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Abstract

We study finite-time performance of a recently proposed distributed dual subgradi-
ent (DDSG) method for convex-constrained multi-agent optimization problems. The
algorithm enjoys performance guarantees on the last primal iterate, as opposed to
those derived for ergodic means for standard DDSG algorithms. Our work improves
the recently published convergence rate of O(log T /+/T) with decaying step-sizes to
O(1/+/T) with constant step-size on a metric that combines sub-optimality and con-
straint violation. We then numerically evaluate the algorithm on three grid optimization
problems. Namely, these are tie-line scheduling in multi-area power systems, coordina-
tion of distributed energy resources in radial distribution networks, and joint dispatch
of transmission and distribution assets. The DDSG algorithm applies to each problem
with various relaxations and linearizations of the power flow equations. The numeri-
cal experiments illustrate various properties of the DDSG algorithm—comparison with
standard DDSG, impact of the number of agents, and why Nesterov-style acceleration
can fail in DDSG settings.

Keywords Distributed optimization - Power system examples

1 Introduction

Distributed optimization algorithms offer mechanisms to optimize in multi-agent envi-
ronments, where one cannot aggregate all problem data in a central location. Agents
in this paradigm iteratively perform local computational steps and communicate rel-
evant variables over a network. While a variety of distributed solution architectures
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have been developed and analyzed in the literature for various settings, we focus on
distributed dual subgradient (DDSG) methods with averaging that can be used to solve
convex-constrained multi-agent optimization problems of the form

N

P minimize Zl filxp), (1a)
P
N

subject to > ghx =0, (1b)
j=1
N

> gt <o, (I¢)
j=1

x;eX; CRY, j=1,...,N. (1d)

The N agents communicate only across edges of an undirected graph &(N, IE).
Assume that functions f;, g3 are convex and g]/’.: is affine over the compact convex set
X foreach j =1,..., N.

At its core, DDSG methods rely on dual decomposition that starts by separating
the Lagrangian into agent-wise Lagrangian functions that each agent optimizes, given
a dual iterate (see classical texts such as [7, 61]). This agent-wise optimization of the
primal variables can be shown to provide a subgradient of the dual function at the dual
iterate. Thus, a subgradient ascent on the dual function can be used to solve the dual
problem. Such an update rule requires a central coordinator to manage the dual iterates,
which is undesirable in many distributed contexts. DDSG methods circumvent this
need by maintaining local copies of such multipliers and running a consensus-based
distributed dual ascent on these local multiplier copies. Approximate primal solutions
can be recovered from these dual solutions as in [63], building on techniques in [31,
42, 50, 55], among others; asymptotic guarantees on recovered primal sequences are
also known.

In this paper, we study a distributed dual subgradient method, analyzed recently in
[48], that provides a fully distributed variant of the algorithm, also proposed recently in
[57]. As opposed to vanilla (i.e., standard) DDSG algorithms, convergence guarantees
of these algorithms are obtained for the last primal iterates as opposed to that for
ergodic means of primal sequences. As Nesterov and Shikhman argue in [57], iterates
in vanilla DDSG algorithms can oscillate wildly during algorithm execution. If the
intermediate primal iterates of the algorithm are implemented in practice, vanilla
DDSG can negatively impact stability in multi-agent environments. Besides, primal
recovery is no longer required for asymptotic constraint satisfaction in this paradigm.

For the algorithms in [48, 57], asymptotic guarantees for the convergence of the
last primal-dual iterate to the set of primal-dual optimizers have been established with
decaying step-sizes. Also, the authors of [48] characterize a O(log T /+/T)-bound on
a metric that combines sub-optimality and constraint violation with decaying step-
sizes (similar to [20]), while they argue a lower bound of O(1/ VT). Their analysis
shows an O(1/+/T)-bound, when a coordinator manages the dual updates centrally.
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Thus, they view the log T factor as a price for decentralization. Our first contribution
of this paper is to close this gap in Sect.2 with the proof in Sect. 3, i.e., we sharpen
the convergence rate to O(1/+/T) for this fully distributed algorithm with a constant
step-size. The dual function for P can be nonsmooth, and as a result, a first-order
algorithm that climbs the dual function cannot converge at a better rate (see Appendix
A), making the algorithm order-optimal.

A number of algorithms apply to P and its variants. Dual (sub)gradient algorithms
include our key motivators in [48, 57], and [22, 58] with accelerated counterparts
discussed in [28, 37]. As opposed to using optimal solutions of primal subproblems to
update the dual variables, one can incrementally update both primal and dual variables
via saddle-point dynamics as in [34, 47, 52]. With specific constraint types in multi-
agent settings, distributing dual variable updates similar to the algorithm we study
has been considered in [62]. Bundle methods have been investigated in [15, 65] that
leverage lower and upper estimates of dual functions and their subdifferential sets
using the history of inexact evaluations of the same. While a detailed performance
comparison of each of these algorithms with the DDSG algorithm we study in our
paper remains out of scope, these prior works feature in several comparative remarks
we make in the sequel.

Throughout the rest of the paper, we study various properties of our DDSG algo-
rithm on P. Specifically, we consider three different optimization problems that arise
in operations of the electric power system and cast them as examples of P. For each
problem, we adopt different power flow models, different notions of agents and dif-
ferent definitions of the network over which these agents interact. This exercise stands
as our second contribution, which demonstrates the modeling power of P and the
broad applicability of the algorithm with convergence guarantees. The grid optimiza-
tion problems are nonconvex due to the nature of Kirchhoff’s laws [12]. In this paper,
we convexify each problem by considering approximations and convex relaxations for
power flow models that are suited to that application. Each problem and the application
of DDSG illustrates specific properties of the algorithm that are delineated below.

e Multi-area optimal power flow (P1) seeks to dispatch resources over an intercon-
nected transmission network, parts of which are controlled by different system
operators. The distributed algorithmic architecture we study in Sect.4 bypasses
the need for the system operators to share all relevant data from within their foot-
print with another system operator, and yet seeks to solve a joint optimal power
flow problem through a distributed solution architecture, e.g., see [30]. For P,
we consider a linear power flow model for transmission networks motivated by
the use of such models in wholesale market environments that facilitate inter-area
coordination, e.g., in [64]. Through the numerical example on P;, we demon-
strate how the averaging scheme stabilizes the last iterate, compared to vanilla
DDSG methods, and circumvents the need for primal recovery. We also show that
the finite-time constraint violation of the algorithm is empirically better than its
theoretical bound suggests.

e Coordination of distributed energy resources (DERs) in distribution grids (P2) is
designed to optimize real and reactive power outputs from DERs at the grid-edge
to minimize cost (disutility) of such a dispatch and possibly a network-wide objec-
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tive such as frequency regulation. A distributed algorithm allows quick updates of
optimization variables without the need to communicate with a central coordinator
across the distribution grid. For P, in Sect. 5, we consider a second-order cone pro-
gramming (SOCP)-based relaxation of the power flow equations in the distribution
grids. The thoroughly studied SOCP-based relaxation of power flow equations for
distribution grids are often tight in practice (see [23, 25]). Through examples of P»,
we show that our algorithm can track changing grid conditions for small networks.
Tracking performance degrades with network size, where aggregation of nodes as
agents becomes vital for performance. Stated differently, if speed is paramount,
one must carefully control the degree of decentralization, possibly opting for an
alternate distributed solution architecture with a coordinator, or devising a fully
centralized algorithm.

o Transmission and distribution (T&D) grid coordination (P3) seeks to dispatch
assets across the transmission and distribution grids without the need to collect
all information from the grid-edge and the bulk power systems at one location.
The distributed solution architecture in Sect. 6 alleviates the transmission system
operator’s lack of visibility into utility-managed distribution networks. For P3, we
consider two different power flow models for the transmission and the distribu-
tion grids. For transmission, we choose a semidefinite programming (SDP)-based
relaxation of power flow equations, given its popularity to approach the AC optimal
power flow problem [9, 43, 68]. For the distribution grids, we consider the linear
distribution power flow model from [5]. Using an example of Pz, we compare the
empirical performance of the DDSG method with an adopted distributed acceler-
ation scheme proposed in [28], where acceleration fails to increase convergence
speed with linear costs, but performs well with quadratic costs. We argue that
nonsmoothness of the dual function with linear costs is behind this phenomenon,
and elaborate on its role in Appendix A.

We recognize that a long literature has emerged on each of the grid optimization
problems; we provide a non-exhaustive list in Table 1. Our goal in presenting the
power system examples is not an attempt to empirically compare our DDSG algorithm
with others in the literature proposed for these problems. Rather, our formulations of
these problems as instances of P reveal the generality of P and make it possible for
subsequent unified algorithm development for P. In addition, each example highlights
an important aspect of the DDSG algorithm.

2 The Dual Subgradient Method with Averaging

We present the DDSG algorithm to solve P in (1). The finite-time performance guar-
antee for P is derived in Sect. 3. Then in Sects. 4, 5 and 6, we cast Py, P, and P53 as
examples of P.

Tolighten notation, let g ; collect both g]; and glI/. with the understanding that the first

ME constraints encode equalities and the last M are inequalities. The algorithm relies
on Lagrangian duality theory associated with /P. We begin by defining the Lagrangian
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function,
N
L(x,2) :=Z[fj(xj)+zng(xj)], 2)
Jj=1
x7 :(x{,...,xﬁ) eX:=X; x...x Xy,
2eZ:=R" xR 3)

Then, P can be cast as a min-max problem with optimal value P* as

" — mi . 4
7= migmag L0009 @

Let X* denote the set of optimizers of P. Associated with P is its dual problem

P = Igleatzxﬂlylg L(x,z). 5)

Let Z* denote the set of optimizers of the dual problem. Weak duality implies that
P* > P},. We say strong duality holds if the inequality is met with an equality. Further
x* € X, z* € Z is a saddle point of L, if

L(x* z2) < L(x*, 72" < L(x,zY), 6)

forallx € X, z € Z. The well-known saddle point theorem (see [24, Theorem 2.156])
states that the primal-dual optimizers X* x Z* coincide with the saddle points of L.
We assume throughout that the set of saddle points of P is nonempty and bounded.
As a result, strong duality holds for P, i.e., P* = P}, and the set of primal-dual
optimizers is nonempty. Saddle-points exist under standard constraint qualifications
such as Slater’s condition, e.g., see [24, Theorem 2.165].

Dual decomposition techniques for distributed optimization rely on the observa-
tion that the dual function separates into agent-wise optimization problems, given a
multiplier z as

N
,?gé L(x,z) = Z mi){;j Li(xj,z), (7

Py
=

=D (z)

where £;(x;,z) := fj(x;) + 2'g j (x ;). If the agents can perform these agent-wise
minimizations, then a distributed projected subgradient ascent algorithm can solve the
dual problem (e.g., see [10]). Per Danskin’s theorem, a subgradient V,;D;(z) can be
obtained from the agent-wise minimization of £ ;, given that the subdifferential set of
the concave function D; at z is

9:Dj(z) == conv{d.L;(x;,z) | x; € Xj(2)}. 8)
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Here, “conv” computes the convex hull of its argument and X*(z) is the set of mini-
mizers of £ (-, z) over X ;. The minimization problem is well-defined, given that X;’s
are compact. Running such an algorithm, however, requires a central coordinator to
compute the z-update and broadcast the results to all agents.

To avoid coordination for the dual update, one can alternately create local copies
of z’s among all agents and enforce equality among these local estimates in the dual
problem as

N
max ZDj(zj),subjecttozjzzk, j.k=1,...,N, 9)
j=1

where z; is the local copy of z with agent j. One can run a projected distributed sub-
gradient ascent as in [63] to solve (9). The primal iterates obtained from agent-wise
minimization of £ ; evaluated at the dual iterates may fail to collectively satisfy the con-
straints of P. Primal averaging schemes have been studied in [63]; limit points of such
recovered primal solutions are known to satisfy the constraints. One can judiciously
maintain local copies only among a subset of the agents to relieve communication
burden (see [38]).

Recently, a dual subgradient algorithm was proposed in [57] that leveraged an esti-
mation sequence technique to provide guarantees on sub-optimality and infeasibility
on the last iterate. This algorithm does not treat ergodic means simply as outputs from
a dual subgradient calculation, but rather uses these means as primal-dual iterates to
run the algorithm. We focus on the fully distributed variant of the algorithm that is
proposed and analyzed in [48]. To present the algorithm, let W € RY*¥ be a doubly
stochastic, irreducible, and aperiodic weighting matrix that follows the sparsity pattern
of &, i.e.,

Wik #0 < (j.k) e E. (10)

Then, the distributed projected dual subgradient with averaging is given by Algorithm
1, where x j/X ; are primal sequences and z;/Z; are dual sequences. The updates
comprise minimization of the local dual function in step 3, averaging of these primal
minimizers in step 4, a consensus followed by local subgradient-based dual update in
step 5, and an ergodic mean computation for the projected dual variable in step 6 with
step-size 1. Here, mz projects the arguments on Z.

We remark that bundle methods from [15] with its distributed variant in [65] can be
used to solve P. Algorithm 1 shares parallels with these bundle methods in that z/Z
carry memory of past subgradient and function evaluations—or their inexact variants—
in its updates rather than classic dual subgradient algorithms that only process local
subgradient information in each dual update. However, bundle methods are some-
what qualitatively different as they leverage the execution history of the algorithm to
approximate the dual function to generate successive iterates. Understanding deeper
connections between these two methods in how they exploit the geometry of the dual
function defines an interesting direction for future research.
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Algorithm 1: Distributed dual subgradient with averaging to solve P.

1 Choose zj(1) =0,Z;(0) =0,x;(0) € X; andn = no/«/f
2forr=1,..., T do

3 X;(t) < argminxjexj Lj(xj,zj)).

4| xj0 <« Sxje-n+1x;0.

s | Zj0 < S0 WikZi( = 1) +1g;(x j(10) — (1 = Dg i (x (1 = D).
6 | zjt+ 1) < 20+ gz [0Z0).

7 end

To study convergence properties of this algorithm, consider the metric introduced
in [57] and used in [48], given by
N N 0T 2
V7 (x(T),Z(T)) := Z: fixe (1)) — Z: D@ + 50
Jj= Jj=

)

N
nz, [Z g,-(x,-(T))}

j=1

(11)

where Z(T) == + Y[ nz [nZ(t — D). Z(t) == % Y)_| Z;(t). The sum of the
first two terms measures the gap between the primal objective at x(7') € X and the
dual function evaluated at Z(7") € Z. The last summand is a measure of the constraint
violation at x (7). We sharpen the bound of [48, Theorem 2] in the next result.

Theorem 1 Iterates generated by Algorithm 1 with n = no/ﬁ overt =1,...,T,
no > 0 constant, satisfy

_ 1 Co
Y1 (x(T),z(T)) < ﬁ (TZ(VV) + Cl) , (12a)
N C
%mmaMzV—men%V? (12b)

j=1

where C’s are positive constants that do not depend on & or T, and o2(W) is the
second largest singular value of W.

Our upper bound in this result sharpens the conclusion of [48, Theorem 2], while the
lower bound is identical. The result implies that the metric in (11) indeed converges
at a rate of 1/+/T. Our proof of the bounds largely mirrors that of [48, Theorem 2],
but deviates from the reliance on results from [20] that incur the log T factor. Instead,
we use an argument inspired by the proof of [17, Theorem 2].

We briefly remark on the implication of Theorem 1 on the sub-optimality of x (T')
and the constraint violation, separately. Call the right hand side of the upper bound in
(12) as C'/+/T. Then, we infer

N N N c’
Zﬁmm%VSZMMM—Z%@MSﬁ? (13)

j=1 =1 j=1
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since P* dominates the dual function, and the second summand of ¥7 in (11) is
non-negative. Also, combining the two inequalities in (12), we get

N ’
P -3 Diamy < S

J=1

(14)

Thus, the last primal and the dual iterate exhibit an O(1/+/T) sub-optimality. The
dual function can be nonsmooth at an optimum. This convergence rate is therefore
order-optimal, given [56, Theorem 3.2.1]. Faster convergence guarantees through a
Nesterov-style acceleration require stronger assumptions. See Sect.6 and Appendix
A for a discussion.

Providing the same rate for constraint violation using Theorem 1 remains challeng-
ing. The difficulty stems from the fact that, unless x (7') is feasible in P, the primal-dual
gap can assume negative values. However, this gap is bounded below. Using (13), we
obtain

N N N N
D FiG () =3 D@M) z min } - fi(xp) —max Y fi(xj) =t =Dy
j=1 j=1 j=1 j=1

(15)

The constant Dy > 0 is finite, owing to the compact nature of X. Then, (12) implies

2
10

N
= |z | D g || <
j=1

C/
—. 16
2N T (16)

Dy
=L 4
JT

This suggests a worst-case O(T ~!/#) decay in constraint violation—an estimate that
is overly conservative as our numerical estimates will reveal. Better guarantees for
vanilla DDSG methods are known, e.g., in [54, 55]. A constant step-size of 79/ JT
yields an O(1/+/T) convergence of the ergodic mean of the primal iterates.

With non-summable and square-summable decaying step-sizes, vanilla DDSG
methods converge to a single dual optimizer (not just to the optimal set), even in
distributed settings, e.g., see [31]. While asymptotic convergence to the primal-dual
optimal set for Algorithm 1 is established in [48, Lemmas 1, 2], convergence of the
dual iterates to a single dual optimizer has not been established. It remains unclear
whether such a result is attainable beyond vanilla DDSG; the conclusion does not hold
even for centralized first-order primal-dual methods; see [51, Sect. 3.2].

3 Proof of Theorem 1

We begin by defining additional notation. Since f; and g ;’s are convex (and hence,
continuous) and X; is compact for each j, these functions admit positive constants
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Dx, Dg, Lg such that

lxj—x)| = px. lg;epl =Dy [ei00 -] = Ly |xs -

forall x;, x’j € X;. Also, we define Dz := L,Dx + Dj.

3.1 Bounding 77 from Above

Using this notation, we derive the upper bound on #7 in four steps:

(a) We bound the duality gap as

Y 2D ny _
D) =Dy < =E 3% |z - 1) = Za - 1)

Jj=1 j=11t=1

N T
- %Zzgj(xj(f))Tﬂ:Z [Z¢ - D).

j=11t=1

(18)
(b) Then, we bound the constraint violation as
T al LY 1
2
v |72 ;g,(xm) <= ZX_: X;0) nz[Z@t - D]+ SN D
(19)
(c) We prove that Z;’s remain close to their centroid as
N
Yozt =Zw], < N*Dz (1 — o (W)~ (20)
j=1

(d) Steps (a), (b), (c) are combined to prove the result.

e Step (a). Bounding the duality gap: Note that

N N
D G () = DjE(T)] =Y [ fi(x;(T) = Dj(z;(T))]
j=1

Jj=1

N
+ 3 [P (1) — DyE(T))]
j=1
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j=1 t=1
=}
N
+ D Y [z (T) —2(D)] . 21)
j:IT

The last line follows from three observations: f; is convex, x ;(T') = % ZrT=1 X
and D; is Dg-Lipschitz. In the rest of step (a), we individually bound .«7; and ;.
To obtain a bound on szj, note that

1zj(t) — (t = Dzj(t — 1) =7z [nZ; — D], (22)
which then implies

1L;(X (1), 2;(1) = Li(X;(1), 1zj(t) — (t — D)z;(t — 1))
+ (=1L (Xj@),zj(t — 1))
> L (Xj(0).mz [nZ; = D))
+ (=D)L X —1),z;(t = 1)).

(23)

The first line follows from elementary algebra, while the second line requires the
definition of Z; and the fact that X ;( — 1) minimizes £;(-, z;(t — 1)) over X;.
Iterating the above inequality, we obtain

T
TDj(z;j(T)) =TLj(X;(T),z;(T)) > ZL, (Xj(0),mnz[nZjt—D]). @b
t=1
The above relation bounds .%7; from above as
T

L (Xj@) = £ (X @) 7z [nZ = D])]

t=1

1

d.<_
=T

1 T
=2 28X,z [1Z;¢ — 1]
=1 (25)

1w B
=—7 2 & X, (vz[nZ;( = D] = nz [1Z = 1))
t=1

|« _
— 7 28 (X0 Tnz [nZ(t - 1]

t=1
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The Cauchy-Schwarz inequality and the bounded nature of g ; imply

D T
o < TZ Inz [nZ;(t — D] —nz [nZ - D]|

- (26)
5 DI IONA TSNS
t=1
To bound %, we use the definition of z;(¢) to infer
1 T
Zj(T)=7§TEZ[an(I—1)], 27)
which in turn implies
1 o _
B; < 72”% [0zt — D] —nz[nZ¢ - D]]|. (28)

t=1

Using the bounds of (26) and (28) in (21) and appealing to the non-expansive nature
of the projection operator yields (18), completing step (a) of the proof.
e Step (b). Bounding the constraint violation: From the Z-update, we obtain

N
Z =1 > g0, (29)

Jj=1
which proves useful in bounding the constraint violation as

2
T2

N
o |z | g || = |z [Za)|’
j=1

=Y (Irz[Z0]|” - |rz[Z - D]I)

t=1

T
<23 (72 [Z¢ - D] 1Z0) - Z(t - 1]

=E(1)

(30)

T
+Y |z -Za - v,
t=1
=% (1)
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The inequality follows from the fact that for any two scalars a, b, we have

a? —b? =2b(a — b) + (a — b)?,
(nwr, [a])® — (7w, [b1) < 27R, [b1(@ — b) + (a — b)*. (31)

We separately bound & (¢) and .% (¢). For the former, we use the convexity of g j
and the x-update to conclude

N
Z-Z0- 1= g0 - —Zg,(x,(r
j=1
=L§:g-<gx~(t—l)+lX~(t)>
N S AN 7
N (32)
TZ (xj(t—1))
. _
<y 28 (X0).

1

~.
I

Note that if an entry of g encodes an equality constraint, the linearity of that constraint
implies that the above relation is met with an equality. Thus, we obtain

e _
&) < ﬁ;gj (X;0)" nz[Z( - 1)]. (33)

To bound .7 (¢), we use the first line of (32) and the bounded/Lipschitz nature of g j
on X to get

h

N
|zt) -z - 1| < Wg;u — 1) |xj(0) —x; — D] + D,
L N
= Y X0 - x,0] + Dy G4
j=1
< LyDx + D,

Thus, we have . (1) < D%. Replacing the bounds on &'(7) and .% (¢) in (30) gives the
required bound on constraint violation in (19), completing the proof of step (b).
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o Step (c): Bounding the deviation of Z ;’s from their centroid: Consider § € RN*M
given by

tT=(Zi0) | ... 1 Zn(0). (35)

and define A :=1 — %]l]lT, where 1 € RY is a vector of all ones and I € RV*N is
the identity matrix. Using this notation, we deduce

N
Yoz -Zw)|, < VNIAL @ F < NIIAL®)]5. (36)
j=1
where, ||-|| denotes the Frobenius norm of a matrix. Then, the Z-updates can be
written as
S+ 1) =We@) +e(), £0)=0 (37)

with ¢@(t) € RN*M. an analysis similar to (34) gives that each row has a 2-norm
bounded above by Dz, implying

lo@)l, < vVNDy. (38)

Using (37), we then obtain

AL+ Dl = [AWE(@) + @)l = WAL, + [[Ae@)]) (39)

utilizing the fact that W and A commute. To bound the first term in (39), note that
W is doubly stochastic for which the Perron-Frobenius theorem [33, Theorem 8.4.4]
implies that its eigenvalue with the largest absolute value is unity for which 1 is the
eigenvector. However, 1TA = 0, which in turn suggests AZ () is orthogonal to this
eigenvector. Using the Courant-Fischer theorem [33, Theorem 4.2.6], we then obtain

[WAL@)l, < o2(W) [AL D>, (40)

where o2 (W) is the second largest singular value of W. Since W is irreducible and
aperiodic, o2(W) € (0, 1). We bound the second term in (39) as

[Ae@®l; = Al le@®l2 = VNDgz, (41)
——
=1

because the 2-norm is sub-multiplicative. Using the bounds in (40) and (41) in (39),
imply

1AL+ Dl < 02(W) |AL (D], + VND7. (42)

@ Springer



2004 Journal of Optimization Theory and Applications (2024) 203:1991-2024

Iterating the above inequality gives

t—1
1AL, <VNDz Y [oa(W)]'™ ! </NDz (1 —op(W)™ . (43)

£=0

Then, (36) and (43) imply (20), finishing step (c) of the proof.
e Step (d). Combining steps (a), (b), (¢) to derive the result: Note that (18) and (19)
together with the definition of 77 give

2
N , N
I ET) = 30 [T = D ETN] + o |7z | Y (T)
=1 2
2Dy W B )
< TX::;H |Zjt—1)—Z@¢ -1+ ENDZ
M + QNDZ
- o2 (W)
(44)

where the second inequality follows from (20). Using n = 19/~/T, we then obtain
the upper bound in (12).

3.2 Bounding 77 from Below

By the saddle-point property of a primal-dual optimizer (x*, z*) of P, we get

P = L(x*, %)
< L(x(T), ")
N N
= X;fj(x ST +20T Elg ;& () 45)
J J=
N

Z £i (T + 24Tz Zg,(x,(T))

j=1 j=1

Applying Young’s inequality to the last summand in the right hand side of the above
relation, we further get

2

7’*<Zf/<x/<T>>+ — 2|+ 3 |z Zg(x,(T)) .6

j=l1
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Subtracting Zj»v:l D;(z(T)) on both sides and using n = no/ VT yields the desired
lower bound on #7 in (12).
To summarize, the lower and upper bound of ¥7 (x(T), z(T)) are

2D,N3/?2D
s% 22 4 TN D2

l—o(W) 2% “47)

N
_ N o
P*—;Dj(zm) Ak I> < <n

with = n9/~/T . Note that D¢, Dz and N impact the required iterations that depend
on the problem structure. One expects Dy, and as aresult, Dz to grow with the number
of constraints (1b), (1c), and N to grow with the number of agents.

4 Grid Optimization Example 1: Tie-Line Scheduling

In this section and the next two, we present three different examples of grid optimiza-
tion problems that can be cast as examples of P. Section 7 for a selective literature
survey on these problems. Here, we focus instead on reformulation of each as an
instance of P and report numerical results from running Algorithm 1 to reveal inter-
esting properties of the algorithm.

We first present our results on Pj—the tie-line scheduling problem. Tie-lines are
transmission lines that interconnect the footprints of different system operators (hence-
forth, called areas). Ideally, one would solve a joint optimal power flow (OPF) problem
over assets within all areas to optimize tie-line schedules. However, technical and legal
challenges impede aggregation of all problem data at a central location, requiring a
distributed algorithm design. Since the seminal work in [39], a substantial literature
has developed on multi-area OPF problems for tie-line scheduling. Here, we formulate
‘P1 and apply Algorithm 1.

Denote by 6 ; € R""/ and 07 e R'"7, the voltage phase angles at the internal and the
boundary buses in each area j, respectively. We adopt a linear power flow model in
which the vector of power injections within an area (generation less demand ij — ij
at internal buses and zero injections at boundary buses) become linear in voltage
phase angles through suitably defined matrices B. Individual line flows within and
across areas also become linear in these angles, defined through matrices H. Angles
are constrained within [0, 277], represented as @ € ®. Utilizing L’s to encode line
capacities, ¢’s to denote power procurement costs (typically deduced from supply
offers in electricity markets), and & (N, [E) to represent the interconnection graph
among the areas, the multi-area OPF problem becomes

N
P1 : minimize ch (p?) )
j=1
subject to Pl <pi<77.0¢€0. (48a)
B 8+ B; 365 =p7 —py. (48)
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Fig.1 The three-area network
for multi-area optimal power
flow simulations, obtained by
joining three IEEE 118-bus

9, Ref bus 28
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systems 58 17
106 78 5 17 13 29
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Fig.2 Performance of Algorithm 1 (left) and Algorithm 2 (right) on Py for the network in Fig. 1

B; 0, +Bj 05+ Bif;=0, (48

Jdv
k~j
Hj0;+H;6;<L;, (48d)
H 05+ Hy j0p < Lji,
j=1,...,N, k~jin®. (48e)

Here, (48a)—(48d) encode the generation capacity and angle constraints, power balance
and transmission line constraints within each area, while (48e) enforces limits on tie-
line flows. To cast (48) as P, define

.
x; = (0},0]1, [pJG]T) L X =[x | (48), (48b), (48d)), fi(x)) =c; (pf),

and write (48c) and (48e) as (1b) and (1c), respectively.

Consider the three-area power system shown in Fig. 1 that comprises three IEEE
118-bus test systems stitched together with 6 tie-lines as shown. The three systems were
modified as delineated in Appendix B.1. We applied Algorithm 1 on a reformulation
of Py as an instance of P with a flat start (z;(1) =0, Z;(0) =0, j=1,..., N) and
step size n = no/ VT, where ny = 102 and T = 10°. The results are portrayed on
the left of Fig.2. We chose W based on the transition probabilities of a Markov chain
in the Metropolis-Hastings algorithm (see [59, Sec. 2.5]). Here, P* was computed by
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Fig.3 Performance of Algorithm 2 with primal averaging (left) and the impact of step-size on Algorithms
1 and 2 with primal averaging (right)

solving P; as a linear program. Our simulations were performed in MATLAB 2018b.
All subproblems were solved via MOSEK version 9.2.17.

Algorithm 2: Distributed dual subgradient to solve P.
1 Choose zj(1) =0and n = no/T.

2forr=1,...,T do

3 xj(t) < argminxjexj Lj (xj,2;(1)).

o | zj+ D < S Wikmg [z (0 + ngi (e ().

5 end

We compared Algorithm 1 with the classical dual subgradient method in Algorithm
2 (we remark that the projection and the consensus operations in step 4 are sometimes
reversed, e.g., see [63]). The progress of Algorithm 2 with the same step-size used
for Algorithm 1 is shown in the right of Fig.2. Note that Algorithm 1 leads to much
smoother progress of Z;V:l fj(x;()) compared to that with Algorithm 2. Classical

dual subgradient with primal averaging via X ;(r) := %Zi:l xj(r) for each j =
1, ..., N can prevent this “flutter” (see [54, Sect. 4]), as the left plot in Fig. 3 reveals.
While step 4 of Algorithm 1 executes a similar averaging operation, this averaging step
cannot be viewed as an output of the iteration dynamics as is the case for Algorithm 2
with averaging. As a result, the last iterate of Algorithm 1 moves smoothly as opposed
to Algorithm 2. Such an update is useful in applications that require iterates to be
directly implemented as control actions and the dual subgradient is only available at
the current iterate (see [57] for a detailed discussion).

In the right subgraph of Fig.3, we compare the impact of step-size on the per-
formance of Algorithms 1 and 2 with primal averaging after T = 10° iterations.

Here, relative optimality measures ’Z?’:l fitx;(@) — 77*‘ /P* and constraint viola-

tion measures HRZ[ZZNZI g (xj(T))]H for Algorithm 1 and the same at X ;(r)’s for

Algorithm 2. Empirically, constraint violation for Algorithm 1 appears similar to that
for Algorithm 2 with primal averaging that is known to have O(T~!/?) decay rate,
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much better than that suggested by (16) for Algorithm 1. We conclude this section
with a remark. Notice that this algorithm takes a relatively large number of iterations
to converge (~ 10° for our example), a feature common to first-order algorithms. Such
iteration count is perhaps only meaningful when the decentralized primal subproblems
are easy to solve. When that is not the case, one should judiciously weigh the merits
of decentralization via dual subgradient methods against faster second-order methods
and a centralized solution architecture, when possible.

5 Grid Optimization Example 2: DER Coordination

Our next application problem is the coordination of DERs such as thermostatically
controlled loads, electric vehicles, distributed rooftop solar, etc. that are increasingly
getting adopted in distribution grids. There is a long literature on DER coordination to
fulfill a variety of objectives that range from tracking a regulation signal at the T&D
interface, to volt/VAR control within the distribution grid, etc. (e.g., see [14, 16]).

We formulate the DER coordination problem 7, over a balanced three-phase radial
distribution network on N buses, described by graph &(N, IE). Let the first bus be
the T&D interface. Associate directions to edges in IE arbitrarily to obtain a directed
graph QS(N IE) where j — k € IE denotes a directed edge from bus j to bus k in
&. At each bus J, consider a dispatchable asset capable of injecting real and reactive
powers p¢, qJG, respectively. Let ¢ ( ij, qJG) denote the cost of power procurement
from that dispatchable asset. At j = 1, this cost might reflect the cost of procuring
power from the transmission grid. It can also encode deviation of the power injection
from a set point defined by a frequency regulation signal. At buses j =2, ..., N, the
cost can encode the disutility of deferred demand or cost of power production from
dispatchable generation. The power injection capabilities of this asset at bus j are
limited as BJG < pJG < ﬁ? along with

2 2 2
 <afor 5] +[osT < [F5]"

henceforth denoted as (p](.;, qu) € $;. Such models encompass photovoltaic and
energy storage systems, water pumps, commercial heating, ventilation, and air con-
ditioning (HVAC) systems, etc. At each bus j, also assume nominal real and reactive
power demands pj.) and ¢ jD .

We need additional notation to describe the DER coordination problem. Associate
with bus j the squared voltage magnitude w;, deemed to lie in [gj, w;]. Let Pj,

O x denote the real and reactive power flows from bus j to bus k for j — k in &.
Denote by £; i, the squared current magnitude flowing from bus j to bus k, upper
bounded by L; . Let rjx and x; x denote the resistance and reactance of the line
Jj — k. The DER coordination problem with a second-order conic relaxation of the
feasible set induced by the power flow equations in the radial distribution network can
be formulated as
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N
P, : minimize ZCj(pJG, qu),
j=1

subject to

(r9.4%) €8, (49a)
P —pP =Y Pix— Y (Prj—njlr)) (49b)

kij—k kik—j
G—qP = 0jx— > (Qrj— i) (49¢)

kij—k kik— j
wy =wj —2(rj ,k Pjk + 2.6 Qjx) + (7 k+xjk)€/k, (49d)
ik <Ljk, wj <wj <wj, (49e)

iswj = P k+QJ k>

j=1,...,N,j—> ke &. (49¢)

The last inequality is a second-order cone constraint, making (49) a SOCP. Constraints
in (49b), (49¢) describe real and reactive power balance at each bus. Relations (49b),
(49c), (49¢), and the inequality in (49f) replaced with an equality define the feasible
set described by AC power flow equations (see [23, 49] for details).

To cast P; as an instance of P, we first write the out-neighbors of j in 05 asky, ..., ky
and identify
G G T
Xj= (pj 24y Wis Pjgys s Pikys Qjkys -+ Qj,kfv@j,kl»--”zf””) ’

X; 1= {x; | (49a), 49¢), @9}, f;x)) = c;(pG. %)

Then, it is straightforward to write (49b), (49¢) and (49d) as examples of (1b). This
formulation does not require inequality constraints of the form (1c). Note T&D inter-
face’s energy balancing and voltage constraints (49b)-(49d) can be treated as (1d)
since there is no coupling variable from adjacent agents.

We ran Algorithm 1 on P, over a modified IEEE 4-bus radial distribution network
(see Appendix B.2) for details).

System conditions in the distribution grid can change quite fast. One line of work
on DER coordination solves optimization problems in quick successions to deal with
such changes, e.g., in [71]. To illustrate the use of DER coordination with time-
varying distribution grid conditions, we simulated a case where real and reactive
power demands were changed every 10° iterations as prescribed in (Appendix B.2)
with step-size n = 0.1. Algorithm 1 isrestarted after every change. Here, we use the last
primal-dual iterate at the point of change to restart Algorithm 1. As Fig.4b illustrates,
Algorithm 1 can track the optimal cost in the changing problem environment.

Convergence slows down over larger networks. Consider a modified IEEE 15-bus
radial distribution network; see Appendix B.2 for the modifications. Figure 6 illustrates
that Algorithm 1 with restarts is able to track optimal costs, but only when nodes are

@ Springer



2010 Journal of Optimization Theory and Applications (2024) 203:1991-2024

T&D interface 35

CL N
v s Opt. Sol. 3
@_‘F 2 =30
3 =z L
cal A |
4 1 2 3 4 5
@—-’_ Iteration ¢ %106

(a) (b)

Fig. 4 a A 4-bus radial network. b Progress of the objective function at the last iterate of Algorithm 1 on
P, for the network in Fig. 4a

Fig.5 The IEEE 15-bus test feeder subdivided into 2, 4, 8 and 12 groups
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Fig.6 Evolution of the objective function value of Algorithm 1 on the IEEE 15-bus test system with varying
degrees of decentralization (based on groupings of buses per Fig. 5). Performance of the coordinated DDSG
method with averaging in [48, Algorithm 1] with constant step-size is shown in the red dashed line
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grouped together into fewer agents in P, as shown in Fig.5. Such a slowdown is
expected, given that the convergence guarantees depend on N, albeit polynomially.
We remark that all first-order algorithms suffer from this issue. In practical implemen-
tation, one must carefully explore the trade-off between the degree of decentralization
and the accuracy of tracking within a fixed number of iterations. To see the merits of
a more centralized architecture, consider the algorithm in [48, Algorithm 1] with con-
stant step-size that corresponds to the same algorithm as DDSG, but where a central
coordinator updates the dual variables for all primal subproblems simultaneously. It
tracks the optimal solution faster than all possible groupings of the buses, per Fig. 6.
Thus, coordination improves speed of convergence. Our study highlights that central-
ization of solution architecture, possibly through coordination or otherwise, is often
more suited for real-time tracking problems with stringent speed requirements.

We conclude this section with two remarks. First, notice that the solution architec-
ture we study stipulates each primal subproblem to be solved at each iteration. This
subproblem contributes to the knowledge of a local subgradient of the dual function.
Despite needing more coordination, bundle methods proposed in [65] have the advan-
tage that not all subproblems need to be solved at each iteration and this flexibility is
appealing when the number of agents is large and the computational cost for solving
the primal subproblems can be high. These methods utilize the whole history of eval-
uations of the dual function and the subdifferential set rather than an arbitrary local
subgradient to update the current iterate; see [ 15] for details. A meaningful comparison
and possible merger between bundle methods and our algorithms with applications
to DER coordination is left for future work. Second, notice that our formulation in
(49) considers a deterministic optimization problem over a single snapshot in time.
Our solution architecture should apply to the multi-stage counterpart with stochas-
tic supply and energy storage as considered in [27], whose formulation with SOCP
relaxation parallels ours and comes with tightness guarantees for said relaxation.

6 Grid Optimization Example 3: T&D Coordination

The lack of visibility of transmission system operators (SOs) into distribution grids
and bottlenecks in wholesale market clearing software make it impossible for such
SOs to directly harness the flexibility offered by DERs in the distribution networks.
Naturally, distributed algorithms are suited for T&D coordination. Assume that for
each distribution network, an aggregator A directly controls the dispatchable DERs
and knows the network parameters. In what follows, we present the T&D coordination
problem P3 that a transmission SO and a collection of distribution aggregators solve
in a distributed fashion. We utilize a semidefinite relaxation of the feasible set induced
by the power flow equations for the transmission network and a linear distribution
flow model for the distribution grids.

To formulate the joint dispatch problem of all T&D assets, we require three different
graphs. The first among these is the transmission network, modeled as an undirected
graph " on n'™" transmission buses. The second set of graphs is for the distribution
grids that connect to the transmission network at their points of common coupling—the
n"3 transmission buses. We model the distribution grid connected to transmission bus
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£ as an undirected graph Qﬁgi“ on n?m + 1 distribution buses, where the first bus of
&t coincides with bus £ in &™™. Finally, we consider an undirected star graph &
on N = n'"™" 4 | nodes with the aggregators Ay, ..., A,un as the satellite nodes and
the SO (the N-th node) at the center.

Let V e C" denote the vector of nodal voltage phasors, where C is the set of
complex numbers. We formulate the engineering constraints of the grid using the
positive semidefinite matrix A := VV" ¢ ™1™ To describe these constraints,
let yo.x = Yk.¢ denote the admittance of the transmission line joining buses £, k in
" and yy ¢ denote the shunt admittance at bus €. Then, define @, Wy x as the

tran tran

n' x n'"" Hermitian matrices whose only nonzero entries are
[Peklee = E(yl,k +yei) [Pl = [Pekli = 5k,
(Yerlee = Z(ye,k = yei), Yerdex = [Werle == 57 ek

tran

In addition, we define the n™" x n'"¥ Hermitian matrices

1 H H Ly H
D)= 3 ()’e,z + ye,e) 1,1, + % Doy, W= > (ym — yu) 1,1, + ];‘I’z,k,

where 1 is a vector of all ones of appropriate size and 1 is a vector of all zeros except
at the £-th position that is unity. This notation allows us to describe the apparent power
flow from bus £ to bus k as Tr(®, xA) + iTr(¥, A), the apparent power injection
at bus £ as Tr(®¢A) + iTr(¥,A), and the squared voltage magnitude at bus £ as
Tr(1, ]l?A), where i := +/—1. At each transmission bus £ with load PeD +1i QgD, leta

generator supply apparent power PlG +i QZG with procurement cost described by C,.

Let p, +iq, € €™ denote the vector of net power injections across the distri-
bution network, save the first bus. Further, let the power procurement cost be given
by c; to inject p, +iq, € o™, Also, let Ay € "™ denote the vector of squared
voltage magnitudes across the same set of buses. We adopt the popular LinDistFlow
model to tackle the nonconvex nature of the power flow equations in the distribution
grid. Let M e R™™ be the node-to-edge incidence matrix of Qﬁ?isr, Further,
remove the first row of M to obtain the reduced incidence matrix M. Then, the
voltage magnitudes are related to power injections under the LinDistFlow model as
A¢ = pypo + Xoqo + Aeel, where p, and x, are n9t x n9t matrices defined
as p, = 2M T diag(re)M ', x, := 2M T diag(x,)M ", r¢/x, collect the resis-
tances/reactances of the n4i! distribution lines.

The optimal joint dispatch of all T&D assets is given by

nlran ntran
P3 : minimize Y CuPE 09 + > e(pf . af).
=1 =1
: G G tran
subject to (P, Q) e 5,0, (50a)
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(P qf) e st (50b)
P — PP +17 (pf = pf) = Tr(@cA), (50¢)
0f — 0P +17 (¢f —aP) =Tr(¥A).  (500)
Tr(®y ¢ A) < Lg g, (50e)
Agyp < Age < Agy, (501)
A >0, (50g)
Wy < pePr+ Xeqo + Al = wy, (50h)

fore=1,...,n"" ¢ ~¢.

Here, (50a), (50b) encode the capabilities of the transmission and the distribution
assets, respectively, where $" and gdist are assumed convex. Constraints in (50c¢)
and (50d) enforce nodal power balance at transmission nodes. Transmission line
(real power) flows are constrained in (50e), with L’s describing the line capacities.
One can alternately constrain apparent power flows. Transmission voltage limits are
enforced via (50f) within [A, ,, Xg’ ¢]. The relation A = A% requires A to be posi-
tive semidefinite (enforced in (50g)) and rank-1. We consider the rank-relaxed power
flow equations by dropping the rank-1 requirement. For the distribution grid, voltage
limits are enforced in (50h) and power flow limits are ignored.

Recall that & for T&D coordination problem is a graph on N = n'™" 4 1 nodes,
where the first n'™" nodes are transmission buses and the last node represents the SO.
Define

xe:=(pl.al)", Xe = {x¢ | 500)), fo=ce(pS,q9)

for ¢ =1,...,n"" Collect the real and reactive power generations across the trans-
mission grid in the vectors PG, QG, respectively. Then, define

xn 1= (IPO1T. 10T vee OUANT  vee BIADT)
Xy = {x sy | (50a), (50e), (50.1), (508)},

n tran

Inn) =Y CuPP. 0f).

=1

The constraint (50g) can be written in terms of x y as

RA} S{A)
(—S{A} SR{A}) =0

and (50c) — (50d) as examples of (1b) using Tr(pA) = vec (R{p})T vec (R{A}) +
vec (3{@})T vec (I{A}) for a Hermitian matrix ¢. Constraints (50h) are examples of

inequality constraints in (1c).
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Fig.7 The 204-bus network for T&D simulations, obtained by joining the IEEE 6-bus transmission network
with six IEEE 33-bus distribution networks
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Fig.8 Progress of Algorithm 1 on P3

We report numerical results on a 204-bus T&D system that comprises the IEEE
6-bus transmission network joined with six IEEE 33-bus distribution systems (see
Fig.7 and Appendix B.3 for details). We applied Algorithm 1 on a reformulation of
‘P3 as an instance of P with a flat start (z;(1) =0,Z;(0) =0, j =1,..., N) and step
size n = 1o/~/T, where 79 = 103 and T = 10%. The agent-wise subproblems for Ps
are communicated over a 7-node star graph & with the SO in the center. Convergence
results are shown in Fig. 8.

One might surmise that dual subgradient methods can be accelerated a la Nesterov.
Such acceleration requires smoothness of the dual function—a property that an applica-
tion problem such as P53 does not always possess. In Appendix A, we provide simple
examples, where dual functions are nonsmooth, and show how the nonsmoothness
impedes acceleration. We illustrate the same difficulty with P3. Specifically, we com-
pare the performance of Algorithm 1 with a distributed acceleration scheme in [28,
Eqgs. (5)-(6)], adopted to our setup, described in Algorithm 3.

In this algorithm, the dual ancillary sequences Z ; (), Y ; () in steps 3-4 are averaged
by «(¢) in step 6, where «(?) is updated in step 5. The distributed acceleration scheme
in [28, Eqgs. (5)-(6)] has been designed for unconstrained optimization problems; we
project multipliers of constraints (50h) in step 6 on the positive orthant to apply it to Ps.
Eachlocal problem s solved in step 7 to obtain the local dual subgradient g ; (x j (£ +1)).
The central subgradient is approximated in step 8 that combines consensus tracking
and local gradient averaging.
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Algorithm 3: Accelerated distributed dual subgradient to solve P.

1 Choose n = no/ﬁ, z;()=Y;(1) =0,a(l) =0.5,x (1) < argminxjexj ﬁj(xj, z;(1)), and
sj(1) < gj(x ().

2fort=1,..., T do

3| Zje+ 1) < TN Wikzk(@) + s (1)

o | YD) < L WY ) + Glys (@)

s | at+1) <4 [7(1(1)2 +Ja)? + 4a(z)2]

6 | zjt+ 1) < nz[d—at+1)Z;jt+1) +a@+ DY+ D]

7 xj(t+1) < argminxjexj Lj(xj,zjt+1)

8 | S+ < XN Wiksi() + g (xj(t+1) — g, (x;(1)

9 end
’ Algorithm 1(No acceleration) Algorithm 3(With acceleration) ‘
__ 10%]
= I W
| 10° {
= 1072
N Quadratic Costs Linear Costs
10
10° 102 10 10° 10° 10? 10 106

Iterations ¢ Iterations t

Fig. 9 Convergence of dual iterates on P3 about Algorithm 1 (no acceleration) and Algorithm 3 from [28,
Eqgs. (5)-(6)] (with acceleration)

The results are shown in Fig. 9. Here, we adopted cold start for the dual iterates for
both algorithms, i.e., z;(1) =0, j =1,..., N. We show the case when generation
costs for real power are considered quadratic on the left. The figure on the right
is derived with linear real power generation costs. All reactive generation costs are
considered quadratic for both simulations. Quadratic costs often yield a smooth dual
function that Algorithm 3 can exploit and attain faster convergence than Algorithm 1.
With linear costs, the dual function can be nonsmooth (especially at an optimal dual
solution) as a result of primal non-uniqueness [6, Theorem 6.3.3]. Nonsmoothness
is a fundamental barrier to acceleration as our example reveals. We discuss the role
of smoothness of the dual function in acceleration further in Appendix A through
illustrative examples.

7 Selective Prior Works on Distributed Grid Optimization

The literature on distributed optimization techniques applied to grid optimization prob-
lems Py, P2, P3 is extensive and growing. While our goal in Sects. 4-6 was to illustrate
the properties of the DDSG algorithm we considered, we include a partial survey in
Table 1 for the interested reader to follow up on.

Perhaps the most widely studied algorithms are those based on dual decomposition.
Very similar to our approach, agents are often required to agree on optimization vari-
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Table 1 Some papers on distributed algorithms for Py, 7>, and P3

Method Problem and citations

Dual subgradient P1 12,3, 19,21, 29, 41, 44, 46], P, [60, 66]
Saddle point dynamics Py [1, 32, 67], P, [16]

Primal gradient Py [4,40], P> [8, 13, 18, 26]

Cutting plane, column and constraint generation P1 [45,70], P3 [69]

Multi-parametric programming P1 130, 35, 36]

ables that correspond to power flows, voltage phase angles, etc. Constraints enforcing
them are dualized and the primal/dual variables are then updated suitably. Tech-
niques such as quadratic regularization of the dual function, inexact dual (sub)gradient
updates, and heuristic adjustments to these updates have been explored. These works
include both dual (sub)gradient and primal-dual saddle-point dynamics. A notably
distinct class of algorithms for power system problems include those where primal
variables common to multiple agents are updated by a coordinator in an outer loop,
while a primal subproblem in the inner-loop optimizes other variables with the common
ones fixed. The art in these algorithms lies in exploiting the nature of the constraints
and the information obtained from the primal subproblems to update the common
variables, either using Benders decomposition, column or constraint generation tech-
niques, or using multi-parametric programming.

8 Concluding Remarks

We have studied a constant step-size distributed dual subgradient (DDSG) method with
averaging that provides order-optimal 1/+/T convergence rate after T iterations for
multi-agent convex-constrained optimization problems of the form P whose objective
function need not be strongly convex. The convergence guarantee improves the rate of
the decaying step-size, fully decentralized counterpart studied in [48]. We formulated a
variety of problems that arise in the operation of an electric power system as examples
of P and applied the DDSG method to solve them. The case studies with DDSG on
grid optimization problems are presented not to empirically challenge other methods
in the literature, but as a means to illustrate the broad applicability of optimization
problems such as P to facilitate unified algorithm development. These examples also
underscore various properties of the DDSG algorithm. Specifically, the first example
illustrates the difference in performance of the last iterate between the vanilla DDSG
method and ours. The second example reveals the effect of the number of agents on
convergence speed. The third example empirically studies the possibility of Nesterov-
style acceleration in DDSG methods and the role that smoothness in the dual function
plays in such analysis.

Several research directions are of interest to us. The first among them is an algorithm
with last-iterate guarantees over time-varying communication networks. The second
important direction is a disentanglement of the error #7 to provide guarantees on sub-
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optimality and constraint violation separately. A third direction is the development of
similar algorithmic architectures for stochastic and risk-sensitive convex optimization
problems.
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A Appendix A: Dual Subgradient Methods Cannot Generally be
Accelerated

Nesterov-type acceleration relies on smoothness of the objective function. Here, we
illustrate why such acceleration is generally untenable in dual subgradient settings.
We first present examples where the dual function for constrained optimization prob-
lems are nonsmooth. Then, we illustrate through examples how nonsmoothness of the
objective function impairs acceleration. Consider an optimization problem of the form

1
minimize —xTEx + )‘;‘Tx + v, subjectto Ax <b. (@28
xexX 2

with E being positive semidefinite (but not positive definite) and X being a convex
polyhedral set. This is a quadratic program (QP) that simplifies to a linear program
(LP) when E = 0. Associate multipliers z > 0 with Ax < b. Then, the dual function
for the problem in (51) is given by

1
D(z) := —b"z + v + minimum {—xTEx +ETx + zTAx} . (52)
xeX 2
With parameter choices

X:=1[0,0.17%, &= -[1717 11]", v =5,

4 [0-19012042] T0.04 (53)
~ 037054 0.13]" 7 T |0.06

we plot D(z) with E = 0 and E = diag (24, 26, 0), respectively, in the left and right
of Fig. 10. The primal and dual optimum is P* = P}, = 2.43 for the QP and 2.30 for
the LP.

D in Fig. 10 is nonsmooth. One might expect that for QP with E # 0, D might be
smooth. Indeed with positive definite Z, D becomes smooth, per [53, Lemma 2.2] or
[6, Theorem 6.3.3]. Smoothness can no longer be guaranteed, when E is only positive
semidefinite, as evidenced by Fig. 10.
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Fig. 10 Illustrations of nonsmooth D(z) on top and a slice D(-, zE) on the bottom for (51) with parameters
in (53). The plots on the left are obtained with & = 0 and on the right with 2 = diag (24, 26, 0)

To demonstrate the impact of nonsmoothness on acceleration, consider the problem

L 1
minimize f(x):= =|lx — xc||% + Mlx|l1- 54)
xeR? 2

With xc = 0, f is minimized at the origin. If A = 0, then f is smooth. For A > 0,
f is nonsmooth at the origin. With xc # 0, f is again smooth with A = 0. However,
with A > 0, f is nonsmooth at the origin, but not at the optimum of f.

We compare (sub)gradient descent, i.e., x(¢ + 1) = x(¢) — nV f(x(¢)), with an
accelerated variant described in Algorithm 4 on (54).

Algorithm 4: Accelerated Gradient Descent adopted from [71], Sect. 3.7.2
1 Choose n = 0.003, x(1) = y(1) = (0.05, 0.05), and (1) = 0.
2forr=1,..., T do
o+ BT,y Lot
Ya+1) < x@®) —nVfx@)

x@+ 1D« A-—yO)ye+1D+y@)y@)
end
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Fig. 11 Comparison of SGD and AGD on (54) with xc = 0 on the left and with xc = (0.1, 0.1) on the
right

We start both algorithms at (0.05,0.05) with n = 0.003. For accelerated
(sub)gradient descent (AGD), we also set (1) = 0. The plot on the left side of Fig. 11
shows the progress of subgradient descent (SGD) and AGD on (54) with xc = 0.
Note that when A = 0, i.e., when f is smooth, AGD outperforms SGD. However,
when A = 0.01 and f is nonsmooth at the optimum, AGD performs better initially,
but both algorithms oscillate around the optimum with similar errors, eventually.

In the right subgraph of Fig. 11, we compare SGD and AGD under the same settings,
but with xc = (0.1, 0.1). Note that AGD now performs better than SGD with zero
and nonzero A. That is, when the nonsmoothness is away from the optimum, AGD can
accelerate convergence to the optimum locally, as long as the iterates remain within a
region around the optimum where the function is locally smooth.

B Appendix B: Simulation Details for Sections 4, 5 and 6

Network data were obtained from MATPOWER 7.1.

B.1 Appendix B1: Data for Solving P,

The multi-area power system considered in Section 4 is illustrated in Figure 1. The
118-bus networks were modified as follows. Tie-line capacities were set to 100MW
and their reactances were set to 0.25p.u. Capacities of transmission lines internal
to each area were set to 100MW. All loads and generators at boundary buses were
removed. Quadratic cost coefficients were neglected and the linear cost coefficients
c; of the generators were perturbed to 'Ej i=cjo (0.99 + 0.02‘;']-), forj=1,..., N,
where entries of §; are independent MO, 1) (standard normal) variables. All phase
angles were restricted to [ %, £1.

B.2 Appendix B2: Data for Solving P,
The 4-bus network considered in Section 5, shown in Figure 6, is modified from the
IEEE 4-bus network as follows. The branch joining buses 1 and 4 was altered to

connect buses 3 and 4. We enforced squared current flows as £; ; € [0, 200] Amp?,
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Table 2 Cost coefficients of the 4-bus network for P;.

Bus | 1 2 3 4
ap[SMW?] | 0 6 7 8
Bpl$MW] | 30 19 18 17

o [$/MVAR? | 5 5.1 52 53

Table 3 Cost coefficients of the 15-bus network for P;.

Bus | 1 5 7 8 10 13 14 15
ap[$IMW2] | 0 25 23 21 19 17 15 13
Bpl$/MW] | 50 41 42 43 44 45 46 47
ag[$/MVAR?]| 25 24 23 22 21 20 19 18

Table 4 Cost coefficients of the 6-bus network for P3.

Bus | 1 2 3 4 5 6
ap[$IMW2]]| 8.7 59 6.8 7.2 42 35
BplSMW] | 11 12 13 14 15 16
ag[$/MVar?] 32 35 2.3 1.8 L5 17

real and reactive branch power flows as P;; € [—1,1] MW and Q; € [-1,1]
MVAR, respectively. DER generators were added at buses 2, 3 and 4. Bus 1 defined
the T&D interface. Generation capacities were fixed to [0, 1] MW and [—1, 1] MVAR.
Generation costs were o p; (pf)2 + Bpj pf + oy (qJG)2 with coefficients in Table 2.

For the IEEE 15-bus system shown in Figure 5, we modified the branch flow limits
to mirror those for the 4-bus system. We added 7 distributed generators at buses 35,
7, 8, 10, 13, 14, 15, where bus 1 is the T&D interface, all with capacities [0, 0.2]
MW and [—0.2, 0.2] MVAR. Generation costs were similar to the 4-bus network with
coefficients in Table 3.

We randomized the real and reactive power demands at each change point by scal-
ing each (real/reactive) load by [a) + (0 — w)é], where & ~ AN(0, 1). Parameters
(w, @) were varied at the change points in the sequence (0.70, 1.30), (0.80, 1.20),
(0.85, 1.15), (0.75, 1.20), (0.95, 1.05). The experiment was initialized with default
loads from MATPOWER.

B.3 Appendix B3: Data for Solving P3

In Section 6, for the 204-bus system in Figure 7, the 6-bus transmission network
was modified as follows. All branch capacities are set to SMW. All real and reactive
generation capacities were set to [0, 5S]MW and [—5, 5] MVAR, respectively. We
considered PZD +j Q? = (44 j4)[MVA] ateachbus £ = 1, ..., 6. Generation costs
were similar to the 4-bus network with coefficients in Table 4.

@ Springer



Journal of Optimization Theory and Applications (2024) 203:1991-2024 2021

For all 33-bus distribution networks, all branch capacities were set to 4 MW. Four
DER generators were added at buses 18, 22, 25 and 33. Bus 1 is the T&D interface.
Again, we considered generation costs as for P, but with coefficients ey = 5o
(0.9+0.1&), B,; = 200 (0.9+0.1£)) and ay¢ = 3 0 (0.9+0.1&7) for £ =

1,...,n"™" where all entries of &, &, &, are drawn from A0, 1). Real and reactive

power demands in the distribution networks were randomized similarly to that for P
withw = 0.9 and o’ = 1.1.
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