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Abstract: Incentive design problems entail hierarchical decision-making where a leader crafts
a strategy to induce a desired response from a follower. Such dynamic games with decentralized
information structures have been well-studied under three assumptions–the leader must have
access to the follower’s observations, actions, and the objective function. Lack of knowledge
on any of these can potentially lead to performance loss for the leader. In this paper, we first
study a setup where the leader observes the follower’s action through a random monitoring
channel and learns about the follower’s observation through a follower-designed signal. In this
setup, we establish the existence of a signaling-based incentive equilibrium strategy for the
leader that induces honest reporting and desired control response from the follower. Then, we
study a setting, where the follower’s costs are parametric, but the parameters are not known
to the leader. We construct an incentive strategy that reduces the sensitivity of the leader’s
performance to uncertainty in the parameter, close to an initial estimate. More generally, for
the case when the leader’s knowledge about the follower’s cost and distributions of cost-relevant
random variables is inaccurate, we establish the existence of a robust incentive equilibrium
strategy that bounds the performance loss from the inaccuracy in the model.

Keywords: Differential and dynamic games, multi-agent systems, robustness analysis,
data-driven decision making, hierarchical multilevel and multilayer control.

1. INTRODUCTION

Incentive design problems entail hierarchical decision-
making between at least two agents, a leader and a fol-
lower with different objectives. These are dynamic games
where the leader starts by announcing a strategy, then
the follower acts, following which the leader implements
her announced strategy, based on the action taken by
the follower. Stochastic incentive design problems add an
element of richness to this setup and allow costs and
observations of both players to depend on an uncertain
state of nature and/or observations that may be public
or private. The goal of incentive design is to find leader’s
strategies that induce a desired response from the follower.
Such problems have found applications in various domains,
e.g., in the design of tax codes, environmental regulations,
and demand response.

Stochastic incentive design problems can be cast as
stochastic Stackelberg games with dynamic information.
Direct equilibrium characterization in such games is often
challenging; rather, an indirect approach to equilibrium
characterization becomes tractable. Specifically, one starts
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
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others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
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1. INTRODUCTION

Incentive design problems entail hierarchical decision-
making between at least two agents, a leader and a fol-
lower with different objectives. These are dynamic games
where the leader starts by announcing a strategy, then
the follower acts, following which the leader implements
her announced strategy, based on the action taken by
the follower. Stochastic incentive design problems add an
element of richness to this setup and allow costs and
observations of both players to depend on an uncertain
state of nature and/or observations that may be public
or private. The goal of incentive design is to find leader’s
strategies that induce a desired response from the follower.
Such problems have found applications in various domains,
e.g., in the design of tax codes, environmental regulations,
and demand response.

Stochastic incentive design problems can be cast as
stochastic Stackelberg games with dynamic information.
Direct equilibrium characterization in such games is often
challenging; rather, an indirect approach to equilibrium
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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element of richness to this setup and allow costs and
observations of both players to depend on an uncertain
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or private. The goal of incentive design is to find leader’s
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Such problems have found applications in various domains,
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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observations of both players to depend on an uncertain
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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1. INTRODUCTION

Incentive design problems entail hierarchical decision-
making between at least two agents, a leader and a fol-
lower with different objectives. These are dynamic games
where the leader starts by announcing a strategy, then
the follower acts, following which the leader implements
her announced strategy, based on the action taken by
the follower. Stochastic incentive design problems add an
element of richness to this setup and allow costs and
observations of both players to depend on an uncertain
state of nature and/or observations that may be public
or private. The goal of incentive design is to find leader’s
strategies that induce a desired response from the follower.
Such problems have found applications in various domains,
e.g., in the design of tax codes, environmental regulations,
and demand response.

Stochastic incentive design problems can be cast as
stochastic Stackelberg games with dynamic information.
Direct equilibrium characterization in such games is often
challenging; rather, an indirect approach to equilibrium
characterization becomes tractable. Specifically, one starts
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by solving a decentralized control problem among the
leader and the follower with a static information structure
that aims to optimize the leader’s performance. Then, the
resulting leader-optimal control strategies are utilized to
design an incentive strategy that leverages the dynamic
information available on the follower’s action. This design
is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an
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(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an

Signaling-based Robust Incentive Designs
with Randomized Monitoring ⋆

Sina Sanjari ∗ Subhonmesh Bose ∗∗ Tamer Başar ∗∗∗
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is such that the follower’s response to the leader’s incen-
tive strategy coincides with what the leader wants the
follower to play. In other words, the leader’s performance
with such an incentive strategy (along with the follower’s
desired response) becomes leader-optimal, thus leading to
a Stackelberg equilibrium of the incentive design game.
The incentive strategies considered in Başar (1984), among
others, are affine, and hence smooth, in the control action
of the follower. From a strategy design standpoint, such
“soft” smooth incentive strategies are preferred to discon-
tinuous “threat” strategies, where the leader’s reaction to
the follower’s action can be large even for a small deviation
on the follower’s part from his leader-optimal response.

The study of incentive design problems has a long his-
tory; see e.g., Başar (1984); Cansever and Başar (1985a);
Başar (1983); Başar (1989); Başar and Olsder (1999);
Ho et al. (1982); Zheng and Başar (1982); Zheng et al.
(1984). In such problems, the leader attempts to influ-
ence the followers’ decisions through the design of an

incentive strategy that leverages the follower’s monitored
actions/observations with accurate knowledge of the fol-
lower’s cost structure. In practice, the leader may not
have access to the follower’s actions and observations. She
might also lack accurate knowledge of the follower’s cost
structure. In this paper, we address incentive design under
such lack of accurate information about the follower.

In Sections 2 and 3, we consider a randomized channel for
monitoring observations and actions of the follower. With-
out the ability to perfectly monitor, one might surmise
that the leader can never incentivize the follower to act in
the leader’s favor, at least with smooth incentive strate-
gies. However, we show that this is not always the case.
We allow the follower to design a signaling mechanism
containing information regarding the follower’s private ob-
servation, and send it to the leader. This signal is utilized
by the leader to design a signaling-based incentive strat-
egy. The follower may benefit from deceiving the leader,
depending on her cost. This element of belief-shaping via
signaling is not new in the literature on decentralized con-
trol and games, e.g., see Kamenica and Gentzkow (2011);
Groves (1973); Fudenberg and Tirole (1991); Groves and
Loeb (1979), and Dasgupta et al. (1979). In this work, we
introduce signaling into the incentive design literature. In
particular, in Theorem 1, under continuity and convexity
of the follower’s cost, we show that there exists an incentive
equilibrium strategy for the leader that leads to extraction
of an honest mechanism from the follower, in turn leading
to revelation of the follower’s private observation, and a
leader-aligned response from the follower.

In Sections 4 and 5, we study robustness of incentive
design to incorrect follower models. That is, we assume
that the leader is no longer privy to the follower’s true
cost structure and/or the distributions of various cost-
relevant random variables. We seek strategies that perform
well, from the leader’s vantage point, even when they are
designed using possibly incorrect follower models. When
the assumed models are “close” to the true models, then
a robust incentive strategy leads to a performance that is
close to that under the correct model. For such problems,
in Theorems 2 and 3, we establish the existence of a ro-
bust signaling-based incentive equilibrium strategy under
sufficient conditions on the convergence of a sequence of
incorrect models. Our study of such problems is inspired
by the literature on robust control design in stochastic
control and game theory, e.g., in Başar and Bernhard
(2008); Khalil et al. (1996); Kara and Yüksel (2020, 2019);
Wiesemann et al. (2013); Hansen and Sargent (2001);
Yüksel and Linder (2012).

Due to space limitations, the proofs of the results are not
included here; they are available in an extended arXiv
version of the paper.

2. STOCHASTIC STACKELBERG GAME P

We study a single-stage Stackelberg game with dynamic
information structure (IS) between leader L and follower
F . L first announces a strategy at the start of the game.
Then, F acts by taking an action and sending a signal
to L regarding her private information. The realized costs
of L and F depend on L’s announced strategy as well as
the actions and the signaling mechanism selected by F .

In this section, we formally define this game and describe
relevant equilibrium/optimality notions that we study in
the sequel.

Let (Ω,F ,P) be the underlying probability space describ-
ing the system’s distinguishable events. Let YL be a subset
of a finite-dimensional Euclidean space, endowed with its
Borel σ-field YL that describes the possible private ob-
servations of L. Let (YF ,YF ) describe the same for F .
Also, let UL be a subset of a finite-dimensional Euclidean
space, that together with the Borel σ-field UL, describes
the space of control actions uL for L. Similarly, define
(UF ,UF ) and uF for F . Each player selects a control
action via an admissible strategy–a measurable map of her
available information. F is privy to her own observation,
i.e., the information is IF = {yF } for F for an exogenous
random variable yF . Let ΓF denote her set of admissible
strategies as a set of all measurable functions γF from
(YF ,YF ) to (UF ,UF ). F also designs a signal s that L
observes. In other words, F designs a stochastic kernel
π(·|yF ) that induces s. We assume that s takes values in
YF . Let Π denote the space of signaling strategies π. For
L, we consider the following two ISs.

• Randomized observation- and control-sharing: L ob-
serves her private information yL and the signal s sent
by F ; however, L only observes yF and uF via random-
ized channels. The status of these channels is determined
by two binary random variables zy and zu, i.e., if zy = 1
(zu = 1), L observes yF (uF ), otherwise, L does not
observe yF (uF ). Let ILRCS be L’s information set under
this IS.

• Randomized observation-sharing: L observes her private
information yL and the signal s sent by F . However, L
only observes yF via a randomized channel zy. We let
L’s corresponding information set be given by ILROS.

Let ΓL
RCS and ΓL

ROS denote the sets of admissible strategies
for L under the corresponding ISs. Let ω0 be an Ω0-valued
random variable that defines the common exogenous un-
certainty that affects both players’ observations and/or
costs. Each player seeks to minimize her expected cost,
given by

JL(γL, γF , π) = EγL,γF ,π[cL(ω0, u
L, uF )], (1)

JF (γL, γF , π) = EγL,γF ,π
[
cF (ω0, u

L, uF , s)
]
, (2)

for Borel-measurable functions cL : Ω0 × UL × UF → R+

and cF : Ω0 × UL × UF × YF → R+. Here, we use the

notation EγL,γF ,π to denote the expectation with respect
to P when actions of players and the signal s are induced
by γL, γF and π, respectively. Next, we define the notion
of an approximate Stackelberg equilibrium.
Definition 1 (ϵ-Stackelberg Equilibrium (SE)). Given
ϵ ≥ 0, (γL⋆, γF⋆, π⋆) with L’s IS ILRCS, constitutes an ϵ-SE,
if

JL(γL⋆, γF⋆, π⋆) ≤ inf
γL∈ΓRCS

sup
(γF ,π)∈R(γL)

JL(γL, γF , π) + ϵ,

where R(γL) is defined as

R(γL) :=

{
(γ̂F , π̂) ∈ ΓF ×Π

∣∣∣∣ (3)

JF (γL, γ̂F , π̂) = inf
(γF ,π)∈ΓF×Π

JF (γL, γF , π)

}
.
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This equilibrium concept corresponds to the pessimistic
SE, where L selects a strategy that approximately opti-
mizes her cost, accounting for the worst possible (for L)
choice of F among those responses that optimize her cost.

Next, we introduce a notion of optimality for a strategy
profile from L’s vantage point.

Our approach to equilibrium characterization is indirect–
we first calculate how L would ideally like to act and how
she wants F to act. That is, we solve for an approximate
leader-optimal strategy, defined next, from a decentralized
control problem with static information structure ILROS.
Then, we devise an incentive strategy with the available
dynamic information that utilizes the leader-optimal strat-
egy. This incentive strategy is such that it induces the same
response from F that L computes for F within her leader-
optimal strategy, and it achieves the optimal performance.
Definition 2 (ϵ-Leader-Optimality). Given ϵ ≥ 0,
(γL⋆, γF⋆, π⋆) with L’s IS ILROS constitutes an ϵ-leader-
optimal solution, if

JL(γL⋆, γF⋆, π⋆) ≤ inf
γL,γF ,π∈ΓROS×ΓF×Π

JL(γL, γF , π) + ϵ.

We call γL⋆ with L’s information structure ILRCS an ϵ-
incentive equilibrium (IE), if there exists (γF⋆, π⋆) such
that (γL⋆, γF⋆, π⋆) is ϵ-leader-optimal and constitutes an
ϵ-SE.

3. SIGNALING-BASED INCENTIVE DESIGN

Existence of an IE strategy has been established under
perfect monitoring in Başar (1984), i.e., L observes yF

and uF . Now, we turn our attention to the setting where
the monitoring channel is random, modeled via the IS
ILRCS. We show that a signaling-based IE strategy for
L exists that leads to the revelation of yF by F via
F ’s honest signaling mechanism and induces the desired
behavior in F . Throughout this section, we assume that L
knows F ’s cost and also the joint distribution of exogenous
random variables. Our result requires the following set of
assumptions.
Assumption 1.

(i) cF (ω0, ·, ·, ·) is jointly strictly convex for every ω0

(ii) cF (ω0, ·, ·, ·) is continuously differentiable for every ω0

(iii) P{zy = zu = 1} > 0
(iv) cF (ω0, ·, ·, s) is radially unbounded for every ω0 and s

i.e., cF (ω0, u
L, uF , s) → ∞ if ||uL||+ ||uF || → ∞ for

every ω0 and s.

Theorem 1. Consider P with ILRCS as L’s IS. Let As-
sumption 1 hold. Let ϵ ≥ 0 and (γL⋆, γF⋆, π⋆) constitute
an ϵ-leader-optimal strategy profile with L’s IS ILROS, for
which γL⋆ is affine in s, and

E
[
cFuL

(
ω0, u

L⋆, uF⋆, s⋆
) ∣∣∣∣yF

]
̸= 0 P-a.s. (4)

where s⋆ ∼ π⋆(·|yF ) := δyF (·), uL⋆ := γL⋆(yL, yF ),

uF⋆ := γF⋆(yF ), and cFuL denotes the partial derivative

of cF with respect to uL. Then, there exists γ̃L⋆ ∈ ΓL
RCS

for L, given by

γ̃L⋆(yL, yF , uF , s) = zyγL⋆(yL, yF ) + (1− zy)γL⋆(yL, s)

+ zyzuQ1(yF , yL)[uF − γF⋆(yF )]

+ zyQ2(yF , yL)[s− yF ], (5)

which constitutes an ϵ-IE strategy, for some Borel measur-
able functions Q1 and Q2.

We now provide insights into the result. First, the ap-
proximate IE strategy in (5) is affine in uF and s (hence,
continuous in uF and s). It consists of three parts–the
first two expressions in (5) correspond to an approximate
leader-optimal solution which will be realized under the
honest mechanism π⋆. The second and third parts can
be viewed as a penalty for F deviating from L’s desired
control action and signal, respectively, where Q1 and Q2

correspond to the magnitude of these penalties for action
and signal deviation, respectively. Owing to random mon-
itoring, L does not always have access to uF and yF , and
hence, these penalties can only be levied if zy and zu are
1. Our proof of this result is similar in spirit to that in
Başar (1984), but differs from it in that L has access to
uF and yF only via random monitoring channels. The
incentive design in the signal plays a pivotal role in our
design. Essentially, this incentivization allows L to elicit an
honest observation-reporting behavior from F , leveraging
probabilistic monitoring of yF . Without the incentive to
relay yF truthfully, F may misreport, and that in turn
can lead L to incur a possibly significant performance
loss. In (5), L utilizes the uncertainty of F regarding the
monitoring channel to induce F ’s revelation of yF .

It is vital that F does not observe zy and zu although
F knows their joint distributions. If F has access to the
realizations of zy and/or zu, then L, in general, cannot
find incentive strategies that attain the leader-optimal
performance. In short, when zy = 0 and/or zu = 0, the
terms containing Q1 and Q2 in the cost of F disappear.
As a result, L loses her power to shape F ’s response using
the dynamic information. In the same vein, we require
Assumption 1 (iii) that keeps F guessing about the status
of the monitoring channels. We remark that our incentive
strategy in Theorem 1 requires L to accurately know cF

in order to correctly compute Q1 and Q2.

In the following, we provide an example of a quadratic
Gaussian (QG) game where Assumption 1 holds and
Theorem 1 applies. Consider a QG game with yL = ω0 +
wL and yF = ω0 +wF , where ω0, w

L, wF are independent
standard normal random variables. Let the costs of the
players be given by

cL(ω0, u
L, uF ) = rL(uL)2 + qL(uL + uF + ω0)

2, (6)

cF (ω0, u
L, uF ) = rF (uF )2 + qF (uF + uL + ω0)

2, (7)

where rF , rL, qF , qL > 0. We first compute γL⋆, γF⋆ and
π⋆ such that (γL⋆, γF⋆, π⋆) constitutes a leader-optimal
solution. Let π⋆(·|yF ) = δyF (·). Since, cL is strictly convex,

the unique optimal solution γL⋆, γF⋆ is linear and satisfies
the following stationarity conditions: P-a.s.,

E
[
cLuL(ω0, u

L⋆, uF⋆)

∣∣∣∣yL, yF
]
= 0 (8)

E
[
cLuF (ω0, u

L⋆, uF⋆)

∣∣∣∣yF
]
= 0, (9)

where uL⋆ = γL⋆(yL, yF ) = αLyL + αF yF and uF⋆ =
γF⋆(yF ) = βF yF , with

αL = − qL

3(rL + qL)
, βF = −1

2
, αF =

qL

6(rL + qL)
. (10)
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This equilibrium concept corresponds to the pessimistic
SE, where L selects a strategy that approximately opti-
mizes her cost, accounting for the worst possible (for L)
choice of F among those responses that optimize her cost.

Next, we introduce a notion of optimality for a strategy
profile from L’s vantage point.

Our approach to equilibrium characterization is indirect–
we first calculate how L would ideally like to act and how
she wants F to act. That is, we solve for an approximate
leader-optimal strategy, defined next, from a decentralized
control problem with static information structure ILROS.
Then, we devise an incentive strategy with the available
dynamic information that utilizes the leader-optimal strat-
egy. This incentive strategy is such that it induces the same
response from F that L computes for F within her leader-
optimal strategy, and it achieves the optimal performance.
Definition 2 (ϵ-Leader-Optimality). Given ϵ ≥ 0,
(γL⋆, γF⋆, π⋆) with L’s IS ILROS constitutes an ϵ-leader-
optimal solution, if

JL(γL⋆, γF⋆, π⋆) ≤ inf
γL,γF ,π∈ΓROS×ΓF×Π

JL(γL, γF , π) + ϵ.

We call γL⋆ with L’s information structure ILRCS an ϵ-
incentive equilibrium (IE), if there exists (γF⋆, π⋆) such
that (γL⋆, γF⋆, π⋆) is ϵ-leader-optimal and constitutes an
ϵ-SE.

3. SIGNALING-BASED INCENTIVE DESIGN

Existence of an IE strategy has been established under
perfect monitoring in Başar (1984), i.e., L observes yF

and uF . Now, we turn our attention to the setting where
the monitoring channel is random, modeled via the IS
ILRCS. We show that a signaling-based IE strategy for
L exists that leads to the revelation of yF by F via
F ’s honest signaling mechanism and induces the desired
behavior in F . Throughout this section, we assume that L
knows F ’s cost and also the joint distribution of exogenous
random variables. Our result requires the following set of
assumptions.
Assumption 1.

(i) cF (ω0, ·, ·, ·) is jointly strictly convex for every ω0

(ii) cF (ω0, ·, ·, ·) is continuously differentiable for every ω0

(iii) P{zy = zu = 1} > 0
(iv) cF (ω0, ·, ·, s) is radially unbounded for every ω0 and s

i.e., cF (ω0, u
L, uF , s) → ∞ if ||uL||+ ||uF || → ∞ for

every ω0 and s.

Theorem 1. Consider P with ILRCS as L’s IS. Let As-
sumption 1 hold. Let ϵ ≥ 0 and (γL⋆, γF⋆, π⋆) constitute
an ϵ-leader-optimal strategy profile with L’s IS ILROS, for
which γL⋆ is affine in s, and

E
[
cFuL

(
ω0, u

L⋆, uF⋆, s⋆
) ∣∣∣∣yF

]
̸= 0 P-a.s. (4)

where s⋆ ∼ π⋆(·|yF ) := δyF (·), uL⋆ := γL⋆(yL, yF ),

uF⋆ := γF⋆(yF ), and cFuL denotes the partial derivative

of cF with respect to uL. Then, there exists γ̃L⋆ ∈ ΓL
RCS

for L, given by

γ̃L⋆(yL, yF , uF , s) = zyγL⋆(yL, yF ) + (1− zy)γL⋆(yL, s)

+ zyzuQ1(yF , yL)[uF − γF⋆(yF )]

+ zyQ2(yF , yL)[s− yF ], (5)

which constitutes an ϵ-IE strategy, for some Borel measur-
able functions Q1 and Q2.

We now provide insights into the result. First, the ap-
proximate IE strategy in (5) is affine in uF and s (hence,
continuous in uF and s). It consists of three parts–the
first two expressions in (5) correspond to an approximate
leader-optimal solution which will be realized under the
honest mechanism π⋆. The second and third parts can
be viewed as a penalty for F deviating from L’s desired
control action and signal, respectively, where Q1 and Q2

correspond to the magnitude of these penalties for action
and signal deviation, respectively. Owing to random mon-
itoring, L does not always have access to uF and yF , and
hence, these penalties can only be levied if zy and zu are
1. Our proof of this result is similar in spirit to that in
Başar (1984), but differs from it in that L has access to
uF and yF only via random monitoring channels. The
incentive design in the signal plays a pivotal role in our
design. Essentially, this incentivization allows L to elicit an
honest observation-reporting behavior from F , leveraging
probabilistic monitoring of yF . Without the incentive to
relay yF truthfully, F may misreport, and that in turn
can lead L to incur a possibly significant performance
loss. In (5), L utilizes the uncertainty of F regarding the
monitoring channel to induce F ’s revelation of yF .

It is vital that F does not observe zy and zu although
F knows their joint distributions. If F has access to the
realizations of zy and/or zu, then L, in general, cannot
find incentive strategies that attain the leader-optimal
performance. In short, when zy = 0 and/or zu = 0, the
terms containing Q1 and Q2 in the cost of F disappear.
As a result, L loses her power to shape F ’s response using
the dynamic information. In the same vein, we require
Assumption 1 (iii) that keeps F guessing about the status
of the monitoring channels. We remark that our incentive
strategy in Theorem 1 requires L to accurately know cF

in order to correctly compute Q1 and Q2.

In the following, we provide an example of a quadratic
Gaussian (QG) game where Assumption 1 holds and
Theorem 1 applies. Consider a QG game with yL = ω0 +
wL and yF = ω0 +wF , where ω0, w

L, wF are independent
standard normal random variables. Let the costs of the
players be given by

cL(ω0, u
L, uF ) = rL(uL)2 + qL(uL + uF + ω0)

2, (6)

cF (ω0, u
L, uF ) = rF (uF )2 + qF (uF + uL + ω0)

2, (7)

where rF , rL, qF , qL > 0. We first compute γL⋆, γF⋆ and
π⋆ such that (γL⋆, γF⋆, π⋆) constitutes a leader-optimal
solution. Let π⋆(·|yF ) = δyF (·). Since, cL is strictly convex,

the unique optimal solution γL⋆, γF⋆ is linear and satisfies
the following stationarity conditions: P-a.s.,

E
[
cLuL(ω0, u

L⋆, uF⋆)

∣∣∣∣yL, yF
]
= 0 (8)

E
[
cLuF (ω0, u

L⋆, uF⋆)

∣∣∣∣yF
]
= 0, (9)

where uL⋆ = γL⋆(yL, yF ) = αLyL + αF yF and uF⋆ =
γF⋆(yF ) = βF yF , with

αL = − qL

3(rL + qL)
, βF = −1

2
, αF =

qL

6(rL + qL)
. (10)

Let p = P{zy = zu = 1} and r = P{zy = 1}. Since, cF is
strictly convex, the unique best response of F satisfies the
following stationarity conditions P-a.s.:

E
[
cFuF (ω0, u

L⋆, uF ) + pQ1cFuL(ω0, u
L, uF⋆)

+
(
pQ2 + (1− r)αF

)
cFuL(ω0, u

L⋆, uF )

∣∣∣∣yF
]
= 0. (11)

Hence, we can select Q1 and Q2 as follows:

Q1 = − 2rFβF

p(βF + αF + 1
2 (α

L + 1))
, Q2 = −1 + (1− r)αF

p
.

Both Q1 and Q2 are inversely proportional to p, the
probability of monitoring. This has an intuitive meaning in
that the lower the chance of monitoring, the more energy L
must use in its strategy to appropriately incentivize F . The
selection of Q1 and Q2 is not unique. In the next section,
we show that Q1 and Q2 can be selected in a way that an
IE strategy reduces the sensitivity of L’s performance to
perturbation on F ’s model.

4. DESIGNING INCENTIVE STRATEGY ROBUST
TO FOLLOWER’S COST PARAMETERS

Our analysis in the previous section is premised on L
knowing F ’s cost accurately–an assumption we relax and
study incentive design that is robust to L’s knowledge of
F ’s cost. We follow in spirit the modeling framework of
Cansever and Başar (1985b), but adapted to our setting
with random monitoring. Specifically, we suppose that
F ’s cost is parameterized by a parameter vector α ∈
Rb. Assume that L does not have access to α, but has
a prior estimate α⋆ referred to as α’s nominal value.
Here, we study the question whether L can design an
incentive equilibrium that is not that sensitive to α (made
precise later), so that L’s lack of knowledge of α does not
significantly impact her performance.

Let γF⋆
α (γL) be F ’s unique best response strategy to L’s

choice of γL, when the cost parameter is α. We seek L’s
strategy γL for which

∂nγF⋆
α (γL)

∂αn

∣∣∣∣
α⋆

= 0,P− a.s., n = 1, . . . , N. (12)

In effect, such a condition implies that F ’s response to L’s
strategy does not vary much in the neighborhood of α⋆.
Recall from the previous section that we utilized a leader-
optimal strategy γL⋆ to construct an IE γ̃L⋆. When applied
to our example, we found that γ̃L⋆ was non-unique; one
could choose Q1 and Q2 in a myriad of ways, each of which
was an affine strategy in uF that yielded leader-optimal
performance. Our next result provides a construction of
γ̃L⋆ for which γF⋆

α (γ̃L⋆) satisfies (12).

We require the following assumptions to state our result.
Assumption 2.

(i) cF is independent of s.
(ii) cF (ω0, ·, ·;α) is jointly strictly convex for every ω0 and

α ∈ A.
(iii) cF (ω0, ·, ·;α) is twice continuously differentiable for

every ω0 and α ∈ A.
(iv) cF (ω0, ·, ·;α) is radially unbounded for every ω0 and

α ∈ A.
(v) P{yL ∈ ·|yF } has infinite support.

Theorem 2. Consider P with ILRCS as L’s IS. Let As-
sumptions 1(iii) and 2 hold, together with the following
three conditions.

(i) For any ϵ ≥ 0, let (γL⋆, γF⋆, π⋆) constitute an ϵ-
leader-optimal strategy profile with L’s IS ILROS, for
which γL⋆ is affine in s, and P-a.s.,

F (yL, yF ) := E
[
cFuL

(
ω0, u

L⋆, uF⋆;α⋆
) ∣∣∣∣yF , yL

]
̸= 0.

(13)

(ii) Given γ̃L⋆ ∈ ΓL
RCS for L by (5), γF⋆

α ∈ Rα(γ̃
L⋆) is

differentiable in α for all yF .
(iii) There does not exist k(yF ) such that

F (yL, yF ) = k(yF )fn(y
L, yF ), ∀n ∈ N (14)

where cFuL,αn (cFuF ,αn) denotes the partial derivative of

cF on uL (uF ) and n-th order derivative on α, and

fn(y
L, yF )

:= F (yL, yF )E
[
cFuFαn

(
ω0, u

L⋆, uF⋆;α⋆
) ∣∣∣∣yF

]

−G(yF )E
[
cFuLαn

(
ω0, u

L⋆, uF⋆;α⋆
) ∣∣∣∣yF

]
, (15)

G(yF ) := E
[
cFuF

(
ω0, u

L⋆, uF⋆;α⋆
) ∣∣∣∣yF

]
. (16)

Then, γ̃L⋆ in (5) satisfies (12).

The art of this construction lies in the existence of Q1 and
Q2 for which one can meaningfully set derivatives of F ’s
best response strategy with respect to α to zero. For the
set of assumptions we have made, F ’s response is indeed
unique, when L chooses an affine strategy. The result
implies that L can design an incentive strategy for which
F ’s response varies “slowly” with α and yet yields the
leader-optimal performance. Under appropriate assump-
tions of continuity, one then expects L’s performance to
vary slowly with α, thus mitigating the impact of L’s lack
of knowledge of α.

In the following, we provide an example QG game similar
to that presented in the preceding section, where Assump-
tion 2 holds and Theorem 2 applies. Let L’s cost be given
by (6) and F ’s cost be given by

cF (ω0, u
L, uF ;α) = rF (uF )2 + qF (α− uF − uL − ω0)

2,

where α is unknown to L. However, L has access to
the nominal value α⋆ = 2. Assume qF = rF = 1/2,
qL = rL = 1/3, and ω0 to be a unit-variance Gaussian
with unit mean, while wL and wF are standard normal
random variables. Again, we assume yL = ω0 + wL and
yF = ω0 + wF . Thus, we get E[ω0|yF ] = (yF + 1)/2 and
E[ω0|yF , yL] = (yF+yL+1)/3. Along the lines of (8)–(10),
for α = α⋆, the leader-optimal strategies are obtained as

γL⋆(yL, s) = −1

6
yL +

1

12
s+

1

12
, γF⋆

α⋆ (yF ) = −1

2
yF − 1

2
.

We can design Q1 and Q2 similar to that in the previous
section; however, not all such designs make L’s perfor-
mance less sensitive to variations in α from its nominal
value α⋆. We start by selecting Q2 = (13 + r)/12p, where
recall that p = P{zy = zu = 1} and r = P{zy = 1}.
Following (11), we then infer that Q1 must satisfy P-a.s.,
E[pQ1(yL, yF )(2yL − yF − 25)|yF ] = −6(yF + 5). (17)
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Any function of Q1 of the form below satisfies (17):

Q1(yL, yF ) =
−6(yF + 5)g1(y

L, yF )

pE[g1(yL, yF )(2yL − yF − 25)|yF ]
, (18)

for some g1(y
L, yF ) such that the denominator is not zero

P-a.s. We find g1 such that the first derivative of the best
response strategy of F , γF⋆

α , with respect to α vanishes
and hence, set

E
[
g1(y

L, yF ) (2yL − 7yF − 55)︸ ︷︷ ︸
:=f1(yL,yF )

∣∣∣∣yF
]
= 0 P-a.s. (19)

where f1 above is the same as defined in (15). Then,

g1(y
L, yF ) = −108yL + 152yF − 69yF yL +

69

2
(yF )2 + 48,

satisfies (19), and g1 in (18) yields

Q1(yL, yF ) =
−2(yF + 5)g1(y

L, yF )

p(127(yF )2 + 623yF − 60)
. (20)

Then, the best response of F for any α becomes

γF⋆
α (yF ) =

{
α(1 + pE[Q1|yF ])− pE[Q1ω0|yF ]− E[ω0|yF ]

− pE[uL⋆Q1|yF ]− E[uL⋆|yF ] + p2uF⋆E[(Q1)2|yF ]

+ puF⋆E[Q1|yF ]

}/{
E[(2 + p2(Q1)2 + 2pQ1|yF ]

}
.

Following (19), pE[Q1|yF ] = −1 for any yF , and hence,
the impact of the uncertain parameter α vanishes from
γF⋆
α (yF ), removing the effect of L’s lack of exact knowledge

of α.

We now illustrate the importance of our sensitivity-
reducing incentive design. With the α-insensitive F ’s re-
sponse, the L’s optimal cost is JL⋆ = 5/36 = 0.139 for
any α. Consider another candidate incentive strategy that
L might design. For the same Q2, suppose we select g1 ≡ 1
and obtain Q1 = (yF + 5)/4p. With α = 1.5 ̸= α⋆ = 2, we
estimate JL = 0.164 with 100K samples using sample av-
erage approximation. With the same samples, the estimate
under the α-insensitive selection of Q1 yields JL = 0.139
that matches the optimal performance. In other words, the
α-insensitive design compensates for L’s flawed knowledge
of α, while another candidate design leads to performance
loss from this mistake.

5. INCENTIVE DESIGN WITH A CONVERGENT
SEQUENCE OF FOLLOWER MODELS

We now turn our attention to incentive design when L
may have inaccurate knowledge of F ’s model, by which
we mean F ’s cost function cF and the joint distribution
T on ω0, y

L, yF . Consider a sequence of models Mn

characterized by {cFn }n and {Tn}n for n ∈ N such that they
converge to the correct model cF and T , respectively, in
some sense as n → ∞; we define the notion of convergence
precisely in the sequel. Let L design an IE strategy {γL⋆

n }n,
computed based on the inaccurate model Mn. We study
how {γL⋆

n }n fares on F , whose model is described by
M = (cF , T ), and not Mn. In essence, we ask: how robust
is our incentive design strategy to incorrect models for F?

We make the following assumptions.
Assumption 3.

(i) cF is independent of s.

(ii) cFn (ω0, ·, ·) and cF (ω0, ·, ·) are strictly convex and
continuously differentiable for every ω0 and n ∈ N.

(iii) cFn , cF , cL are uniformly bounded by a constant M
for M < ∞ for every n ∈ N.

(iv) cFn (ω0, u
L, uF ) converges to cF (ω0, u

L, uF ) uniformly
in uF ∈ UF and uL ∈ UL as n → ∞.

(v) Tn converges to T in the total variation metric as
n → ∞ for every yF , i.e.,

∥Tn − T ∥TV := 2 sup
A∈B(Ω0×YL×YF )

|Tn(A)− T (A)| → 0

as n → ∞, where B(Ω0×YL×YF ) is the Borel σ-field
on Ω0 × YL × YF .

(vi) UF is compact.

Under the assumption of strict joint convexity of cFn , L
can design IEs γ̃L⋆

n ’s for the incorrect models Mn that are
affine in s and uF , following the same recipe as presented
in Theorem 1. For these affine incentive strategies, F ’s
response to γ̃L⋆

n becomes unique, following the affine
structure of L’s strategy and strict joint convexity of cFn
in uL and uF . Call this response R(γ̃L⋆

n ;Mn). Similarly,
define R(γ̃L⋆

n ;M).
Theorem 3. Consider P with ILRCS as L’s IS. Suppose
Assumptions 1(iii), 2(i) and 3 hold. Let ϵ ≥ 0 and
(γL⋆

n , γF⋆
n , π⋆) constitute an ϵ-leader-optimal strategy with

ILROS as L’s IS under the incorrect model Tn, for which
γL⋆
n is affine in s, and

Eνn

[
∇uLcFn

(
ω0, γ

L⋆
n (yL, yF ), γF⋆

n (yF )
) ∣∣∣∣yF

]
̸= 0 P-a.s.

for any n ∈ N where νn is the joint conditional distribution
of ω0, y

L given yF under Tn. Consider a sequence of
strategies {γ̃L⋆

n }n ⊂ ΓL
RCS for L, given by

γ̃L⋆
n (yL, yF , uF , s) = zyγL⋆

n (yL, yF ) + (1− zy)γL⋆
n (yL, s)

+ zyzuQ1
n(y

F , yL)[uF − γF⋆
n (yF )]

+ zyQ2(yF , yL)[s− yF ], (21)

that constitutes an ϵ-IE for P for the incorrect models Mn.
Assume that R(γ̃L⋆

n ;M) and R(γ̃L⋆
n ;Mn) admit unique

limit points as n → ∞. Then, the two limit points are
the same and {γ̃L⋆

n } attains a performance ϵ-close to a
performance of IE for P for the correct model M as
n → ∞.

To prove Theorem 3, we first argue that the leader-optimal
performance is continuous in the models. Then, the rest
follows from the construction of the incentive strategy
from the leader-optimal strategy, and the continuity of
that map in F ’s models. We remark that our indirect
equilibrium characterization technique thus plays a vital
role in proving the requisite robustness results that are
challenging to establish for general Stackelberg games.

Assumption 3(v) is only needed to guarantee that F ’s
response strategies R(γL;M) and R(γL;Mn) exist when
L plays a strategy that is affine in uF . The validity of
our assumption that R(γ̃L⋆

n ;M) and R(γ̃L⋆
n ;Mn) admit

unique limit points as n → ∞ requires further analysis;
we plan to address it in future research. Moreover, recall
that in Assumption 3(iv), we require that the sequence of
incorrect distributions {Tn} converges to the true distribu-
tion T in total variation metric. Such convergence can be
demanding in various data-driven applications; one would
ideally impose weak convergence. While relaxation of this
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Any function of Q1 of the form below satisfies (17):

Q1(yL, yF ) =
−6(yF + 5)g1(y

L, yF )

pE[g1(yL, yF )(2yL − yF − 25)|yF ]
, (18)

for some g1(y
L, yF ) such that the denominator is not zero

P-a.s. We find g1 such that the first derivative of the best
response strategy of F , γF⋆

α , with respect to α vanishes
and hence, set

E
[
g1(y

L, yF ) (2yL − 7yF − 55)︸ ︷︷ ︸
:=f1(yL,yF )

∣∣∣∣yF
]
= 0 P-a.s. (19)

where f1 above is the same as defined in (15). Then,

g1(y
L, yF ) = −108yL + 152yF − 69yF yL +

69

2
(yF )2 + 48,

satisfies (19), and g1 in (18) yields

Q1(yL, yF ) =
−2(yF + 5)g1(y

L, yF )

p(127(yF )2 + 623yF − 60)
. (20)

Then, the best response of F for any α becomes

γF⋆
α (yF ) =

{
α(1 + pE[Q1|yF ])− pE[Q1ω0|yF ]− E[ω0|yF ]

− pE[uL⋆Q1|yF ]− E[uL⋆|yF ] + p2uF⋆E[(Q1)2|yF ]

+ puF⋆E[Q1|yF ]

}/{
E[(2 + p2(Q1)2 + 2pQ1|yF ]

}
.

Following (19), pE[Q1|yF ] = −1 for any yF , and hence,
the impact of the uncertain parameter α vanishes from
γF⋆
α (yF ), removing the effect of L’s lack of exact knowledge

of α.

We now illustrate the importance of our sensitivity-
reducing incentive design. With the α-insensitive F ’s re-
sponse, the L’s optimal cost is JL⋆ = 5/36 = 0.139 for
any α. Consider another candidate incentive strategy that
L might design. For the same Q2, suppose we select g1 ≡ 1
and obtain Q1 = (yF + 5)/4p. With α = 1.5 ̸= α⋆ = 2, we
estimate JL = 0.164 with 100K samples using sample av-
erage approximation. With the same samples, the estimate
under the α-insensitive selection of Q1 yields JL = 0.139
that matches the optimal performance. In other words, the
α-insensitive design compensates for L’s flawed knowledge
of α, while another candidate design leads to performance
loss from this mistake.

5. INCENTIVE DESIGN WITH A CONVERGENT
SEQUENCE OF FOLLOWER MODELS

We now turn our attention to incentive design when L
may have inaccurate knowledge of F ’s model, by which
we mean F ’s cost function cF and the joint distribution
T on ω0, y

L, yF . Consider a sequence of models Mn

characterized by {cFn }n and {Tn}n for n ∈ N such that they
converge to the correct model cF and T , respectively, in
some sense as n → ∞; we define the notion of convergence
precisely in the sequel. Let L design an IE strategy {γL⋆

n }n,
computed based on the inaccurate model Mn. We study
how {γL⋆

n }n fares on F , whose model is described by
M = (cF , T ), and not Mn. In essence, we ask: how robust
is our incentive design strategy to incorrect models for F?

We make the following assumptions.
Assumption 3.

(i) cF is independent of s.

(ii) cFn (ω0, ·, ·) and cF (ω0, ·, ·) are strictly convex and
continuously differentiable for every ω0 and n ∈ N.

(iii) cFn , cF , cL are uniformly bounded by a constant M
for M < ∞ for every n ∈ N.

(iv) cFn (ω0, u
L, uF ) converges to cF (ω0, u

L, uF ) uniformly
in uF ∈ UF and uL ∈ UL as n → ∞.

(v) Tn converges to T in the total variation metric as
n → ∞ for every yF , i.e.,

∥Tn − T ∥TV := 2 sup
A∈B(Ω0×YL×YF )

|Tn(A)− T (A)| → 0

as n → ∞, where B(Ω0×YL×YF ) is the Borel σ-field
on Ω0 × YL × YF .

(vi) UF is compact.

Under the assumption of strict joint convexity of cFn , L
can design IEs γ̃L⋆

n ’s for the incorrect models Mn that are
affine in s and uF , following the same recipe as presented
in Theorem 1. For these affine incentive strategies, F ’s
response to γ̃L⋆

n becomes unique, following the affine
structure of L’s strategy and strict joint convexity of cFn
in uL and uF . Call this response R(γ̃L⋆

n ;Mn). Similarly,
define R(γ̃L⋆

n ;M).
Theorem 3. Consider P with ILRCS as L’s IS. Suppose
Assumptions 1(iii), 2(i) and 3 hold. Let ϵ ≥ 0 and
(γL⋆

n , γF⋆
n , π⋆) constitute an ϵ-leader-optimal strategy with

ILROS as L’s IS under the incorrect model Tn, for which
γL⋆
n is affine in s, and

Eνn

[
∇uLcFn

(
ω0, γ

L⋆
n (yL, yF ), γF⋆

n (yF )
) ∣∣∣∣yF

]
̸= 0 P-a.s.

for any n ∈ N where νn is the joint conditional distribution
of ω0, y

L given yF under Tn. Consider a sequence of
strategies {γ̃L⋆

n }n ⊂ ΓL
RCS for L, given by

γ̃L⋆
n (yL, yF , uF , s) = zyγL⋆

n (yL, yF ) + (1− zy)γL⋆
n (yL, s)

+ zyzuQ1
n(y

F , yL)[uF − γF⋆
n (yF )]

+ zyQ2(yF , yL)[s− yF ], (21)

that constitutes an ϵ-IE for P for the incorrect models Mn.
Assume that R(γ̃L⋆

n ;M) and R(γ̃L⋆
n ;Mn) admit unique

limit points as n → ∞. Then, the two limit points are
the same and {γ̃L⋆

n } attains a performance ϵ-close to a
performance of IE for P for the correct model M as
n → ∞.

To prove Theorem 3, we first argue that the leader-optimal
performance is continuous in the models. Then, the rest
follows from the construction of the incentive strategy
from the leader-optimal strategy, and the continuity of
that map in F ’s models. We remark that our indirect
equilibrium characterization technique thus plays a vital
role in proving the requisite robustness results that are
challenging to establish for general Stackelberg games.

Assumption 3(v) is only needed to guarantee that F ’s
response strategies R(γL;M) and R(γL;Mn) exist when
L plays a strategy that is affine in uF . The validity of
our assumption that R(γ̃L⋆

n ;M) and R(γ̃L⋆
n ;Mn) admit

unique limit points as n → ∞ requires further analysis;
we plan to address it in future research. Moreover, recall
that in Assumption 3(iv), we require that the sequence of
incorrect distributions {Tn} converges to the true distribu-
tion T in total variation metric. Such convergence can be
demanding in various data-driven applications; one would
ideally impose weak convergence. While relaxation of this

assumption is part of our ongoing efforts, we provide two
concrete examples that meet the convergence criterion in
total variation.

• Suppose that yL = gL(ω0) +wL and yF = gF (ω0) +wF

for some Borel measurable functions gL and gF , where
wL ∼ µL, wF ∼ µF , and ω0 ∼ P0. Let wL be independent
of wF . Suppose that gL and gF are known to L, µL, µF and
P0 are only known approximately to L. If the densities µL

n
and µF

n converge in distribution to µL and µF , respectively,
then Scheffe’s theorem guarantees that they converge in
total variation as well. In turn, Tn converges to T in total
variation, as required by Assumption 3.

• Suppose that yL = gL(ω0 +wL) and yF = gF (ω0 +wF )
where wL ∼ µL and wF ∼ µF . Let wL be independent of
wF . Assume that gL and gF are unknown to L but µL, µF ,
and P0 are known to L. Suppose YL and YF are finite. If
incorrect models gLn and gFn converge pointwise to gL and
gF , then for any continuous bounded function f ,∣∣∣∣

∫
f(ω0, y

L, yF )dTn −
∫

f(ω0, y
L, yF )dT

∣∣∣∣

=

∣∣∣∣
∫

f
(
ω0, g

L
n (ω0 + wL), gFn (ω0 + wF )

)
dP0dµLdµF

−
∫

f(ω0, g
L(ω0 + wL), gF (ω0 + wF ))dP0dµLdµF

∣∣∣∣
which converges to zero by the dominated convergence
theorem as n → ∞. By considering a dense subset
of convergence determining functions f of the set of
all continuous and bounded functions, we infer that Tn
converges weakly to T . Since YL and YF are finite, they
converge in total variation, verifying Assumption 3.

6. CONCLUSIONS

We have studied a class of incentive design problems be-
tween a leader (L) and a follower (F ), where we allow
L to observe F -relevant variables with noise. For such
problems, for the case when L has access to the correct
models, we have established the existence of a signaling-
based incentive equilibrium strategy that induces an hon-
est mechanism on F , leading to a desired response from
L’s standpoint. Further for the scenario where L does not
have access to F ’s cost structure, we have established the
existence of an incentive equilibrium strategy that reduces
the sensitivity of her performance to the unknown param-
eter in F ’s cost. We have finally established robustness
of incentive equilibrium strategies to incorrect models,
that included F ’s cost structures and distributions of cost-
relevant random variables. Finally, we have presented sev-
eral examples to demonstrate our main results.

We are interested in pursuing a number of interesting
research directions. First among these directions concerns
learning in incentive design, where L can repeatedly inter-
act with F and learn their cost structures. We also want
to study multi-stage dynamic versions of incentive design
problems (with possible state evolutions for both parties),
and these players can be risk-sensitive decision-makers.
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