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ABSTRACT. We investigate the homothety conjecture for convex bodies of flotation
of planar domains close to the unit disk B. We show that for every density D €
(0,3), there exists v = (D) > 0 such that if (1 —~v)B C K C (1+ v)B and
the convex body of flotation K? of an origin symmetric body K of density D is
homothetic to K, then K is an ellipse. On the other hand, we also show that
if the symmetry assumption is dropped, then there is an infinite set of densities
accumulating at % for which there is a body K different from an ellipse with the
property that KP is homothetic to K.

1. INTRODUCTION

Let K be a body in R?, i.e., K # @, K is compact, the interior of K is connected,
and K is the closure of its interior. For every 6 € R and the corresponding unit vector
e(f) = (cosf,sinf) and for every t € R, define the half-planes

WH0,t) = {z: (z,e(d)) >t} and W (0,t) = {z: (z,e()) < t}.
If 0 < D < 1, then for every § € R | there is a unique () such that
voly(WH(0,t(0)) N K) = Dvoly(K).
The corresponding convex body of flotation KT is defined as

KP = ()W~ (0.(6)).

(SN

Note that K” = @ for all D € (3,1). The body K™ can be viewed as the set of
points that stay above the water level when a solid with shape K of uniform density
D floats in any orientation. For technical reasons, it will be more convenient for us
to view KT as the intersection of half-planes bounded by the lines cutting from K a
fixed area d € (0,voly(K)) as it is usually done in the literature on convex bodies of
flotation (also known as “floating bodies”, see [2] and [5]). In this case, we shall use

the notation Ks. We obviously have K5 = KP for § = Dvoly(K).
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The homothety conjecture in R? says that if a convex body is homothetic to one
of its convex bodies of flotation, then it is an ellipse. To the best of our knowledge,
the question was first raised in 1994 (see [4]). The homothety condition means that
KP? = \K for some D € (0,1), A > 0. While the full homothety conjecture looks too
strong to be true (we will show that it is actually false in R?), one can also consider
various restricted versions of it, imposing additional assumptions on K, D, and/or A.

In this paper we will prove two theorems. The first one, roughly speaking, says
that on the plane the homothety conjecture holds for origin symmetric convex bodies
in a small neighborhood of the unit disk. More precisely, we have

Theorem 1.1. For every compact interval I C (0,3), there is v > 0 such that if
KP = \K for some D €I and A\ >0, K C R? is origin symmetric, and (1 —~)B C
K C (14 ~)B, then K is an ellipse.

Here B = {x € R? : |z| < 1} is the unit disk.

We remark that instead of restricting the density D away from its extreme values,
we can just as well restrict the homothety coefficient A\ to a compact subinterval
J C (0,1) in this theorem. Also, since the problem is affine-invariant, the condition
(1—v)B C K C (14 ~)B can be replaced by the condition that the Banach-Mazur
distance from K to B is less than v at no extra cost.

The second theorem shows that in the asymmetric case, the full homothety con-
jecture fails rather drastically, at least on the plane.

Theorem 1.2. The equation KP? = MK has infinitely many affinely non-equivalent
asymmetric convex solutions K C R2. Moreover, these solutions can be chosen as
small perturbations of the unit disk with the corresponding densities D and homothety
coefficients A accumulating at % and 0 respectively.

2. QUASI-DIFFERENTIABILITY PROPERTIES OF THE MAPPING pf — ;-

We shall consider the homothety problem in the class of the star-shaped (but not
necessarily convex!) bodies K C R? with continuous radial functions

p(0) = pr(0) = max{t > 0: te(d) € K}.

For the mapping px — pk,, which we will abbreviate to p — ps, the homothety
condition is equivalent to the equation Ap — ps = 0. Note that this equation holds
for the unit ball B (p = 1) with any 0 € (0,5) and A = cos, where o € (0, §) is the
angle for which the shaded disk segment B N W™ (6, cos «) on Figure 1 spanned by a
circular arc of length 2« has area §.

We shall show that when K is sufficiently close to the unit disk, the mapping p — p;s
is quasi-differentiable with the quasi-differential equal to

] 0+
Ap / Ap(T)dr.

2 sin «
O0—a
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FIGURE 1. Relation between o and 4.

The latter means that for any continuous 27-periodic py, ps close to 1, we have

0+
1) ps(®) = prsl0) = 5o [ (0(7) = pulr))ar
0—a

with an error whose size is substantially smaller than the size of p; — ps.

s

The idea of the proof is very simple: given ¢ € (0,%) and two star-shaped bodies
K, and K, close to the unit disk, for every 6 € R, define ¢;(#) by
(2) volo(K; NW™(0,t,(0))) =6, j=12.
Then, up to a small boundary effect, the difference
voly (K1 NWT(0,5(0))) — voly (Ko N W (0, 12(0)))
is determined by the difference of the boundaries of K; and K5 in the angle
C,(0) ={z e R*: Z(x,e()) < a}.

0+
So in the first order approximation, this difference is [ (p1(7) — p2(7))dr. To
0—a
compensate for this difference, we need to move ¢ away from t5(#). Since all cross-
sections at the relevant levels are close to those of the unit disk, moving ¢ by At units

changes the area voly(K; N W™ (6,t)) by approximately —2sina At. Thus, to get

0+o
volo(Ky NWT(60,t)) = 4, we need to increase t5(6) by the amount 5-— [ (pi(7) —
O—a

p2(7))dT, ie.,
1 O+a
H(6) — 1a(0) ~ / (p1(7) — pa(r)dr.

2sin o
0—a

Note also that the quantity on the right hand side changes very little if we replace
6 by a close angle 6": the corresponding domains of integration have a huge com-
mon part and only short boundary intervals that are included in one but not the
other one. Thus, when switching from K5 to K, all boundary lines of the half-
planes W= (¢',t2(0")) determining K55 move out by pretty much the same amount
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0+a
[ (p1(7) = p2(7))dr as long as ¢ is close to 6. Since the value of the radial

00—«

1
2sin «

function pg,(#) of the convex body of flotation K of the body K close to the unit
disk is determined by #(#") with 6’ close to 6, this last observation translates into (1)
as desired. As usual, the devil is in the details, to which we now turn.

Let I' > 0 be small. Consider the disks (1 +I')B and (1 — I')B, and let t1 be
defined by

voloy(1 £ T)BNW™*(0,tL)) = 6.

Claim 2.1. If 7T':52L < cosa, then ti are well-defined and satisfy |t+ — cosal| <

1or 2sin «
a5t
sin

Proof. Observe that

volo((1+T)BNWT* (6, cosa)) <
voly(BN W™ (0, cosa)) +volo(((1+T)B\ B)yNW*(6,0)) <§+ (1 +T)I.

Note also that if ¢ > cosa is so large that the length of the intersection of (1 +1I')B
with the boundary line of W*(0,t) is less than or equal to 2sin«, then we already
have

voly((1 +T)BNW™(6,t)) < volo(BNWT(6,cosa)) = 6
(the area of the segment of a bigger disk spanned by a not longer chord is smaller).

Thus, to completely compensate for the increase in area of BN W™ (6, cos o) when
replacing B by (1 + I') B, we need to move the initial ¢ = cos a up within the region
where the cross-section of (1 + I') B by the boundary line of W (6,t) has length at
least 2sin a. But within this region, the move by At units results in the loss of area

not less than 2sin a At, whence t; — cosa < I’ 22;2, as claimed.

The bound for ¢_ is even simpler. Just notice that if we move t by WFm units
down from the initial value ¢ = cos «, we will have volo(BNW™(6,t)) > 6 + 7. But
when replacing B by (1 — I') B here, we can remove the area not exceeding

voly((B\ (1 =T)B)NW*(0,0)) < =T,

so we went too far and the estimate t_ > cosa — T‘-FQSilnoz follows. O
Let us now introduce the angles o and oy by (1 +T)cosay = cosa F w55
Their geometric meaning can be seen on Figure 2.
Their importance comes from the fact that for every ¢ with [¢ — cosa| < 7l 55

we have
(1+T)B\ (1 -T)B)n (WT(0,t)AC,(0)) C Ca, (0)\ Co_(0).

Indeed, the shaded area on the right shows the largest possible piece of W (0, )\ C,(0)
within (14-I")B\ (1 —1I")B for such ¢ and the shaded area on the left shows the largest
possible piece of C,(0) \ WT(0,t).
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FIGURE 2. Angles a; and a_.

Claim 2.2. For every compact interval I C (0, %), there exist v = y(I) € (0,1) and
L= L(I) € (0,+00)" such that if « € I and 0 < T < =, then ax are well-defined and
satisfy 0 < a_ <a<ay <3, ap —a_ < LT

Proof. This is tantamount to the claim that the function 7 — arccos 7 is well-defined

14y 1+
COS QX — Y 5= CoOSQ + TY52
and Lipschitz on 7231“0‘, T3sina | when o € (0,%) is separated
1+~ 1—7
from 0 and § and v > 0 is small enough. O

Now we are ready to prove the main lemma of this section.

Lemma 2.1. For every compact interval I C (0,%), there exist v = v(I) € (0,1) and
L =L(I) € (0,400) such that if « € I, 0 < T <~ and K, Ky are two star-shaped
bodies with continuous radial functions py, pa respectively satisfying ||p; — 1ljc < T,
J = 1,2, then the radial functions pys, pas of the corresponding convexr bodies of
flotation K15 and Kys satisfy

0+o
1
pro(0) = p2s(0) = 5 —— /(m(T)—pz(T))dT‘ < L[FHm—p2||L1+QLﬁ|p1—p2|(9) :
0—a
where, for o > 0,
0—a+o 0+a+o
@10~ [ fmars [ s
0—a—o 0+a—o

Proof. Note that for every body K and every ¢t > 0, we have

voly(K NWT(0,t)) =
voly (K N Cy(6)) + voly (K N (WH(0, 1) \ Cu(0))) — vola(K N (Cu(6) \ WH(6,1))).

n this paper we shall denote by L various constants whose values may change from line to line.
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Subtracting these identities for K; and K, and using the “triangle inequality”
[vola(K1 N E) —volo(Ky N E)| < voly (K1 AKR) N E)

valid for every set E C R?, we get

volo (K N WH(8,1)) — volo(Ks N W (8, 1)) <
voly(Fy N Co(6)) — volo (K5 N Ca(6)) + volo (K1 AKs) N (W0, 1) ACL(0))).

Note now that if (1-I")B C Ky, Ky C (14I')B, then K1AK, C (141)B\(1-1') B,

so for [t — cosa| < a5
sSin o«

(KL AKS) O (WH(0,8) ACL(8)) =
(KL AKS) N (W0, ACL0)) N (1 +T)B\ (1 —)B) C
(K1AK) N (Coy(0) \ Ca(0)).

At last, for |t — cosal < 7rF21S;Fa, the length of the cross-section of any body K
satisfying (1 —T')B € K C (14 I')B by the boundary line of W*(6,t) is between
2sina— LT and 2sina+ LI for some L = L(I), provided that the upper bound ~(I)

for I is small enough.

Now we are ready to approximate the difference ¢1(0) — t2(0) where t;(0), j =
1,2, are defined by (2). Since t12(6) € [t—,t4] for all 6, we can use all the above
observations for them or any ¢ in between. For t5(6), we have voly(KoNW (0, t2(0))) =
d, SO

voly (K N W (8, 14(6))) <
§ + volo (K1 N Ca(6)) — vola(Ky N Ca(8)) + volo (K1 AK2) N (Ca, (6) \ Ca(6))).

The difference
VO]Q(Kl N C’a(é’)) — VO].Q(KQ N C’a(é’))

18

O+«

5 [ ) - i -
e_al 0+« 1 O+«
3 [ 00 =2+ 5 [ (010) = o) a(r) + () — 2)dr <
f—a 0—a
O+a
[ 010) = patrydr + Tlos = palls
0—«

because |p; + po — 2| < 2T



FLOATING 7

On the other hand, the area of the intersection (K1 AK5) N (Cq, (0) \ Co_(8)) is

—a_ 0+ay —a_ 0+oy
/ [ et - s <2 / [ )i = atrlar
O—ay  O4oa- —ay  O+a_

because |p? — p3| = |p1 — p2|(p1 + p2) < 4lp1 — pgl, so we obtain
VOlQ(Kl N W+(0 tg(@))) S

0+ —a—  O4ag
5+ [ (7) = par))dr + Tl = palls + 2 / Vo) =t
0—o O0—ar  O+o_

Moving t from t5(6) to t1(6) diminishes the left hand side by some quantity between
2sina (t1(0) —t2(0)) — LT'|t1(0) — t2(0)] and 2sin « (t1(0) — t2(0)) + LT'[t1(0) — t2(0)].
Since voly (K1 NWT(6,t1(0))) = §, we must have the inequality

2sina (t1(6) — t2(0)) — LT|t1(0) — t2(6)] <

0+ —o_ 0+t
/ (p1(7) — pa(m))dr + Tllp1 — palls +2 / / (7) — pa(r)ldr,
0—a —ay  O4o
whence
0+
6(6) = 0) < 5o [ (1) = palr)yirs
0—«
—a—  O+ay
L(Tlloy — pall s +2 / [ o) = patoiar)
—a O+a_

with some slightly bigger L = L(I) € (0,400), provided that (/) is chosen small
enough. In the last implication we used the elementary fact that if ax —blz| < y+ 2
with 0 <b < £, 2> 0, then z < £ 4 2L |y[ + 22, Indeed,

b
ax—ySwaHZS—Iax—y!+—|y!+zS—|ax—y|+—\y!+z,
a a 2 a

so ar —y < 2(2|y| + z), which is equivalent to the inequality claimed.
To switch from ¢,(0), t2(0) to p15(6), pas(6), we observe that

1H(0)
min —
0': cos(0’—0)>0 COS(QI — 0)’

to(6)

0) = '
pl,é( ) 6': cos(0’—6)>0 COS(Q’ - 9)

p2.s(0) =

Note now that ¢_ < ¢;(¢') <t for all ¢, so when 0 < cos(f—0") < i—;, we certainly

have
t;(0' t_ t;(0
) Lt b6
cos(0 —0") — t_/t, cos(0 — 0)

j=12.
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Thus, in the minimization problem we may restrict ourselves to the angles 6’ with

cos(6 — ') > i—; >1— LI ie., |0 —0| < LVT.

Let now 6" be an angle for which py5(6) = Cos(é 77- Then

As we have shown above,

0 +a

0) - 0®) < 5o [ o) = palr)ars

0'—a

—a_  0'4oay
L(Tllpr — palls +2 / | Vi) = putr)iar),
—og 0 +o_
Note that
0'+a 9+a O—a+|0—0'|  O+a+|o—0|
[om-pmnar< [@o-poyrs( [+ [ )i
0'—a 0—a 0—a—|0—-0'|  0+a—|0—0|

so, taking into account that 1 < <1+ LI', we finally obtain

1
cos(0—0")

0+«

) = pasl®) < 5 / (51(7) — o)+

— 2sina

—a_  O—a+|0—-0| O0+ar O+a+|60— 9’

L(Clor — pallus + / [+ [+ [ Jmo-moar).

—ar  O—a—]0—-0| O+a_  O+a—|0-0|

It remains to notice that all intervals of integration in the last term on the right
hand side are contained in the union of intervals centered at 6 + a of length Lv/T, so
the corresponding integrals can be bounded by @ r|p1 — p2|(0) yielding a one-sided
bound in the desired inequality. Exchanging the roles of p; and p,, we get the bound
from the other side. 0

3. HOMOTHETY CONJECTURE FOR ORIGIN-SYMMETRIC BODIES NEAR THE UNIT
DISK

Once the quasi-differentiability property of the mapping p — ps has been estab-
lished, we can apply our usual routine, see [1], to obtain a positive result for origin-
symmetric bodies near the unit disk. The argument will go along the following lines.
At the first step we shall put the body K into the isotropic position (its definition
and properties will be discussed below in detail) and normalize its radial function by



FLOATING 9

2
% J p(0)do = 1. Both these operations will keep the body that originally was close

0

to the unit disk close to the unit disk. We write p = 1 4+ ¢ and decompose ¢ into
its Fourier series ¢ = o + @4 + ..., where @5 € span(cos(kf),sin(kf)). Due to the
isotropic position assumption, ||pz||z2 is much less than ||¢||zz2.

Now assume that Ks = AK. Then A ~ cosa and, applying Lemma 2.1 with
K, =K, Ky = B, we get

04+«
1
36) = cosa — 5 [ plm)ar] < LTl + Quyelel )
0—a

with I' = ||¢]|c < 7. Projecting to non-zero frequencies, we obtain

O+

[ o], < VTl

0—a

H v 2sin«
However, the left hand side squared is at least

B Y (-2 oz 3 (eosa— TN oz, >

ksin « ksin o
k>2
k even k even
1
@) 3 el = e(@lell
k>4
k even
where

sin(ka) ) 2 S0

c(a) = min (cosa - —
sin «

k>4
k even

If T is small enough, this will imply ¢ = 0, so K is a disk.

Now the details. First of all, we will remind the reader the isotropic position trick.

Let K be an arbitrary star-shaped body. Consider the integral I (z) = [(z,y)?dy.
K
Opening the parentheses, we see that Ix(z) = (Az, z) for some positive definite self-

adjoint matrix A in R?. Now if we replace K by SK where S is a linear transformation
in R2, then we will get

To(z) = /(x,y>2dy _ /(x,Sz>2|det S|ds —

SK K

| det S| /(S*z,z)de = |det S|Ix(S*x) = | det S|(SAS*x, z).
K

Choosing S = | det A|TA~2, we get Igx () = | det Az |z|2.

There are two important points here. The first one is that, since the quadratic
form Isx(x) is proportional to |x|?, equating the coefficients and switching to polar
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coordinates, we obtain

2m
1
) /pSK(9)4(c082 6 — sin?0)df = /(y% —y2)dy =0
0 SK
and
1 2m
1 /pSK(6)4 cos 0 sin fdf = /yldey =0,
0 SK

i.e., p&y is orthogonal to span(cos(26),sin(26)). The second point is that if K was
close to the unit disk, then so is SK. More precisely, if (1 -I')B C K C (1+1')B,
then

1—1"\2 1412

(1—F)<1+—F> BcCSKC (1+F)<ﬁ> B.

Indeed, since
Ii-typ(®) < Ix(z) < Inimp(z) and  Ip(z) = clz],
we have
c(1-T)"1d < A< c(1+T)*1d,
so A < ec(1+D)4 A <1 —=T)% and (1 —T)® < det A < (1 + T8,
Hence, S]], |57 < (HF) and the claimed inclusions follow.

So, from now on, we will assume that our body K is in the isotropic position. We
2

can also normalize K by the condition % J p(0)do = 1, which can be achieved by a

0
pure dilation and also increases I' at most 3 times if it is small enough.

Now write p = 1 + ¢ and decompose ¢ into its Fourier series ¢ = @9 + @4+ .. ..
Since p* has no second order Fourier component and

10" — (14 49)| = [69” + 4¢* + *| < 11D ],

we conclude that the second order Fourier component —4¢p;, of p* — (1 + 4¢) has the
L2-norm at most 11T|p]| 2, i.e., [|o2|lr2 < 3T||p]l 2.

Assume now that K? = AK for some D € I C (0,3) and A > 0. Since the area
voly(K) is squeezed between (1 — I')?71 and (1 + I')?m, we see that the corresponding
area § = Dvoly(K) is separated from both 0 and 7 if I' is not too large. Let o be
the angle associated with § as above, i.e., volo(B N W™*(0,cosa)) = §. Noting now
that in this case (1-I")BC K C (1+I')Band t_B C K5 C t;B with |ty —cosa| <
7L we conclude that [A — cosa| < LT with some L = L(I) € (0,+00). This
observation justifies the approximate equality in (3) and, thereby, completes the proof

of Theorem 1.1.
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4. ASYMMETRIC CONVEX BODIES HOMOTHETIC TO THEIR CONVEX BODIES OF
FLOTATION

This section is devoted to the construction of asymmetric bodies homothetic to
their convex bodies of flotation. We use the basic technique from the bifurcation
theory that we borrowed from [3], Theorem 3.2, page 171. We believe that this
example could have been found long ago if the bifurcation specialists had paid more
attention to convex geometry problems or convex geometers were more familiar with
the bifurcation theory.

Again, before diving into technicalities, let us (try to) explain the general idea. We
are trying to solve the equation F(p) = Ap — ps = 0 with some positive A and 9.
We have the trivial solution p = 1, A = cosa and § = §(«) (the unit disk). Note
that if pg is the solution of this equation, then tp, is the solution of the equation
Ap — pzs = 0. Also, the equation F(p) = 0 is invariant under rotations. These two
degrees of freedom are not so interesting: if we start with a disk, using them will
produce nothing but disks.

However, we know also that we can change the disk to an ellipse. Where does this
degree of freedom come from? Note that on the Fourier side the quasi-differential

0+
1
dF,: Ap +— cosa Ap— 55 /Ap(r) dr
sin v
0—a

of the mapping F,(p) = cosap — ps is the multiplier operator acting on the k-th
frequency (i.e., on the space span(cos(kf),sin(k6))) as the multiplication by

sin(ka)
a) = cosa —
(@) k sin a
(for k = 0, po() = cos @ — z2-). This multiplier operator is degenerate on the second
frequencies regardless of a (pa(a) = cosa — % =0).

Locally, it allows one to shift away from the radial function py = 1 of the unit disk
along this kernel and, by adjusting other frequencies appropriately, to obtain a one-
parametric family of solutions (ellipses) once the rotations and dilations are factored
out.

The idea now is to remove the second frequency out of the game entirely and to
make another frequency [ play its role. Note that while ps(a) = 0 for all a, making
the differential degenerate on some other frequency requires choosing very special
angles. We cannot make py(a) = 0 with even [ > 2 for any a € (0,%), but we
have our chance with odd [ = 4k + 1 > 5. In this case, the curves a — cosa and

sin(la) - : ; — B
a — T intersect once near 7, the corresponding angle being oy =  — 5, where
is the unique on (0, %) solution of the equation cos 3; = %sin 27’31, which, as | = +o0,

tends to the unique solution 3 of cos f = £.

So the idea is to consider the set of all star-shaped bodies with the symmetries of

the regular [-gon, i.e., with continuous 27”—periodic even radial functions p (the class
that is preserved by the mapping p — ps), take @ = «; and try to move away from
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the radial function 1 of the unit disk by adding s cos(16) to it. The result will be that
the equation F, (1 + scos(lf)) = 0 will hold in the first (in s) order, but there will be
higher order errors in all frequencies divisible by [ (no other frequencies can appear
due to the symmetry conditions).

To eliminate the errors in all frequencies except the [-th one, we can try to apply
(dF,)~! to the error without the I-th frequency, which is a well-defined multiplier
operator with the multiplier sequence v, = ug(a;)™!, l|k, k # [, and subtract the
result from the argument of F, just as it is done in the classical proofs of the inverse
or implicit function theorems. This will reduce the size of the error (except for the
I-th frequency) and we can do it again and again until only the I-th frequency term
remains in the error. The final outcome will be some radial function

p = po + scos(l0) + pa cos(216) + ps cos(310) + . ..
with po = 14 0(s), pa, pai, - = 0o(s) as s — 0, which solves the equation
F,,(p) = E(s,aq) cos(l8)

with €(s, ) = o(s) as s — 0. This is almost what we want, but not quite. To remove
the error entirely, we will choose « close to g, but not exactly ;. Note that the curves
a +— cosa and o +—> % cross transversally at o;. This is easy to see in terms of
B € (0,%) given by 7 = § —a, when the equation for 5 becomes cos 3 = %sin # with
the left hand side decreasing and the right hand side increasing in # on (0, %). So,
with such choice of «, the initial first order error at the [-th frequency will become

w(a)s cos(10) = (c(a — aq) + oo — o)) s cos(10)

with some ¢ = ¢(l) # 0, and then it will change only by o(s) during the rest of the
scheme. Thus, for sufficiently small s, we can make the final £(s,«) both positive
and negative by moving « slightly away from «;. Since (s, a) depends continuously
on «, there exists some « close to «; for which it is exactly 0 and, voila, we have
our solution; actually even a countable set (indexed by 1) of one-parametric (with
parameter s) families of solutions.

Now we turn to the pesky details.

We fix an odd number [ = 4k + 1 > 5 and consider the space C; of continuous even
2T”-periodic functions. All functions in Cj are represented by pure cosine Fourier series
with frequencies divisible by {. We endow C; with the usual norm || f|| = ma>]< |f]. Let

2w

)

C] be the subspace of C; consisting of all functions orthogonal to cos(lf) (in general,
for any function space X, we denote by X; the subspace of 2T’T—periodic even functions
from X and by X] the subspace of functions from X; that are orthogonal to cos(16)).

Let P : C; — C] be the usual orthogonal projection “forgetting” the Fourier coeffi-
cient at the frequency [. Note that || P||¢,—¢, < 3 regardless of [ (just because P can
be written as the identity operator minus the projection to the I’th frequency, and
the norm of the latter is not greater than 2).

Note that the convex body of flotation preserves all symmetries of the original
body, so we can view the function F,(p) = cosa p — ps as a mapping from Cj to itself
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defined on all functions p € Cj sufficiently close to 1. We shall choose « close to o

defined above. Let
1 O+«
T00) = 5o [ )
f—«

be the quasi-differential of the mapping p — ps near the unit disk. The result of
Lemma 2.1 implies that

15 = pas = T(p1 = p2)lle < LVTlpy = pallc

with I' = max(||p1 — 1llc, [|[p2 — 1l|c), say. The quasi-differential of F, is then
cosa Id —T.

Claim 4.1. The linear mapping dF, = cosa Id =T is invertible on C| and the norm
of the inverse (as an operator from C| to itself) is uniformly bounded for v sufficiently
close to «.

Proof. On the Fourier side, dF,, acts as a multiplier operator with the multiplier
sequence (o) = cosa — % We note now that pg(a) = cosa — 2 is negative
and is bounded away from 0 as long as a € (0, Z) is bounded away from 0.

2
When k£ =ml (m =2,3,...), we have

i [
pr(a) = cosa — M.
mlsin «
Recall that oy is defined by
sin(lay)
cosqp = —
[sin oy
and that la; mod 27 is neither 0, nor w. Thus, for every m = 2,3,..., we have
| sin(mloy)| < m|sin(lay)], so
sm(n.zlozl) sm'(lozl) — cosay,
ml sin oy [ sin oy

i.e., tmi(ay) > 0, and for every fixed m, this inequality persists in some neighborhood

of oy. On the other hand, for all a € (%, 5), we have the uniform bound

sin(mla) 1 oS

~ mlsin & 2

mlsin « 5

when m is large enough. Thus, in a sufficiently small neighborhood of «;, for all
m = 2,3, ..., we have p,(a) > ¢, > 0 with some ¢; depending on [ only.

Now it is clear that for all a in that neighborhood, dF,, = cosa Id —T is invertible
in (L)' and the norm of its inverse S is uniformly bounded there. To get the bound
for the norm of S in (], we shall use the resolvent identity

(cosa Id—T)~* = (cos 04)’1<Id +T(cosav Id —T)’1>.

Note that the second term in the sum in parentheses can be viewed as the compo-
sition of the trivial imbedding C] < (L?)’, the resolvent (cosa Id —=T)~' : (L?) —
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(L?)" of norm uniformly bounded for « sufficiently close to «;, and the convolution
operator T : (L)' — C}, whose norm is bounded for o € (0, 3) separated from 0. O

For small s > 0, consider the mapping
Hs: ¢ — ¢ —SPF,(1+ scos(l0) + ¢)
in the closed ball ||¢|lc < T in (.

Claim 4.2. When s is small enough, the mapping Hs sends the closed ball in C] of
radius comparable to 2 to itself and is a contraction in that ball.

Proof. First, let us estimate the norm of H,(0). By Lemma 2.1, for small enough s,
we have

F,(1+4 scos(10)) = dF,(scos(10)) + &,

where ,

€]l < L(a)v/ss = L(a)s?.
Note now that dF, (s cos(l0)) = p(a)scos(lf) and P annihilates it entirely, so

IH.)llc = || = SPElc < L(a)s:.
To show the contraction property, we notice that for s +I" < y(«) and ||¢12]c < T,
we can write
Fo(1+ scos(l0) + p1) — Fo(1 4+ scos(l8) + o) = dF,(p1 — p2) + E(¢1, v2),

where

1€(p1, 2)lle < L{a)Vs + Tl = pallo-

Observe now that SPdF, is the identity operator on C}, so when ||¢1]|c, |[p2llc < T,
we have

[Hs(p1) — Hs(@2)lle = ISPE(pr, 2)llo < Lla, [)Vs + Tlpr — @alle-

In order to make H, a contraction, it suffices to demand that L(c, 1)v/s + T < 1, say.
Note that L(c,[) stays bounded and v(«) stays separated from 0 as long as « stays
close to aq. Finally, to ensure that Hy acts from the ball ||¢|lc < I' to itself, we can
write

IHo(@)lle < 1H(0)le + L, )Vs +Tliglle < Lia,1)(s? + Vs +TT)

3
2

and take I' = 2L(av,[)s2 and s so small that L(c, l)\/s +2L(a, 1)s2 < L. O

Let now ¢, be the fixed point of H,. Then ||¢,]|c = O(s2) as s — 0 and
SPF,(1+ scos(l0) 4+ p,) =0,
ie.,
PF,(1+ scos(l0) + ) = 0,
S0
Fo (14 scos(18) 4+ ¢s) = E(s, ) cos(10)
with some £(s,a) € R. It remains to discern the dependence of £(s,a) on the
parameter « of the mapping Fi,.
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Let us now prove that the mapping (o, ¢) — H(p) is uniformly continuous in «
when ¢ stays in a small closed ball in C] and « stays close to «;. To this end, we can
first observe that pes = t(t71p)s, so when |[p — 1||c and |t — 1] are less than I' and
I' > 0 is not too large, Lemma 2.1 implies the estimate

lpezs — pslle < [t =1 1(E " p)sllc + llps — " p)slle <
2[t — 1|+ Lllp— t 'plle < L|t — 1] < L|* — 1],

or, equivalently, ||ps — psllc < %]6" — 6| for some L > 0. However, 6 is a Lipschitz
function of « that is bounded away from 0 in a small neighborhood of «;, so ps and,
therefore, F,(p) are uniformly Lipschitz in « there when p stays close to 1.

Next, we need to show that S depends continuously on « as an operator from C| to
itself. First, observe that S depends continuously on « as an operator from (L?)' to
(L?)'. Indeed, if we take two angles o’ and o close to «;, the norm of the difference
of the corresponding operators S" and S” is

15" — SHH(Lf)q(LZQ)/ = sup |u(e) T = (@) <67 sup k() = p(a”)],
ko: U, kAL i Uk, kAL
where ¢; > 0 is the uniform lower bound for |ug(«)| with [|k, & # [, in a small
neighborhood of a;. However, pi(«) is continuous for each k and pi(a) — cosa
uniformly as k& — oo in that neighborhood, so the supremum becomes small when
the difference |/ — o'| gets small.
Since S = (cosa)~'(Id + T'S), in order to finish, we just need to show that the

. 0+
convolution operator T, f(0) = [ f(7)dr depends continuously on « as an operator
0—a

from (L?)" to C}. However,

| Torf — T fllo < V/2]a’ = o] || £ 2

by Cauchy-Schwarz and we are done. The other components of the mapping H, do
not depend on « at all, so the proof is complete.

Thus, the fixed point ¢, also depends on « continuously. Next, F;, is Lipschitz in
its argument as long as the latter remains close to 1, so

Fo(1+4 scos(10) + s) = Fo(1 + scos(10)) + O(|lpsllc) =
dF,(scos(l8)) + O(s%) = py(a)scos(lf) + O(s

3
2

).
The conclusion is that
E(s,a) = wla)s+ O(s?) (s — 0),

where the implicit constant in O() stays bounded as long as « stays sufficiently close
to oy (how close exactly depends on [, but not on s).

Since p;(a) changes sign at oy, we see that £(s,a) also changes sign in a short
interval around ¢ if s is small enough. But then, by the intermediate value theorem,
for any sufficiently small s, there exists & = a(s) in a small neighborhood of «; for
which £(s,a) =0, i.e.,

Fo (14 scos(18) 4+ p5) = 0.
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Then p; = 1 + scos(lf) + s is a continuous radial function of a star-shaped body
K that is homothetic (with the coefficient ﬁ) to its convex body of flotation and,
therefore, convex as well.

At this point, it is already clear that it cannot happen that the K corresponding
to very different values of s (differing 10 times or more) are affine equivalent. Indeed,
since K, has the symmetries of the regular [-gon, it is centered at the origin and
is in the isotropic position, so the only chance to map it to another Ky (which
also is centered at the origin and is in the isotropic position) affinely is to use a
combination of rotation and dilation (any other affine transformation will destroy
the isotropic position or shift K off center, or both). However, both rotations and
dilations preserve the ratio of the total size of the component of p at the [-th frequency
to the size of the component at the 0-th frequency, and that ratio for K is between
5 and 2s.

It is reasonable to expect that we have actually obtained a continuous in s con-
tinuum size family of pairwise affinely non-equivalent bodies here, but showing it
rigorously goes well beyond the scope of this short paper, so we leave it to the inter-
ested reader.
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