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Abstract 

The symbiosis between clownfish and giant tropical sea anemones (Order Actiniaria) is one of

the most iconic on the planet. Distributed on tropical reefs, 28 species of clownfishes form

obligate mutualistic relationships with 10 nominal species of venomous sea anemones. Our

understanding of the symbiosis is limited by the fact that most research has been focused on

the clownfishes. Chromosome scale reference genomes are available for all clownfish species,

yet there are no published reference genomes for the host sea anemones. Recent studies have

shown  that  the  clownfish-hosting  sea  anemones  belong  to  three  distinct  clades  of  sea

anemones that have evolved symbiosis with clownfishes independently. Here we present the

first high quality long read assemblies for three species of clownfish hosting sea anemones

belonging  to  each  of  these  clades:  Entacmaea  quadricolor,  Stichodactyla  haddoni,

Radianthus doreensis. PacBio HiFi sequencing yielded 1,597,562, 3,101,773, and 1,918,148

million  reads  for  E.  quadricolor,  S.  haddoni,  and  R.  doreensis,  respectively.  All  three

assemblies were highly contiguous and complete with N50 values above 4Mb and BUSCO

completeness  above  95%  on  the  Metazoa  dataset.  Genome  structural  annotation  with

BRAKER3 predicted 20,454, 18,948 and 17,056 protein coding genes in  E. quadricolor,  S.

haddoni and R. doreeensis genome, respectively. These new resources will form the basis of

comparative  genomic  analyses  that  will  allow  us  to  deepen  our  understanding  of  this

mutualism from the host perspective.
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Significance 

Chromosome-scale genomes are available for all 28 clownfish species yet there are no high-

quality reference genomes published for the clownfish-hosting sea anemones. The lack of 

genomic resources impedes our ability to understand evolution of this iconic symbiosis from 

the host perspective. The clownfish-hosting sea anemones belong to three clades of sea 

anemones that have evolved mutualism with clownfish independently. Here we assembled the

first high-quality long-read genomes for three species of host sea anemones each belonging to

a different host clade: Entacmaea quadricolor, Stichodactyla haddoni, Radianthus doreensis. 

These resources will enable in depth comparative genomics of clownfish-hosting sea 

anemones providing a critical perspective for understanding how the symbiosis has evolved. 

Finally, these reference genomes present a significant increase in the number of high-quality 

long-read genome assemblies for sea anemones (11 currently published) and double the 

number of high-quality reference genomes for the sea anemone superfamily Actinoidea.
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Introduction

Among all mutualistic symbioses none are more recognizable than the association

between clownfishes (also called anemonefishes: Subfamily Amphiprioninae) and their giant

host  sea  anemones  (Anthozoa:  Actiniaria).  Distributed  broadly  on  tropical  coral  reefs

throughout the Indian and Pacific Oceans, 28 species of clownfishes have rapidly radiated to

form obligate mutualistic relationships with 10 nominal species of venomous sea anemones

(Litsios et al., 2012; Gaboriou et al., 2024; Titus et al. 2024). Famously, clownfishes have

evolved to live unharmed in their toxic and venomous hosts benefiting from their association

with sea anemones by receiving shelter against predators (Fautin 1991), protection for their

externally brooded eggs (Fautin & Allen 1992), removal of external parasites (Lubbock 1981)

and potentially even nourishment  (Verde et  al.,  2015).  In turn,  sea anemones are  granted

reciprocal protection against predation (Dunn 1981, Godwin & Fautin, 1992, Holbrook &

Schmitt,  2005),  novel  sources of nitrogen and carbon from fish excrement (Roopin et  al.

2008, Roopin & Chadwick, 2009, Cleveland et al., 2011), and increased oxygenation and gas

transfer as clownfishes move through their tentacles (Szczebak et al. 2013).

The symbiosis has attracted a great deal of popular and scientific attention. The

small  size  of  clownfishes  and  their  well-defined  hierarchical  social  groups,  reproductive

biology, and amenability to aquaculture have made them tractable systems for understanding

fundamental biological processes. They are now considered an emerging model organism for

a wide range of research  (Roux et al.,  2020; Laudet & Ravasi,  2022).  Chromosome-level

reference genomes are now available for all 28 clownfish species (Marcionetti et al., 2019;

Marcionetti & Salamin, 2023; Gaboriau et al., 2024) and comparative analyses are revealing

the first  candidate genes likely to be associated with the ability of clownfishes to remain
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protected from toxic sea anemone hosts (Marcionetti et al., 2019;  Marcionetti & Salamin,

2023).

Our evolutionary understanding of the symbiosis, however,  is limited by the fact

that most research and genomic resources have been focused on clownfishes. No reference

genomes exist for any of the 10 clownfish-hosting sea anemones. This perspective is expected

to be especially  critical  as  recent  work  has demonstrated that  the  host  sea  anemones are

driving  phenotypic  convergence in  clownfishes  (Gaboriau  et  al.,  2024), and that  host  sea

anemones have diversification times that are broadly concomitant with the clownfish radiation

(De Jode et al. 2024). These findings highlight the importance of the host sea anemones for a

holistic understanding of the entire symbiosis. High-quality reference genomes for the host

sea anemones thus hold the potential to identify genomic regions associated with establishing

and maintaining mutualism with clownfishes, and other genomic consequences of a symbiotic

lifestyle. 

Interestingly,  unlike  the  28  described  species  of  clownfishes  which  form  a

monophyletic clade, the 10 clownfish hosting sea anemones belong to three distinct lineages

within  the  sea  anemone  superfamily  Actinioidea  that  have  evolved  symbiosis  with

clownfishes  (Titus  et  al.  2019;  2024;  De  Jode  et  al.  2024).  These  have  been  coined

Entacmaea, Stichodactylina, and Heteractina. The clade Entacmaea contains only the bubble-

tip sea anemone,  Entacmaea quadricolor (Fig. 1A),  which appears to be a species complex

(Titus et al. 2019; De Jode et al. 2024). Clade Stichodactylina contains five clownfish hosting

sea  anemones  species:  Cryptodendrum  adhaesivum,  Radianthus  magnifica,  Stichodactyla

gigantea,  S. haddoni (Fig. 1B), and S. mertensii, as well as other non-host species (e.g. De

Jode  et  al.  2024).  Clade  Heteractina  includes  Heteractis  aurora,  Radianthus  crispa,  R.

doreensis  (Fig.  1C), and  R.  malu  (Titus  et  al.  2019;  De  Jode  et  al.  2024).  The  three
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independent clades of host sea anemones provide a natural starting point for sequencing and

assembling high-quality reference genomes.

Here we present the first high quality long reads assemblies for three species of

clownfish  hosting  sea  anemones:  Entacmaea  quadricolor,  Stichodactyla  haddoni,  and

Radianthus doreensis (Fig. 1). These genomes will form the basis for in depth comparative

genomics  between  clownfish  hosting  and  non-hosting  sea  anemones  and  deepen  our

understanding of this iconic symbiosis.

Results and Discussion

A total of 1,597,562 (~ 20 Gbp), 3,101,773 (~ 39 Gbp) and 1,918,148 (~26 Gbp)  

HiFi reads were sequenced for E. quadricolor, S. haddoni and R. doreensis, respectively.

For each species, mitochondrial genomes were assembled, circularized, and annotated. The 

total lengths of the newly assembled mitochondrial genomes were 20,761 bp, 18,921 bp, and 

19,768 bp for E. quadricolor, S. haddoni and R. doreensis (Fig. 1), respectively. These are 

similar to the size of the mitogenomes used as references to identify mitochondrial reads. A 

characteristic feature of Hexacorallian mitogenomes is the presence of a self-splicing intron in

the NAD5 gene (Feng et al., 2023). Interestingly, MitoFinder (the default annotation tool of 

MitoHiFi) did not retrieve that feature in our mitogenomes, but we were able identify and 

retrieve the NAD5 intron using MITOS in all species. Feng et al. (2023) identified a 

conserved mitochondrial gene order in the Order Actiniaria. Using the annotation conducted 

in GeSeq we confirmed that our three mitogenomes shared that same order (Act1GO sensu 

Feng et al. 2023). 

Nuclear genome size estimates from GenomeScope were comparable between S. 

haddoni (339 Mbp) and R. doreensis (330 Mbp). The assembled genomes of S. haddoni and 

R. doreensis spanned 447 Mb and 418 Mb, respectively (supplementary table S1), both 
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exceeding GenomeScope estimates by approximately 100 Mb. Entacmaea quadricolor had 

the largest estimated genome size at 578 Mbp, which was close to our final total assembly 

length of 599 Mb (supplementary table S1). Our genome size estimate for E. quadricolor was 

smaller than the 863 Mbp estimated using flow cytometry (Adachi et al., 2017), but higher 

than the 428 Mb assembly available on GenBank (GCA_024752375.1). The discrepancy 

between our PacBio assembly and the publicly available assembly is likely due to the latter 

genome being assembled using Illumina short reads. 

Heterozygosity rates were comparable between R. doreensis (het: 0.767%) and S. 

haddoni (het: 0.855%) but were higher in E. quadricolor (het: 1.49 %). Merqury k-mer 

spectra plots revealed the presence of haplotypic duplications in each primary assembly 

(supplementary fig. 1). For each species, the assembly we obtained after using the purge_dups

algorithm with manual cutoffs and contigs identified as repeats added back into the assembly, 

showed the best compromise between under and over purging and was kept for further 

analysis (supplementary fig. 1). A total of 17, 8 and 8 contigs were identified as contaminants 

and removed from the E. quadricolor, S. haddoni and M. doreensis assemblies, respectively 

(supplementary fig. 2). One mitochondrial contig was also identified and removed from each 

assembly. 

Final genome assemblies were highly contiguous and comprised of 558, 648 and 

230 contigs for E. quadricolor, S. haddoni and R. doreensis, respectively. N50 values were 

roughly 4 Mb (E. quadricolor), 5.3 Mb (S. haddoni), and 8 Mb (R. doreensis) (supplementary 

table 1). BUSCO completeness scores for the Metazoa dataset were 95.6 % for E. quadricolor

and S. haddoni and 95.4 % for R. doreensis (supplementary table 1).  A total of 20,454,  

18,948 and 17,056 protein coding genes were predicted by the BRAKER3 annotation pipeline

for E. quadricolor, S. haddoni and R. doreensis respectively (Fig. 2). For each species the 
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total number of predicted proteins were comparable to the number of predicted proteins for 

other members of Order Actiniaria (Fig. 2). 

The OMArk completeness percentages, based on Hierarchical Orthologous Groups 

(HOGs) of genes in Eumetazoa, were 92.6%, 92.35 % and 85.53 % for E. quadricolor, S. 

haddoni and R. doreensis, respectively (Fig. 2, supplementary text). The OMArk consistency 

assessment was very similar among our three species and other members of Order Actiniaria 

(Fig. 2, supplementary text). OMArk consistency (the gene family is known to exist in the 

Eumetazoa lineage) scores 70.16 %, 72.27 % and 71. 56 % for E. quadricolor, S. haddoni and

R. doreensis, respectively. No protein sequence was identified as a contaminant in any of our 

species. The lower amount of protein coding genes predicted in S. haddoni and R. doreensis 

and the lower level of completeness in R. doreensis are likely due to the lower amount of 

RNA seq data available for those species (supplementary text). The ratio of mono- to multi-

exonic transcripts were 0.34, 0.28 and 0.34 for E. quadricolor, S. haddoni and R. doreensis 

respectively. 

Conclusion

Prior to this study, no genomes had been published for the clownfish-hosting sea anemones,

although chromosome level genomes are available for all 28 species of clownfishes (Gaboriau

et al. 2024). The three high-quality genomes we’ve assembled here using PacBio HiFi reads

belong to species  from the  three clades  that  have  independently evolved mutualism with

clownfishes (Titus et al., 2019; De Jode et al., 2024). These will thus become critical new

resources  for  comparative  genomics  and  our  understanding  of  clownfish-hosting  sea

anemones diversification and of the evolution of the iconic mutualism. Finally, only 11 long-

read  genomes  have  been  assembled  and  published  for  Order  Actiniaria.  Our  genomes
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represent  a  significant  increase  in  the  number  of  genomic  resources  available  for

understanding sea anemone biology and evolution broadly. 

Material and Methods

Live  sea  anemones  were  purchased via  the  ornamental  aquarium trade  through

Quality  Marine  Inc.  to  ensure  the  geographic  origin  of  each  animal.  We  acquired  three

species:  the  bubble  tip  sea  anemone  Entacmaea  quadricolor  (Fiji),  Haddon’s  carpet  sea

anemone Stichodactyla haddoni  (Vietnam), and the long-tentacled sea anemone Radianthus

doreensis (Vietnam). Fresh  or  flash  frozen pedal  disc  tissue  was  thinly  sliced  from each

anemone to avoid endosymbiotic dinoflagellate contamination and used for DNA extractions.

High Molecular Weight (HMW) DNA was extracted using PacBio Nanobind® tissue kits

following manufacturer instructions with the exception that the quantity of proteinase K was

increased to 40µL. DNA samples were purified with Monarch Nucleic Acid Purification Kit

(New  England  BioLabs,  Ipswich,  Massachusetts)  prior  to  shearing  on  a  Megaruptor  2

(Diagenode, Denville, NJ), at 20kb setting. 

Libraries were constructed and sequenced at Maryland Genomics at the Institute for

Genome Sciences, University of Maryland School of Medicine. Samples were prepared using

SMRTbell Prep Kit 3.0 (Pacific Biosciences, Menlo Park, CA) with barcoded adaptors, and

subsequently size-selected on BluePippin instrument (Sage Science, Beverly, MA) to remove

DNA fragments  less  than  10kb  in  size,  followed  by  an  equimolar  pooling.  The  pooled

libraries were bound to Revio polymerase, then sequenced with a Revio Sequencing Plate and

flow cell on a PacBio Revio platform (Pacific Biosciences, Menlo Park, CA). Mitochondrial

genomes were assembled from raw HiFi reads using the MitoHiFi v2. (Uliano-Silva et al.,

2023) pipeline with default parameters except for the –max-read-len option that was set to 2.

Mitochondrial reads were identified for E. quadricolor, S. haddoni, and R. doreensis using the
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mitogenomes  of  E.  quadricolor (Genbank  NC_049066.1);  Heteractis  aurora (Genbank

NC_047219.1)  and  S.  haddoni  (MW760873.1,  Johansen  et  al.,  2021),  respectively.

Mitochondrial genome annotation was performed using both MitoFinder (Allio et al., 2020)

and MITOS (Bernt et al., 2013). A final annotation was conducted using GeSeq (Tillich et al.,

2017) (see explanations in Results & Discussion section). Mitogenomes were visualized using

Geneious version 2024.0 (https://www.geneious.com) created by Biomatters.

Genome  sizes  and  heterozygosities  were  estimated  using  GenomeScope  2.0

(Ranallo-Benavidez et al., 2020) based of k-mer histogram frequencies generated by Jellyfish

v2.3.0 (Marçais & Kingsford, 2011) for a k-mer size of 21bp (Vulture et al. 2017). Nuclear

genomes were assembled using Hifiasm v0.19.8-r603 (Cheng et al., 2021) and the first set of

partially phased contigs was used for the following analysis.

Haplotypic duplications, were removed from the assemblies using the purge_dups

v1.2.5 (Guan et al., 2020) algorithm with the following customs cutoffs: (3, 18, 18, 19, 19,

180), (20, 54, 54, 55, 55, 240) and (7, 39, 39, 40, 40, 200) for E. quadricolor, S. haddoni and

M. doreensis, respectively. Contigs classified as repeats by purge_dups were added back to

the assemblies. The Blobtoolkit (Laetsch & Blaxter, 2017, Challis et al. 2020) v3.4.3 pipeline

was then used to assess the presence of contaminant contigs in each assembly. Mitochondrial

contigs were removed from decontaminated nuclear contigs using MitoHiFi v2. (Uliano-Silva

et al., 2023) with the mitochondrial genome assembled from the reads as a reference.

Genomes were annotated using the BRAKER3 pipeline v.3.0.8 (Gabriel et al. 2024)

specifying a BUSCO lineage (--busco_lineage=metazoa_odb10).  The pipeline uses several

sub-pipelines and third-party tools (Stanke et  al.,  2006, Gotoh, 2008, Stanke et  al.,  2008,

Iwata & Gotoh, 2012, Simão et al., 2015, Buchfink et al., 2015, Hoff et al., 2016, Hoff et al.,

2019, Kovaka et al., 2019, Pertea & Pertea, 2020, Brůna et al., 2021, Gabriel et al., 2021,

Huang & Li, 2023, Li, 2023, Brůna et al., 2024) to predict highly reliable genes in reference
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genome using protein and RNA-seq data. RNA-seq data (see SI for list of accession numbers)

were downloaded from Genbank using the fastq-dump function of the SRA-toolkit v.3.0.7

(SRA Toolkit  Development  Team) and reads were mapped to the genome using HISAT2

v.2.2.1 (Kim et al. 2019) with the --dta option. The Metazoa partition of the OrthoDB v11

protein database was used as evidence for BRAKER 3 (Kuznetsov et al., 2023). To compute

the ratio of mono- to multi-exon genes we used the analyze_exons.py script from the GALBA

github  repository  (https://github.com/Gaius-Augustus/GALBA).  Annotation  quality  was

assessed  with use  OMArk v.0.3.0 (Nevers  et  al.,  2022)  on the  OMArk public  webserver

(https://omark.omabrowser.org/home/).  Genome quality was assessed for the final assembly

and at several intermediate steps during the assembly process. Contiguity and completeness

metrics  were  computed  using  gfastats  v1.3.6  (Formenti  et  al.,  2022)  and BUSCO v5.6.1

(Manni et al. 2021). Completeness, quality and levels of haplotypic duplication were assessed

using Merqury (Rhie et al. 2020) based on HiFi reads.
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The HiFi PacBio sequencing reads, are deposited in NCBI under the BioProject accession

numbers  PRJNA1076568.  The  final  genome  assembly  and  genome  annotation  will  be

deposited under the same BioProject upon publication.
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Figures

Figure 1. Long-read mitochondrial and nuclear genome assemblies for the clownfish hosting
sea  anemone  species  A)  Entacmaea  quadricolor, B) Stichodactyla  haddoni,  and  C)
Radianthus doreensis. Pictures of each species are the individuals sequenced in this study.
Circularized  and  annotated  mitogenomes  were  visualized  with  Geneious  version  2024.0.
BlobToolKit  snailplots  representing  nuclear  genome assembly  statistics  including genome
size,  largest  scaffold  length,  N50  and  N90  lengths,  and  GC  composition.  Snailplots  are
divided into 1,000 size-ordered bins around the circumference with each bin representing
0.1% of the assembly length. The distribution of contig lengths is shown in dark gray with the
plot radius scaled to the longest contig present in the assembly (the smallest of the three arcs,
also shown in red). Next two sectors in size (orange and pale-orange arcs) show the N50 and
N90 contig lengths, respectively. The pale gray spiral shows the cumulative scaffold count on
a log scale with white scale lines showing successive orders of magnitude. The dark-blue and
pale-blue  area  around  the  outside  of  the  plot  shows  the  distribution  of  GC,  AT,  and  N
percentages in the same bins as the inner plot.
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Figure 2. OMArk quality assessment of genome annotations. A, C, &E) OMArk comparison 
plots showing genome annotation statistics for Entacmaea quadricolor, Stichodactyla. 
haddoni and Radianthus doreensis in reference to other members of Eumetazoa. Positions of 
the clownfish-hosting sea anemones sequenced in this study are highlighted in green. List of 
available proteome accessions used for the comparisons in Supplementary material. B, D, & 
F) detailed proteome assessment for each species of clownfish-hosting sea anemones 
sequenced in this study.
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