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A Global Thermospheric Density Prediction Framework
Based on a Deep Evidential Method

Yiran Wang' © and Xiaoli Bai'

"Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway,
NJ, USA

Abstract Thermospheric density influences the atmospheric drag and is crucial for space missions. This
paper introduces a global thermospheric density prediction framework based on a deep evidential method. The
proposed framework predicts thermospheric density at the required time and geographic position with given
geomagnetic and solar indices. It is called global to differentiate it from existing research that only predicts
density along a satellite orbit. Through the deep evidential method, we assimilate data from various sources
including solar and geomagnetic conditions, accelerometer-derived density data, and empirical models including
the Jacchia-Bowman model (JB-2008) and the Naval Research Laboratory Mass Spectrometer and Incoherent
Scatter Radar Extended (NRLMSISE-00) model. The framework is investigated on five test cases along various
satellites from 2003 to 2015 involving geomagnetic storms with Disturbance Storm Time (Dst) values smaller
than —50 nT. Results show that the proposed framework can generate density with higher accuracy than the two
empirical models. It can also obtain reliable uncertainty estimations. Global density estimations at altitudes from
200 to 550 km are also presented and compared with empirical models on both quiet and storm conditions.

Plain Language Summary Thermospheric density affects atmospheric drag, which is important for
many space missions. This paper presents a global thermospheric density prediction framework based on a deep
evidential method. It incorporates data from empirical models JB-2008 and NRLMSISE-00, solar and
geomagnetic indices, and density derived from satellite accelerometers. Test cases are designed from 2003 to
2015 under quiet and storm conditions based on various satellites. The proposed framework demonstrates
higher accuracy and reliable uncertainty estimates compared to the empirical models.

1. Introduction

In recent years, active satellites in Earth's orbit have greatly increased. As of February 2024, there are 9,401
operational satellites in orbits and 8,299 of them are in low Earth orbit (LEO) (OrbitingNow, 2024). Atmospheric
drag is the dominant perturbation force and is the most difficult to predict for orbit propagation of LEO satellites
(Marcos et al., 1998). It is influenced by several causes, including the thermospheric density, drag coefficient, the
area of the satellite facing the fluid, and the relative velocity between the satellite and the surrounding atmosphere.
Fluctuations in thermospheric density may result in alterations to the trajectories of satellites, impacting
communication systems (Chartier et al., 2013), orbital lifetimes, and overall mission planning. Significant
evolutions have occurred in the study of thermospheric density prediction in space weather, driven by the de-
mands for accuracy and reliability.

Earth's thermospheric density is a complex system affected by various factors, such as solar flares, Coronal Mass
Ejections (CMEs), high-speed solar winds, seasonal and solar cycle variations, etc. Besides, the location and the
corresponding temperature also affect the thermospheric density (Hall, 2021). Traditionally, thermospheric
density prediction mainly relied on physical laws and observational data. The commonly used empirical models,
such as the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (Picone
et al., 2002) and the Jacchia-Bowman (Bowman et al., 2008) models can produce considerable errors during
periods with high-level solar and geomagnetic activities. The uncertainties extend over 100% under such extreme
conditions (Group, 2012). On the other side, the principled, physics-based models such as the Thermospheric
General Circulation Models (UCAR, 2016) and the Global Ionosphere Thermosphere Model (Aaron et al., 2024)
can provide a more realistic representation of the thermosphere but with high computing requests. In addition, it is
still challenging for these models to outperform empirical models because of the large uncertainties in inputs and
boundary conditions.
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Studies indicate that the thermospheric density experiences strong fluctuations during geomagnetic storms (Burke
et al., 2007; Burns et al., 1995, 2004), subsequently causing large drag variability on satellites (Oliveira &
Zesta, 2019). The factors that influence the storms mainly include the solar winds, CMEs, geomagnetic activities,
and other related phenomena (Gonzalez et al., 1994; Qian & Solomon, 2012). The Disturbance Storm Time (Dst)
magnetic activity index serves as a common metric for categorizing the occurrence of geomagnetic storms and
defining the duration of the storms. In this paper, we use Dst to define quiet and storm conditions (Richardson
etal., 2006; Y. Wang & Bai, 2023b; Zhang et al., 2007): the quiet time is defined as the period when the minimum
Dst is larger than —50 nT; a moderate storm occurs when the Dst value is between —50 and —100 nT; an intense
storm happens when Dst is from —100 to —250 nT, and the super-storm is defined when the Dst is smaller
than —250 nT.

Over the past decades, researchers have attempted to model thermospheric density using a variety of new ap-
proaches, including improving empirical models, exploring physics-based models, and developing data-driven
models. Emmert (2009) analyzed a long-term global averaged total mass density database based on two-line
element (TLE) data, which covers the years from 1967 to 2007, and the range of altitude is from 200 to
600 km. They combined about 5,000 objects into a single-density database to analyze the global average absolute
density. Weimer et al. (2011) computed the total Poynting flux flowing into both polar hemispheres as a function
of time. They compared the densities at two altitudes obtained from accelerometers on the CHAMP and GRACE
satellites. Elvidge et al. (2016) proposed a multi-model ensembles (MME) strategy that combined different and
independent models for forecasting the density. The results indicate that during solar minimum test scenarios
using the MME to initialize Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM)
shows a reduction in Root Mean Squared Error (RMSE) of 60% Weimer et al. (2018) investigated the amplitudes
and timings of combined, annual, and semiannual variations in thermospheric neutral density. This study involved
a comparison of these variations with measurements of the infrared emissions from carbon dioxide and nitric
oxide in the thermosphere. The study also revealed a strong correlation between semiannual variations in density
and observed the changes in infrared emissions from carbon dioxide and nitric oxide during periods of high solar
activity. Forootan et al. (2022) proposed a method called “C/DA-NRLMSISE-00" to use the density estimated
from the GRACE to re-calibrate the NRLMSISE-00's parameters based on Ensemble Kalman Filter and data
assimilation (C/DA) technique. The estimated density from the method was compared with the density from the
original NRLMSISE-00 model along the GRACE and SWARM satellites's orbits. The results indicated that the
proposed method provided smaller RMSE values and uncertainties than the NRLMSISE-00 model. Mutschler
etal. (2023) introduced a method named SoleiTool which incorporated the position of CubeSats for estimating the
density.

Several studies have used dynamic reduced-order models (ROM) based on satellite data to improve the ther-
mospheric density prediction accuracy. Mehta et al. (2019) used modal decomposition to extract a reduced-order
representation. They presented both the density and the temperature with different basis functions. Gondelach and
Linares (2020) used the ROM method with the TLE data to predict the density for real-time. Their results had a
smaller bias and RMSE than the empirical models. Mehta and Linares (2020) extended the dynamic ROM with
satellite position measurements. The results demonstrated the effectiveness of the Unscented Kalman filter in
estimating position, velocity, and density. Gondelach and Linares (2021) further used the ROM with radar and
GPS tracking data to estimate and validate the density compared with the SWARM satellites. Licata and
Mehta (2023) used the ROM to reduce the dimensionality of the TIE-GCM model and employed recurrent neural
networks to model the thermosphere with a quicker calculation speed than the numerical model.

In recent years, machine learning (ML) has increasingly been used to predict thermospheric density (Nate-
ghi, 2021). Pérez and Bevilacqua (2015) use neural networks to reduce the error in the density estimated by three
empirical models. Weng et al. (2020) proposed an Artificial Neural Network Model (ANNM) to predict the
thermospheric density in long-term trends (1967-2013). They compared the estimated density from the ANNM,
the NRLMSISE-00 model, and the Global Mass Density Model to the satellite drag-derived densities. Bonasera
et al. (2021) used the deep ensembles neural network with dropout to estimate the thermospheric density and the
uncertainty. The inputs for the network included density data from satellite accelerometers, orbital parameters,
and solar and geomagnetic indices. Licata, Mehta, Tobiska, and Huzurbazar (2022) used the Principal Component
Analysis method to build the model. The predicted density showed optimal results than the JB-2008 model along
the satellite orbit. Acciarini et al. (2024) used the Karman package to build a data-driven ML model to investigate
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prediction accuracy. Their model was trained on precise orbit determination-derived thermospheric density data
from satellites.

In previous studies Gao et al. (2020), Y. Wang and Bai (2022), and Y. Wang et al. (2021), we have developed and
improved a thermospheric density prediction framework that integrates data from empirical models, including the
JB-2008 and NRLMSISE-00, solar and geomagnetic indices, and accelerometer-derived density data along a
particular satellite to predict thermospheric density. A recent study Y. Wang and Bai (2023b) successfully
demonstrated the effectiveness of the deep evidential method in predicting thermospheric density along a satellite,
achieving high accuracy and reliability uncertainty estimation.

Building upon this success, our current work aims to expand this approach into a global thermospheric density
prediction framework based on the deep evidential method. This upgraded framework can estimate the ther-
mospheric density at any geographic position and at any time with the given space weather condition. The deep
evidential method can account for both aleatoric and epistemic uncertainty, which is crucial for ensuring reliable
predictions. Initial results were obtained in predicting density for two different satellites within a close altitude
range (Y. Wang & Bai, 2023a). In this paper, we extend this work to test the thermospheric density for more
satellites with wider altitude ranges.

The paper makes the following contributions. First, the framework proposed in this paper shows great potential in
predicting global density at a given time and location while only requiring the corresponding space weather
indices as the external input. Second, experimental results demonstrate that the proposed framework generates
thermospheric density with high accuracy and reliable uncertainty estimation for various satellites. Even when the
test periods are not part of the training database but are in the future, the model exhibits a high level of accuracy.
Third, test results indicate the robustness of the proposed framework in different conditions, including both quiet
and storm conditions. Fourth, the framework shows its adaptability as the performance of the predicted results
improves with more density information, even if the additional information is limited. Finally, the estimated
density from the proposed framework shows similar patterns as the empirical models in the quiet condition and
different patterns in the storm condition. Additionally, the predicted density is closer to the satellite
accelerometer-derived densities than the two empirical models in both quiet and storm conditions.

The rest of this paper is organized as follows. Section 2 presents the methodology in detail, including the key
concepts of the deep evidential method and how we design the neural network structures. We also introduce the
proposed global thermospheric density prediction framework and the metrics used to evaluate performance.
Section 3 first describes the databases we use for training and test cases for evaluations. It then presents and
analyzes the results for all the cases. Section 4 presents and compares the predicted density with the density
obtained from the empirical models JB-2008 and NRLMSISE-00 globally for a quiet and a storm condition.
Additionally, the density from the satellite accelerometers at specific locations at the same time is used to verify
the results. Conclusions are presented in the last section.

2. Methodology
2.1. Deep Evidential Method

Amini et al. (2020) introduced a deep evidential regression method to learn the uncertainty by placing evidential
priors over the original Gaussian likelihood function and training the neural network to infer the hyperparameters
of the evidential distribution. Consider a data set comprising input variables X = {x;}7_, € R"™ and its cor-
responding outputy = {y,—}:’:1 € R”, where n is the number of samples in the data set and d is the dimension of
the input. Assume the output y follows a Gaussian distribution with unknown mean and variance N'(i, 6%). An
unknown mean is subjected to a Gaussian prior, while an unknown variance is subjected to an Inverse-Gamma
prior. These assumptions can be represented as:

1o o) ~ N6

. . (1)
u~ Npev™) o~ @ p)

where F() is the gamma function. The hyper-parameters now can be definedasm = (y,v,a,f)andy € R, v >0,
a>1, >0.
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The model is trained using a novel loss function defined in Equation 2 (Amini et al., 2020) that measures the
distance and the discrepancy between the predicted and the true values so that the network can make predictions
as well as provide uncertainty estimations.

L£:w) = LN (w) + 2LR(w) )

where £§\JLL(W) is the negative logarithm of model evidence, and the definition of £§\”‘L(w) is shown in Equa-
tion 3. An objective for training a neural network is to maximize the model evidence to fit the observations by
using the normal inverse gamma distribution.

I'a)

Ma+y| @

£ML(p) = %log(%) —alog2B(1 +v)) + (a + %) 10g<(y,- — )+ 2501 + v)) +log

To minimize the errors in evidence, a regularization term is defined in Equation 4, which balances the loss
function through the regularization coefficient 4 in Equation 2.

Liw) = |y —E[p]|-@v+a) = [yi—y]-@Qv+a) “4)
The prediction, aleatoric, and epistemic uncertainties are calculated as follows:

Prediction: E[u] =y (%)

Aleatoric Uncertainty: E[6”] = o (6)

Epistemic Uncertainty: Var[u] = b @)

“wa-=1)

2.2. Global Thermospheric Density Prediction Framework Definition

In this paper, we propose a data-driven framework based on the deep evidential method. The framework takes the
input of time indices, geographic positions, empirical models, and geomagnetic and solar indices. Explicitly, the
inputs and the output of the model are described as Equation 8, the basic form of which has been studied in our
previous papers (Y. Wang & Bai, 2022, 2023a, 2023b; Y. Wang et al., 2021). In this upgraded framework defined
in Equation 8, we add time indices and geographic positions as new variables to enhance the model's capability to
predict density at specific positions and time. Additionally, we do not include satellite-specific density infor-
mation as we did in the previous studies because such information may be unavailable and the model is a global
model.

11(0), 1(2), 13(0), 14(1), 15(0), 16(1)
lat, (1), long,(t), height,, (1),
lg(PJB(f))’ 1g(ﬂJB (t— TJB))
18(p(0) = f|12(Pyrc®)s - 12(Pwre (= Trre)) ®)
Fio7(t = 1d), Fig74(t = 1d), F30(2), Ap(2)

Dst(t), Dst(t — 1hr), ..., Dst(t — Tpy,),

SymH(t), SymH(t — 1min), ..., SymH(t — Tsyup)

The p on the left side of the equation is the predicted density from the evidential model at time ¢. Here we assume
the density from the satellite accelerometer as the truth as it is regarded as the most accurate information among all
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Table 1

Framework Variable Definitions

Variable Definition

Fio7 Daily value of 10.7 cm solar radio flux with a 1-day lag

Flo7a Ninety-one days mean of daily Fjo; a 1-day lag

F Daily value of 30 cm solar radio flux

Ap Derived from the 3-hr geomagnetic index K,

Dst An index for the strength of the ring current with 1-hr resolution

SymH One-minute resolution of the longitudinally symmetric component of the magnetic field

disturbances (Iyemori, 1990)

the available information, and has been widely used in literature for performance validation (Bonasera
et al., 2021; Gao et al., 2020; Pérez & Bevilacqua, 2015; Pérez et al., 2014). Additionally, for the following
experiments, we use the information from CHAMP, GRACE-A provided by Mehta et al. (2017) and
Mehta (2017). We also use the information from GOCE (ESA, 2024a), and SWARM (ESA, 2024b) provided by
the ESA. Refereed to Licata, Mehta, Weimer, et al. (2022), ¢, t,, ..., t¢ are defined as:

_ . (2mdoy _ 2ndoy
fu=smn (365.25) f2 = cos (365.25) ©

. (2aUT 2zUT
t3—sm< " ) t4—cos( 7 ) (10)

. (2zLST 2zLST
t5—sm< i ) té—cos( A ) (11)

where #; and t, represent the annual variations using the day of year doy as the variable. #; and ¢, represent diurnal
variations using the universal time UT. LST is the local solar time transferred at the current time ¢ of the current
position. lat,,(t), lon,,(t), height,,(t) are the latitude, longitude, and height to specify the position of the satellite
at the current time t. p;p and p,qq are the densities estimated by the two empirical models JB2008 and
NRLMSISE-00.

The meanings of the other variables are stated in Table 1.

We established parameters for time delays through a trial and error process. The delays in JB-2008 or
NRLMSISE-00 expressed as Tz and T)g;s, respectively, are set as 15 min. A 3-hr time delay is applied to Dst,
denoted by Tp,,. The time delay of SymH, represented by Ty,,x, is set as 15 min. Previous studies Y. Wang and
Bai (2022) and Y. Wang et al. (2021) have shown that providing these inputs is essential for the model to make
accurate predictions.

2.3. Neural Network Structure

The neural network is constructed using the Keras toolbox (Keras Team, n.d.) in Python 3.9. We design several
models with different training databases as outlined in Table 4 in the next section, and the network structures
differ accordingly. Our approach involves an initial optimization of the neural network structures using the
KerasTuner (O’Malley et al., 2019). The tuner settings are outlined in Table 2.

Based on the initial results from the KerasTuner, we further adjust the network structure to obtain better results.
Table 3 shows the final structure of Model-1, which is set as the base model, and its training database will be
explained in the next section. To reduce the effect of randomness and provide a robust and reliable assessment of
the model's performance, we execute each experiment five times, employing different random seeds for each run.
The final results are the average outcomes across these five runs.
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Table 2 2.4. Performance Metrics

Hyperparameter Search for NN Model

We select four metrics to evaluate the performance of the proposed frame-

Parameter

Num of hidden layer
Neurons
Activation function

Optimizer

Table 3
Model-1 Network Structure

Settings work on both prediction accuracy and uncertainty estimation.
1-5 To evaluate the accuracy of the predictions, we use the Pearson correlation
min = 64, max =512, and step =32 coefficient (R) and the RMSE. R and RMSE can be mathematically expressed
linea, relu, elu as Equations 12 and 13:
adam, sgd
n - ~ Y
R = Zi:l (pl ,0)(/)1 p) (12)

(n—1)o,0;

RMSE = /% Z (= p) (13)
i=1

where p; and p; are the true density and predicted density. p represents the mean value of the density. o, and o are
the standard deviations of the truth and the predictions, and 7 is the size of the data that are used for evaluation. A
good performance shall have an R close to one and an RMSE as small as possible.

To evaluate the uncertainty estimation performance of the proposed framework, we count the coverage rate of the
20 area (Cov Rate). The coverage rate is defined as Equation 14:

k
Cov Rate = - X 100% (14)

where k is the number of the true density that is within the 2¢ uncertainty boundaries estimated by the evidential
model. A good performance shall have a coverage rate close to 95%.

We also evaluate the confidential level and calculate the Mean Absolute Calibration Error (MACE) (Anderson
et al., 2020) to evaluate the reliability of the uncertainty, which is defined as Equation 15.

MACE = ii |CTk] - PIK]| (15)
ncia

where C[k] is the confidence interval level, and in this paper we define it as C[k] = [5%, 10%, ..., 95%, 99%]. n.
is the number of the confidence interval levels. P[k] is the percentage of the predicted data within the uncertainty
boundaries associated with the C[k].

The MACE calculates the average difference between the ideal and actual probability in the test set and helps us
evaluate the overall reliability of the model's prediction. A lower value of the MACE indicates a better-calibrated
model.

3. Case Studies and Results
3.1. Experiments Design

To reduce the running time while including enough information and exploring our models' predictive capability,
we did not use all the accessible data from CHAMP and GRACE-A, but instead selected several periods as
summarized in Table 4. The data spans from year 2002 to 2006, with the
selected months that contain intense geomagnetic storms, identified by Dst
values smaller than —100 nT. The details of the storms can be referred to Y.

Hyperparameters

Settings Wang and Bai (2023b). We emphasize that the months of October and

Network structure
Activation function

Optimizer

Input - 128 - 256 - Output November in 2003, during which the Halloween storm occurred, have been

i excluded from the training database. This deliberate omission is to demon-
u
strate the density prediction capabilities of the proposed framework under

adam

extreme geomagnetic storm conditions.
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Table 5
Model Definition

Table 4
Training Periods of CHAMP and GRACE

Year Month Year Month

2002 August—October 2005 January, May, June, August, and September
2003 May—August 2006 April and December
2004 February, April, July, August, and November

Overall, we design the following models to explore the predicted performance based on different databases. The
definitions of these models with their corresponding databases are shown in Table 5.

In Model-1, the training database contains information from both CHAMP and GRACE-A, during the specific
periods defined in Table 4. Model-2 includes information exclusively from CHAMP. As a comparison of similar
situations, Model-3 contains the information only from GRACE-A. Model-4 contains the data from CHAMP and
GRACE-A similar to Model-1 but with an additional 1-month data from 01 January 2010 to 31 January 2010 on
GOCE. In a parallel fashion, Model-5 contains the data from CHAMP and GRACE-A the same as Model-1, and a
shorter duration of additional data from 01 February 2014 to 15 February 2014 from SWARM-A.

The well-trained models will be applied in different test cases as defined in Table 6. We will assess the per-
formance of Model-1, 2, and 3 in Test-1, spanning from 27 October 2003 to 03 November 2003 on both CHAMP
and GRACE-A. This period is the famous Halloween Storm, which contains a large geomagnetic storm during
which the minimum Dst is —432 nT. This test will be used to evaluate the performance of the models derived from
the same satellites but the periods are not included in the training database.

Tests 2 and 3 are designed to evaluate the performance along GOCE under moderate storms when the Dst values
during the two test periods are smaller than —50 nT but larger than —100 nT. We will also evaluate the same
period on CHAMP and GRACE-A. With different satellites included in the training database, Model-1, 2, 3, and 4
will be applied to these two test cases. We highlight that the test periods are in the future time of all the training
databases, and the GOCE is an unknown satellite for Model-1, 2, and 3.

The choice of the test date on Test-4 and 5 is motivated by the occurrence of intense storms happened during the
specific periods. We will evaluate Model-1, 2, 3, and 5 on these two test cases. Both test periods are in the further
future time beyond the training database, and these two SWARM satellites are not included in Model-1, 2, and 3.

The evaluations in Test-2 and 3, as well as Test-4 and 5, will assess the model's efficacy in predicting thermo-
spheric density on a new satellite using the proposed framework. The evaluation of Model-4 and Model-5 is to
incorporate information from the new satellites as extended data sources during training, but the available data
periods on the new satellites are limited. The goal is to investigate the model's effectiveness in predicting ther-
mospheric density on previously untrained satellites. We will also compare the performances of the models with
two empirical models, JB-2008 and NRLMSISE-00. Since the empirical models cannot provide the uncertainty,
we will focus on accuracy metrics for both empirical models. Collectively, these carefully designed evaluations
will provide a comprehensive view of the capability of the proposed framework.

3.2. Results
3.2.1. Test-1: From 27 October 2003 to 03 November 2003

In the test period of Test-1, we evaluate model performances on both CHAMP

Model

and GRACE-A. The numerical results of Model-1, 2, and 3 on CHAMP are
Database

1

2
3
4

presented in Table 7 and the results on GRACE-A are presented in Table 8.

CHAMP and GRACE-A
CHAMP
GRACE-A

CHAMP, GRACE-A, and 01 January
2010-31 January 2010 on GOCE

CHAMP, GRACE-A, and 01 February
2014-15 February 2014 on SWARM-A

The accuracy metrics of the two empirical models are also presented after
Model-3.

For the accuracy of the predictions, Model-1 exhibits the highest R value of
0.9286, indicating a strong relationship between the true value and the pre-
dictions of the proposed model, which has been trained with both CHAMP
and GRACE-A. Model-1 also shows the smallest RMSE value as
1.1179 x107'2kg/m>. The second best accurate performance is from
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Table 7

Test on CHAMP: 27 October 2003—03 November 2003

Table 6
Test Period

Test case Test period Min Dst (nT)

27 October 2003—-03 November 2003 on CHAMP and GRACE-A —432
03 April 2010-07 April 2010 on CHAMP and GOCE —76
11 October 2010-12 October 2010 on GRACE-A and GOCE =15
20 February 2014 on SWARM-A and SWARM-C —112
15 March 2015-26 March 2015 on SWARM-B and SWARM-C —234

[ U S

Model-2, in which training data is from CHAMP, with an R value of 0.9093 m and RMSE value of
1.3764 x 107'%kg/m>. The training data of Model-1 and Model-2 both contain information from CHAMP.
When the training data only contains information from GRACE-A, as Model-3 shows, the predicted accuracy
becomes worse than the first two models. The R value in Model-3 is 0.85, with a larger RMSE value
2.5572 x 107'2kg/m?>. The R value from the JB-2008 model is 0.8404, which is lower than the three proposed
models. The RMSE value is 2.4116 x 10~'?kg/m?, smaller than Model-3, but larger than Model-1 and Model-2.
As for the results from the NRLMSISE-00 model, the accuracy performance is the worst among all the results.

We plot the error histogram between the truth and the predicted value from JB-2008, NRLMSISE-00, and Model-
1 in Figure 1. The blue section represents the error between the truth and the JB-2008 model, red section is the
error of the NRLMSISE-00 model, and the yellow section represents the error of Model-1.

It can be seen from the histogram in Figure 1 that compared with the two empirical models, the errors produced by
the base model have smaller mean and deviation values, indicating the base model is more accurate than the two
empirical models.

As for the uncertainty estimation, Model-1 shows the most reliable uncertainty estimations as it provides the
highest coverage rate, which reaches 93.46%, with the smallest MACE value, indicating its reliability in capturing
the observed data. Model-2 shows the second-best coverage rate, which is beyond 92%. The MACE value is larger
in Model-2. Model-3 shows the relatively worst performance among the three models. The coverage rate in
Model-3 is 80%, which is much lower than the other two models. The corresponding MACE value in Model-3 is
the largest reaching 0.1059.

We next present the test results on GRACE-A from 27 October 2003 to 03 November 2003 from Model-1, 2 and 3
in Table 8.

Again, the best accuracy performance is from Model-1, in which the database contains information from both
CHAMP and GRACE-A. The R value in this test case is 0.8904 with the RMSE value as 3.0459 x 10~3kg/m>.
The performance on GRACE-A is similar to the test performance on CHAMP, as the second-best performance is
from Model-3, in which the training database contains information only from GRACE-A. The R value in Mode-3
reaches 0.8809, with RMSE value 3.6164 x 10~13kg/m?. The worst performance on accuracy in this test period
is on Model-2, in which the R value is 0.8286 with a larger RMSE value of 5.7379 X 10~'*kg/m?. The R value
in this case from the JB-2008 model is slightly larger than the R value in Model-2, but the RMSE value from the
JB-2008 model is larger than Model-2. Except for this, the accuracy metrics of the three models based on the
proposed framework are better than the two empirical models.

When we look at the estimated uncertainty in Test-1 on GRACE-A, the most
reliable uncertainty estimation is from Model-1, as the coverage rate reaches
90.34% with the smallest MACE value of 0.0472. The coverage rate in
Model-3 is close to 90% as the second-best performance, and the MACE

Model 1

2

3 1B-2008 MSIS value is also the second smallest among the three models. Model-2 in this case

R 0.9286
RMSE x 10712 1.1179
Cov rate 0.9346
MACE 0.0287

0.9093
1.3764
0.9235
0.0435

shows relatively worst performance, for the uncertainty coverage rate

08565 08404 0.7803  1on hing 86.31%, with a MACE value of 0.0889.

2.5572 2.4116 3.4837
0.8095
0.1059

The storm case has been widely studied by other researchers, with some
existing results available for comparison. Liu et al. (2011) studied the storm
case and reported the correlation coefficients of 0.88 for CHAMP and 0.89 for
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Table 8 GRACE-A. The correlation coefficients from our base model are 0.92 for
Test on GRACE-A: 27 October 2003—03 November 2003 CHAMP and 0.89 for GRACE-A. Forootan et al. (2023) also tested their
ol 1 ) 3 1B-2008 VSIS model during the storm period for GRACE-A, yielding an RMSE value ?f
6.16 x 107%kg/m®. The RMSE value from our base model is
R 08904 08286 0.8809 08318 07142 34y 10-13kg/m?, which is notably smaller.
RMSE x 10713 3.0459 5.7379 3.6164 6.6409 10.572 ) ) o o
Cov rate 09034 08631 0.8943 In ger}era?, the restllltls in this section indicate tha_t the model containing n?ore
satellites in the training database produces superior accuracy and uncertainty
MACE 0.0472 0.0889 0.0567

estimation results. Specifically, CHAMP and GRACE-A data can be used

together to enhance the model's predictive capabilities. The results of the two
test cases demonstrate the effectiveness of the proposed framework in predicting thermospheric density for both
CHAMP and GRACE-A, even when the test periods are not included in the training data.

3.2.2. Test-2: From 03 April 2010 to 07 April 2010

In Test-2, we will evaluate Model-1, 2, and 3 which are trained with information from CHAMP and GRACE-A,
and Model-4 which contains additional 1-month information from GOCE, and Model-1, 2, 3, and 4 will be
applied for Test-2 on both CHAMP and GOCE from 03 April 2010 to 10 April 2010. Note the period in Test-2 is
the future time of the training range in the four models.

The numerical results of CHAMP are presented in Table 9. The best accuracy performance in this test case is from
Model-4, whose training database contains information from three satellites. It has the highest R value of 0.9155
with the smallest RMSE value of 2.1680 x 10~'2kg/m?>. The second-best result is from Model-1, whose training
database contains information from two satellites, with an R value of 0.8787 and an RMSE value of
2.2322 x 1071?kg/m3. The performance in Model-2 is close to that of Model-1, as both the training and test data
are along the CHAMP satellite. Its R value reaches 0.865, with RMSE value of 2.3361 x 10~'?kg/m?3. Model-3,
which contains the density values from GRACE-A provided by Mehta et al. (2017) and Mehta (2017) in the
training database, which is not the test satellite, shows the worst performance in this test case. The R value is
0.8049, and the RMSE value is bigger than the others. The accuracy of the four proposed models in this case is
better than the two empirical models.

The best uncertainty estimation performance in this test case is from Model-4, as it provides a reasonable
coverage rate with the smallest MACE value. The coverage rate in Model-1 is close to that of Model-4 but slightly
lower, and the MACE value in Model-1 is larger. The coverage rate in Model-2 is very high as it goes over 99%.
However, we note that this is because the uncertainty value provided by the model is large when the test period is
out of the training range. The large MACE value indicates the model's uncertainty prediction is not as reliable as
Model-1 or Model-4. The coverage rate in Model-3 is 76%, which means the predicted uncertainty boundaries
cannot cover the true values.

Error Histogram
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Figure 1. Test-1 on CHAMP: Error histogram.
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Table 9

Test on CHAMP: 03 April 2010-07 April 2010

Table 10 shows the results when testing on GOCE from 03 April 2010 to 07
April 2010. Model-4 shows the most accurate predictions among all the

Model

1

2

3 4 1B-2008  MSIS models as it has the highest R value of 0.9494 and the smallest RMSE value of

R
RMSE x 10712
Cov rate

MACE

0.8787
22322
0.8527
0.0876

0.8657
2.3361
0.9980
0.2752

0.8049 0.9155 0.7714  0.5799

3.1686  2.1680  3.9063  4.2667 which is very close to the value in Model-4. The RMSE value in Model-1 is
0.7656  0.8584 3.6339 x 10~'2kg/m?. The performances of Model-2 and Model-3 are worse
0.1287 0.0554 than Model-1 and Model-4. The R value on Model-2 is 0.8657, while on

2.8724 x 10~1?kg/m3. The second-best performance on accuracy is from
Model-1, which contains two satellites. The R value in Model-1 is 0.9449,

Table 10

Test on GOCE: 03 April 2010-07 April 2010

Model-3 R value is reduced to 0.8049. The RMSE values are also much larger
than the values in Model-1 or Model-4. The predicted density from the JB-2008 and NRLMSISE-00 model in this
test case shows a larger R value than Model-3, while the RMSE values are larger than all the proposed models.
The same test case for GOCE has been studied in Forootan et al. (2023) with reported RMSE value of
4.29 x 10712kg/m?, which is larger than the RMSE value achieved in the base model.

Model-4 performs exceptionally well for both test cases when we look at the uncertainty performance. The
coverage rate in Model-4 reaches 97.79%, which is the closest to the ideal 26 coverage rate, and the MACE value
in Model-4 is the smallest, which indicates the reliability of the uncertainty estimation. The coverage rate in
Model-1 is slightly larger than Model-4, as it reaches 98.09%, thus with a larger MACE value. Model-2 in this
case shows the largest coverage rate of 99.81%, which is beyond the criteria of the perfect calibration curve, due to
the uncertainty values from Model-2 being too large that they are overestimated. The MACE value in Model-2 is
the largest, indicating less reliability of the uncertainty estimations. Model-3 in this case shows the smallest
coverage rate and a larger MACE value than the values in Model-1 and Model-4.

The R metric can evaluate the strength of the connections between the predicted values and the ground truth based
on overall performance. This allows for a general comparison across the same satellites for a closely matched test
period. For example, Chen and Sang (2016) reported R values ranging from 0.81 to 0.89 for CHAMP density
predictions during quiet periods. In contrast, our base model, tested during storm periods, shows higher R values,
indicating the improved performance of the proposed model.

3.2.3. Test-3: From 11 October 2010 to 12 October 2010

Test-3 is from 11 October 2010 to 12 October 2010, and we will evaluate the performance of Model-1, 2, 3, and 4
on GRACE-A and GOCE. The numerical results of GRACE-A are presented in Table 11 and the results of GOCE
are shown in Table 12.

For the test results on GRACE-A in Table 11, all four models provide reasonable predicted results as the R values
exceed 0.87. The best result on the prediction accuracy is from Model-4, which has the highest R value of 0.9027,
and the smallest RMSE value of 4.6180 x 10~'%kg/m?>. The performances of Model-1 and Model-3 are very
close. Model-1 shows a larger R value while the RMSE value in Model-3 is smaller. The worst performance is
from Model-2, in which R value is 0.8700 and the RMSE value is 6.7014 X 10~!%*kg/m? since the training
database in Model-2 contains information only from CHAMP. In this case, the empirical models show much
larger RMSE values than the proposed models indicating a worse density estimation than the models based on the
proposed framework.

On the other hand, for the uncertainty estimation, Model-4 has the most reasonable coverage rate, which is
93.84% with the smallest MACE value of 0.0268. This indicates that its uncertainty estimates are highly reliable.
The second-best performance on uncertainty estimation in this case is from Model-1, as it provides the second-
highest coverage rate 85.58% with the MACE value of 0.0544. The coverage
rate on Model-3 is 82.57% and the MACE value is 0.0784. The metrics in
Model-3 are slightly worse than the values in Model-1.

Model

1

2

3 4 JB-2008  MSIS As for the results on GOCE in Table 12, the best-predicted value is from

R
RMSE x 10712
Cov rate

MACE

0.9449
3.6339
0.9809
0.0365

0.8657
4.1231
0.9981
0.2252

4.5297 28724 4.6833  4.9274
0.9274 0.9737
0.0532  0.0207

0.8049 09494 08717 0.8309 Model-4, which contains information from CHAMP and GRACE-A and a

short period on GOCE. The R value is 0.8985, and the RMSE value is
2.3903 x 1071?kg/m>. The second best is from Model-1, with the R value of
0.8627 and the RMSE value of 2.5373 x 10~'*kg/m>. The results on Model-2
and Model-3 are worse. The R value in Model-2 is 0.8542, and the RMSE value
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Table 11

Test on GRACE-A: 11 October 2010-12 October 2010

increases t03.5717 x 10~ !2kg/m?>. The accuracy in Model-3 is the worst, with
the smallest R value of 0.8306 and the RMSE value is 3.8469 x 10~2%kg/m?>.

Model 1

2

3 4 1B-2008  MSIS In this case, the R value of the JB-2008 model is larger than the value in Model-

R 0.9015
RMSE x 107#  4.9420
Cov rate 0.8558
MACE 0.0544

0.8700
6.7014
1.0000
0.2887

0.9008 0.9027 0.8388  0.7649
4.6504 4.6180 11918  13.609

2 and Model-3, while the RMSE value in the JB-2008 model is larger than the
proposed models. Besides this, the models based on the proposed framework
show more optimal accuracy predictions than the two empirical models. A

0.8257  0.9384 comparison of the results based on GOCE data is referenced in P. Wang
0.0784 0.0268 et al. (2022), using the RMSE value as a benchmark. In their study, the RMSE

Table 12

Test on GOCE: 11 October 2010-12 October 2010

for GOCE was reported as 4.849 x 107'2kg/m?. This value is slightly larger
than the results obtained from our base model.

The uncertainty estimation in Model-4 is the best, as the coverage rate of 95.42% is the most reasonable value. The
smallest MACE value 0.0113 indicates the reliability of the uncertainty predictions. The coverage rates from
Model-1 and Model-3 are 93% and 91%, with small MACE values of 0.02 and 0.01. For Model-2, the uncertainty
values are very high, resulting in overly wide uncertainty bounds and coverage of 100%, and the corresponding
MACE value is as high as 0.3432. Therefore, the uncertainty estimation in Model-2 is poor because of the lack of
information.

As a summary of Test 2 and Test 3, for the two test periods in 2010 on CHAMP, GRACE-A, and GOCE, Model 4
consistently outperforms other models, demonstrating its outstanding performances on accuracy and the reli-
ability of uncertainty estimations for the test cases. The results also indicate that including additional satellite
information, even a short period, contributes to the effectiveness of capturing the complexities of thermospheric
density variations. On the other hand, our base model, Model-1, shows the second-best performance for the test
cases in 2010, with better accuracy than the two empirical models. Based on the proposed framework, the base
model can predict the density along different satellites with high accuracy and reliable uncertainty estimation,
even if the test satellite is not included in the training database.

3.2.4. Test-4: On 20 February 2014

For this case, we evaluate the models' performances on satellites SWARM-A and SWARM-C on 20 February
2014. We note that the database provided by ESA does not cover this period for SWARM-B, thus it is not
included in this test. Model-1, 2, 3, and 5 will be applied and tested on SWARM satellites.

The results of SWARM-A are presented in Table 13. The most accurate predicted results in this test case are from
Model-5, whose training database contains information from CHAMP, GRACE-A, and 15-day's information
from SWARM-A. The R value in Model-5 is 0.8907, which is the highest, with the RMSE value of 3.0703

x 10713kg/m>. The second best model is Model-1, which contains information including satellites CHAMP and
GRACE-A. The R value in Model-1 is 0.8512, and the RMSE value is 3.1736 x 10~'*kg/m?. The prediction
results of Model-2 and Model-3 are relatively worse. The RMSE in Model-3 is larger than the value from the JB-
2008 model. Except for this, the accuracy metrics of the three models based on the proposed framework are better
than the values of the empirical models.

As for the estimated uncertainty, the coverage rates in the four models are all higher than 93%, which means most
of the truth can be covered within the uncertainty boundaries. The best performance is from Model-5 with the
highest coverage rate of 97.23% and the smallest MACE value 0.0410. The uncertainty performance of Model-1,
2, and 3 are close, but the results in Model-1 are optimal than the results in the other two models.

In the case of SWARM-C, as shown in Table 14, the best R value 0.9149 is
from Model-5 with the smallest RMSE value of 1.3438 x 10~"*kg/m?>. The
results in Model-1 are slightly worse than Model-5, but the R value in Model-

Model 1

2

3 4 IB-2008 MSIS 1 can reach 0.8719, and the RMSE value is 1.5889 x 10~13kg/m?>. The

R 0.8627
RMSE x 10712 2.5373
Cov rate 0.9305
MACE 0.0239

0.8542
3.5714
1.0000
0.3432

RMSE values in Model-3 in this case is larger than the value from the MSIS
model.

0.8306 0.8985 0.8564  0.7783
3.8469 23903 4.7608 6.2180
0.9158 0.9542
0.0437 0.0113

As for the uncertainty prediction performance, the coverage rate in Model-5 is
not the highest, but it shows the smallest MACE value, indicating the reli-

ability of the uncertainty estimation. The coverage rates from Model-1 and
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Table 13

Test on SWARM-A: 20 April 2014

Model-2 are close as both reach 98%. The MACE value in Model-1 is slightly
larger than the value of Model-4 but smaller than the value of Model-2. Thus,

Model 1

2

3 p 1B-2008  MSIS the uncertainty estimation from Model-1 is the second best one. The coverage

R 0.8512
RMSE x 10713 3.1736
Cov rate 0.9485
MACE 0.0602

0.8479
3.3017
0.9378
0.0613

rate of Model-3 is the smallest, and the MACE value is larger than Model-1

0.8167 0.8970 0.7851 0.7856 and Model-5.
4.5243 3.0703 4.4510 3.5465
0.9460 0.9723 3.2.5. Test-5: From 15 March 2015 to 26 March 2015

0.0684 0.0410 We evaluate Model-1, 2, 3, and 5 from 15 March 2015 to 26 March 2015 on

Table 14

Test on SWARM-C: 20 April 2014

SWARM-B and SWARM-C. Both satellites in this test case are not among the
training satellites and the test period is in the future time of the training periods.
The numerical results of SWARM-B are presented in Table 15 and the results
of SWARM-C are shown in Table 16.

When we look at the predicted values, Model-5 provides the highest R value, with the RMSE value of
1.4993 x 10~"*kg/m3. Model-1 shows the second largest R value among all the models, while it gives the
smallest RMSE value as 1.2350 x 10~"3kg/m3. Model-3 provides the third-best results with an R value of 0.8078
and an RMSE value of 1.5438 x 107'3kg/m?>. The worst prediction is from Model-2 as the R value is 0.7875,
with the largest RMSE value of 3.2018 x 10~'3kg/m? among all the proposed models. The JB-2008 model in this
case shows better estimations than Model-2. Except for this, the accuracy of the two empirical models is worse
than the models based on the framework. Fernandez-Gomez et al. (2022) also studied this storm and reported an R
value of 0.82. In comparison, our base model demonstrates a higher correlation coefficient of 0.84, indicating
improved predictive accuracy.

Model-5 also shows advantages in the uncertainty estimations as the coverage rate in Model-5 is beyond 95% with
the MACE value as 0.0410. The result suggests a high level of reliability and accuracy in the model's ability to
estimate uncertainties associated with its predictions. Model-1 in this case shows the second-best uncertainty
estimations. The coverage rate in Model-1 is 87.35% with the MACE value of 0.0991. Model-2 and Model-3 in
this condition fail to produce reasonable uncertainty estimations.

The results on SWARM-C are presented in Table 16. Model-5 shows the most accurate predictions in this test
case as the R value is 0.8044 with RMSE value 2.7533 x 10~!3. The predicted results from Model-1 and Model-5
are very close, as the R values are close to 0.80 with RMSE values around 2.8 X 10~!3. The predicted errors from
Model-2 and Model-3 are more obvious in this case since the RMSE values in the two models are much larger.

Model-1 and Model-5 can provide reasonable uncertainty estimations as the coverage rate exceeds 80%. Model-5
shows the best results with 88% of the coverage rate and the MACE value of 0.0258. The uncertainty estimation in
Model-2 and Model-3 cannot be considered reasonable. The coverage rate in Model-2 is much lower and the rate
in Model-3 is much higher than being reasonable. The corresponding MACE values for the two models are also
much larger.

In general, based on the analysis of SWARM satellites in Test-3, 4, and 5, it is evident that Model-5, trained with
multiple satellites, consistently outperforms other models. On the other hand, our base model, Model-1, which is
trained with the information from two satellites regularly performs well, especially showing better accuracy than
the empirical models JB-2008 and NRLMSISE-00. Model-1 also demonstrates robust performances even in the
absence of test satellite data. Comparatively, the performances of Model-2 and Model-3 lag behind those of
Model-1 and Model-5.

The critical insight here is the utilizing more satellite data in constructing the
global model leads to better overall performances. Furthermore, the inclusion
of even a small amount of the test satellite data in the training database

Model 1

2

3 P 152008 MSIS contributes to performance improvement.

R 0.8719
RMSE x 1071 1.5889
Cov rate 0.9825
MACE 0.0564

0.8637
2.1863
0.9829
0.0645

0.8315 09149 08047 0793 4 Global Density Prediction
2.8397 13438 3.3785  2.6075

0.9693 0.9533
0.0611 0.0417

To further demonstrate the capability of the proposed framework for pre-
dicting thermospheric density globally, we generate density at different
geographic locations on various altitudes from Model-1, which is the base
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Table 15

Test on SWARM-B: 15 March 2015-26 March 2015

model. We compare the predicted density with the density obtained from the
empirical models JB-2008 and NRLMSISE-00 globally, and also for specific

Model

1

2

3 p 1B-2008  MSIS locations where the accelerometer-derived density data is available.

R
RMSE x 10713
Cov rate

MACE

0.8475
1.2350
0.8735
0.0991

0.7875
3.2018
0.8087
0.1158

0.8078 0.8627 0.8086  0.5852
1.5438 1.4992 1.7148  1.8803
0.8098 0.9561
0.1195 0.0410

4.1. Test on 01 July 2007, 00:00 UTC

The test period is on 01 July 2007, at 00:00 UTC, during which the Dst value
is =3 nT, indicating a quiet period. We set the spatial resolution to 5° in both
latitude and longitude. Altitude values are considered in the range of 200—

Table 16

Test on SWARM-C: 15 March 2015-26 March 2015

550 km, with increments set at 50 km intervals. We aim to demonstrate the
model's ability to predict global thermospheric density across a wide range of
geophysical settings.

The distribution of the two empirical models, along with the predicted values from Model-1 are plotted in
Figures 2 and 3. The first column is the estimated density from the JB-2008 model at each altitude. The second
column presents the estimated value derived from the NRLMSISE-00 model. The final column shows the esti-
mated density from Model-1. The color bars of the density values for each altitude are shown on the right side of
each row.

From Figures 2 and 3 we can see that once the altitudes are higher than 250 km, the patterns from the three models
show similar patterns. Model 1 is not reliable for very low altitudes as the altitudes of the training satellites are in
the range of 350-528 km. Overall, the results in this case show the model's ability to produce the thermospheric
density across a broad altitude range with reasonable values.

To analyze the differences between the density estimated from Model-1 and the two empirical models, we
calculate the mean and standard deviation of the difference between the predicted density from Model-1 and the
values from the two empirical models as shown in Table 17. The mean values of the differences between Model-1
and JB-2008 are found to be smaller compared to the differences between Model-1 and the NRLMSISE-00
model. This is consistent with the previous results that the JB-2008 model in the test cases usually provides
higher R values and smaller RMSE values.

Although there is no true density for calculating the real prediction errors globally, fortunately, densities derived
from the accelerometers of CHAMP and GRACE-A exist. We refer to the density from CHAMP and GRACE-A
at the same time and compare it with the density derived from Model-1 and the two empirical models. The results
are shown in Table 18. The difference between the CHAMP and our base model is 2.812 X 10713 with a relative
error of 19.11%. The difference between CHAMP and the JB-2008 model is 3.858 X 10713, and the corre-
sponding relative error is 26.22%. The difference between CHAMP and NRLMSISE-00 model is 5.665 x 1073,
and the relative error is 38.51%. As for the predicted results on GRACE-A, the difference of the base model is
3.982 x 107!4, and the relative error in this case is 28.96%. The difference of the JB-2008 model is 9.229 x 10~!4
with the relative error of 67.12%. The difference of the NRLMSISE-00 model is 1.0356 x 10~'* and the corre-
sponding relative error is 75.31%.

The numerical results indicate that for this quiet condition and at the two locations where we have satellite data,
the density from our base model is closer to the density derived from the satellite accelerometers than the two
empirical models.

4.2. Test on 17 March 2015, 22:00 UTC

We test another case on 17 March 2015, at 22:00 UTC. A storm was
happening at this time with a Dst value of —234 nT. The altitude values span
from 200 to 550 km with a resolution of 50 km. The distributions are plotted

Model

1

2

3 5 JB-2008 MSIS in Figures 4 and 5.

R
RMSE x 10713
Cov rate

MACE

0.7918
2.8692
0.8273
0.1378

0.7871
10.622

0.2013

0.5445

29216  2.7553 3.3709 3.6451

0.2758 0.0258

05359 0.8044 0.7843 0.5980 The overall density values in this case are higher compared to the previous

case in 2007, attributable to the impact of the ongoing storm. The JB-2008
model, in this case, shows similar patterns at different altitudes.
NRLMSISE-00 model shows distinctive patterns at low altitudes from 200 to
300 km. As the altitude increases, the patterns from the NRLMSISE-00 model

1.0000 0.8807
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Figure 2. Global Density Prediction on 01 July 2007, 00:00 UTC: altitude from 200 to 350 km.
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Figure 3. Global Density Prediction on 01 July 2007, 00:00 UTC: altitude from 400 to 550 km.
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Table 17

The Features of Density Differences (With Unit of kg/m?) on 01 July 2007

Altitude (km) JB-diff-mean JB-diff-std MSIS-diff-mean MSIS-diff-std
200 6.7967 x 10~ 8.9243 x 10712 9.9220 x 10~ 1.6811 x 10~
250 9.6863 x 10712 2.1328 x 10712 9.7681 x 10712 2.7884 x 10712
300 1.4965 x 10712 5.1507 x 10713 2.0869 x 10712 6.3484 x 10713
350 1.7928 x 10713 1.1913 x 10713 3.6402 x 10713 1.6588 x 10713
400 7.8382 x 1071 4.8324 x 1071 1.5159 x 10713 7.0074 x 10714
450 7.7768 x 10713 2.1557 x 10714 4.1063 x 10714 3.0714 x 10714
500 5.9841 x 10715 1.0301 x 10714 2.2409 x 10714 1.2806 x 10714
550 1.7810 x 10713 49541 x 10715 1.0497 x 10714 6.1891 x 10715

become similar. The NRLMSISE-00 model also shows that when the altitude is above 300 km, density near the
equator in the eastern hemisphere is greater than in the upper and lower halves of the east. Furthermore, both
empirical models consistently indicate that the density in the western hemisphere is larger than the density in the
eastern hemisphere, which is also revealed in Model-1.

Table 19 presents the mean and standard values of the differences between the two empirical models and Model-
1, in the unit of kg/m?>. The difference at various altitudes is at reasonable magnitudes. The difference based on
the JB-2008 model and Model-1 is slightly smaller than the differences between the NRLMSISE-00 model and
Model-1.

Again, although there are no true density values to calculate the prediction errors globally, fortunately, we have
two accelerometer-derived density data at this time. To further verify the effectiveness of Model-1, we obtain the
density derived from the accelerometers of SWARM-B and SWARM-C at the same time, and compare it with the
density from Model-1 and the two empirical models. The results are shown in Table 20. The difference between
SWARM-B and our based model is 2.689 x 10~'% with the relative error of 0.1234%. The difference between
SWARM-B and JB-2008 is 1.4250 x 10~!2 with the relative error of 65.45%. The difference between SWARM-B
and the NRLMSISE-00 model is 1.6161 x 107! with the relative error of 74.22%. The difference between
SWARM-C and Model-1 is 1.978 x 10713, and the relative error value is 11.88%. The difference between
SWARM-c and JB-2008 model is 3.317 x 10~!3 with the relative error of 19.92%. The difference between
SWARM-C and NRLMSISE-00 model is 1.4922 x 10~'2, and the relative error is 89.64%.

Therefore, for this storm condition and at the two locations where we have satellite data, the estimated densities
from Model-1 are much closer to the densities derived from satellite accelerometers than the empirical models.
Furthermore, the improvements of Model-1 from the empirical models are more significant than in the quiet time.

5. Conclusion

This paper proposes a global thermospheric density prediction framework based on a deep evidential method. The
framework incorporates solar and geomagnetic indices, empirical models including JB-2008 and NRLMSISE-00,
and accelerometer-derived satellite density data. In the paper, five models based on different training databases

Table 18

Predicted Density (With Unit of kg/m>) Compared on 01 July 2007

Satellite position CHAMP Model-1 JB MSIS

[83.7, 118, 353.5] 1.4710 x 1012 1.1898 x 1012 1.8568 x 10712 2.0375 x 1012

Relative error 19.11% 26.22% 38.51%

Satellite position GRACE-A Model-1 JB MSIS

[51.1, —178.1,463.9] 1.3750 x 10713 1.7732 x 10713 22979 x 10713 2.4106 x 10713

Relative error 28.96% 67.12% 75.31%
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Figure 4. Global Density prediction on 17 March 2015, 22:00 UTC, altitude from 200 to 350 km.
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Figure 5. Global Density prediction on 17 March 2015, 22:00 UTC, altitude from 400 to 550 km.
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Table 19

The Features of Density (With Unit of kg/m>) Differences on 17 March 2015

Altitude (km) JB-diff-mean JB-diff-std MSIS-diff-mean MSIS-diff-std
200 6.6045.6 x 10711 1.8989 x 107! 5.6351 x 10711 1.8499 x 1071
250 6.5952 x 10712 6.9760 x 10~12 1.2337 x 1071 6.0674 x 10712
300 7.0165 x 10712 2.4405 x 10713 1.0347 x 1071 2.3456 x 10712
350 2.9729 x 10712 7.4355 x 10713 4.8577 x 10712 7.0420 x 10713
400 1.2300 x 10712 3.8548 x 10713 2.2764 x 10712 3.0299 x 10713
450 4.8039 x 10713 2.3952 x 10713 1.0536 x 1012 1.8342 x 10712
500 1.9532 x 10713 1.3486 x 10713 5.0682 x 10713 9.7796 x 10714
550 8.7870 x 10~ 9.6215 x 10714 2.5652 x 10713 4.9876 x 10714

are constructed and evaluated on different satellites including CHAMP, GRACE-A, GOCE, and SWARM
satellites.

For a comprehensive evaluation, we first select five test cases from 2003 to 2015, during which geomagnetic
storms happened. The results demonstrate that our proposed framework can generate thermospheric density with
both high accuracy and reliable uncertainty estimations, even in cases where the test periods are in the future time
of the training database. The base model trained with CHAMP and GRACE-A data, Model-1 in this paper,
consistently achieves more accurate thermospheric density predictions compared to the empirical models
including JB-2008 and NRLMSISE-00. Furthermore, the experiment results reveal that incorporating more
satellite data into the training database enhances the performance of the prediction, even if the amount of
additional data is limited.

Additionally, we assess the performance of the proposed framework in predicting densities across global
geographic positions at various altitudes ranging from 200 to 550 km. The comparisons include the estimated
density from the base model whose training data are only from two satellites, and the JB-2008 and NRLMSISE-00
models during both a quiet time on January 2007, 00:00 UTC, and a storm time on 15 March 2015, 00:00 UTC.
For the quiet time on 01 July 2007, the patterns from the three models are similar. We refer to the density from the
accelerometer of CHAMP and GRACE-A at the same time and compare the density from the base model and the
two empirical models. The relative errors from the base model are smaller than the two empirical models on both
satellites, indicating the density from the base model is more accurate than the two empirical models for this case.
During the storm time on 15 March 2015, the global density pattern from the base model is different from the two
empirical models. We validate the effectiveness of the proposed model by comparing with the densities from two
SWARM satellites at the same time. The results indicate that the estimated density values from the base model
based on the proposed framework are again closer to the densities from satellite accelerometers than the two
empirical models.

Table 20

Predicted Density (With Unit of kg/m>) Compared With SWARM Satellites

Satellite position (deg, deg, km) SWARM-B Model-1 JB MSIS

[31.2, —32.9,457] 2.1772 x 10712 22041 x 10712 7.5218 x 10713 5.6106 x 10713

Relative error 0.1234% 65.45% 74.22%

Satellite position (deg, deg, km) SWARM-C Pred JB MSIS

[-72.9,175,536] 1.6646 x 10712 1.4668 x 10712 1.9963 x 10712 1.7237 x 10712

Relative error 11.88% 19.92% 89.64%
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