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Using Evidence from Task-Based Interviews for Development and 
Validation of Classroom Assessments: Approaches and Applications 
in Early Grades Mathematics
Leanne R. Ketterlin-Gellera, Muhammad Qadeer Haiderb, and Jennifer McMurrerc

aSouthern Methodist University, Dallas, TX, USA; bUniversity of Texas at Arlington, Arlington, TX, USA; cGibson 
Consulting Group, Austin, TX, USA

ABSTRACT
This article illustrates and differentiates the unique role cognitive interviews 
and think-aloud interviews play in developing and validating assessments. 
Specifically, we describe the use of (a) cognitive interviews to gather empiri
cal evidence to support claims about the intended construct being measured 
and (b) think-aloud interviews to gather evidence about the problem-solving 
processes students use while completing tasks assessing the intended con
struct. We illustrate their use in the context of a classroom assessment of an 
early mathematics construct – numeric relational reasoning – for kindergar
ten through Grade 2 students. This assessment is intended to provide 
teachers with data to guide their instructional decisions. We conducted 64 
cognitive interviews with 32 students to collect evidence about students’ 
understanding of the construct. We conducted 106 think-aloud interviews 
with 14 students to understand how the prototypical items elicited the 
intended construct. The task-based interview results iteratively informed 
assessment development and contributed important sources of validity 
evidence.

Cognitive interviews and think aloud interviews are two types of task-based interviews that may 
contribute empirical evidence to the development and validation of assessments. In general, task- 
based interviews are intended to elicit participants’ cognitive processing while they are completing 
a carefully constructed task. Working one-on-one with a participant, an interviewer administers tasks 
while asking questions designed to better understand the participant’s thinking. The specific task 
design and questioning techniques depend on the purpose of the interviews.

Cognitive interviews are used to investigate participants’ cognitive processes as they relate to their 
underlying comprehension or understanding of the construct (Leighton, 2017). Results are used to 
understand how knowledge is represented, comprehended, and stored in long-term memory. Findings 
contribute empirical evidence to support claims about the definition of the construct being measured. 
In contrast, think-aloud interviews are designed to collect data about participants’ problem-solving 
approaches while responding to a task (Ercikan & Pellegrino, 2017; Hubley & Zumbo, 2017). Results 
from think-aloud interviews contribute empirical evidence to evaluate whether the task elicits the 
intended cognitive processes that reflect understanding of the construct. Both types of interviews play 
an important and distinct role in developing and evaluating the validity of the uses and interpretations 
of an assessment, and yet, are often overlooked in assessment development and validation efforts.

The purpose of this article is two-fold. First, we describe and differentiate cognitive interviews and 
think-aloud interviews within the context of assessment development and validation. Referencing 
Figure 1, we provide an overview of the distinguishing features of these task-based interviewing 
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 sweivretni duolA-knihT sweivretni evitingoC 

Purpose within 
Instrument 

development 

· Contributes evidence to define the construct including 
the conceptualizations (e.g., knowledge, skills, 
processes, strategies) that define the targeted content 

· Illustrates the depth and breadth of student thinking to 
help expand the definition of the construct 

· Provides evidence linking students’ thinking with the 
content specified in learning progressions (e.g., entry 
and exit skills, intermediary phases, interconnections)  

· Capture students’ misunderstandings or errors and how 
those impact their overall conceptualization of the 
content 

· Contributes evidence to determine if an item 
model accurately capture students’ knowing 
in the domain 

· Illustrates the reasoning strategies, 
understanding, and procedures students used 
when solving item models  

· Provides evidence about sources of construct-
irrelevant variance and supports inferences 
about the accessibility of item models 

Types of 
inferences 

Contributes evidence to inferences made about the 
definition of the construct including the specification of the 
conceptualizations, the relationship between 
conceptualizations (e.g., compensatory, conjunctive, 
disjunctive), and the entry and exit skills. 

Contributes evidence to inferences made about 
the alignment between the thinking that is 
elicited by the student when they respond to item 
models and the targeted content (e.g., 
knowledge, skills, processes, strategies) 

Outcome 
within 

Instrument 
Development 

Refine the construct to accurately identify the 
conceptualizations, relationship between the 
conceptualizations, and the entry and exit skills. 

Refine the item models to maximize alignment 
with the construct and the elicited thinking, 
minimize sources of error or bias, and improve 
accessibility of the item models. 

Research 
Questions 

· What are students’ conceptualizations (knowledge, 
skills, processes, strategies) of the content? 

· What prior knowledge do students elicit related to the 
content (e.g., entry skills)?  

· What connections with other concepts do they make 
(e.g., what type of relationships exists?)? 

· What conceptualizations indicate expertise 
commensurate with expectations for the targeted 

· What conceptualizations (knowledge, skills, 
processes, strategies) are elicited from the 
item models? Do these knowledge, skills, 
processes, and strategies align with the 
intended assessment target? 

· Is the item model comprehensible? 
· What aspects of the item model cause 

construct-irrelevant variance or are confusing 
population (e.g., exist skills)? 

· At which grade do students demonstrate emerging and 
mastery level understandings on the content?  

for students?  
· What sources of bias may be included in the 

item model?   

Characteristics 
of Interview 
Questions 

· Open-ended questions  
· Probing questions are asked to understand students’ 

thinking and their conceptualizations of the content  
· Allow students to broadly engage with concepts 
· Content related questions are not intended to be 

included on an assessment but may inform future 
assessment design decisions (e.g., it is not necessary to 
develop test specifications or scoring procedures) 

Concurrent Questioning 
· Non-obtrusive prompts are posed to 

encourage the student to describe their 
thinking processes. 

· Observational data is recorded to monitor 
students’ processes during problem solving. 

Retrospective Questioning 
· Questions are directly associated with the item 

model that is based on test specifications. 
Students’ responses to the item models should 
align with the scoring procedures that will be 
applied in the operational assessment. 

· Probing questions are asked to understand 
rationale for the student’s response to the 
item model itself. 

Sample 
Interview 
Questions 

· Can you show me what you are doing in your head?  
· How did you start thinking about this question?  
· What did you imagine when I asked you this question? 

Can show me in pictures, words, or numbers?  
· Tell me more about your answer. How did you decide 

this was the answer? 
· Can you tell me more about [conceptualization]? What 

else do you know? What questions do you have?  
· When have you seen this [manipulative/tool] before? 

Tell me what you know about it.  

Retrospective 
· Describe how you solved the problem. What 

did you do first? 
· What was the problem asking you to do? 
· Were there any parts of the question that 

were confusing? 
· Were there any words that you didn’t know or 

that were hard to understand? 
· How did you use the [manipulatives/tools] to 

answer this question? Have you used these 
[manipulatives/tools] before?  

Figure 1. Distinctions between cognitive interviews and think-aloud interviews.
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techniques, and summarize how the purpose and methodology contribute valuable data to inform 
inferences underlying the validity of the uses and interpretations of test results. Second, we illustrate 
the use of these task-based interviews within the context of an assessment development project 
intended to measure kindergarten through Grade 2 students’ numeric relational reasoning skills. 
The classroom assessment developed through this project is intended to inform teachers’ decisions 
about the design and delivery of instruction focused on the concepts underlying numeric relational 
reasoning. Because results are intended to inform young children’s learning opportunities of 
a complex construct, validity evidence was needed to inform the definition of the construct and verify 
the cognitive processing elicited by the items, among other claims. As such, we employed cognitive 
interviews and think-aloud interviews to evaluate two key inferences, respectively: (a) The definition 
of the construct accurately represents students’ mental representation of the mathematics concepts, 
and (b) the items elicit the intended mental representation of the construct.

Measuring mathematics constructs

As noted, we illustrate task-based interviewing techniques within the context of a classroom assess
ment of an early grades mathematics construct, numeric relational reasoning. This project provides an 
ideal context for juxtaposing the purpose and methodology of cognitive interviews and think-aloud 
interviews because of the complexity of accurately representing and assessing students’ cognitive 
processes in mathematics. The National Mathematics Advisory Panel (2008) recognized two key 
cognitive mechanisms at play when students engage in mathematics. Namely, students develop mental 
representations of the content, and then use these representations to solve problems.

Mental representations as the basis for the construct definition
As students begin to learn mathematics concepts, they develop mental representations of the content, 
including types of knowledge forms, cognitive processes, and organization and structure of concepts. 
These mental representations are interrelated, and different theories of learning propose various 
mechanisms for their development (Mislevy, 2006). When designing an assessment, these mental 
representations are used to delineate the assessed construct. In assessment, the term construct refers to 
the knowledge, skills, processes, and abilities that are targeted by the assessment (American 
Educational Research Association, American Psychological Association, National Council on 
Measurement in Education, 2014). The construct should be defined with sufficient detail to clearly 
understand what aspects of students’ mental representations are and are not targeted by the assess
ment (Pellegrino & Wilson, 2015). Some constructs may already be well defined in the literature; 
however, emerging constructs, such as numeric relational reasoning, may lack specificity and require 
additional elaboration. Defining the construct with such specificity promotes accurate interpretation 
of the students’ scores or responses in relation to their mental representations of the content.

Gathering sufficient evidence to define the construct is often underemphasized during assessment 
development, with greater attention paid to designing items. Without sufficient evidence, test users 
run the risk of a “corruption of the interpretability of test scores” (Gorin, 2006, p. 33). Considerable 
variability exists in the evidence sources used in mathematics education to justify the definition of the 
construct. Examples include examining formal structures that define the discipline (e.g., theory, expert 
task analysis), observations of child development (e.g., classroom observations), indirect evaluation of 
the learning process (e.g., teacher surveys), and studies that track and monitor learning over time (e.g., 
longitudinal studies, in-depth case studies; Clements, 2007; Confrey, 2019; Duschl et al., 2011; 
Ketterlin-Geller et al., 2020; Penuel et al., 2014; Sarama & Clements, 2019). Although each source of 
evidence provides unique insights into the intended construct, few collect direct evidence of students’ 
thinking.

In mathematics education, there is a growing trend to specify constructs as learning progressions or 
learning trajectories. Learning progressions describe how students’ knowledge deepens as they 
advance their thinking within a domain (Pellegrino, 2014). As a representation of the construct, 
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learning progressions should be grounded in theoretical and empirical research on student learning. 
Graf et al. (2021) proposed a 15-step framework for validating learning progressions that extends from 
theory development to evaluating the efficacy of learning progression-informed instruction. Within 
their framework, the learning progression is defined through iterative cycles of experimentation, 
including conducting task-based interviews, teaching experiments, and psychometric modeling of 
field test data. At each step in the validation framework, data are used to examine inferences about the 
specificity of the learning. Direct evidence about student thinking supports these inferences.

Cognitive interviews provide direct evidence of students’ cognitive processing that may help 
understand students’ mental representations of the content, especially for emerging or hard-to- 
define constructs. Cognitive interviews (sometimes called cognitive laboratory interviews) are 
grounded in psychological interviewing methods as a way of investigating participants’ cognitive 
processes and understanding how participants store and structure their knowledge in long-term 
memory (Leighton, 2017; Padilla & Leighton, 2017). During cognitive interviews, participants work 
on tasks that are often open ended and require multiple steps. The interviewer asks in-depth questions 
designed to better understand the participant’s thinking (see Figure 1 for additional specification and 
examples). Often, responses are coded to illuminate anticipated or unanticipated mental representa
tions of the content. Cognitive interviews have received limited attention in the research literature 
(Leighton, 2017).

Transforming students’ mental representations into assessment items
The second cognitive mechanism students employ when engaging in mathematics occurs when 
students solve problems (National Mathematics Advisory Panel, 2008). When applying their knowl
edge to a problem scenario, students enlist information-processing mechanisms of cognition that 
bring forward their stored mental representations from long-term memory. Students then perform 
actions in their working memory that allow them to generate a response or provide a solution to the 
problem. Assessment designers create tasks that are intended to elicit the targeted mental representa
tions with fidelity. Irrelevant processes that may impact students’ ability to accurately demonstrate 
their understanding should be minimized.

Empirical evidence about students’ response processes is warranted to evaluate the alignment 
between the intended construct and the thinking that is actually elicited by the tasks (Castillo-Diaz 
& Padilla, 2013; Ercikan & Pellegrino, 2017; Hubley & Zumbo, 2017; Peterson et al., 2017). Although 
response process data are identified by the Test Standards (American Educational Research 
Association, American Psychological Association, National Council on Measurement in Education,  
2014) as an essential source of validity evidence, these data have historically been overlooked. Cizek 
et al. (2008) examined test reviews published in the 16th Mental Measurements Yearbook by the Buros 
Institute of Mental Measurements and found that only 1.8% of the 283 reviews reported on response 
process data. However, with recent advances in computational abilities and the proliferation of 
computer-based tests, considerable attention has been placed on using advanced analytics and 
machine learning techniques to better understand students’ responses processes (Oranje et al.,  
2017). These approaches vary widely, and range from examining item-level response times to studying 
the length and efficiency of students’ action sequences to conducting direct observations of students’ 
eye movements. These data may shed light on students’ responding behaviors; however, deriving 
meaning from these data requires advanced modeling, specialized equipment, and may ask examinees 
to engage with complex tools (e.g., eye-tracking equipment; Oranje et al., 2017). With a low threshold 
for advanced technical skills and equipment, think-aloud interviews may be particularly useful and can 
be employed at various stages of task design, from initial prototyping through operational production.

Think-aloud interviews require participants to verbalize their cognitive processes involved in 
solving problems. As explicated in Figure 1, think-aloud interviews transform a problem-solver’s 
covert thinking processes into overt and observable behavior so that the thinking processes can be 
documented and analyzed (van Someren et al., 1994). Following a structured and systematic protocol, 
the interviewer engages with participants to elicit the steps and strategies they used to complete 
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a problem-solving task, either during or immediately following the task (Padilla & Leighton, 2017). 
During task completion, nonintrusive prompting – often called concurrent questioning – is used to 
encourage the participant to verbalize what they are doing. Immediately after task completion, as part 
of retrospective questioning, the interviewer asks participants to reflect on the actions they performed 
to draw out the contents of their working memory. Insights about students’ responding behaviors can 
inform inferences about alignment with the intended construct as well as task design features that 
support or hinder students’ ability to demonstrate their knowledge, skills, or abilities. These data may 
be particularly useful when assessing examinees who may be unfamiliar with specific testing proce
dures or whose responding behaviors may be less predictable, such as young children.

Considerations when using cognitive interviews and think-aloud interviews
There are several notable considerations associated with using results from task-based interviews 
during assessment development and validation. It is important to recognize possible drawbacks at the 
outset so additional evidence may be collected to verify the findings. One primary concern is the ability 
of interviewees to respond to the interview questions with accuracy. In particular, young children may 
have difficulty recalling their thinking after they complete a task and/or accurately representing what 
was going through their minds (Leighton, 2017). Similarly, asking questions while they are completing 
a task may place an undue burden on their working memory that impacts how they work through the 
task. Two approaches are helpful to overcoming these issues. First, Peterson et al. (2017) recommend 
implementing practice opportunities for the interviewee. They suggest starting with a familiar task and 
asking the interviewee to describe their thought stream. Feedback can be provided to improve the 
specificity of their descriptions. Second, interviewees should be presented with tasks that are moder
ately difficult for them (Castillo-Diaz & Padilla, 2013). Tasks that are too difficult will cause a strain on 
their working memory and potentially impact their retrieval of information; tasks that are too easy rely 
on automatic processing so interviewees may not recognize their thinking processes.

Another concern associated with integrating findings from task-based interviews is the time and 
cost associated with collecting and analyzing data. To meaningfully incorporate the findings into 
construct definition and refining item models, sufficient time must be built into the assessment 
development process. Without sufficient time and resources to adequately analyze the data, the 
findings may be susceptible to a confirmation bias (Peterson et al., 2017).

Finally, concerns emerge about the generalizability of the findings from task-based interviews. 
Generalizability was previously considered by some qualitative methodologists as irrelevant to quali
tative inquiry and controversial to others (Osbeck & Antczak, 2021). Maxwell (2021) argues the 
process of transferability (Lincoln & Guba, 1985) and external generalization to other settings, groups, 
or populations are critical in qualitative research to understanding how an outcome is attained within 
a given context. When using task-based interviews in assessment development, the intention is to 
provide substantive evidence underlying interviewees’ thought processes. Obtaining varied perspec
tives that represent a range of students’ characteristics may help illuminate or uncover unexpected 
outcomes (Peterson et al., 2017). These data should be used in conjunction with other sources of 
psychometric and quantitative evidence that may be generalizable to the broader population.

In the remainder of this article, we describe two studies in which we applied task-based interviews 
in the development and validation of a classroom assessment intended to measure an early mathe
matics construct, numeric relational reasoning. Because the purpose of this assessment is to inform 
teachers’ instructional decisions, validity evidence is needed to inform the definition of the construct 
and verify the cognitive processing elicited by the items. Our intention is to highlight the unique value 
data from task-based interviews provide within the iterative assessment development and validation 
process; we are not proposing that these data supplant other sources of relevant evidence (e.g., 
psychometric analyses). First, we describe our initial efforts to define the construct. Next, in Study 
1, we employed cognitive interviews to gather validity evidence about the construct definition. Then, 
in Study 2, we used think-aloud interviews to examine the alignment between the thinking elicited by 
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the item models and the intended construct. We explain how the results of each task-based interview 
informed the iterative development of the assessment and contributed meaningful validity evidence.

Measuring numeric relational reasoning

Numeric relational reasoning is the ability to mentally analyze relationships between numbers 
or expressions using knowledge of properties of operations, decomposition, and known facts 
(Baroody et al., 2016; Carpenter et al., 2005). Numeric relational reasoning is closely related to 
number sense, the ability to work with numbers flexibly (Gersten & Chard, 1999). Numeric 
relational reasoning is not a rote procedure that can be followed step by step, but instead 
requires students to reason strategically using their knowledge of number relations (Whitacre 
et al., 2016). Previous research has linked strong numeric relational reasoning skills with 
greater gains in other numeracy skills as well as future mathematics concepts such as algebra 
(Carpenter et al., 2005). Because of this predictive relationship to other important outcomes, 
numeric relational reasoning is a vital concept for instruction in kindergarten through 
Grade 2.

As part of a larger project, we drafted an initial definition of numeric relational reasoning 
that specifies the knowledge forms, cognitive processes, and organization and structure of the 
concepts students use when analyzing relationships between numbers or expressions. 
Following an approach proposed by Ketterlin-Geller et al. (2013), we framed the definition 
as a learning progression to denote how students develop greater sophistication and complex
ity in their numeric relational reasoning within and across grades. First, we conducted 
a thorough review of the literature to begin outlining the mental representations of numeric 
relational reasoning. Then, we convened internationally and nationally renowned experts to 
refine the numeric relational reasoning learning progression, generate a hypothesized devel
opmental sequence, and propose the foundational and targeted levels of proficiency for each 
grade. Finally, we conducted a survey of 274 early elementary teachers to investigate their 
perceptions about the developmental appropriateness of the progression (Ketterlin-Geller et 
al., 2020).

The hypothesized numeric relational reasoning learning progression is organized into three 
targeted learning goals (relations, composition and decomposition, and properties of operations) 
that represent coarse-grained categories of understanding. Within each targeted learning goal, three 
to four core concepts provide additional specificity. Each of these core concepts is further broken 
down into fine-grained subcomponents that represent the knowledge forms (knowledge, skills) and 
cognitive processes (reasoning, strategies) underlying numeric relational reasoning. This structure is 
illustrated in Figure 2. The organization and structure of the mental representations are specified in 
the progression of subcomponents – ordered from least to most complex – within and across core 
concepts. A total of 58 subcomponents were specified in the initial hypothesized numeric relational 
reasoning learning progression.

Because of the expansiveness of the learning progressions, in this article, we narrow our focus to 
one core concept within the targeted learning goal of Relations titled Foundations of Operations. 
Students understand that the next number in the counting sequence is 1 more than the preceding 
number for all numbers and vice versa. Students generalize this knowledge to greater quantities such 
as 2 and 10 more or less. With continued experiences – with and without mathematical tools (e.g., 
hundreds chart), students begin to develop flexibility with numbers, laying the groundwork for 
composing and decomposing numbers quickly and efficiently (Baroody et al., 2016). These experi
ences help students develop a mental number line and support conceptual understanding of opera
tions so students can develop strategies for addition and subtraction that do not rely on memorization 
(Dyson et al., 2013). We selected this core concept as an example because of the significant revisions 
that were made based in-part on evidence from the cognitive interviews. The initial subcomponents 
for this core concept were:
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(1) Without counting, students use tools to find a unit more or less than a given number.
(2) Without counting, students mentally find a unit more or less than a given number.

In Study 1, we used cognitive interviews to gather validity evidence examining students’ mental 
representations (e.g., knowledge forms, cognitive processes, and organization and structure of con
cepts) of numeric relational reasoning. Data collected from the cognitive interviews was used to refine 
the construct definition. After we developed items based on the finalized construct, in Study 2, we used 
think-aloud interviews to examine how students interacted with prototypical item models for the 
preoperational assessment. Data obtained from the think-aloud interviews informed the iterative 
design of the items by examining alignment with the intended construct and identifying item features 
that might introduce construct-irrelevant variance or obscure accurate measurement. As this process 
illustrates, data from task-based interviews contributed timely information to support assessment 
development decisions, while simultaneously substantiating our claims about the validity of the uses 
and interpretations of the results.

Study 1: Cognitive interviews

We conducted cognitive interviews to examine whether the learning progressions accurately repre
sented students’ mental representations of numeric relational reasoning, and asked:

(1) What are students’ knowledge forms and cognitive processes related to numeric relational 
reasoning?

(2) What is the organization and structure of the knowledge forms and cognitive processes? 
Specifically, what is the sequencing (e.g., ordering from least to most complex) of the knowl
edge forms and cognitive processes within a core concept? At which grades do students 
demonstrate emerging and mastery levels of understanding?

Targeted 
Learning 

Goals 

Core Concepts 

Relations

•Comparison of unequal 
numbers

•Foundations of operations
•Transitivity
•Representations of order in 

comparison situations

Composition 
and 

Decomposition

•Composition
•Decomposition
•Decomposition with part 

unknown

Properties 
of 

Operations 

•Equivalence of quantity
•Equal sign as a relational 

symbol
•Maintaining equality when 

solving for unknown values

Learning 
Progression 

Numeric 
Relational 
Reasoning 

Subcomponents of Foundations 
of Operations:  

[ordered from least to greatest 
complexity]

· Find a number 1 or 2 more or less than a 
given number (not across a decade). 

· Find a number 1 or 2 more or less than a 
given number across a decade.  

· Find a number 10 more or less than a 
given number. 

· Find a multiple of 10 more or less than a 
given number. 

· Find a number 10 more or less than a 
given number across 100 or a multiple of 
100. 

· Find a number 100 more or less than a 
given number. 

· Find a multiple of 100 more or less than a 
given number. 

Figure 2. Structure of the numeric relational reasoning learning progression illustrating the subcomponents for the core concept of 
foundations of operations (adapted from Ketterlin-Geller, et al., 2022).
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Setting and participants for study 1
We interviewed 32 students in kindergarten through Grade 2 from three private parochial schools in 
a metropolitan area in a southern state. Students were purposefully selected to represent a range of 
prior knowledge and experience with early mathematics concepts, based on teachers’ observations. 
Ten students from each grade level participated. Two additional students from Grade 3 also partici
pated; their data are combined with the Grade 2 student data. Seventeen students were female. Other 
demographic data were not collected. Data from one student was excluded from analyses due to the 
limited amount of mathematical responses provided by the student.

Each student participated in two interviews for a total of 64 interviews. Each interview lasted 30–40  
min. All interviews occurred over 5 weeks. Two trained researchers conducted interviews in person 
during the school day.

Instruments and procedures for study 1
The cognitive interview protocols included (a) mathematical tasks and (b) interview prompts (see 
Figure 3 for an example from the Foundations of Operations Core Concept). The mathematical tasks 
assessed students’ thinking on a particular subcomponent of the numeric relational reasoning learning 
progression, and consisted of two parts: content questions (scored for correctness) and reasoning 
questions (qualitatively coded). We varied the number range of the items depending upon the child’s 
grade level and readiness for the task. Tasks were sequenced from the least complex subcomponent on 
the learning progression to most complex. All students responded to all tasks regardless of the 
concept’s hypothesized complexity or grade-level boundaries so we could collect empirical evidence 
to test these hypotheses.

The interview prompts were interspersed with the mathematical tasks to encourage students to 
describe and extend their thinking in a conversational manner. These open-ended prompts were often 
asked in response to the student’s actions. Sample questions included, “How are you starting to think 
about [insert content]?” “I see that you are looking at [insert statement]. Tell me about what you are 
thinking.” The cognitive interview protocol for the Subcomponent titled “Without counting, students 

Mathematical task Content question Reasoning question Interview prompts
The child is 
presented with a 
hundreds chart and 
counters.  

Here is a number chart [Give child 
the hundreds chart].  

Have you used a hundreds chart 
before?  

Can you show me where [number] 
is on the chart? 

tuobawonkuoyodtahW
hundreds charts? If you want to 
find any number, how can you use 
the hundreds chart? 
What are you starting to think 
about when you are looking at the 
hundreds chart?  

What number is 1 less than 
[number]? 

ottrahcsderdnuhehtesuuoydiD
find [answer]?  

1si]rewsna[wonkuoyodwoH
less than [number]? 

Where could I find 1 less than 
[number] on the hundreds chart? 
For any number on the hundreds 
chart, how can I find a number 
that is one less than a number? 

What number is 10 more than 
[number]? 

Did you use the hundreds chart to 
find [answer]? 

01si]rewsna[wonkuoyodwoH
more than [number]? 

How does using the hundreds 
chart help you find numbers that 
are 10 more or 10 less than other 
numbers? 

Figure 3. Example cognitive interview protocol for the subcomponent “without counting, students use tools to find a unit more or less 
than a given number” in the Foundations Of Operation core concept.

8 L. R. KETTERLIN-GELLER ET AL.



use tools to find a unit more or less than a given number” in the Foundations of Operations Core 
Concept is presented in Figure 3.

Two trained interviewers conducted the cognitive interviews using the interview protocols. 
Simultaneously, two trained observers took notes about the students’ responses and general comfort 
with the tasks. The cognitive interviews were divided roughly evenly between each interviewer – 
observer pair. The observer noted when the interviewer asked follow-up questions that extended 
beyond the interview protocol. All interview sessions were videotaped.

Qualitative analysis
Prior to analyses, a research team member watched the videos and inserted students’ nonverbal 
expressions, actions, gestures, and any pertinent interviewer actions into the audio transcriptions. 
Another researcher verified that the accuracy of the insertions of students’ nonverbal actions for 20% 
of the interviews.

We used a two-cycle coding process of a deductive, a priori schema followed by open coding 
to search for emergent themes. We developed a priori structural codes based on our research 
questions (DeCuir-Gunby et al., 2011). We used a systematic procedure to screen the data 
constantly (Corbin & Strauss, 2015) to find evidence for a priori codes. Our coding team 
consisted of a lead coder, a secondary coder, and another researcher who helped the coders 
reach consensus. We analyzed students’ reasoning regardless of correctness of their responses to 
the content questions. Using explicit code definitions as guides, we assigned the most accurate 
code for each child’s reasoning response. We maintained a codebook of a priori codes for each 
targeted learning goal (Relations, Composition and decomposition, and Properties of 
operations).

After completing a priori coding, the reconciled file was distributed to the two coders with 
a new codebook for open coding. Open coding was iterative, using axial coding to analyze data 
and find codes within participants’ voices (Saldaña, 2015). First, the coders independently coded 
using NVivo software and developed preliminary codes. Then, the two coders and the researcher 
held an intensive discussion to achieve group consensus on codes using a process called 
dialogical intersubjectivity (Brinkman & Kvale, 2015; Harry et al., 2005; Sandelowski et al.,  
2007). Finally, at the end of each meeting, the coders recorded in the final codebook the code 
names, definitions, examples of student talk and gestures from the data, and any exclusion 
criteria.

Quantitative analyses
To address Research Question 2, we scored students’ responses to the content questions for 
correctness. To evaluate the sequencing or ordering of the subcomponents from least complex 
to most complex, we used classification accuracy statistics: (a) false positives, (b) false discovery 
rate, and (c) the proportion of students who were correct on the hypothesized more complex 
components and incorrect on the hypothesized less complex components (subsequently referred to 
as c-prop). False positives indicate the proportion of students who correctly answered the hypothe
sized more difficult subcomponents out of the total number of students who incorrectly answered 
the hypothesized less difficult subcomponents. The false discovery rate is the proportion of 
students who answered the hypothesized less difficult subcomponents incorrectly out of the total 
number of students who correctly answered the hypothesized more difficult subcomponents. 
Higher values could indicate issues with the sequencing or ordering of the subcomponents for 
both proportions. However, both values are conditional probabilities and do not reflect the entire 
sample. To address this issue, we computed the proportion of students who provided correct 
responses on the hypothesized more difficult components and incorrect responses on the hypothe
sized less difficult components (c-prop). Similarly, higher values indicated issues with sequencing 
or ordering of the subcomponents.
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For each item, we calculated the difficulty index in classical test theory estimates (p-values). The 
p-value is the proportion of students who responded correctly to an item out of all responses. A higher 
p-value indicated a less difficult item, and a lower p-value indicated a more difficult item. We 
disaggregated these indices by grade level to assess whether subcomponents performed differently 
by grade level.

Findings for study 1
To address Research Question 1, students’ responses were analyzed to better understand their knowl
edge forms and cognitive processes. A priori codes were established for the Foundations of Operations 
Core Concept based on a comprehensive review of prior research, and the codes were used to 
determine whether students’ observed reasoning aligned with anticipated strategies. All a priori 
codes were listed with a rich description of the code for a clear understanding of these codes, for 
example, the code “Counting tool use strategy” was explained as “When describing the reasoning 
underlying their response, student uses and/or references a counting tool. Tools include colored 
square tiles or linking cubes as counters, or finger use.” A priori codes for the subcomponent presented 
in this illustration are described in Table 1.

Next, open coding was used to develop a more comprehensive understanding of students’ knowl
edge forms and cognitive processes that might extend beyond the anticipated approaches. For open 
codes, we developed list of codes, rich description of each code, and a supporting example for each 
code. For example, Count all strategy was described as Student counted all numbers on the chart to 
find the number 10 more or less than the starting number, with superficial use of the tool. The code 
was supported with an example from the data as Explaining how student knows a number is 10 more: 

Table 1. A priori codes for foundations of operations core concept.

Code Description

Counting tool use 
strategy

When describing the reasoning underlying their response, student uses and/or references a counting 
tool. Tools include colored square tiles or linking cubes as counters, or finger use.

Written number line 
strategy

Student uses and/or references a written number line or open number line.

Mental number line 
strategy

Student uses and/or references a mental number line.

Hundreds chart 
strategy

Student uses and/or references a hundreds chart.

Calculation strategy Student uses and/or references calculating or employing a calculation strategy.
Other tool use strategy Student uses and/or references any other tool (exclusive of counting tool, number line, or calculation).

Table 2. Open codes with examples for foundations of operations core concept.

Code Description Example

Count all 
strategy

Student counted all numbers on the chart to find the 
number 10 more or less than the starting number, 
with superficial use of the tool.

Explaining how student knows a number is 10 more: 
“We just start counting: 1, 2, 3, 4, 5, 6, 7, 8, 9” (Grade 2 
student)

Count on 
strategy

Student counted on from a starting number, saying 
each number to arrive at the number 10 more. Tool 
was used superficially.

Explaining why student thinks 10 is 1 more than 8: “If 
you count up from 1, it’s 9. Then you skip 9, it’s 
gonna be 10” (Grade 1 student)

Count down Student counted backward from a starting number, 
saying each number to arrive at the number 10 less. 
Some children counted aloud, and others wrote the 
numbers to count down, writing first the 1s, then the 
10s place. Limited tool use.

Explaining how student knows a number is 10 less: 
“Like, the numbers that are before 92 [writes out 
numbers, 1s and then 10s] 82” (Grade 2 student)

Value of digits Student compared the value of digits within numbers 
without explicitly using place value. Student correctly 
aligned numbers in the 10s and 1s places when 
comparing without explaining place value or 
providing a unit value distinction between the two 
numbers.

Explaining how student knows a number is 10 less: 
“When it’s 10 less than a number, usually the first 
number goes 1 down and the next number stays the 
same” (Grade 2 student)
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‘We just start counting: 1, 2, 3, 4, 5, 6, 7, 8, 9’ (Grade 2 student). Using the process described above, the 
codes presented in Table 2 were observed. Samples of students’ utterances are also included in Table 2.

To address Research Question 2, quantitative data from students’ responses to the content ques
tions on the mathematical tasks were analyzed to better understand the organization and structure of 
the numeric relational reasoning learning progressions, specifically focusing on the sequencing of 
subcomponents and ordering across grades. The p-values are presented in Table 3. Overall, 44% of the 
students responded correctly to the items assessing the first subcomponent, whereas 33% responded 
correctly to the items assessing the second subcomponent. Broken down by grade, no students in 
kindergarten responded correctly to the content prompts for either subcomponent. In Grade 1, 40% 
responded correctly to the content prompts for the first subcomponent, and 20% responded correctly 
to the content prompts for the second subcomponent. In Grade 2, 83% (5 out of 6) students responded 
correctly to items assessing the first subcomponent, and 67% (4 out of 6) responded correctly to the 
items assessing the second subcomponent.

No false positives were observed for the Foundations of Operations Core Concept, meaning that all 
students who responded incorrectly to Subcomponent 1 (n = 8) also responded incorrectly to 
Subcomponent 2. Similarly, the false discovery rate was 0.0, meaning that all students who responded 
correctly to Subcomponent 2 (n = 5) also responded correctly to Subcomponent 1. The c-prop was also 
0.0, indicating that of all the students who responded to items for both subcomponents (n = 15), no 
students responded incorrectly to Subcomponent 1 and correctly to Subcomponent 2. These findings 
should be interpreted with caution because of the small sample sizes; however, they suggest that the 
hypothesized sequencing of the subcomponents may accurately reflect a progression from least to 
greatest complexity.

Discussion for study 1
The purpose of the cognitive interviews was to examine whether the learning progressions accurately 
represented students’ mental representation of numeric relational reasoning, and make iterative 
refinements as needed. As such, both qualitative and quantitative data were reviewed by the research 
team and integrated with other sources of evidence. To facilitate this process, the research team 
compiled summary documents for each Core Concept that included evidence used to draft the initial 
hypothesized learning progressions (e.g., literature, input from experts), results from the teacher 
survey, and cognitive interview data. What follows is a description of how these data contributed to 
the examination of the Foundations of Operations Core Concept.

Qualitative analyses to address Research Question 1 indicated that, for the students in our study, 
the learning progressions for the Core Concept of Foundations of Operations did not fully represent 
their mental representations of numeric relational reasoning. In reviewing these data in conjunction 
with prior literature, we acknowledged that the two existing subcomponents were too broad and were 
not sensitive enough to capture variability in students’ thinking. For example, to probe students’ 
understanding of Subcomponent 1, they were presented with a hundreds chart and asked to find 
a given number. They were then asked to identify a number that was 1 more or less and 10 more or less 
than the original number. Based on our a priori codes, we anticipated that students would use the 
hundreds chart to identify the new number. However, students across all grades counted using 
a strategy of either “counting all” or “counting on” to find the new number. When asked about 
their strategies, a student in Grade 2 explained, “Because I counted 10 and ended up at 97, 10 more 

Table 3. Difficulty indices overall and by grade level for foundations of operations.

Subcomponent

Overall Kindergarten Grade 1 Grade 2

N p-value n p-value n p-value n p-value

1 16 .44 5 .00 5 .40 6 .83
2 15 .33 4 .00 5 .20 6 .67
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[than 87], you count 10 out and see what number you end up on.” This student did not use the 
mathematical tool in the anticipated way but instead relied on counting.

Relatedly, for Subcomponent 2, students were not presented with a tool (such as the 
hundreds chart) and were asked to find 1, 2, or 10 more or less than a given number. 
Students did not consistently employ mental strategies as hypothesized in this subcomponent. 
For example, students “counted on” or “counted down” from the starting number, saying each 
number until they arrived at the target number. They might have evoked a mental number 
line as they said the counting sequence, but they relied heavily on counting single units. When 
asked to explain how they found their answer using pictures, words, or numbers, at least two 
students compared the value of the digits within numbers without explicitly referencing place 
value.

Although based on a very small sample size, quantitative data addressing Research Question 2 
indicated that the sequencing of the items progressed from least to most complex. Students’ respond
ing patterns suggest that items associated with Subcomponent 1 were less difficult than items 
associated with Subcomponent 2. However, because no students in Kindergarten and few students 
in Grade 1 responded correctly, items assessing the subcomponents may be too difficult for students in 
kindergarten and Grade 1.

These observations of students’ thinking prompted us to revisit the two subcomponents associated 
with the Foundations of Operations Core Concept (See Figure 5 for a depiction of the revised learning 
progression). We reviewed theoretical evidence found in existing literature and input from the panel 
of experts we assembled to draft the initial hypothesized learning progression. Research on the 
emergency of numeracy skills notes the importance of students developing fluency applying the 
number-after rule, which states that the sum of n +1 is the number after n in the counting sequence 
(Baroody, 2006; Baroody et al., 2012). Building on this literature, our initial hypothesized learning 
progression excluded counting and required students to use tools that would facilitate mental retrieval 
of this rule (e.g., number line, hundreds chart). However, based on the qualitative data from the 
cognitive interviews, we observed students across the grades using counting strategies. Returning to 
the literature, Baroody (2006) emphasizes the importance of helping students understand number 
patterns and connect their knowledge of the counting sequence with n +1 problems. By counting, 
children are building and reinforcing these connections, which will ultimately become automatic with 
additional exposure and experience. As such, we removed the stipulation that students could not count 
from the learning progression.

Relatedly, the initial hypothesized learning progression specified the subcomponents at a grain size 
that may not be sensitive to students’ incremental learning. Even though students in Kindergarten and 
Grade 1 were able to respond to the mathematical tasks, few children answered correctly. We revised 
the learning progression to include more subcomponents that reflect smaller increases in students’ 
mental representations of the construct. Notably, for students in Kindergarten working within the 
number range of 0–5, the learning progression was revised to focus on applying the number-after rule 
within the decade, and no constraints were noted about using counting or manipulatives. In later 
grades, the learning progression builds on these understandings and makes an explicit connection 
with place value concepts. This supports students’ generalization of the number-after rule to more 
advanced applications.

This process was applied for all of the core concepts in the numeric relational reasoning learning 
progression.

Study 2: Think-aloud interviews

The purpose of Study 2 was to evaluate the extent to which the prototypical items elicited the intended 
mental representations of the construct as defined by the revised numeric relational reasoning learning 
progression. We developed prototypical item models to assess each subcomponent of numeric 
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relational reasoning across kindergarten through Grade 2. We used think-aloud interviews to examine 
how students interacted with these item models, and asked:

(1) Did students understand the instructions and actions that were embedded in the mathematical 
tasks?

(2) Were there any components of the mathematical tasks that appeared to introduce construct 
irrelevant variance, such as cause confusion, introduce bias, or otherwise obscure accurate 
measurement of the intended construct?

(3) Did the mathematical tasks elicit the intended content knowledge and reasoning strategies in 
students’ responses?

Setting and participants for study 2
We purposefully selected 14 students to participate in the think-aloud interviews. Five students 
were in kindergarten, four students were in Grade 1, and five students were in Grade 2. Nine 
(64%) students were male, and five (36%) were female; no students identified as nonbinary. 
Further, ten (71%) identified as White, three (22%) as multiracial, and one (7%) as Black. 
Additionally, six (43%) students identified as Hispanic. One student indicated speaking 
a language other than English at home.

Each student participated in an average of eight interviews for a total of 106. Each interview lasted 
35–45 minutes. Students participated in multiple interviews so that researchers could comprehensively 
examine all the appropriate subcomponents within a core concept of numeric relational reasoning 
using multiple item model formats. We also collected responses from students that were representative 
of different number ranges, with a meaningful sample across the grade levels. Number ranges varied to 
provide students with tasks that were at the appropriate difficulty level (Castillo-Diaz & Padilla, 2013). 
All interviews occurred over 3 months.

Due to the COVID-19 pandemic, we conducted the student think-aloud interviews virtually via the 
videoconferencing platform Zoom. We coordinated with parents so that they – or another caretaker – 
would be present with the study participant to assist with technology and help with any physical 
materials that we mailed to participants’ homes.

Instrument and procedures for study 2
The think-aloud interview protocols included (a) mathematical tasks and (b) interview prompts. The 
mathematical tasks were designed based on a review of prior research, data from the cognitive 
interviews, and an inventory of existing assessments (McMurrer et al., 2021). Each task included 
two content questions, a reasoning question, and an extension question to elicit the range of thinking 
outlined in the learning progression. We developed and tested two to three prototypical item models 
(labeled Model A, Model B, etc.) for each subcomponent of numeric relational reasoning to examine 
the impact of different item features on students’ task-elicited thinking.

The interview protocol included concurrent and retrospective questions (Ericsson & Simon, 1996). 
Concurrent questions were interwoven within the mathematical tasks to encourage the participant to 
continue talking while they responded to the questions. The interviewer allowed the participant to 
think for a few seconds after unobtrusively asking each question. If the participant was silent for 5  
seconds, the interviewer used the following prompts to encourage the student to express all of their 
thoughts out loud: “What are you thinking now?” “Any other thoughts?” “Tell me how you decided to 
give me that answer.” The interviewers also asked follow-up questions based on the participants’ 
responses.

After completing the mathematical tasks, the interviewers asked retrospective questions to glean 
more information about the participants’ problem-solving process and reasoning:

(1) Describe how you solved the problem; what did you think about first?
(2) What was this problem asking you to do?
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(3) Were there any parts of the question that were confusing?
(4) Were there any words that you didn’t know or that were hard to understand?
(5) How did you use the [insert manipulative, e.g., counters] to answer this question?

To further clarify or seek deeper understanding of the participant’s response, sometimes the inter
viewer asked non-scripted follow-up questions.

One of two trained interviewers – accompanied by one of two observers – conducted each video- 
recorded session. The observers documented the participants’ responses in real time using 
a spreadsheet aligned with the interview protocol. This format allowed the observers to quickly 
document, analyze, and sort the think-aloud interview data efficiently across all the interviews.

Analyses
During the think-aloud interviews, two observers noted the verbatim answers from the participants 
and their use of the manipulatives in real time. Immediately after each interview, the observers made 
preliminary reflections about the functionality of the items. Using a similar approach as was described 
in Study 1, the observers modified and expanded the analysis structure by informally open coding their 
notes (Corbin & Strauss, 2015). First, they looked across the responses to determine whether students 
understood the question. Simultaneously, they looked for evidence of construct-irrelevant variance. 
Then, to evaluate whether the tasks elicited the intended mental representations (knowledge forms 
and cognitive processes), they analyzed the students’ problem-solving processes and reasoning along
side the intended content and reasoning responses by case and then across cases for each subcompo
nent (Ericsson & Simon, 1996).

Concurrent with the observers’ analyses, the two interviewers followed a similar coding process 
using memos they wrote immediately following each think-aloud interview. Together, the research 
team reviewed the observers’ analyses and the interviewers’ memos by subcomponent for each of the 
core concepts to collaboratively draft summaries of their collective analyses. These multi-phased 
individual observation and coding sessions, which were interwoven with frequent and extensive 
group discussions, allowed the research team to iteratively and meaningfully analyze the data.

Findings for study 2
Because of the extent of the data, we illustrate the findings for one subcomponent in the Core Concept 
focused on Foundations of Operations (described above). There are seven subcomponents for this 
Core Concept, so at least 14 prototypical item models were tested. In Figure 4, we present prototypical 
Item Models A and B for the subcomponent “find a number 1 or 2 more or less than a given number 
within a decade.” In this example, the primary differences between Item Models A and B were the item 
format (multiple choice compared to constructed response) and the use of mathematical tools 
including visual materials and manipulatives in the reasoning questions. In Model A, we asked 
students to use counters to show and tell us what numbers are one less and one more than the 
given number. In Model B, shown in the shaded column in Figure 4, we asked students which numbers 
are one less and one more than the given number and we provided them with response options rather 
than a physical manipulative.

To address Research Question 1, we examined the retrospective questions to identify any aspects of 
the item models that might have been confusing. For both item models, all but one of the students 
noted that they understood what the problem was asking them to do and did not find any parts of the 
questions confusing. These students also completed the tasks. Conversely, one student pointed to the 
number line in the Model B extension question and said, “It’s confusing.”

We coded students’ responses to evaluate possible sources of construct-irrelevant variance to 
address Research Question 2. No evidence of construct-irrelevant variance was observed for Item 
Model A; however, some students played with the counters as they were responding to the questions, 
which might cause a distraction. For Item Model B, construct-irrelevant variance was observed when 
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we asked students about displaying the answer choices. Students responded that the choices were not 
helpful, and one student said they “distracted me.”

To address Research Question 3, we compared the alignment between the anticipated and the 
elicited knowledge and reasoning strategies. We observed that students either did not use or found the 
answer choices distracting in Model B when solving the problems. We also found that the Model 
A format elicited richer responses with students demonstrating their reasoning through their use of 
the physical manipulative. For example, a student explained, “I took 1 away to make it 1 less” while 
showing their work with the blocks.

Discussion for study 2

This subcomponent asks that students find a number 1 or 2 more or less than a given number 
within a decade. As noted at the conclusion of Study 1, students engage in these concepts as they 
work within the number ranges of 0–5, 0–10, and 0–19 (see Figure 5). The two item models we 
initially designed to assess this subcomponent varied in their item format and use of mathematical 
tools. These choices were based in part on the observations from Study 1, which indicated that 
students interacted with the content in both anticipated and unanticipated ways to demonstrate 
their knowledge and reasoning. In some instances, students used the mathematical tools provided, 
but many did not or only used them superficially. In designing the item models, we wanted to test 
whether providing a concrete representation (e.g., counters or other manipulatives) would help 
elicit the intended construct or whether students were able to demonstrate their knowledge 
without concrete representations.

Results from the think-aloud interviews suggest that concrete representations supported the 
participating students’ engagement with the items and their ability to demonstrate their 
understanding. However, the choice of manipulatives was important to consider; the counters 

Subcomponent: Find a number 1 or 2 more/less than a given number within a decade.

Question Prototypical item Model A Prototypical item Model B Revised item model 

Introductory 
question 

“What is this number?” [wait] “Show me the 
number with counters.” [Provide counters 
to student.]

“What is the name of this number?”  “Here is the number card and the same 
number of cubes. Name this number.” 

Content 
Question 1 

“Now tell me, what is one less than this 
number?” 

“Which number is one less than 5?” “What number is one less than this 
number?” 

Reasoning 
Question 1 

“Show me with the [cubes] how you got 
your answer.” 

Content 
Question 2 

“What is one more than this number?” “Which number is two more than 6?” “Here is the number card and the same 
number of cubes. Name this number. What 
number is one more than this number?” 

Reasoning 
Question 2 

“Can you use the counters to show me how 
you got your answer?” 

“How do you know that ___ is one more 
than 6?” 

“Show me with the [cubes] how you got 
your answer.”  

Extension 
question 

“Now use your counters to show me what 
two more than 6 would look like.” 

“Use this number line to show me how you 
know that ___ is one more than 6?” 
[provide number line] 

5

7 3 6 4

3 

8 

5 
3 

4 

Figure 4. Example item models tested with kindergarten students (0–10 number range) on the core concept of foundations of 
operations during the Think-Aloud Interviews.

EDUCATIONAL ASSESSMENT 15



were distracting for some students in our study. We revised the item to include grade- 
appropriate manipulatives that might be less distracting. We also ask students to use the 
manipulatives to show how they arrived at their answer, as was tested in Model A. In the 
revised item, the number is represented by both the mathematical symbol and a concrete 
representation of the quantity (see Figure 4). Presenting both representations may help 
students connect between different representations of the same relations among quantities 
(Venenciano et al., 2021). The revised item may better elicit students’ conceptual under
standing of these number relations.

Discussion

Developing assessments is an iterative process that involves collecting and integrating multiple sources 
of evidence at strategic decision points. As specified in the Standards for Educational and 
Psychological Testing (American Educational Research Association, American Psychological 
Association, National Council on Measurement in Education, 2014), appropriate sources of evidence 
are needed to justify assessment development decisions as well as evaluate the validity of the intended 
uses and interpretations of the results. It is important to align the sources of evidence with the 
underlying propositions claiming the information is trustworthy and meaningful for the given uses 
and interpretations. In this manuscript, we assert that data from task-based interviews – namely, 
cognitive interviews and think-aloud interviews – are viable and appropriate sources of evidence for 
two key inferences:

(1) The definition of the construct accurately represents students’ mental representations.

Foundations of Operations 
Kindergarten Grade 1 Grade 2 

Number Range 
0-5 -10 -19 -99 -999 

Find a number 1 or 2 more/less than a 
given number (not across a decade). 

Find a number 1 or 2 more/less than a 
given number across a decade. 
Find a number 10 more/less than a given number. 

Find a multiple of 10 
more/less than a given 
number. 

Find a number 10 
more/less than a given 
number across 100 or 
a multiple of 100. 
Find a number 100 
more or less than a 
given number 
Find a multiple of 100 
more/less than a given 
number.  

Figure 5. Revised version of Foundations Of Operations core concept.
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(2) The items elicit the intended mental representations.

Providing validity evidence backing these two inferences is especially important when assessing hard- 
to-define constructs (such as numeric relational reasoning) with examinees who may have less 
experience engaging in assessment tasks (such as students in kindergarten through Grade 2).

To provide a comprehensive evaluation of the validity of the uses and interpretations of the classroom 
assessment reported in this manuscript, additional sources of evidence beyond those collected from task- 
based interviews are warranted. We briefly noted the additional sources of evidence we collected that 
extend beyond the purpose of this manuscript, such as theoretical information from prior research, 
extensive input from experts in the field, and data from surveys of teachers’ enacted practices (Ketterlin- 
Geller et al., 2020). As previously noted, Graf et al. (2021) emphasized the cyclical and multi-phased nature 
of validating learning progressions-based assessments based on multiple sources of validity evidence. 
Aligned with this process, next steps for the work described in this manuscript include conducting 
a pilot test to examine item statistics and response patterns to better understand the sufficiency of the 
proposed scoring procedures. These data will be used to revise the items and scoring procedures for the 
content and reasoning questions. Subsequent studies will be conducted to further empirically recover the 
hypothesized learning progressions. As this manuscript is intended to illustrate, data from various sources 
may contribute meaningful evidence to evaluate inferences underlying assessment development and 
validation, and task-based interviews represent an under-utilized but important resource for test 
developers.

Application of task-based interviews to the instantiated example

To illustrate the application of cognitive interviews and think-aloud interviews during assessment 
development and validation, we described their role within a larger assessment-development project to 
design a classroom assessment for an early mathematics construct, numeric relational reasoning. Not 
only did these data contribute valuable insights to support our assessment development efforts, but 
concurrently, they contributed validity evidence needed to substantiate our claims that the scores 
provide trustworthy and meaningful information for teachers. To examine the inference that the 
definition of the construct accurately represents students’ mental representations, in Study 1, quali
tative and quantitative analyses of the cognitive interview data provided important insights into 
students’ mental representations of numeric relational reasoning that were combined with additional 
sources of evidence to refine the initial hypothesized learning progression. Findings from Study 1 
contributed to four primary revisions across the Core Concepts of the numeric relational reasoning 
learning progression intended to improve the accuracy of the construct definition:

(1) Using multiple sources of evidence, we refined the description of the knowledge forms and 
cognitive processes. Across the numeric relational reasoning learning progression, we added 
nine (15%) subcomponents that were previously unspecified. We removed or combined 12 
(20%) subcomponents that were redundant or not observed in the data. The final learning 
progression included three targeted learning goals, 10 core concepts, and 55 subcomponents (a 
net reduction of three subcomponents).

(2) Combining quantitative data with other sources of input, we changed the sequence or order of 
the subcomponents within core concepts. From the original learning progression, we reordered 
27 (46%) of the subcomponents to more accurately reflect a progression from least to most 
complex.

(3) Based on qualitative analyses of the cognitive interview data, students’ knowledge about one 
subcomponent was evoked when responding to questions addressing another core concept. To 
address this discrepancy, we carefully examined the theoretical rationale for the initial associa
tion. Five (8%) subcomponents were moved because of these combined data.
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(4) Because all students responded to interview questions for all subcomponents regardless of the 
hypothesized grade-level boundary, we were able to examine the appropriateness of the grade- 
level boundaries for each subcomponent. We adjusted the grade-level boundaries for 24 (41%) 
subcomponents.

Findings from the cognitive interviews led to direct improvements in the definition of the 
construct that more accurately reflect students’ mental representations. Specific to the 
Foundations of Operations Core Concept, the revised Core Concept specifies in greater detail 
how students’ knowledge and understanding progress from knowing that the next number in the 
counting sequence is 1 more than the preceding number to generalized applications that build 
transferable skills to support strategies for operations. These adjustments were subsequently shared 
with an independent panel of experts to verify the appropriateness of these modifications. Using 
the revised numeric relational reasoning learning progression, we drafted prototypical items as 
models for the operational assessment. Then, we conducted think-aloud interviews with these 
prototypes to examine the alignment between the construct and the task-elicited knowledge forms 
and cognitive processing for students.

To examine the inference that items elicited the intended mental representations, the data gener
ated in Study 2 as part of the think-aloud interviews provided important insights into the functionality 
of the prototypical item models for the preoperational assessment and informed the iterative design of 
the numeric relational reasoning items. We learned about students’ understanding of the mathema
tical tasks and whether the tasks elicited the intended mental representations of the construct. During 
the interviews, we administered at least two prototypical item models for each subcomponent of the 
construct. Drawing from these data, the observers and interviewers provided evidence-based recom
mendations about which item models (or a hybrid) functioned better to elicit cognitive processing that 
resembles the hypothesized reasoning strategies for the students. Changes to the items can be classified 
into one of four categories:

(1) One of the two tested prototypical item models – A or B – clearly functioned better than the 
other, as evidenced by students’ understanding of the task, no apparent construct-irrelevant 
variance, and alignment with the hypothesized knowledge forms and cognitive processes 
underlying the subcomponent. In these instances (n = 8), we selected the better functioning 
item model for the operational test without substantive changes.

(2) One of the prototypical item models functioned better than the other, but evidence indicated 
that students misunderstood one component of the task, there were possible sources of 
construct-irrelevant variance, or the task-elicited response did not clearly align with the 
hypothesized subcomponent. In these instances, we selected the better item model but revised 
the problematic components. This occurred for 27 (49%) of the subcomponents. If significant 
changes were made, the new prototypical item model was retested through another set of 
think-aloud interviews.

(3) For four (7%) subcomponents, some aspects of both prototypical item models functioned well. 
For the final item model, we selected the best components of each item model without making 
substantive changes (e.g., content questions from Model A and reasoning questions from 
Model B).

(4) Some aspects of both prototypical item models functioned better than others, but evidence 
indicated that students misunderstood one or more components of each task, there were 
possible sources of construct-irrelevant variance, or the task-elicited response did not clearly 
align with the hypothesized subcomponent. For these 16 (29%) subcomponents, we selected 
the better functioning components across item models but revised the problematic compo
nents. If significant changes were made, the new prototypical item model was retested through 
think-aloud interviews.
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Note that coding of these categorizations was completed by one to two members of the research team; 
a third member conducted a systematic verification of 25% of the categorizations that were only made 
by one team member.

We also identified aspects of the items (e.g., instructions, manipulatives) that might cause confu
sion, introduce bias, or otherwise obscure accurate measurement of the constructs. We adjusted the 
prototypical items to ameliorate these interferences. The revised item models were shared with an 
expert panel for a final review before implementing in the operational assessment.

Limitations
In both Study 1 and Study 2, the sample sizes were small. The qualitative data generated rich 
descriptions of students’ thinking over the course of 202 task-based interviews; however, the small 
samples of students (32 for cognitive interviews and 14 for the think-aloud interviews) limit the 
generalizability of the results. Yet, these qualitative data – which are situationally- and culturally- 
embedded in the classroom context – are critical to understanding young students’ conceptualizations 
and how they reason about the intended content. Although a larger, geographically dispersed sample 
may have appeared to improve the generalizability of the findings, it may have come at the cost of these 
important insights.

Another limitation cause by the COVID-19 pandemic is that the think-aloud interviews were 
conducted virtually via Zoom. The research team mailed materials to the participants before the 
interviews, and parents/caregivers helped to distribute the materials during the sessions. In some 
instances, the think-aloud interview sessions took longer due to the time the interviewer spent sharing 
instructions with parents/caregivers.

Application of Task-Based Interviews to developing and validating mathematics assessments

As the instantiated example illustrated, direct evidence about student thinking can be collected 
through task-based interviews. When applied to assessment development and validation, these data 
help build an evidentiary basis underlying the inferences that (1) the construct definition is an accurate 
representation of students’ mental representations of the content and (2) the items elicit thinking that 
is representative and relevant of the construct. Although multiple sources of evidence are needed to 
support these inferences, as this manuscript demonstrates, task-based interviews contribute mean
ingful evidence beyond psychometric data.

In mathematics education, learning progressions are emerging as a common approach for specify
ing mathematics constructs (Confrey, 2019), and with this increased emphasis, research is evolving to 
guide efforts to validate these hypothesized progressions. Recently applied methods to validate 
learning progressions include conducting teaching experiments (c.f., Crawford, 2022), psychometric 
modeling (c.f., Attali & Arieli-Attali, 2019; Clements, 2007), surveying teachers (c.f., Ketterlin-Geller et 
al., 2020), and other approaches. However, similar to the process for evaluating test validity (c.f., 
American Educational Research Association, American Psychological Association, National Council 
on Measurement in Education, 2014), evidence collected to validate learning progressions should be 
relevant and provide a sound scientific basis for the assertions about students’ mental representations. 
Cognitive interviews directly elicit students’ mental representations through structured questioning 
and careful analyses. Although insufficient as the sole source of evidence, the value of cognitive 
interviews cannot be overlooked. In this manuscript, we document how cognitive interview data 
provided an evidentiary basis for iteratively refining the construct definition until evidence converged 
indicating that the construct accurately represented students’ mental representations of numeric 
relational reasoning.

Once sufficient evidence corroborates the construct definition, items are written to elicit the mental 
representations specified by the construct. Evidence about students’ response processing can support 
inferences that the task-elicited thinking aligns with the construct. Multiple sources of data, including 
cognitive-psychometric modeling, eye-tracking studies, monitoring response times, and examining 
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other data from log files, can provide evidence about students’ thinking processes as they engage with 
tasks (Hubley & Zumbo, 2017; Oranje et al., 2017). Methods and approaches for using these data are 
continuing to emerge as technological advances facilitate their use. This manuscript emphasizes the 
value of data collected from think-aloud interviews for evaluating students’ response processes. 
Conducting think-aloud interviews requires qualitative methodological expertise, but the threshold 
for advanced technical skills and equipment is low for both the assessment developers and inter
viewees, and findings can be immediately used to refine items. Moreover, quantitative and psycho
metric data may help identify problematic items, but data from think-aloud interviews can illuminate 
why these items are problematic (Peterson et al., 2017). As such, when combined with other data, 
think-aloud interviews represent a useful tool for evaluating task-elicited cognitive processes. This 
manuscript documents how think-aloud interview data contributed validity evidence to justify our 
claim that the classroom assessment items accurately elicit the intended construct of numeric rela
tional reasoning.

In sum, this article emphasizes the unique role data from two task-based interviews play in 
assessment development and validation. These data are intended to complement and not supplant 
other sources of data needed during assessment development and validation, such as rigorous 
psychometric analyses from field test data. Together, multiple sources of data support inferences 
that form a network of claims about score meaning and use.
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