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1 Introduction

Characterizations of balls and ellipsoids among convex bodies in Euclidean space have
been used effectively in major results in many areas of mathematics. Currently, a number of
conjectured characterizations of balls and ellipsoids are still open and, in this paper, we prove
several infinitesimal versions of such characterizations for smooth convex bodies with positive

Gauss curvature. The meaning of this approach will be made precise shortly, but, for now, let us

Received December 10, 2024.
*Corresponding author

@ Springer



No.1 M. A. Alfonseca et al: CHARACTERIZATIONS OF BALLS AND ELLIPSOIDS 281

say that the characterizations will depend on the smallness of a parameter § > 0 representing,
in a certain sense, the closeness of the characterization criteria to the boundary of a smooth,
strictly convex body. In other words, in this paper, the emphasis is on the effect of the boundary
structure on validating the open problems in a restrictive context. The conjectures remain open
in larger generality not because the characterization criteria may not be valid farther away from
the boundary, but rather because the techniques employed close to the boundary do not apply
farther away from it.

One such open problem is whether constant area sections of a convex body tangent to a given
ball contained in the body imply that the convex body is a ball. We consider an infinitesimal
variant of this problem and, using it, provide a characterization of the ball which is, in some
sense, supporting the conjecture. The approach has been prompted by some partial answers to
the homothety conjecture [17] for floating bodies, one obtained very recently in [2], for which
we will say a few words in Section 3, and another, much older, [18]. As we revisited the older
argument in [18], we realized that one can provide some answers to similar questions related
to other homothety type conjectures of affine invariant constructions which, to the best of our
knowledge, if known, they have never been published. In Sections 3 and 4, we prove two such
characterizations of ellipsoids implied by the homothety of some affine invariant constructions.
In the first case, a homothety of very small factor between the boundary of a convex body and
its surface of centers implies that K is an ellipsoid. In the last section, we propose a version of
a classical affine invariant problem, the Busemann-Petty Problem 5.

In this paper, all homotheties between pairs of convex bodies K; 2 C R? are with respect
to a fixed point O € Int(K;) C int(Ks), i.e. letting O be the origin of R?, the convex body
K is homothetic to the convex body K5 if and only if there exists a positive real number A
such that K7 = AK5. For each of these problems, it makes sense to consider the more general
question of characterizing the convex bodies that admit the specific homothetic construction
up to translation. This makes sense for convex bodies which do not have a center of symmetry,
otherwise the center of homothety is the center of symmetry. This more general question is,
however, not considered here.

2 On Convex Bodies with Sections of Constant Volume

A convex body is a compact convex set in R%, d > 2, with non-empty interior. By V4 we
mean the usual Lebesgue measure and by Vi, 1 < k < d — 1, we understand the k-dimensional
Hausdorff measure which coincides with the k-dimensional Lebesgue measure when the set lies
in a k-dimensional affine subspace of R?.

In 2001, Barker and Larman proposed the following conjecture [5]: Suppose that K1, Ky, L
are convex bodies in R with L C int(Ky) N int(Ky). Assume that whenever H C R? is a
hyperplane supporting L, the (d— 1)-volumes of K1 NH and Ko N H are equal. Then K1 = K.

One of the natural reference bodies to consider as L is, of course, a Euclidean ball and, so

in the same paper, they proved:

Theorem 2.1 [5] Suppose that K C R? is a convex body containing, in its interior, the
Euclidean unit ball B € R2. If the chords of K cut by the supporting lines of B have constant
length, then K is a larger homothetic copy of B.
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In dimension d > 3, the conjecture remains open except for the case when K, K5 are convex
polytopes and L is a Euclidean ball, see [20]. Several other results were obtained by imposing
extra assumptions such as special normalizations, [9], considering data over thick sections of
convex bodies [21], and also imposing certain volume assumptions. Some other modifications
of the problem were considered in [22]

Here, let K C R?, d > 2, be a C* smooth, strictly convex body, containing the origin in its
interior, and let § > 0 be some fixed positive real number assumed to be very small. The as-
sumption on the smoothness of the boundary can be reduced to a lower order of differentiability,
C*, which will be clear from the technique employed in proving the results.

For each ¢ € S, denote by Hy(¢)(£) the hyperplane

Hye) (&) ={z eR? |z- £ =t(9)},

where t(£) > 0 is the positive number, assuming that it exists, such that the tangent hyperplane

to K at the point of outer normal ¢ is translated inward until Hy) is so that
Va-1(K N Hyg(§)) = 6.

Let S5 = ﬂgegd—lHt_(g)(f) be the corresponding convex body obtained as the intersection of
the half-spaces
Hyo(€) = {w € R |2 € <H(O)}.
We call this convex body the constant sections body or the body of §-sections.
The smallness of § is assumed, for the moment, so that for each direction & € S?~!, there exists
a section of (n — 1)-dimensional volume equal to 4.

Our first result is the following:

Theorem 2.2 Let K ¢ R? d > 2, be a C*® smooth, convex body with positive Gauss
curvature. If, for some small § > 0, we have that S is homothetic to K with respect to a point
in the interior of S5, then K is a Euclidean ball.

Proof As mentioned in the introduction, we take the origin of R¢ to be the center of
homothety for Ss relative to K. The first step of the proof is to derive a relation between the
support function of K and the support function of Ss, both taken with respect to this choice
of the origin, along all directions &, essentially estimating the distance between the supporting
hyperplanes of normal £ of the two convex bodies.

To do so, choose coordinates 1, o, - - - , x4 in R such that {e;,--- ,eq4_1,£&} is an orthonor-
mal basis of R? and the supporting point, {q} := H¢ N 0K, lies, momentarily, at the origin of
this system of coordinates.

Then, 0K is locally a graph in these coordinates,

d—1
1
ta=—5 > bigzir; + ollo]), (2.1)
7,7=1
where b;; is the second fundamental form of 0K at the point ¢ of outer normal &, and f = o(s)

means f/s — 0 as s — 0.

70
Moreover, there exists a special linear transformation T' € SL(d) of the form T = ,
01

with 7" € SL(d — 1), that fixes &, preserves the (d — 1)-dimensional volume in any hyperplane
@ Springer
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of normal &, and brings 0K locally to the form
_ Ly = .2 2
T4 =5 (@)Y af + o(jzl), (2.2)
i=1

where K(g) = det [(b;;)4;] is the Gauss curvature of 0K at ¢ as the determinant of the coefficients
of the second fundamental form at that point. Thereafter, we consider C as a function of £ as ¢
is the unique point of the boundary of K of outer normal £&. With this parametrization, known
as the inverse Gauss map parametrization, it is useful to consider the support function hyx of
K to represent the boundary of K:

hr ST = (0,00), hg(§) =supz-&=q-&.
zeK

Thus, if t = t(£) is defined as above, we have

2| hg(§) —t|
VE(E)

where wy, is the volume of the unit ball in R*.

6= Va1 (KN H(E)) = ( )dzlwd1+0<|hl((f)_tdzl) ; (2.3)

This leads to a description of the support function with respect to the center of homothety,
which we set as origin for this purpose, of the constant sections body in an arbitrary direction

€ € S% 1 in terms of the support function of the original convex body in the direction &:

hss (€) = hi(€) — ca 67T “VE(E) + 0(677T), (2.4)

where c¢qg = (2w3/_ (1d _1))’1 is a constant depending on the dimension, and all coefficients in the
asymptotic expansion are C*° smooth.

Recall now that, by hypothesis, Ss is homothetic to K, so there exists a A € (0,1), close to
one in this case when ¢ is close to zero, such that S5 = AK.

To estimate the homothety factor A such that S5 = AK, we note that S§ = %KO, SO we
relate A to the volume ratio of their polar bodies via homogeneity
_ Va(55)

A4 = )
Va(K°)

Recall that the polar body of a convex body L containing the origin is the convex body L°
defined by
L°={yecR?|z-y<1, Vxc L}

It follows from the equation (2.4) above that

5 d—1 ’C 5
Vi(S2) = é/s lhdslwd“(g) = Va(K°) + a6 /S lhd\fg)dﬂ(swo(w—l)- (2.5)
N 5 - K
Thus
i 2 VK A
A= b s /S e WO+ o7, (2.6)
and, so,

VEE)

dVa(K°) /S T () e o0, (2.7)

)\Zlfcd(gﬁ
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Therefore, using (2.4) and the homothety hg, (¢) = A (€), we have, for each ¢ € S971,

ﬁhKi@) @ _ ﬁ d—1 %
0T V(K /sm R (g) du(€) = ca 377 “VE + 0(071), (2.8)

and, consequently,
hi(§) _ "VK(©)

= o(1), (2.9)
Va(K°) 2 Ja 1%((;)%1 (©)

where o(1) is an error term that goes to zero when § goes to zero.
Recall now a few elements of the dual mixed volume theory. For any two star bodies L »

in R? containing the origin, and any i € R, the i-th dual mixed volume of L 5 is defined (see
[13]) by
Vi(L1, Ly) = d/ P P, (€) dp(S),

where pp, : S?71 — (0,00) denotes the radial function of the star body L;, j = 1,2. Of
particular interest for us is the case i = —1 for which it follows, via Holder inequality, the
mixed volume inequality

Va4 (L1, Lo) 2 Vi L)V (L),

Equality is reached above if and only if L; and Lo are dilates of each other and so the radial
functions pr, and pr, are multiples of each other. Therefore, given that the reciprocal of the
support function of a convex body K containing the origin is the radial function of its polar
body, pk-, equation (2.9) can be re-written in terms of a dual mixed volume and radial functions

as follows ) )
Pro&)  pro(§)
Vd(Ko) = V_l(KO,LO) + 0(1)a (2.10)

where L° is the star body whose radial function is 1/ VK.
Due to the dual mixed volume inequality above, if we assume that L° is not a dilation of

K?°, the inequality is strict and (2.10) implies, after re-arranging terms, that

pre(§) pre(§)
Vd(LO)% < Vd(Ko)% + o(1). (2.11)
If § is very small, then
pre(§) < pre(§)

TS T (2.12)
Vd(LO)E Vd(KO)E

holds and we have two star bodies of volume 1, namely K° and W L°, such that

1
v,/ A(K°) °)

one is enclosed in the other. Unless the two bodies coincide, this is 1mp0851ble
Therefore, equality holds in (2.12) and L° is homothetic to K°. Thus, there exists a A’ > 0
such that pxo(£) = Npre(€) for all € € S9=1. This means that the convex body K is such that

its support and curvature functions satisfy pointwise on the unit sphere the equation
Nhi(§) = “VK(E), vEesi (2.13)

The fact that a convex body K satisfying (2.13) must be a Euclidean ball is precisely the
conclusion of the second part of Theorem 1 in [12], concluding also our proposition. O
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3 On the Convex Body Bounded by the Surface of Centers Homoth-
etic to K for Small 9

Let £ € S*! be a unit vector, and let
Hy(§) ={zeR'|z £ <t}

be the half-space of outer normal ¢ whose boundary lies at distance ¢ from the origin. Let K
be a smooth strictly convex body in R? and let § > 0 be a fixed positive constant.

Recall that the convex floating body Kjs of K (see [4, 17]), if it exists, is defined as the
envelope of half-spaces cutting a cap of volume § from K:

Ks= [ Hyg(),
gesd—1
where t(€) is such that
Va(K N H{ () = 0.

The convex floating body is the subject of a homothety conjecture asserting that K homo-
thetic to K, possibly up to a translation (as mentioned in the introduction), implies that K is
an ellipsoid. It is expected that the center of homothety is the center of mass of K, and so, the
two bodies should be dilations of each other relative to their respective centers of mass. This is
obvious in the case of centrally symmetric convex bodies K. However, otherwise, it is still an
open problem to find the relation between the centers of mass of the two bodies, see Problem
3 from the list of open problems in [3] and the discussion surrounding it.

Lastly, let us mention two recent partial results on the homothety conjecture for the convex
floating body. It was shown in [2] that, in the plane, the homothety conjecture holds if K is
centrally-symmetric and close to a Euclidean ball in the Banach-Mazur distance, but that the
homothety conjecture is not true for planar convex bodies that are not centrally-symmetric. In
its larger generality, the conjecture remains open for centrally-symmetric convex bodies.

The surface of centers, [8], is the locus of centers of mass of the caps cut off from K in

defining the floating body

1
TCs (6) = 5 KnH; (€) rde.

This surface, also called surface of buoyancy, is of uttermost significance in studying the
flotation of 3-dimensional objects in a liquid of constant density. In particular, if Cy is a sphere,
then K floats in equilibrium in every direction. The tangent plane to Cs at x¢,(£) has normal
¢ and is, thus, parallel to the hyperplane bounding the half-space H ;(5)(5). There are many
other properties of this surface that connect both with the practical aspect of the problem and
with many geometric questions, see, for example, [15] for a recent result related to Ulam’s 19th
problem in the Scottish book and [3] for a survey touching on many related questions.

We will prove that:
Proposition 3.1 Let K C R%, d > 2, be a C*™ smooth, convex body with positive Gauss

curvature. If, for some small 6 > 0, we have that the convex body of boundary Cy is homothetic
to K with respect to a point in the interior of the domain bounded by Cj, then K is an ellipsoid.
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We want to point out that, using spherical harmonic analysis methods, Reuter proved the
equivalent result for § = V4(K)/2, and origin-symmetric K close to the Euclidean ball in the
Banach-Mazur distance, without a priori smoothness or curvature assumptions, see [14]. For
the value of 6 = V4(K)/2, we note that the surface of centers is the boundary of the centroid
'K of K. Without getting into specific details, let us still mention that in [14], Reuter also
extended his result to prove that, for any p > 1, the p-centroid body I',(K’) homothetic to K for
origin-symmetric K close to the Euclidean ball implies that K is an ellipsoid. Reuter’s results,
[2], and Ryabogin’s [15] suggest that the central-symmetry assumption on K is essential for
this type of homothety problems.

Proof The relation between the support functions of K and Ky for small § was derived
in [18], in a similar manner to the one in the previous section for Ss. As in the preceding
section, in the calculation of the support function in the direction £, we may assume a linear
transformation that does not affect the directions parallel to ¢ in R?, so that the boundary of
K is locally approximated by

d—1

T = _%;cl/wfw(g) S a2 + o(|a]?). (3.1)

i=1
This representation form assumes that the point on K with support plane of normal £ is,
momentarily, the origin. Then, the difference between the two support functions amounts to
estimating the height of the slab K N H," of volume d, and the result is as follows:

hics (§) = hic(€) — ca KT (€) 57 + o(577), (32)
d—1 -2 -1
where cq := <2d+1w;ji is a constant depending on the dimension.

Furthermore, as the surface of centers is known to be the locus of the centers of mass of
the slices K N H;"(£) of constant volume, the smallness of § enables us to derive the relation
between the support functions of K and Cs up to some small error term.

The fact that the center of mass of the cap is also the point of support of Cs for the
hyperplane of outer normal &, implies that solely the x4 component, in the sense of the previous

approximation, of the center of mass is relevant. Hence,

he, (€) = % hZK:)) Vi1 (K O H(6)) dt

T [

= hie(g) - < jm /h h(f) (hic(©) — 1) dt + 0 ((he(6) — B, <£>>d¥3)]

= hi(€) — wdgl jz(g) {(h,{(g) — e, (€)F - df—?)} +o ((hx(ﬁ) - hxs(f))dgs)l
her(€) = hae(€) = s calK(E) ™57 + o (571), (3.3)
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where c¢q4 is the same constant as in the description of the support function of Ky relative to
the support function of K of [18].

For simplicity, in what follows, we will be using Cs to also denote the convex body whose
boundary is the surface of centers. In order to describe the homothety factor A such that
Cs = MK, we will proceed as in the previous section and use polar bodies

\—d _ YalG3)
Va(K°)
from which it follows in a similar manner that

V€)= g [ g ©) = Val )+

L / V) u(g)+o(5%+1). (3.4)

gd—1 hd+1
Consequently,
> 2 1 HK(E) 2
A=1—cg0@H d OTHT ). 3.5
O I AV(K) /SH R () (8 T o(07) (3.5)

The homothety hc, (&) = Mg (€) and (3.3) imply that, for each ¢ € S41,
2 hg(§) / WK() 2 a0 2
6 1 —_— d = 6 1 5 1 .
Ca 0t dVg(K®) Jsa— h?é”(f) (&) = ca 6T "V + o(67T), (3.6)
and, thus,

(6 VK

ValK®) 4 fous 75 du(g)
from which the conclusion follows exploiting the dual Minkowski theory in the same way as
before. O

Note the similarity between the expressions of the support functions of K5 and, respectively,

o(1), (3.7)

Cs in (3.3) which prompts us to state the following proposition regarding the affine surface area
of K:

WK) = [ KT©dSk(©) = | K7 du(e), (38)

where dSk is the surface area measure of K viewed as a Borel measure defined on the unit
sphere. It is likely that the next result is known, but we could not find it stated in the literature.
Lemma 3.2 Let K C R? d > 2, be a C* smooth, convex body with positive Gauss
curvature and let Cs denote the surface of centers of K for ¢ in some small interval (0, dp).
Then, the affine surface area of K, Q(K), satisfies
d+3 . VuK)- Vd(Cg)
T 24 6NO ST

(3.9)

Proof Let f be a continuous function on the unit sphere S¥~!. Suppose that f defines
a perturbation of a convex body L containing the origin in its interior to be the convex body,
denoted Ly, of support function h(u) = hy(u) +tf(u),Yu € S¢=1, where t € (-6, 6) is taken to
be very small so that h; remains positive. Aleksandrov, [1], showed that the following variational
formula holds
Va(Ly) — V4(L)

dVy(L
Céi(t J- 22 t = [, S dsi(w). (3.10)

Without getting into details, we mention that this variational formula can be made sense

of even if h; is not a support function. To do so, we define the convex body L; via its support
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function hz, = sup{h : S9! — R | h is support function,h < h; pointwise}, and use that
hr, = h; a.e. with respect to the surface area measure of Ly, [1].

Additionally, it is a known fact that if h; — h with respect to the sup-norm on C(S91),
then K; — K in the Hausdorff metric and dS(K;) converges weakly to dSk, [11, 16].

Note that our set-up is hx, = hx +tf + o(t) where t = 571 > 0 and f is a power of Gauss
curvature of K viewed as a function on the unit sphere S¥~1. It was noticed, in particular by
Leichtweiss, that Aleksandrov variational formula holds in this case too, [11, 12], so (3.9) is a
direct consequence of (3.3).

We mentioned Leichtweiss work in particular as he was also aware early on that such
deformations can be used for other functionals. Nowadays, this idea is widespread, note its
applications to the log-Miknkowski problem [6], the chord problem [19], and other variational

problems, [10], to mention just a few. O

Remark 3.3 This proposition also suggests that, up to a constant depending on dimen-
sion, the affine surface area Q(K) of a convex body K, not necessarily smooth, can be defined

as the limit above via its surfaces of centers.

4 Infinitesimal Busemann-Petty 5

In a seminal paper, Busemann and Petty [7] proposed to the larger community working on
convex bodies a list of ten problems from which all but one are still open today. One of the them
is known as Busemann-Petty 5 (BP5) and pertains to the following construction. Let K be a
convex body in R? containing the origin in its interior. For each unit vector ¢ € S?!, consider
the section K (§) := KNH (), where H () stands for the hyperplane of normal £ passing through
the origin. Let C(&) be the cone of base K(§) and apex in K that has maximal volume. It is
obvious that the apex of the cone is a point of support hyperplane of (outer) normal £, where
we have chosen the outer for the sake of considering the problem for convex bodies that may
not be centrally symmetric and, thus, we follow continuously a fixed orientation.

Problem BP5 asks if ellipsoids are the only convex bodies K characterized by the property
that C(€) has constant volume, independent of &, see [7].

Here, for any smooth, convex body K with positive Gauss curvature, we propose to fix
a small constant § > 0 and look at the cones Cy)(§) with apex at the point of support
hyperplane of outer normal £, and whose base is a non-central section of K denoted K (¢(§),§) :=
Kn Ht(f) (£), where

Hyey(§) ={r e R |z- £ =1(€)}
is taken so that the value of the d-dimensional volume of the cone, Vy(Cy(¢)(€)) = 0, is equal to
0. The envelope of the half-spaces H He) (€) forms a convex body denoted by

KPP = () Hyg(©).
Eegd—l
We prove the following:
Proposition 4.1 Let K C R%, d > 2, be a C*™ smooth, convex body with positive Gauss

curvature containing the origin in its interior. If, for some small § > 0, we have that KPF is
homothetic to K with respect to the origin, then K is an ellipsoid.
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Proof To describe the height of cones with constant volume §, fix a direction £ and letting
t = t(£) note, assuming again the previous type approximation of the boundary of K near the

point of outer normal &, that

2| hic(g) — |)d21wd_l

5:§ | hi(€) —t | Va1 (K N Hy(€)) =é | hie(§) =] ( K@)
+ o (Jhue(&) =),

and solve for ¢ which is in fact hypr. This leads to

hiacpr (€) = hic(§) — AT caKT (07T + 0 (6757 , (4.1)
with the same constant cg as before. Note the striking similarity with the support function of
the floating body Kj, hence we note on the side the following outcome:

Lemma 4.2 For any K smooth, strictly convex body in R? with positive Gauss curvature,

we have

. BP
QK) = 21 Jim V) Yd(Ké ), (4.2)
da+T Cq N0 Ha+T

where KPF is defined as above for some interval (0, &p).

The proof of Proposition 4.1 follows the same reasoning as the proof of the proposition of
the previous section, and same for the proof of the lemma, precisely because of the same type
asymptotics where only the constants of the Gauss curvature term differ. First, one gathers
information about the factor of homothety using the ratio of volumes of the polars of the
two convex bodies, and the fact that Gauss curvature of K raised to power 1/(d + 1) can be
interpreted as a radial function of a star body, concluding the proof in identical manner. O
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