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1 Introduction

Characterizations of balls and ellipsoids among convex bodies in Euclidean space have

been used effectively in major results in many areas of mathematics. Currently, a number of

conjectured characterizations of balls and ellipsoids are still open and, in this paper, we prove

several infinitesimal versions of such characterizations for smooth convex bodies with positive

Gauss curvature. The meaning of this approach will be made precise shortly, but, for now, let us
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say that the characterizations will depend on the smallness of a parameter δ > 0 representing,

in a certain sense, the closeness of the characterization criteria to the boundary of a smooth,

strictly convex body. In other words, in this paper, the emphasis is on the effect of the boundary

structure on validating the open problems in a restrictive context. The conjectures remain open

in larger generality not because the characterization criteria may not be valid farther away from

the boundary, but rather because the techniques employed close to the boundary do not apply

farther away from it.

One such open problem is whether constant area sections of a convex body tangent to a given

ball contained in the body imply that the convex body is a ball. We consider an infinitesimal

variant of this problem and, using it, provide a characterization of the ball which is, in some

sense, supporting the conjecture. The approach has been prompted by some partial answers to

the homothety conjecture [17] for floating bodies, one obtained very recently in [2], for which

we will say a few words in Section 3, and another, much older, [18]. As we revisited the older

argument in [18], we realized that one can provide some answers to similar questions related

to other homothety type conjectures of affine invariant constructions which, to the best of our

knowledge, if known, they have never been published. In Sections 3 and 4, we prove two such

characterizations of ellipsoids implied by the homothety of some affine invariant constructions.

In the first case, a homothety of very small factor between the boundary of a convex body and

its surface of centers implies that K is an ellipsoid. In the last section, we propose a version of

a classical affine invariant problem, the Busemann-Petty Problem 5.

In this paper, all homotheties between pairs of convex bodies K1,2 ⊂ R
d are with respect

to a fixed point O ∈ Int(K1) ⊆ int(K2), i.e. letting O be the origin of Rd, the convex body

K1 is homothetic to the convex body K2 if and only if there exists a positive real number λ

such that K1 = λK2. For each of these problems, it makes sense to consider the more general

question of characterizing the convex bodies that admit the specific homothetic construction

up to translation. This makes sense for convex bodies which do not have a center of symmetry,

otherwise the center of homothety is the center of symmetry. This more general question is,

however, not considered here.

2 On Convex Bodies with Sections of Constant Volume

A convex body is a compact convex set in R
d, d ≥ 2, with non-empty interior. By Vd we

mean the usual Lebesgue measure and by Vk, 1 ≤ k ≤ d− 1, we understand the k-dimensional

Hausdorff measure which coincides with the k-dimensional Lebesgue measure when the set lies

in a k-dimensional affine subspace of Rd.

In 2001, Barker and Larman proposed the following conjecture [5]: Suppose that K1,K2, L

are convex bodies in R
d with L ⊂ int (K1) ∩ int (K2). Assume that whenever H ⊂ R

d is a

hyperplane supporting L, the (d− 1)-volumes of K1 ∩H and K2 ∩H are equal. Then K1 = K2.

One of the natural reference bodies to consider as L is, of course, a Euclidean ball and, so

in the same paper, they proved:

Theorem 2.1 [5] Suppose that K ⊂ R
2 is a convex body containing, in its interior, the

Euclidean unit ball B ⊂ R
2. If the chords of K cut by the supporting lines of B have constant

length, then K is a larger homothetic copy of B.
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In dimension d ≥ 3, the conjecture remains open except for the case whenK1,K2 are convex

polytopes and L is a Euclidean ball, see [20]. Several other results were obtained by imposing

extra assumptions such as special normalizations, [9], considering data over thick sections of

convex bodies [21], and also imposing certain volume assumptions. Some other modifications

of the problem were considered in [22]

Here, let K ⊂ R
d, d ≥ 2, be a C∞ smooth, strictly convex body, containing the origin in its

interior, and let δ > 0 be some fixed positive real number assumed to be very small. The as-

sumption on the smoothness of the boundary can be reduced to a lower order of differentiability,

C4, which will be clear from the technique employed in proving the results.

For each ξ ∈ S
d−1, denote by Ht(ξ)(ξ) the hyperplane

Ht(ξ)(ξ) = {x ∈ R
d | x · ξ = t(ξ)},

where t(ξ) > 0 is the positive number, assuming that it exists, such that the tangent hyperplane

to K at the point of outer normal ξ is translated inward until Ht(ξ) is so that

Vd−1(K ∩Ht(ξ)(ξ)) = δ.

Let Sδ = ∩ξ∈Sd−1H−
t(ξ)(ξ) be the corresponding convex body obtained as the intersection of

the half-spaces

H−
t(ξ)(ξ) = {x ∈ R

d | x · ξ ≤ t(ξ)}.

We call this convex body the constant sections body or the body of δ-sections.

The smallness of δ is assumed, for the moment, so that for each direction ξ ∈ S
d−1, there exists

a section of (n− 1)-dimensional volume equal to δ.

Our first result is the following:

Theorem 2.2 Let K ⊂ R
d, d ≥ 2, be a C∞ smooth, convex body with positive Gauss

curvature. If, for some small δ > 0, we have that Sδ is homothetic to K with respect to a point

in the interior of Sδ, then K is a Euclidean ball.

Proof As mentioned in the introduction, we take the origin of Rd to be the center of

homothety for Sδ relative to K. The first step of the proof is to derive a relation between the

support function of K and the support function of Sδ, both taken with respect to this choice

of the origin, along all directions ξ, essentially estimating the distance between the supporting

hyperplanes of normal ξ of the two convex bodies.

To do so, choose coordinates x1, x2, · · · , xd in R
d such that {e1, · · · , ed−1, ξ} is an orthonor-

mal basis of Rd and the supporting point, {q} := Hξ ∩ ∂K, lies, momentarily, at the origin of

this system of coordinates.

Then, ∂K is locally a graph in these coordinates,

xd = −1

2

d−1
∑

i,j=1

bijxixj + o(|x|2), (2.1)

where bij is the second fundamental form of ∂K at the point q of outer normal ξ, and f = o(s)

means f/s → 0 as s → 0.

Moreover, there exists a special linear transformation T ∈ SL(d) of the form T =





T ′ 0

0 1



,

with T ′ ∈ SL(d− 1), that fixes ξ, preserves the (d− 1)-dimensional volume in any hyperplane
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of normal ξ, and brings ∂K locally to the form

xd = −1

2
K1/(d−1)(q)

d−1
∑

i=1

x2
i + o(|x|2), (2.2)

where K(q) = det [(bij)ij ] is the Gauss curvature of ∂K at q as the determinant of the coefficients

of the second fundamental form at that point. Thereafter, we consider K as a function of ξ as q

is the unique point of the boundary of K of outer normal ξ. With this parametrization, known

as the inverse Gauss map parametrization, it is useful to consider the support function hK of

K to represent the boundary of K:

hK : Sd−1 → (0,∞), hK(ξ) = sup
z∈K

z · ξ = q · ξ.

Thus, if t = t(ξ) is defined as above, we have

δ = Vd−1 (K ∩Ht(ξ)) =

(

2 | hK(ξ)− t |
d−1
√
K(ξ)

)
d−1
2

ωd−1 + o
(

|hK(ξ)− t|
d−1
2

)

, (2.3)

where ωk is the volume of the unit ball in R
k.

This leads to a description of the support function with respect to the center of homothety,

which we set as origin for this purpose, of the constant sections body in an arbitrary direction

ξ ∈ S
d−1 in terms of the support function of the original convex body in the direction ξ:

hSδ
(ξ) = hK(ξ)− cd δ

2
d−1

d−1
√
K(ξ) + o(δ

2
d−1 ), (2.4)

where cd = (2ω
2/(d−1)
d−1 )−1 is a constant depending on the dimension, and all coefficients in the

asymptotic expansion are C∞ smooth.

Recall now that, by hypothesis, Sδ is homothetic to K, so there exists a λ ∈ (0, 1), close to

one in this case when δ is close to zero, such that Sδ = λK.

To estimate the homothety factor λ such that Sδ = λK, we note that S◦
δ = 1

λ K◦, so we

relate λ to the volume ratio of their polar bodies via homogeneity

λ−d =
Vd(S

◦
δ )

Vd(K◦)
.

Recall that the polar body of a convex body L containing the origin is the convex body L◦

defined by

L◦ = {y ∈ R
d | x · y ≤ 1, ∀x ∈ L}.

It follows from the equation (2.4) above that

Vd(S
◦
δ ) =

1

d

∫

Sd−1

1

hd
Sδ
(ξ)

dµ(ξ) = Vd(K
◦) + cdδ

2
d−1

∫

Sd−1

d−1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ) + o(δ
2

d−1 ). (2.5)

Thus

λ−d = 1 + cd δ
2

d−1
1

Vd(K◦)

∫

Sd−1

d−1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ) + o(δ
2

d−1 ), (2.6)

and, so,

λ = 1− cdδ
2

d−1
1

d Vd(K◦)

∫

Sd−1

d−1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ) + o(δ
2

d−1 ). (2.7)
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Therefore, using (2.4) and the homothety hSδ
(ξ) = λhK(ξ), we have, for each ξ ∈ S

d−1,

cd δ
2

d−1
hK(ξ)

d Vd(K◦)

∫

Sd−1

d−1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ) = cd δ
2

d−1
d−1
√
K + o(δ

2
d−1 ), (2.8)

and, consequently,

hK(ξ)

Vd(K◦)
=

d−1
√
K(ξ)

1
d

∫

Sd−1

d−1√K(ξ)

hd+1
K (ξ)

dµ(ξ)
+ o(1), (2.9)

where o(1) is an error term that goes to zero when δ goes to zero.

Recall now a few elements of the dual mixed volume theory. For any two star bodies L1,2

in R
d containing the origin, and any i ∈ R, the i-th dual mixed volume of L1,2 is defined (see

[13]) by

Ṽi(L1, L2) =
1

d

∫

Sd−1

ρd−i
L1

ρiL2
(ξ) dµ(ξ),

where ρLj : S
d−1 → (0,∞) denotes the radial function of the star body Lj , j = 1, 2. Of

particular interest for us is the case i = −1 for which it follows, via Hölder inequality, the

mixed volume inequality

Ṽ d
−1(L1, L2) ≥ V d+1

d (L1)V
−1
d (L2).

Equality is reached above if and only if L1 and L2 are dilates of each other and so the radial

functions ρL1
and ρL2

are multiples of each other. Therefore, given that the reciprocal of the

support function of a convex body K containing the origin is the radial function of its polar

body, ρK◦ , equation (2.9) can be re-written in terms of a dual mixed volume and radial functions

as follows
ρ−1
K◦(ξ)

Vd(K◦)
=

ρ−1
L◦ (ξ)

Ṽ−1(K◦, L◦)
+ o(1), (2.10)

where L◦ is the star body whose radial function is 1/ d−1
√
K.

Due to the dual mixed volume inequality above, if we assume that L◦ is not a dilation of

K◦, the inequality is strict and (2.10) implies, after re-arranging terms, that

ρL◦(ξ)

Vd(L◦)
1
d

<
ρK◦(ξ)

Vd(K◦)
1
d

+ o(1). (2.11)

If δ is very small, then
ρL◦(ξ)

Vd(L◦)
1
d

≤ ρK◦(ξ)

Vd(K◦)
1
d

(2.12)

holds and we have two star bodies of volume 1, namely 1

V
1/d
d (K◦)

K◦ and 1

V
1/d
d (L◦)

L◦, such that

one is enclosed in the other. Unless the two bodies coincide, this is impossible.

Therefore, equality holds in (2.12) and L◦ is homothetic to K◦. Thus, there exists a λ′ > 0

such that ρK◦(ξ) = λ′ρL◦(ξ) for all ξ ∈ S
d−1. This means that the convex body K is such that

its support and curvature functions satisfy pointwise on the unit sphere the equation

λ′hK(ξ) =
d−1
√
K(ξ), ∀ξ ∈ S

d−1. (2.13)

The fact that a convex body K satisfying (2.13) must be a Euclidean ball is precisely the

conclusion of the second part of Theorem 1 in [12], concluding also our proposition. �
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3 On the Convex Body Bounded by the Surface of Centers Homoth-

etic to K for Small δ

Let ξ ∈ S
d−1 be a unit vector, and let

H−
t (ξ) = {x ∈ R

d | x · ξ ≤ t}

be the half-space of outer normal ξ whose boundary lies at distance t from the origin. Let K

be a smooth strictly convex body in R
d and let δ > 0 be a fixed positive constant.

Recall that the convex floating body Kδ of K (see [4, 17]), if it exists, is defined as the

envelope of half-spaces cutting a cap of volume δ from K:

Kδ =
⋂

ξ∈Sd−1

H−
t(ξ)(ξ),

where t(ξ) is such that

Vd(K ∩H+
t (ξ)) = δ.

The convex floating body is the subject of a homothety conjecture asserting that K homo-

thetic to Kδ, possibly up to a translation (as mentioned in the introduction), implies that K is

an ellipsoid. It is expected that the center of homothety is the center of mass of K, and so, the

two bodies should be dilations of each other relative to their respective centers of mass. This is

obvious in the case of centrally symmetric convex bodies K. However, otherwise, it is still an

open problem to find the relation between the centers of mass of the two bodies, see Problem

3 from the list of open problems in [3] and the discussion surrounding it.

Lastly, let us mention two recent partial results on the homothety conjecture for the convex

floating body. It was shown in [2] that, in the plane, the homothety conjecture holds if K is

centrally-symmetric and close to a Euclidean ball in the Banach-Mazur distance, but that the

homothety conjecture is not true for planar convex bodies that are not centrally-symmetric. In

its larger generality, the conjecture remains open for centrally-symmetric convex bodies.

The surface of centers, [8], is the locus of centers of mass of the caps cut off from K in

defining the floating body

xCδ
(ξ) =

1

δ

∫

K∩H+
t (ξ)

x dx.

This surface, also called surface of buoyancy, is of uttermost significance in studying the

flotation of 3-dimensional objects in a liquid of constant density. In particular, if Cδ is a sphere,

then K floats in equilibrium in every direction. The tangent plane to Cδ at xCδ
(ξ) has normal

ξ and is, thus, parallel to the hyperplane bounding the half-space H−
t(ξ)(ξ). There are many

other properties of this surface that connect both with the practical aspect of the problem and

with many geometric questions, see, for example, [15] for a recent result related to Ulam’s 19th

problem in the Scottish book and [3] for a survey touching on many related questions.

We will prove that:

Proposition 3.1 Let K ⊂ R
d, d ≥ 2, be a C∞ smooth, convex body with positive Gauss

curvature. If, for some small δ > 0, we have that the convex body of boundary Cδ is homothetic

to K with respect to a point in the interior of the domain bounded by Cδ, then K is an ellipsoid.
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We want to point out that, using spherical harmonic analysis methods, Reuter proved the

equivalent result for δ = Vd(K)/2, and origin-symmetric K close to the Euclidean ball in the

Banach-Mazur distance, without a priori smoothness or curvature assumptions, see [14]. For

the value of δ = Vd(K)/2, we note that the surface of centers is the boundary of the centroid

ΓK of K. Without getting into specific details, let us still mention that in [14], Reuter also

extended his result to prove that, for any p > 1, the p-centroid body Γp(K) homothetic to K for

origin-symmetric K close to the Euclidean ball implies that K is an ellipsoid. Reuter’s results,

[2], and Ryabogin’s [15] suggest that the central-symmetry assumption on K is essential for

this type of homothety problems.

Proof The relation between the support functions of K and Kδ for small δ was derived

in [18], in a similar manner to the one in the previous section for Sδ. As in the preceding

section, in the calculation of the support function in the direction ξ, we may assume a linear

transformation that does not affect the directions parallel to ξ in R
d, so that the boundary of

K is locally approximated by

xd = −1

2
K1/(d−1)(ξ)

d−1
∑

i=1

x2
i + o(|x|2). (3.1)

This representation form assumes that the point on ∂K with support plane of normal ξ is,

momentarily, the origin. Then, the difference between the two support functions amounts to

estimating the height of the slab K ∩H+
t of volume δ, and the result is as follows:

hKδ
(ξ) = hK(ξ)− cd K

1
d+1 (ξ) δ

2
d+1 + o(δ

2
d+1 ), (3.2)

where cd :=

(

2
d−1
d+1ω

2
d+1

d−1

)−1

is a constant depending on the dimension.

Furthermore, as the surface of centers is known to be the locus of the centers of mass of

the slices K ∩ H+
t (ξ) of constant volume, the smallness of δ enables us to derive the relation

between the support functions of K and Cδ up to some small error term.

The fact that the center of mass of the cap is also the point of support of Cδ for the

hyperplane of outer normal ξ, implies that solely the xd component, in the sense of the previous

approximation, of the center of mass is relevant. Hence,

hCδ
(ξ) =

1

δ

∫ hK(ξ)

hKδ
(ξ)

t Vd−1 (K ∩Ht(ξ)) dt

=
ωd−1

δ

∫ hK(ξ)

hKδ
(ξ)

[

t

[

2 (hK(ξ)− t)
d−1
√
K(ξ)

]
d−1
2

+ o
(

(hK(ξ)− t)
d+1
2

)

]

dt

= hK(ξ)− ωd−1

δ

[

2
d−1
2

√
K(ξ)

∫ hK(ξ)

hKδ(ξ)

(hK(ξ)− t)
d+1
2 dt+ o

(

(hK(ξ)− hKδ
(ξ))

d+3
2

)

]

= hK(ξ)− ωd−1

δ

[

2
d−1
2

√
K(ξ)

[

(hK(ξ)− hKδ
(ξ))

d+3
2 · 2

d+ 3

]

+ o
(

(hK(ξ)− hKδ
(ξ))

d+3
2

)

]

= hK(ξ)− 1

δ

c
− d+1

2

d√
K(ξ)

[

(

cdK
1

d+1 (ξ)δ
2

d+1

)
d+3
2 · 2

d+ 3

]

+ o
(

δ
2

d+1

)

,

or,

hCδ
(ξ) = hK(ξ)− 2

d+ 3
cd(K(ξ))

1
d+1 δ

2
d+1 + o

(

δ
2

d+1

)

, (3.3)
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where cd is the same constant as in the description of the support function of Kδ relative to

the support function of K of [18].

For simplicity, in what follows, we will be using Cδ to also denote the convex body whose

boundary is the surface of centers. In order to describe the homothety factor λ such that

Cδ = λK, we will proceed as in the previous section and use polar bodies

λ−d =
Vd(C

◦
δ )

Vd(K◦)

from which it follows in a similar manner that

Vd(C
◦
δ ) =

1

d

∫

Sd−1

1

hd
Cδ

(ξ)
dµ(ξ) = Vd(K

◦)+
2

d+ 3
cdδ

2
d+1

∫

Sd−1

d+1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ)+o(δ
2

d+1 ). (3.4)

Consequently,

λ = 1− cdδ
2

d+1
2

d+ 3

1

d Vd(K◦)

∫

Sd−1

d+1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ) + o(δ
2

d+1 ). (3.5)

The homothety hCδ
(ξ) = λhK(ξ) and (3.3) imply that, for each ξ ∈ S

d−1,

cd δ
2

d+1
hK(ξ)

d Vd(K◦)

∫

Sd−1

d+1
√
K(ξ)

hd+1
K (ξ)

dµ(ξ) = cd δ
2

d+1
d+1
√
K + o(δ

2
d+1 ), (3.6)

and, thus,
hK(ξ)

Vd(K◦)
=

d+1
√
K(ξ)

1
d

∫

Sd−1

d+1√K(ξ)

hd+1
K (ξ)

dµ(ξ)
+ o(1), (3.7)

from which the conclusion follows exploiting the dual Minkowski theory in the same way as

before. �

Note the similarity between the expressions of the support functions ofKδ and, respectively,

Cδ in (3.3) which prompts us to state the following proposition regarding the affine surface area

of K:

Ω(K) =

∫

Sd−1

K 1
d+1 (ξ) dSK(ξ) =

∫

Sd−1

K− d
d+1 (ξ) dµ(ξ), (3.8)

where dSK is the surface area measure of K viewed as a Borel measure defined on the unit

sphere. It is likely that the next result is known, but we could not find it stated in the literature.

Lemma 3.2 Let K ⊂ R
d, d ≥ 2, be a C∞ smooth, convex body with positive Gauss

curvature and let Cδ denote the surface of centers of K for δ in some small interval (0, δ0).

Then, the affine surface area of K, Ω(K), satisfies

Ω(K) =
d+ 3

2cd
lim
δ↘0

Vd(K)− Vd(Cδ)

δ
2

d+1

. (3.9)

Proof Let f be a continuous function on the unit sphere S
d−1. Suppose that f defines

a perturbation of a convex body L containing the origin in its interior to be the convex body,

denoted Lt, of support function ht(u) = hL(u)+ tf(u), ∀u ∈ S
d−1, where t ∈ (−δ, δ) is taken to

be very small so that ht remains positive. Aleksandrov, [1], showed that the following variational

formula holds
dVd(Lt)

dt
= lim

t→0

Vd(Lt)− Vd(L)

t
=

∫

Sd−1

f(u) dSL(u). (3.10)

Without getting into details, we mention that this variational formula can be made sense

of even if ht is not a support function. To do so, we define the convex body Lt via its support
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function hLt
= sup {h : Sd−1 → R | h is support function, h ≤ ht pointwise}, and use that

hLt = ht a.e. with respect to the surface area measure of Lt, [1].

Additionally, it is a known fact that if ht → h with respect to the sup-norm on C(Sd−1),

then Kt → K in the Hausdorff metric and dS(Kt) converges weakly to dSK , [11, 16].

Note that our set-up is hKt
= hK + tf +o(t) where t = δ

2
d−1 > 0 and f is a power of Gauss

curvature of K viewed as a function on the unit sphere S
d−1. It was noticed, in particular by

Leichtweiss, that Aleksandrov variational formula holds in this case too, [11, 12], so (3.9) is a

direct consequence of (3.3).

We mentioned Leichtweiss work in particular as he was also aware early on that such

deformations can be used for other functionals. Nowadays, this idea is widespread, note its

applications to the log-Miknkowski problem [6], the chord problem [19], and other variational

problems, [10], to mention just a few. �

Remark 3.3 This proposition also suggests that, up to a constant depending on dimen-

sion, the affine surface area Ω(K) of a convex body K, not necessarily smooth, can be defined

as the limit above via its surfaces of centers.

4 Infinitesimal Busemann-Petty 5

In a seminal paper, Busemann and Petty [7] proposed to the larger community working on

convex bodies a list of ten problems from which all but one are still open today. One of the them

is known as Busemann-Petty 5 (BP5) and pertains to the following construction. Let K be a

convex body in R
d containing the origin in its interior. For each unit vector ξ ∈ S

d−1, consider

the sectionK(ξ) := K∩H(ξ), whereH(ξ) stands for the hyperplane of normal ξ passing through

the origin. Let C(ξ) be the cone of base K(ξ) and apex in K that has maximal volume. It is

obvious that the apex of the cone is a point of support hyperplane of (outer) normal ξ, where

we have chosen the outer for the sake of considering the problem for convex bodies that may

not be centrally symmetric and, thus, we follow continuously a fixed orientation.

Problem BP5 asks if ellipsoids are the only convex bodies K characterized by the property

that C(ξ) has constant volume, independent of ξ, see [7].

Here, for any smooth, convex body K with positive Gauss curvature, we propose to fix

a small constant δ > 0 and look at the cones Ct(ξ)(ξ) with apex at the point of support

hyperplane of outer normal ξ, and whose base is a non-central section ofK denotedK(t(ξ), ξ) :=

K ∩Ht(ξ)(ξ), where

Ht(ξ)(ξ) = {x ∈ R
d | x · ξ = t(ξ)}

is taken so that the value of the d-dimensional volume of the cone, Vd(Ct(ξ)(ξ)) = δ, is equal to

δ. The envelope of the half-spaces H−
t(ξ)(ξ) forms a convex body denoted by

KBP
δ :=

⋂

ξ∈Sd−1

H−
t(ξ)(ξ).

We prove the following:

Proposition 4.1 Let K ⊂ R
d, d ≥ 2, be a C∞ smooth, convex body with positive Gauss

curvature containing the origin in its interior. If, for some small δ > 0, we have that KBP
δ is

homothetic to K with respect to the origin, then K is an ellipsoid.
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Proof To describe the height of cones with constant volume δ, fix a direction ξ and letting

t = t(ξ) note, assuming again the previous type approximation of the boundary of K near the

point of outer normal ξ, that

δ =
1

d
| hK(ξ)− t | ·Vd−1 (K ∩Ht(ξ)) =

1

d
| hK(ξ)− t | ·

(

2 | hK(ξ)− t |
d−1
√
K(ξ)

)
d−1
2

ωd−1

+ o
(

|hK(ξ)− t|
d+1
2

)

,

and solve for t which is in fact hKBP
δ

. This leads to

hKBP
δ

(ξ) = hK(ξ)− d
2

d+1 cdK
1

d+1 (ξ)δ
2

d+1 + o
(

δ
2

d+1

)

, (4.1)

with the same constant cd as before. Note the striking similarity with the support function of

the floating body Kδ, hence we note on the side the following outcome:

Lemma 4.2 For anyK smooth, strictly convex body in R
d with positive Gauss curvature,

we have

Ω(K) =
1

d
2

d+1 cd
lim
δ↘0

Vd(K)− Vd(K
BP
δ )

δ
2

d+1

, (4.2)

where KBP
δ is defined as above for some interval (0, δ0).

The proof of Proposition 4.1 follows the same reasoning as the proof of the proposition of

the previous section, and same for the proof of the lemma, precisely because of the same type

asymptotics where only the constants of the Gauss curvature term differ. First, one gathers

information about the factor of homothety using the ratio of volumes of the polars of the

two convex bodies, and the fact that Gauss curvature of K raised to power 1/(d + 1) can be

interpreted as a radial function of a star body, concluding the proof in identical manner. �
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[8] Dupin C. Applications de Géométrie et de Méchanique la Marine, aux Ponts et Chaussées, etc. Paris, 1822.

available at

https://books.google.com/books?id=QKL2SpP0JuMC



290 ACTA MATHEMATICA SCIENTIA Vol.45 Ser.B
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