information set under
this IS.

e Randomized observation-sharing: L observes her private
information y~ and the signal s sent by F. However, L
only observes y" via a randomized channel z¥. We let
L’s corresponding information set be given by II%OS.

Let T'5 g and T'L g denote the sets of admissible strategies
for L under the corresponding ISs. Let wy be an Qg-valued
random variable that defines the common exogenous un-
certainty that affects both players’ observations and/or
costs. Each player seeks to minimize her expected cost,
given by

TE(E AT ) = B [ (wo, u, ul), (1)
JE (L AF 1) = Y [CF(wo,uL,uF,s)] ., (2)

for Borel-measurable functions ¢’ : Qg x Ul x U — R,
and cf' : Qo x UF x UF x YI' — R,. Here, we use the

notation EV'7"™ to denote the expectation with respect
to P when actions of players and the signal s are induced
by v&, 7" and =, respectively. Next, we define the notion
of an approximate Stackelberg equilibrium.

Definition 1 (e-Stackelberg Equilibrium (SE)). Given
€ >0, (v, I %) with L’s IS Ik g, constitutes an ¢-SE,
if

L. Lx . Fx ) < inf su

T < YL erkos (vF,w)eFI)%("fL)

where R(yL) is defined as

JE(yE A ) + e,

m#o:{WKﬂerFxH (3)

JE(YE AR 7)) = inf JF(VL,VF,W)}-

(vF,m)elF xI1



1756

This equilibrium concept corresponds to the pessimistic
SE, where L selects a strategy that approximately opti-
mizes her cost, accounting for the worst possible (for L)
choice of F' among those responses that optimize her cost.

Next, we introduce a notion of optimality for a strategy
profile from L’s vantage point.

Our approach to equilibrium characterization is indirect—
we first calculate how L would ideally like to act and how
she wants F' to act. That is, we solve for an approximate
leader-optimal strategy, defined next, from a decentralized
control problem with static information structure I{;:OS.
Then, we devise an incentive strategy with the available
dynamic information that utilizes the leader-optimal strat-
egy. This incentive strategy is such that it induces the same
response from F' that L computes for ' within her leader-
optimal strategy, and it achieves the optimal performance.
Definition 2 (e-Leader-Optimality). Given ¢ > 0,
(YE* v %) with L’s IS 15,4 constitutes an e-leader-
optimal solution, if

L Lx Fx _*% : L/ L .F
J ) < n ™ .
(’Y T ) > "/L,"/F,ﬂ‘GIFRfOSX . J ('y Y, ) +e€

We call yI* with L’s information structure IX.g an e-
incentive equilibrium (IE), if there exists (y™*,7*) such
that (y2*, v, 7*) is e-leader-optimal and constitutes an
e-SE.

3. SIGNALING-BASED INCENTIVE DESIGN

Existence of an IE strategy has been established under
perfect monitoring in Basar (1984), i.e., L observes y!
and u”. Now, we turn our attention to the setting where
the monitoring channel is random, modeled via the IS
IIL{CS. We show that a signaling-based IE strategy for
L exists that leads to the revelation of yf by F via
F’s honest signaling mechanism and induces the desired
behavior in F'. Throughout this section, we assume that L
knows F’s cost and also the joint distribution of exogenous
random variables. Our result requires the following set of
assumptions.

Assumption 1.

F(wo, L+ 0) 18 jointly strictly convex for every wq
(wo, -, o -) is continuously differentiable for every wg

ézy =z% = 1} >0

(w) ¢ (wo, + -, 8) is radially unbounded for every wy and s
i.e. CF(wO,uL,uF,S) — oo if |[ul||+|[uf]] = oo for
every wy and s.

Theorem 1. Consider P with I5.g as L’s 1S. Let As-

sumption 1 hold. Let € > 0 and (yL*,vF* 7*) constitute

an e-leader-optimal strategy profile with L’s IS Ik, for

which v* is affine in s, and

F Lx , Fx _x
E cuL(wo,u , U ,s)

yF] #0 P-as. (4)

uhere st~ Ty = B0, u = ARG
ut™ = % (y"), and ¥, denotes the partial derivative
of cF' with respect to uL Then there exists ¥1* € Tk g

for L, given by

ﬁL*( L F | F

vyt uls) = 2y () + (1

22 Q "

— 1 )

=" (y")]
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+2'Q* (" y")s — v, (5)
which constitutes an e-1E stmtegy, for some Borel measur-
able functions Q' and Q2.

We now provide insights into the result. First, the ap-
proximate IE strategy in (5) is affine in u" and s (hence,
continuous in uf and s). It consists of three parts-the
first two expressions in (5) correspond to an approximate
leader-optimal solution which will be realized under the
honest mechanism 7*. The second and third parts can
be viewed as a penalty for F' deviating from L’s desired
control action and signal, respectively, where Q' and Q2
correspond to the magnitude of these penalties for action
and signal deviation, respectively. Owing to random mon-
itoring, L does not always have access to u* and y%, and
hence, these penalties can only be levied if z¥ and z* are
1. Our proof of this result is similar in spirit to that in
Bagar (1984), but differs from it in that L has access to
uf and y¥ only via random monitoring channels. The
incentive design in the signal plays a pivotal role in our
design. Essentially, this incentivization allows L to elicit an
honest observation-reporting behavior from F', leveraging
probabilistic monitoring of y'. Without the incentive to
relay yp truthfully, F may misreport, and that in turn
can lead L to incur a possibly significant performance
loss. In (5), L utilizes the uncertainty of F' regarding the
monitoring channel to induce F’s revelation of y*".

It is vital that F' does not observe z¥ and z* although
F knows their joint distributions. If F' has access to the
realizations of z¥ and/or z*, then L, in general, cannot
find incentive strategies that attain the leader-optimal
performance. In short, when 2¥ = 0 and/or z* = 0, the
terms containing @' and @Q? in the cost of F disappear.
As a result, L loses her power to shape F’s response using
the dynamic information. In the same vein, we require
Assumption 1 (iii) that keeps F' guessing about the status
of the monitoring channels. We remark that our incentive
strategy in Theorem 1 requires L to accurately know cf’
in order to correctly compute Q' and Q2.

In the following, we provide an example of a quadratic
Gaussian (QG) game where Assumption 1 holds and
Theorem 1 applies. Consider a QG game with y~ = wg +
w? and y¥ = wy +w?, where wy, w”, w are independent
standard normal random variables. Let the costs of the
players be given by

cE(wo, ul,uf) = rE(ub)? 4 ¢F (u” + uf +wo)?,  (6)
CF(LUO,UL UF) _ rF(uF)2 =+ qF(uF + UL +W(])27 (7)
where ¥ L ¢ ¢¥ > 0. We first compute v2*,4™* and

7* such that (~F ,’yF *,7m*) constitutes a leader-optimal

solution. Let m*(-|y*") = 6, (-). Since, ¢ is strictly convex,
the unique optimal solution v2*, vF* is linear and satisfies
the following stationarity conditions: P-a.s.,

E [cﬁL(wo,uL*,uF*) yL,yF] =0 (8)

] =0, 9)

E [Cﬁp (W07 UL*, uF*) yF

where ul* = yL*(yl yF) = afyl + of'yf and uwf™* =
v (y") = BFy", with
L L
L q F L F q
= ——57, = ——, = — 10
“ 50T 1ty 2% “sutvqny 10
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Let p = P{2¥ = 2% = 1} and r = P{z¥ = 1}. Since, ¢! is
strictly convex, the unique best response of F satisfies the
following stationarity conditions P-a.s.:

E CSF ((‘UOa uL*a uF) +pQ105L (WOa uLa UF*)

+ (pQ2 +(1- r)aF) ch (wo,uL*,uF) yF] =0. (11)
Hence, we can select Q! and Q? as follows:
Q' = 2rF gt Q= 1+ (1 —r)ar
- p(BF +af + S(ak+1) T P '

Both Q! and Q? are inversely proportional to p, the
probability of monitoring. This has an intuitive meaning in
that the lower the chance of monitoring, the more energy L
must use in its strategy to appropriately incentivize F'. The
selection of Q' and (2 is not unique. In the next section,
we show that Q' and Q2 can be selected in a way that an
IE strategy reduces the sensitivity of L’s performance to
perturbation on F’s model.

4. DESIGNING INCENTIVE STRATEGY ROBUST
TO FOLLOWER’S COST PARAMETERS

Our analysis in the previous section is premised on L
knowing F’s cost accurately—an assumption we relax and
study incentive design that is robust to L’s knowledge of
F’s cost. We follow in spirit the modeling framework of
Cansever and Basgar (1985b), but adapted to our setting
with random monitoring. Specifically, we suppose that
F’s cost is parameterized by a parameter vector a €
Rb. Assume that L does not have access to a, but has
a prior estimate a* referred to as «a’s nominal value.
Here, we study the question whether L can design an
incentive equilibrium that is not that sensitive to « (made
precise later), so that L’s lack of knowledge of @ does not
significantly impact her performance.

Let 75*(7? be F’s unique best response strategy to L’s

choice of 4", when the cost parameter is a. We seek L’s
strategy v for which
on Fx (L
%"7(7) =0,P—as,n=1,...,N. (12)
oam -

In effect, such a condition implies that F’s response to L’s
strategy does not vary much in the neighborhood of a*.
Recall from the previous section that we utilized a leader-
optimal strategy v%* to construct an IE #%*. When applied
to our example, we found that ¥“* was non-unique; one
could choose @)1 and @5 in a myriad of ways, each of which
was an affine strategy in «f that yielded leader-optimal
performance. Our next result provides a construction of
4L for which yE*(51*) satisfies (12).

We require the following assumptions to state our result.
Assumption 2.

(i) ¢t is independent of s.

(ii) cf(wo, -, -; ) is jointly strictly convex for every wy and
o € A.

(iii) ¢ (wo, -, ;) is twice continuously differentiable for
every wy and o € A.

(iv) cF'(wo, -, ;) is radially unbounded for every wo and
o €A

(v) P{yL € -|yF'} has infinite support.
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Theorem 2. Consider P with Ik, as L’s IS. Let As-
sumptions 1(iit) and 2 hold, together with the following
three conditions.

(i) For any ¢ > 0, let (yI*,vF* 7*) constitute an e-
leader-optimal strategy profile with L’s IS 15, for
which v* is affine in s, and P-a.s.,

F(yL7yF) =E CSL (wo,uL*,uF*;a*)

yF,yL] # 0.
(13)
(ii) Given ¥¥* € Thog for L by (5), vE* € Ra(31*) is

differentiable in o for all y* .
(iii) There does not exist k(y*") such that

Fly"y") = k(") fuly",y"),
EL,a"

VYneN (14)

where ¢ (cfp on ) denotes the partial derivative of

ct onul (Wf) and n-th order derivative on «, and

fa y")

= F(y*, y"E {cfpan (wo,uL*,uF*;oz*)

— G(yF)]E |:65Lan (w07 uL*7 uF*; Oé*)

yF} R

y" } :
Then, ¥* in (5) satisfies (12).

The art of this construction lies in the existence of Q' and
Q? for which one can meaningfully set derivatives of F’s
best response strategy with respect to « to zero. For the
set of assumptions we have made, F’s response is indeed
unique, when L chooses an affine strategy. The result
implies that L can design an incentive strategy for which
F’s response varies “slowly” with a and yet yields the
leader-optimal performance. Under appropriate assump-
tions of continuity, one then expects L’s performance to
vary slowly with «, thus mitigating the impact of L’s lack
of knowledge of .

G(yF) =K |:CEF (WO7U/L*7U,F*;O(*) (16)

In the following, we provide an example QG game similar
to that presented in the preceding section, where Assump-
tion 2 holds and Theorem 2 applies. Let L’s cost be given
by (6) and F’s cost be given by

cF(wo, vl ulsa) = rF (uf)? + ¢F (a — uf' —ul —wp)?,
where « is unknown to L. However, L has access to
the nominal value o* = 2. Assume ¢ = ' = 1/2,
q¥ = rF = 1/3, and wy to be a unit-variance Gaussian
with unit mean, while wy; and wp are standard normal
random variables. Again, we assume y* = wy + w’ and
y!' = wp + w!. Thus, we get Elwo|y?’] = (v +1)/2 and
Elwoly”, y"] = (y* +y~+1)/3. Along the lines of (8)-(10),
for a = a*, the leader-optimal strategies are obtained as

Lx(, L Ly, 1 L pe F L p 1
VY s) =gy T st g T (W) =5y — 5
We can design Q' and @Q? similar to that in the previous
section; however, not all such designs make L’s perfor-
mance less sensitive to variations in « from its nominal
value a*. We start by selecting Q? = (13 + r)/12p, where
recall that p = P{z¥ = 2% = 1} and r = P{z¥ = 1}.
Following (11), we then infer that Q! must satisfy P-a.s.,

ElpQ' (y",y")(2y" —y" —25)ly"] = —6(y" +5). (17)
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Any function of Q! of the form below satisfies (17):
Q ("t y") = —6(y" +5)g1(y",y")

’ PElg1(y", y7) 2y~ — yF = 25)[y "]’

for some g1 (y*,y") such that the denominator is not zero

P-a.s. We find g; such that the first derivative of the best

response strategy of F, vI* with respect to o vanishes
and hence, set

E|g(y",y") (2" — 7y" — 55)
=f1(yly")

where fi above is the same as defined in (15). Then,

(18)

yF}zo P-as. (19)

69
gi(y",y") = —108y" + 152y" — 69y"y" + - (y")* + 48,
satisfies (19), and g1 in (18) yields

Ql(yL yF) _ _Q(yF +5)gl(yL7yF)
’ p(127(y")2 + 623y — 60)
Then, the best response of F' for any « becomes

(20)

98 W) = {alt + EIQ!y™) - pEIQ woly™] — Elwoly”]
- pE[uL*Q |y] — E[ul*|y¥] + p2u™E[(Q")?|y*]
+p B | /{ElC+ 2@V + 201y 1 .

Following (19), pE[Q'|y*] = —1 for any y*, and hence,
the impact of the uncertain parameter « vanishes from
vE* (yF), removing the effect of L’s lack of exact knowledge
of a.

We now illustrate the importance of our sensitivity-
reducing incentive design. With the a-insensitive F’s re-
sponse, the L’s optimal cost is JX* = 5/36 = 0.139 for
any «. Consider another candidate incentive strategy that
L might design. For the same Q?, suppose we select g; = 1
and obtain Q! = (y!" +5)/4p. With a = 1.5 # o* = 2, we
estimate Jr = 0.164 with 100K samples using sample av-
erage approximation. With the same samples, the estimate
under the a-insensitive selection of Q! yields J; = 0.139
that matches the optimal performance. In other words, the
a-insensitive design compensates for L’s flawed knowledge
of a, while another candidate design leads to performance
loss from this mistake.

5. INCENTIVE DESIGN WITH A CONVERGENT
SEQUENCE OF FOLLOWER MODELS

We now turn our attention to incentive design when L
may have inaccurate knowledge of F’s model, by which
we mean F’s cost function ¢ and the joint distribution
T on wo,y”,y"". Consider a sequence of models M,
characterized by {cf'},, and {7, },, for n € N such that they
converge to the correct model ¢! and T, respectively, in
some sense as n — oo; we define the notion of convergence
precisely in the sequel. Let L design an IE strategy {vZ*},,,
computed based on the inaccurate model M,,. We study
how {vt*}, fares on F, whose model is described by
M = (c%, T), and not M,,. In essence, we ask: how robust
is our incentive design strategy to incorrect models for F'?

We make the following assumptions.
Assumption 3.

(i) ¢t is independent of s.
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(ii) cE(wo,-,-) and cF(wo,-,-) are strictly conver and
continuously differentiable for every wg and n € N.

(iii) cE, cF', ¢t are uniformly bounded by a constant M
for M < oo for every n € N.

(iv) cE(wo,ul, ul") converges to e (wp, ul, uf")
in uf € UF and ul € UL as n — oo.

(v) T, converges to T in the total variation metric as
n — oo for every y¥, i.e.,

7o = Tllrv :=2

uniformly

1 Tn(A) = T(A)| =0

sup
AEB(QoxYEXYF)
asn — oo, where B(Qy x YL x YF) is the Borel o-field
on Qo x Y- x YF.
(vi) UF is compact.

Under the assumption of strict joint convexity of ¢, L
can design IEs 72*’s for the incorrect models M,, that are
affine in s and uq:, following the same recipe as presented
in Theorem 1. For these affine incentive strategies, F'’s
response to 7L* becomes unique, following the affine
structure of L’s strategy and strict joint convexity of ¢
in u and u®. Call this response R(7L*; M,,). Similarly,
define R(YL*; M).

Theorem 3. Consider P with I}L%CS as L’s IS. Suppose
Assumptions 1(iii), 2(i) and 3 hold. Let ¢ > 0 and
(VE* ~Ex 7%) constitute an e-leader-optimal strategy with
IinS as L’s IS under the incorrect model T, for which

vE*is affine in s, and

E [Vuwff (wo, ¥5* (y™, y5) v E* (y7)) yF] #0 P-as.

for anyn € N where v, is the joint conditional distribution
of wo,y" given y¥ under T,. Consider a sequence of
strategies {L*},, C Tk g for L, given by
Tyt ul ) = 2yt oyt + (L= 2 (Y s)
+ 2720 Qu (" Yy =7 ("))
+2Q%(y " y")s — ", (21)
that constitutes an e-1E for P for the incorrect models M,,.
Assume that R(YE*; M) and R(FE*; M,,) admit unique
limit points as n — oo. Then, the two limit points are
the same and {Y:*} attains a performance e-close to a

performance of IE for P for the correct model M as
n — o0.

To prove Theorem 3, we first argue that the leader-optimal
performance is continuous in the models. Then, the rest
follows from the construction of the incentive strategy
from the leader-optimal strategy, and the continuity of
that map in F’s models. We remark that our indirect
equilibrium characterization technique thus plays a vital
role in proving the requisite robustness results that are
challenging to establish for general Stackelberg games.

Assumption 3(v) is only needed to guarantee that F’s
response strategies R(vy"; M) and R(y%; M,,) exist when
L plays a strategy that is affine in wf'. The validity of
our assumption that R(5L*; M) and R(3L*; M,,) admit
unique limit points as n — oo requires further analysis;
we plan to address it in future research. Moreover, recall
that in Assumption 3(iv), we require that the sequence of
incorrect distributions {7, } converges to the true distribu-
tion 7 in total variation metric. Such convergence can be
demanding in various data-driven applications; one would
ideally impose weak convergence. While relaxation of this
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assumption is part of our ongoing efforts, we provide two
concrete examples that meet the convergence criterion in
total variation.

e Suppose that y* = g% (wp) +w’ and y* = g (wp) + w!’
for some Borel measurable functions ¢~ and ¢, where
wl ~ pl wf ~ pf, and wy ~ PO, Let w” be independent
of w¥". Suppose that g* and g are known to L, u”, uf" and
PO are only known approximately to L. If the densities L
and pf” converge in distribution to uX and pf’, respectively,
then Scheffe’s theorem guarantees that they converge in
total variation as well. In turn, 7,, converges to T in total
variation, as required by Assumption 3.

e Suppose that y© = g&(wo + w?) and y* = g% (wo + w’)
where w’ ~ p* and w ~ p. Let w” be independent of
w!. Assume that g* and g are unknown to L but u”, u*,
and P are known to L. Suppose Y. and Y¥ are finite. If
incorrect models g~ and gf" converge pointwise to g~ and
g%, then for any continuous bounded function f,

‘/f(w()vyLva)dﬁL - /f(WanLayF)dT

- ‘ [ 1 g o 08). 68 e+ 0" A

a / Flwo, g% (wo + w™), g% (wo + w"))dP dp dp™

which converges to zero by the dominated convergence
theorem as n — oo. By considering a dense subset
of convergence determining functions f of the set of
all continuous and bounded functions, we infer that 7,
converges weakly to 7. Since YX and Y¥ are finite, they
converge in total variation, verifying Assumption 3.

6. CONCLUSIONS

We have studied a class of incentive design problems be-
tween a leader (L) and a follower (F'), where we allow
L to observe F'-relevant variables with noise. For such
problems, for the case when L has access to the correct
models, we have established the existence of a signaling-
based incentive equilibrium strategy that induces an hon-
est mechanism on F', leading to a desired response from
L’s standpoint. Further for the scenario where L does not
have access to I’s cost structure, we have established the
existence of an incentive equilibrium strategy that reduces
the sensitivity of her performance to the unknown param-
eter in F’s cost. We have finally established robustness
of incentive equilibrium strategies to incorrect models,
that included F’s cost structures and distributions of cost-
relevant random variables. Finally, we have presented sev-
eral examples to demonstrate our main results.

We are interested in pursuing a number of interesting
research directions. First among these directions concerns
learning in incentive design, where L can repeatedly inter-
act with F' and learn their cost structures. We also want
to study multi-stage dynamic versions of incentive design
problems (with possible state evolutions for both parties),
and these players can be risk-sensitive decision-makers.
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