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1 | INTRODUCTION

In general, compactness refers to the phenomenon that if some property holds for all small sub-
structures then it holds for the structure itself. For example, a compact topological space asserts
that any collection of closed sets with the finite intersection property, has a non-empty intersec-
tion; The compactness theorem for first-order Logic states that any first-order theory such that all
of its finite subsets are consistent must also be consistent; In cardinal arithmetic, Silver’s theorem
[29] asserts that if 2%z = R, for any @ < @;, then necessarily 2Ner = N, +1- This compactness
phenomenon does not occur at the level of X , as Magidor proves [21] that it is consistent that
2% =R, ., for every n < w while 2% > N .. In Graph Theory, Kénig’s lemma asserts that if
G has an infinite, locally finite and connected graph, then there is an infinite simple path. This
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lemma ensures, for example, that w has the tree property which is a paradigmatic compactness
principle which says that any countably infinite tree, such that every level is finite must have
a branch.

The dual notion of compactness is reflection, that is, if some property holds at some mathemat-
ical structure, then there must be a small substructure for which it was true. So compactness of
some property ¢ is equivalent to the reflection of =¢. It turns out that many important instances
of compactness such as free of abelian groups, Metrizable topological spaces [23] and others [28,
30] boil down to a specific reflection principle known as stationary reflection. Recall that a subset
C C x is a closed unbounded (club) if C is closed in the order topology of ¥ and in unbounded
below k. A subset S C «x is stationary if it intersects any club.

Definition 1.1. We say that a cardinal x satisfies stationary reflection if for any stationary set
S C x, there is a < x of uncountable cofinality such that S N « is stationary at a.

Usually, reflection principles require assumptions beyond ZFC, that is, large cardinals. In fact,
some large cardinal notions are tailored to satisfy reflection and compactness properties, for exam-
ple, weakly/strongly/super-compact cardinals. One specific hierarchy of large cardinals which this
paper considers is the IT! -indescribable cardinals (see Definition 1.2) which was discovered by
Hanf and Scott [15]. These large cardinals turned out to form a yardstick hierarchy in the land-
scape of large cardinals and provide a nice characterization of other large cardinal notions in terms
of their ability to reflect formulas of higher complexity. Due to lack of technologies, a few impli-
cations among certain compactness principles around the region of ‘moderate large cardinals’ are
not well understood.

For example, it is open whether ¥ > w being weakly compact is implied by any of the
following:

(1) any two x-c - ¢ posets P,Q, P X Q is also kx-c - c;

@ x = [K2;

(3) x is strongly inaccessible and there does not exist a x-Suslin tree;
(4) x is strongly inaccessible and x — [x],zc;

(5) x is strongly inaccessible J6nsson, namely, x — [x]5%.

The first four items are consequences of x being weakly compact while the last item is not.

It is important that we insist x is a strongly inaccessible cardinal in the last three items since
these properties are consistent with x being weakly inaccessible but not strong limit. Since if x
is weakly compact, then it is necessarily a strong limit cardinal, we can cheat and declare these
principles are separated. However, if we insist that x is strongly inaccessible, then these problems
become much harder. In fact, they are open.

In this paper, we explore the possibility of ‘fixing the cheat’ by transferring compactness prin-
ciples at a weakly inaccessible cardinal to a strongly inaccessible cardinal. The technology we
employ is Radin forcing [26], denoted R;;, which is defined using a measure sequence U on a car-
dinal x. Radin forcing has already turned out useful in order to tune the large cardinal properties
and compactness principles holding at x in the model VX0, For example,

(1) ifcf(In(0)) = p < x then VR0 E cf(x) = cf(p) [14, Section 5.1];
(2) ifcf(In(D)) > x* then VRU E x is strongly inaccessible [25];

(3) if U has a repeat point then VR0 E x is measurable [25];

(4) ifx* < cf(Ih(0)) < In(0) < 2%, then VEU E =6, (Woodin, see [7]);
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(5) if U has a weak repeat point then VR0 F x is weakly compact [7];
(6) if cf(Ih(U)) > x** then VRU E x satisfy stationary reflection [7];
(7) if U satisfy the local repeat point then VEU E x is almost ineffable [8].

The common idea in those results is that we isolate some property of the length [h(U) of the
measure sequence U which guarantees that x has some large cardinal property in V®0. Let us
just mention that most of the implications above are reversible. In [8], Ben-Neria and the second
author tighten the connection between compactness principles in the Radin extension and prop-
erties. In this paper, the length of the sequence is usually [h(U) < (2¥)*. The very rough idea is
that if we force using a measure sequence such that the length of the measure sequence satisfies
suitable compactness principles, then the Radin forcing transfers these compactness principles to
actually hold at x, which is strongly inaccessible in the generic extension.

Asan application, relative to the existence of large cardinals, we construct a model where higher
order stationary reflections hold at a strongly inaccessible cardinal which is not weakly compact.
To properly state the theorem, we need the following definitions. Bagaria [2, Definition 4.1] used
generalized logic to extend the indescribable cardinal hierarchy of Hanf and Scott to IT!-formulas

13
foré > w.

Definition 1.2 (Hanf-Scott for £ € w, Bagaria [2] for £ > w). Let £ be an ordinal. A set S C x is
Hé-indescribable ifforall R C V. andall Hé-sentence $(X), if (V,., €,R) F ¢(R) then there is an

a € Ssuch that(V,,€,RNV ) F$RNV,).

Definition 1.3 (Bagaria [2]). Recursively define that a set A is
(1) O-stationary in « if sup(A) = «;
(2) &-stationary in a where & < a if
Vn < £VS which is n-stationary in a, 38 € A, S N B is -stationary;
(3) given A C x, let Tr¢(A) denote the set
{a € x : Anais£-stationary}.

We say that « is §-stationary if a is £-stationary as a subset of «.

Bagaria’s motivation for the notions comes from a result in [2], where these higher order station-
ary reflection properties characterize the non-isolated points in the ordinal topology interpretation
of generalized provability logics (see [5, 6] for more information regarding this motivation). Note
that

(1) Aisl-stationary if and only if A is stationary;
(2) aisl-stationary if and only if & has uncountable cofinality;
(3) «a is 2-stationary if and only if every stationary subset of a reflects.

Let us define the two variations of Bagaria’s higher order stationarity central to this paper.
Loosely speaking, one is obtained by varying the degree of simultaneous reflection and the other
one is the diagonal version.
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Definition 1.4. Let 2 < y < x be any regular cardinal and x be a limit ordinal.

(1) A C xis called (0, y)-s-stationary if and only if A is unbounded in x and cf(A) = cf(x) > x.
(2) A Cx is called (£, y)-s-stationary if for any y’ < y and any (T, | i < x’) such that each
T, is (»;, x)-s-stationary for some 7; < &, there is a € A such that Vi< y/, T,;na is

(1;, x)-s-stationary.
(3) Given A C x, let Tr? (A) denote the set

{a e x : Anais (£, x)-s-stationary}.

Remark 1.5.

* xis (1, y)-s-stationary if and only if cf(x) > y.

* S Cxis (1, y)-s-stationary if and only if S N cof (> y) N« is a stationary subset of x.

* xis (2, y)-s-stationary if and only if every less than y-many stationary subsets of cof (> y) Nk
reflect simultaneously.

Remark 1.6. The case when y = 3 appeared in [2, Definition 2.8]. We will follow the existing
literature and let ‘n-s-stationary’ denote ‘(n, 3)-s-stationary’ as in Definition 1.4.

Definition 1.7. Let x be a ordinal.

(1) A C xis called 0-d-stationary if and only if A is unbounded in x.

(2) Aiscalled £-d-stationary if for every (T; | i < k) such that each T; is 7;-d-stationary for some
n; < &, there is some a € A such that Vi < a, T; N a is »;-d-stationary.

(3) Given A C x, let Trg (A) denote the set

{a € x : Anais§-d-stationary}.

Remark 1.8.

* x is 1-d-stationary if and only if x is a regular cardinal.

* S C xis1-d-stationary if and only if S N « is stationary.

* x is 2-d-stationary if and only if for any (T, : i < x) where each T is a stationary subset of x,
there exists a regular a < x such that for alli < a, T; N «a is stationary in a.

Theorem 1.9 (Jensen [18] for £ = 1, Bagaria—Magidor-Sakai [4] for £ € (1, w), Bagaria [2] for
£ > w). In L, the following are equivalent:

(1) ais& + 1-stationary;
(2) ais& + 1-s-stationary;
() ais Hé-indescribable.

As we will see in Corollary 2.12, the equivalence also extends to £ + 1-d-stationary and (£ +
1, y)-s-stationary for any y < a. Note that the implications from bottom to top are valid in ZFC.
The additional constructability assumption helps in proving (1) implies (4).

In terms of the consistency strength of these principles, Magidor [22] showed that the existence
of a 2-s-stationary is equiconsistent with the existence of a weakly compact cardinal. Surprisingly,
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Mekler and Shelah [24] showed that the consistency strength of x being 2-stationary is strictly in
between a greatly Mahlo cardinal and a weakly compact. They isolated reflection cardinals and
showed x being a reflection cardinal is equiconsistent with x being a 2-stationary cardinal. Gen-
eralizing their results and methods, Bagaria-Magidor-Mancilla [3] showed that the consistency
strength of a £ + 1-stationary cardinal is strictly in between a £-greatly-Mahlo cardinal and a Hé-
indescribable cardinal. We refer the readers to [3] for relevant definitions. To achieve this, they
isolate the notion of a £-reflection cardinal and show that

* there are many &-reflection cardinals below any Hé—indescribable cardinal;
* no {-reflection cardinal can be < the first £-greatly Mahlo cardinal.

Note that by definition, if x is a £-reflection cardinal, then x is £-stationary. In L, even more is
true: it is § + 1-stationary.

It is therefore a natural question to clarify the relationship between higher order station-
ary reflections and indescribable cardinals. For example, for any given ¢, is it true that there
exists a large enough & such that whenever x is £-d-stationary (or £-stationary), then x is
Hg{—indescribable? The main result of this paper is that in general the answer is negative.

Another reason for this investigation is to expose another way of establishing higher order sta-
tionary reflection principles, fundamentally different from the Mekler-Shelah approach. Aside
from the papers mentioned previously, variations of the Mekler-Shelah method have been used
to study the extent of the weakly compact reflection principle by Cody and Sakai [9].

The following are the main results for this paper.

Theorem 1.10. Suppose that A is a measurable cardinal in V. Then in any forcing extension with
a poset satisfying y-c - ¢ for some y < A, A is A-stationary, A-d-stationary and (A, x)-s-stationary for
all y < A.

In particular, we have a way of producing a non-strong limit weakly inaccessible cardinal A that
is A-d-stationary. The next theorem ‘transfers’ this compactness to a strongly inaccessible cardinal,
using the technology of Radin forcing.

Theorem 1.11. Relative to the existence of a H(A**)-hypermeasurable cardinal’ x where 1 > xisa
measurable cardinal, it is consistent that a strongly inaccessible cardinal x is n-d-stationary for all
n € w, but x is not weakly compact.

The organization of this paper is:

(1) in Section 1, we record some preliminary facts regarding higher order stationary sets;

(2) in Section 2, we prove Theorem 1.10 and its 2-cardinal generalization;

(3) in Section 3, we prepare the ground model and present the relevant background for Radin
forcing;

(4) in Section 4, we present a proof of Theorem 1.11;

(5) in Section 5, we conclude with some open questions.

T A cardinal « is an H(8)-hypermeasurable cardinal if there is an elementary embedding j : V — M with crit(j) = x and
H(®) e M.
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1.1 | Notations

Given a function f : A — B and X C A, the pointwise image of X by f is the set X := {f(x) |
x € X}. Given a set X and a cardinal A4, we denote by P;X = {Y C X | |Y| < A}. For a sequence
(X; | i < A) consisting of subsets of A we denote by the diagonal intersection A, ;X; :={v <4
Va < v, v € X,}. For aset of ordinals A, sup(A) = UA and we say that A is bounded in A if sup(A N
A) < A. We say that A is closed if it is closed in the order topology of the ordinals. A set C is a club
at A is it is closed and unbounded, and the club filter is

Cub; :={X € P(A1)|dCaclubC C X}.

A set S is called stationary in 1 is S N C # @ for every club C in 1. We assume familiarity with
forcing theory and refer the reader to [12] for background and standard notations. An elemen-
tary embedding j is always a function j : V — M where M is a transitive model, crit(j) denoted
the minimal ordinal which is moved by j. If U is a o-complete ultrafilter then j,; : V - My
denoted the ultrapower by U. Given two finite sequence (x,, ..., x,,) and (y,, ..., y,,) we denote by

(Xps ey X)) (Pis s ¥n) = (X5 v s Xy Yo e s Yir )

2 | SOME PRELIMINARY FACTS
2.1 | n-Stationarity, (n,))-s-stationarity and n-d-stationarity
Let us start with a useful lemma regarding the trace operation.

Lemma 2.1. Fixa regularcardinal A, T CA, y <Adandn < A.

1) IfA Cc Tri(T) where k < n, then Tr,(A) C Tr, (T).

) IfAC Trf (T) where k < n, then Tr!(A) C Trf (T).

B IfAC Tr,‘i(T) where k < n, then Trg(A) C Trg(T). Furthermore, if A C AKATrg(Tl-), then
Tri(A) C A, Tri(T)).

Proof. For (1), fix 8 € Tr,(A). Let S C 8 be m-stationary for some m < k. We need to find 8’ €
T N B such that S N B’ is m-stationary. Since A N B is n-stationary, we can find 8, € A N B such
that S N 3, is m-stationary. As A C Tr(T), T N fB, is k-stationary. Therefore, there is 8/ € T n 3,
such that S n B’ is m-stationary.

For (2), fix 8 € Tr}(A). Let (S; : i < x') for some ' < y and S; C § being (k;, x)-s-stationary
where k; < k be given. Since Anpg is (n, x)-s-stationary, there exists B’ € Anf such that
B € < Trﬁ (S;). As Tnp' is (k, y)-s-stationary, there exists f* € Tn B’ such that g* €
Ni<y Trf SinB)=Nicy T rﬁ (S;). In other words, T n B is (k, y)-s-stationary.

For (3),fixB € Trg (A).Let(S; : i < B)whereeachS; C §isk;-d-stationary where for some k; <
k. Since A N § is n-d-stationary, there exists 8/ € An g suchthat 8’ € ), <p' Trg_ (S).-AsTnpis
k-d-stationary, there exists 8* € T n 8’ such that §* € ), g Tr]‘j' (S;)- In other words, T N B is k-

d-stationary. To see the ‘furthermore’ part, fix a € Trg(A) andi < a,we knowthat A —(i+1) C
Trd(T;). By the previous argument, we have that « € Trd(A — (i + 1)) € Tri(T)). n
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The combinatorial properties of the n-stationary sets are best expressed in the language of ideals
and filters. Ideals are the standard absractization of the notion of ‘smallness’. Recall that a set
I C P(X)isanidealon X if @ € I, I is downward closed with respect to ‘C’ and closed under finite
unions. We say that an ideal I is proper if X ¢ I. The dual notion of an ideal is a filter, that is, given
an ideal I we define the dual filter I* :={X \ N | N € I}. We extend the definition of I'* to any
set I C P(X). The set of positive sets with respect to some ideal I is denoted by I'* := P(X) \ I. For
more information about ideal and filters we refer the reader to [17, Ch. 7].

Definition 2.2. Foreveryn < 4,1et NS”, N SI(I”’X ) and N S;f be the set of all non-n-stationary, non-

(n, x)-s-stationary, non-n-d-stationary subsets of A (resp.), and let Cub”, Cubfl"’)(), Cub/f{ be the
corresponding dual filters.

Fact 2.3.

(1) If T ¢ NS’ then Tr,(T) € Cub}’ for any m > n. Indeed, A \ Tr,(T) is not m-stationary as
witnessed by the n-stationary set T.

(2) Conversely, if NST" is proper, then for every set C € Cub" there is an n-stationary set T for
some n < m such that Tr,(T) C C. To see this, since 1\ C € N ST, there is some n < m and
a n-stationary set T such that Tr,(T) n (1 \ C) = @, namely, Tr,(T) C C.

(3) Wehave that NS7 C NST" (and therefore Cub] C Cub’")forany n < m < A. This follows from
the fact that whenever S is m-stationary, by Definition 1.3, it is also n-stationary.

(4) NS} is always upward closed with respect to C. Indeed @ € N S'CN ST,ifXeNSTandY C
X, then and m-stationary set S for m < n which witnesses that X is not n-stationary will also
witness that Y is not n-stationary.

(5) If NS is an ideal, then it is proper if and only if 4 is an n-stationary cardinal.

Lemma 2.4. Let A be regularand n < A. Fixany S C A. Then S is n + 1-stationary if and only if 1
is n-stationary and for any n-stationary T C 4, Tr,(T)Nn S # @.

Proof. 'We prove the non-trivial direction («). Given any m < n and m-stationary W, we need
to show Tr,,(W) NS # @. If m = n, then we are done by the hypothesis. So assume m < n. Let
T =Tr,,(W).Since Cub/’{“r1 C Cub? by Fact 2.3, we have that T is n-stationary. By the hypothesis,
Tr,(T)NnS # @. Fix B € Tr,(T)N S. Our goal is to show that § € Tr,,(W), namely W n g is m-
stationary. Let V be a k-stationary subset of 8 for some k < m. Since T N g is n-stationary, there is
some 8’ € T such that V n B’ is k-stationary. Recall that T = Tr,,(W). Then we have that W n 8’
is m-stationary. As a result, there is 8"/ € W n 8’ such that V n " is k-stationary. Hence, we have
found 8" € Tr,(V)NnW n 8. O

We record the following fact for the other ideals. The proof is similar to that of Lemma 2.4.

Lemma 2.5. Let A be regular and n, y < A with y infinite. Fixany S C A. Then

(1) Sis(n+ 1, y)-s-stationary if and only if A is (n, x)-s-stationary and for any (n, y)-s-stationary
sets (T; 1 i < x') forsome x' < x, Nicy Tri(T)NS #G;

(2) Sisn + 1-d-stationary if and only if A is n-d-stationary and for any n-d-stationary sets (T; : i <
A), A Tri(T)H NS # 0.
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Proof. We only prove the non-trivial direction (<) in the following.

(1) Given (T; : i < x') such that each T; is (k;, y)-s-stationary for some k; < n, we note that
if k; < n, then Tricfi (T;) is (n, x)-s-stationary. To see this, suppose S = (S, : k< x” < x) is
given with each S being (m,, x)-s-stationary for some m; < n. Since A is (n, y)-s-stationary,
there is some o € [, » Trﬁk(Sk) N Trfi (T;). Foreachi < y',1etT] =T;ifk; =nand T =
Trgi (T;) if k; < n. Apply the hypothesis, we have that S n ;. Tr; (T!) # @. Fix some § in
the intersection. Then 8 € SN (). o Trfi (T;) by Lemma 2.1(2).

(2) The proof is similar to the previous one, except that we apply Lemma 2.1(3) instead. U

Lemma 2.6.

1) N Sff’x )isa proper subset of P(x) if and only if x is (§, x)-s-stationary.

2) N S,(CE’X ) is always (might be P(x)) x-complete ideal when  is an infinite regular cardinal.

(3) Supposethatx is(n, y)-s-stationary such that y is an infinite cardinal and either n is a successor
ordinalorcf(n) > y. ForanyC € Cub,(‘"’x ), thereis R which is (k, y)-s-stationary for somek < n
such that Tr{(R) C C.

Proof.

(1) Immediate.
(2) Closure under subsets is immediate. To see that it is y-complete, suppose that (4; | i < ' <

(3%9] ; : ; : i
x) S NS;>*’, then for each i < x’ there is a sequence (T ; | j < x{) with x] < x and n; <&

such that each T; is (n;, x)-s-stationary and A4; N ;s Tr;(i. (T;;) = 8. It is clear that (T, :
J

J < x{,i<x')witnesses that ;. » A; € NS,(f’X).

(3) By definition, there is a sequence (T; | i < y’ < y) with each T; being (»;, x)-s-stationary for
some 7; < nsuch thatR :=n;_ X,Trf;i (T;) € C. By the hypothesis about n, we can find some
k < nsuchthaty, < kforalli < y'.

We claim that R is (k, )-s-stationary. Let (S; | j < x”’) be such that " < x each S;
is (m;, x)-s-stationary for some m; < k. Apply the fact that x is (n, x)-s-stationary to the
sequence (S; | j < x"")"(T; | i < x") to conclude that RN [ i<y Trf,ﬁj(s ;) # 9. Finally note
that Tr(R) € n;. X,Trf;i (T,) € C, by Lemma 2.1(2). O

Lemma 2.7.

1 N SE Lisa proper subset of P(x) if and only if x is £-d-stationary.

) N Si 4 s always a (might be P(x)) normal ideal.

(3) Suppose that x is n + 1-d-stationary. For any C € Cu
such that Trg(R) ccC.

b,’:H’d, there is R which is n-d-stationary

Proof.

(1) Immediate.

(2) Closure under subsets is immediate. To see that it is normal, suppose that (A4, | i < x) C
NSE’d, then for each i < x there is a sequence (T; | j < x) with 77;, < £ such that each T;
is né-d—stationary and A, NA

j<KTr)‘;i (T;;) = 0. Fix some bijection g from x X x to x such
j
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that on a club D C x, for any a € D, for any i, j < a, ¢(j,i) < a. Let T;(j b= Ti;- As a
result, the sequence {D} U (Tr%, (T; G l_)) . j,i < x) witnesses that \/;_, A, € NSE’d. The rea-
77]‘ ?

son is that A ; NC=g4rla€C :Vji<aae Tr:i (T;)} avoids V', A; =47 {8 :
j

Jdi<B,BeA}
(3) Bydefinition, thereisasequence (T; | i < x) with each T; being n-d-stationary such thatR :=
A, Tri(T;) C C.ThatR is n-d-stationary follows from the fact that x is n-d-stationary. Finally

1<k n

note that Tré(R) C A, Trd(T;) C C, by Lemma 2.1(3). O

'
Tg(j,i)

2.2 | The relationship between different ideals in the constructible
universe

Lemma 2.8. Fix a cardinal x and n < x. If NS?! is normal, and for any k < n, {a <x : NS§ =
NSE4Y € cub® n Cub and NSk = NSE9, then Ns™ = NSI.

Let us clarify that fot <% : NSX = ng’d} € Cub; N Cub,’f’d’ really means whenever NS,
: dy ; . _ nckd d
(respectively, NS;*“) is proper, then {a < x : NSk = NS;“} € Cub” (Cuby®).

Proof. First suppose NS” is not proper. In particular, this is the case when «x is singular as NS” is
assumed to be normal. We need to show NS, 4 is also not proper. If NSLc is not proper for some
k < n, then by the hypothesis, N Sfﬁ 4 js not proper, which in turn implies that N Sf’d is not proper.
Hence, we may assume N ng is proper for all k < n. By the assumption, there is some k-stationary
T c x such that Tr,(T) = @. Suppose for the sake of contradiction that N, S,’c"d isproper. As T is k-d-
stationary by the hypothesis, there is some a such that T N «a is k-d-stationary and NS§ =N S’;’d.
In particular, T N « is k-stationary. This contradicts with the fact that Tr, (T) = 0.

We may now assume that NS” is proper. Let B ={a <x : Vk < n,NS,’g = NS,’f’d}, then B €
Cub! N Cub, 4 as NS" and NS},  are normal and in particular x-complete.

First we show that if A is n-stationary, then A is n-d-stationary. In particular, this implies
N S,’:’d is proper. Let (T; : i < x) be given such that each T; is k;-d-stationary for some k; < n.
By the hypothesis, we know that T; is k;-stationary. Since NS? is normal, there is some o €
A Tr (T) N AN B. We check that o € AKKTrg.(Ti). Fixi < a,T; n a is k;-stationary. Asa € B,
T; Nna is k;-d-stationary. l

Next we show that if A is n-d-stationary, then A is n-stationary. Let T be a k-stationary subset
of x for some k < n. By the hypothesis, T is k-d-stationary. Finda € An Trg(T) NB.ThenT N«
is k-d-stationary. Since a € B, T N « is k-stationary. |

Proposition 2.9. Suppose for any cardinal x and any n < x, NS? is normal, then for all x and
n<x NS'=NS}.

Proof. Suppose otherwise for the sake of contradiction. Fix the least cardinal x¥ and then the least
n < x such that NS” # NS} “_ Note that x is regular and n > 1. We will reach a contradiction by
verifying that the hypotheses of Lemma 2.8 are satisfied. For k < n,

* NS? is normal by the assumption,
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« NS¥ = NS5 by the minimality of n; and
: k.d o
* {a <x : NS* = NS;°} = x by the minimality of x. m

Similar proofs to those in Lemma 2.8 and Proposition 2.9 give the following:

Lemma 2.10. Fixacardinalx, n < x and y <x.IfNS? is y-complete, and foranyk < n,{a <x :
Nsk = Ns©P} e cubr n cubl™® and NSk = NSEP, then NS = NSU™Y,

Proposition 2.11. Suppose for any cardinal x, any n < x and y < x, NS} is x-complete, then for
allxandn < x, NS* = NS,

Corollary 2.12. IfV = L, then all the following are equivalent for £ < x:

(1) xis Hé—indescn’bable;

(2) xis & + 1-stationary;

(3) xis (& + 1, y)-s-stationary for some (any) y < x;
(4) xis & + 1-d-stationary.

In fact, in the theorem above, all the ideals corresponding to each clause are the same. Namely, I1! N

¢
P(x) = NS;*' = NSE*2) = Nsi+he,

Proof. This follows from [2, Theorem 5.1; 4, Corollary 2.5] and Propositions 2.9 and 2.11. |

2.3 | 2-Cardinal higher order stationarity
Sakai [27] generalized the higher order stationarity notions to the two-cardinal setting.

Definition 2.13 (Sakai [27]). For a regular cardinal x, a set A D x and n € x.

* S C P,Ais O-stationary if S is C-cofinal” in P, A.
* Sis n-stationary if for any m < n, any m-stationary T C P, A, there is B € S such that
- u = Bnxisaregular cardinal,
- T'nP,Bis m-stationary.
The collection of B satisfying the above is called the m-trace of T, written as Tr, (T) (this is
slight abuse of notation but there should be no difficulty inferring from the context).
* P, Ais n-stationary if P, A is n-stationary as a subset of P, A.

Remark 2.14. In the original definition, only n € w was considered. Generalizing that to n € x
poses no difficulty.

Remark 2.15. If T C P, A and B € Tr,,(T), then for any T/ C T with TN P,B C T', we have B €
Tr,,(T’). The reason is that T’ NP, B =T N P, B.

Lemma 2.16. If A C Tr,,,(T), then Tr,,(A) C Tr,,,(T).

T Namely, for every X € P, A thereis Y € Ssuchthat X C Y.
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Proof. LetB € Tr,,(A)with BN x = pregular. Letk < mandS C P,Bbeak-stationary subset. We
need to show that T N Tr, (S) # @. Since A N P,Bis m-stationary, thereis C € AsuchthatCnx =
v is regular and S N P,C is k-stationary. Since C € Tr,,(T), T n P,C is m-stationary. Therefore,
thereissome D € T N P,CsuchthatD nv = §isaregularcardinalandS nP,CNPsD = SN PsD
is k-stationary in PsD. O

3 | HIGHER ORDER STATIONARY REFLECTION AT A NON-STRONG
LIMIT CARDINAL

Definition 3.1. Let A be a regular cardinal and x be a cardinal. An ideal I on 4 is

(1) uniform if[A]<* C I,

(2) normalifforany (A, : i < A) € [I]*, the diagonal union V,_, A; =gesfa i i<a,a€EA}E
L

(3) x-saturated if for any (B; : j < x) € [I*]*, there exist j, # j; <xsuchthatB; nB; €I*.

Fact 3.2. Let I be uniform normal x-saturated ideal on A where ¥ < 4. Let G C P(1)/I be generic
over V. Then in V[G],

(1) [13, Chapter 2] there is an elementary embedding j : V — M ~ Ult(V, G) such that crit(j) =
A, V[G] E*M c M;and

(2) [19, Theorem 17.1] the ideal I generated by I is uniform normal and x-saturated;

(3) for any X such that -5 ; X € I'*, there exists X € I'* such that I-5;) ; X C X (this follows
from the fact that P(1)/I is x-c - c and I is x-complete);

(4) aset Aisin[Iifand onlyiflp;y,; A & i(il).

Theorem 3.3. Let A be a regular cardinal carrying a uniform normal x-saturated ideal I for some
x < A. Fix also some y < A. Then for all k < A, NS¥, NS/(;C’X), NS’/{’d are all proper ideals on A. In
particular, A is A-stationary, (4, y)-s-stationary and 1-d-stationary.

Proof. We prove the following statement (x),, by induction on n € Ord. For any A4 > x, n such that
A carries a uniform normal x-saturated ideal I, for any T C 4,

(1) if T is n-stationary, then Tr,(T) € I*;
(2) if T is (n, y)-s-stationary, then Tr} (T) € I'*; and
(3) if T is n-d-stationary, then Tr(T) € I*.

Claim3.4. (%), foralln € Ord implies that: A is A-stationary, (4, y)-s-stationary and A-d-stationary
whenever A > y carries a uniform normal x-saturated ideal I for some x < A.

Proof of the Claim.

(1) Since A is A-stationary if and only if A is k-stationary for all k < 4, the first clause is immediate.
(2) Given ' < y and (T; : i < y') such that each T; is (#;, y)-s-stationary for some 7; < 4, by
the hypothesis we know there are A; € I* such that A; C Trf](i (T;) foreach i < y’. Since I* is

A-complete, we have that (), Try (T) D ;v A; € I*.

i<y
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(3) Given(T; : i < A)such thateach T; isn;-d-stationary for some 7; < 4, by the hypothesis, there
are A; € I* such that A; € Tr{ (T;) for each i < A. Since I is normal, A, ., Tr; () D A4 A; €
I*. O

Base case n = 1. Recall that in this case,

» T is1-stationary if T is a stationary subset of 4;
* Tis (1, y)-s-stationary if T N A N cof (> y) is stationary in 4;
* T is1-d-stationary if T is a stationary subset of 1.

LetG C P(1)/1I be generic over V. If T is a stationary subset of A (stationary relative to A N cof (>
X)), thenlpy) ;T C Aisstationary since the forcing satisfies x-c - ¢. Note that j(T) N x = T where
j 1 V = M is the elementary embedding from Fact 3.2, item (1). In particular, M E x € j(Tr(T))
and by Fact 3.2(4) Tr,(T) € I* (Tr{ (T) € I*, or Trd(T) € I*).

Suppose we have proved (x); for all i < n, let us show (x),. Let G C P(4)/I be generic over
Vandletj: V — M =~ Ult(V, G) be an ultrapower embedding in V[G]. Let us first assume T C
A is n-stationary. It suffices to show that M F T is n-stationary, as the conclusion follows from
the elementarity of j. Suppose for the sake of contradiction that M F T is not n-stationary. Since
V[G] E*M c M byFact3.2(1), V[G] E T is not n-stationary. As a result, there exists a k-stationary
S C A such that TrZ[G](S) NT = @ for some k < n. By Fact 3.2(2), the ideal I generated by I is
uniform normal and x-saturated in V[G]. Therefore, we can apply the induction hypothesis (),
in V[G] to conclude that there exists C € I* such that C C Tr;:[G](S). Since I is generated by I, we
may assume that C € I*. In particular, C € V. Apply (%), in V, we know that C is k-stationary. As
aresult, Tr,(C) N T # . Fixa € Tr,(C) N T. Apply jtosee thata € j(Tr (C)NT) = Tr} \“}(C) n
T. Hence

MEaeTrCOOnT cTr(TrS)H)nT CcTr(S)NnT

by Lemma 2.1. Contradicting the fact that Tr;:[G](S) NT =@in V[G].

As the proof for the case where T is (n, y)-s-stationary and n-d-stationary is similar to the above,
we only sketch the differences. Let us assume T is n-d-stationary for concreteness. Proceed as
above and assume M F T is not n-d-stationary for the sake of contradiction. There exists (S; : i <
A) such that each S; is 7;-d-stationary for some #; < n, and AKA(Trgi (Si))V[G] NT =§@.In V[G],
apply the induction hypothesis and the normality of I, for each k < n, we can get C; € I* such that

C, C Afd(:rrgi (Sl-))V[G] =yf {a 1 Vi<a, ifn; = k, then a € (Tri(s,))"1l}.

By Fact 3.2(3), we may assume that (C}, : k < n) € V. For each k < n, the induction hypothesis
(%), in V implies that C; is k-d-stationary. As aresult, we canfinda € TN [),_, Trg(Ck). Apply

Jj, we know that in M, x € TN Trg(Ck) for each k < n. We check that a € A,-<,1(Trgi(Si))V[G],
which gives the desired contradiction. Fix i < a and #; = k. By the definition of C;, we have
that V[G] k Cy — (i + 1) C Tr{(S;). By Lemma 2.1, V[G] F Tri(Cy — (i + 1)) C Tr{(S;). But then
V[G]k a € Tri(Cy — (i + 1)) C Tri(S)). O

Proof of Theorem 1.10. Let A be a measurable cardinal and a x-c - ¢ forcing P be given where x < A.
A theorem of Kunen [20, Lemma 2] gives that in V¥, there exists a A-complete normal x-saturated
ideal on A. Then we apply Theorem 3.3 to get the conclusion as desired. O
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Let us turn our attention to the 2-cardinal higher order stationary reflection principles (see
Definition 2.13). Sakai [27] posed the following question: For n > 3, is it consistent that there is a
cardinal ¥ < 2% such that P, (1) is n-stationary for all 1 > x?

We answer this question positively in the following, adapting the proof of Theorem 3.3 to the 2-
cardinal setting. Recall that a cardinal « is called A-supercompact if there is a fine normal measure
U over P,(1). Equivalently, if there is an elementary embedding j : V — M such that crit(j) = x,
M is transitive and M* C M. x is called supercompact if it is A-supercompact for every 1. The
following is a 2-cardinal version of the classic Mitchell order on normal ultrafilters on measurable
cardinals.

Definition 3.5. We define an ordinal function o on the set N'F of all normal fine measures on
P_ A recursively as follows: forall U € N'F,

@) o(U) = 0;
(2) o(U) = € iffor any &’ < &, there exists some W € Ult(V, U) N N'F such that o(W) > &/;

ForU € NF,o(U) = ¢ ifand onlyifo(U) > £ buto(U) # £ + 1.

Observation 3.6. If x is a supercompact cardinal, then for any A > x and & < A, there is a normal
fine measure U on P, A such that o(U) > £.

Proof. Recall that for a normal fine ultrafilter U on P, A and », o(U) > 7 if for any £ < 7, there
exists some normal fine ultrafilter W on P, 4 with o(W) > £ which belongs to M, ~ Ult(V, U).
Fix A > x. Suppose for the sake of contradiction that

sup{o(U) + 1 : U is a normal fine ultrafilter on P, A} =7 < A.

Let j : V — M witness that x is 17 -supercompact. Let W be the normal fine ultrafilter on P, 4
derived from j. Leti : V — N ~ Ult(V,W) and let k : N — M be defined such that k([f];,) =
J(f)(G" ). The following facts are standard (see [19]):

(1) bothi and k are elementary and j = koi;
@) *“N c N and crit(k) > 4™
(3) W &N.

As a result, by elementarity,

N E sup{o(U) + 1 : U is a normal fine ultrafilter on P, A} =5 < A.

Note that since N is sufficiently closed, any normal fine ultrafilter on P, 4 in N is a normal fine
ultrafilter on P, A in V. But then by the definition, o(W) > 5, which is a contradiction. O

Theorem 3.7. Let x be a supercompact cardinal and P be a forcing satisfying v-c - ¢ for some v < x.
InV?, P, A is n-stationary foranyn < x and 1 > x.

Proof. The proof is similar to before, so we only highlight the modifications. We prove the fol-
lowing statement (%), by induction on n € Ord: for any v, any 4 > x > max{n, v}, any forcing P
satisfying v-c - c and any normal fine measure U on P,4 such that o(U) > n, the following holds
in V*: for any n-stationary T C P, 4, there exists A € U such that Tr,(T) D A. As (%), is easy to
be seen to hold, let us focus on the inductive step.
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Suppose we have proved (x); for all i < n and let us show (),. Let 1 > x > {n, v}, forcing P
and normal fine ultrafilter U on P, A with o(U) > n be given. Let j : V - M ~ Ult(V, U) be the
supercompact ultrapower embedding, in particular,”M C M.LetG C Pbegenericover VandT C
P A € V[G] be n-stationary. We can continue to force and find G* C j(P) generic over V extending
j" G, such that we can lift j to j* : V[G] - M[G*]. In V[G], standard arguments show that the
ideal generated by the dual of U is the same as {X C P, A : I-;p)/jng j”4 & j*(X)}. It suffices to
show that j*”T remains n-stationary in P, j” A in M[G*]. Then we finish by the elementarity of j.

Suppose for the sake of contradiction that j*”'T is not n-stationary in P, j”’A. In M[G*], let
S C P, j" 2 be some m-stationary set such that Tr,,,(S) N j*”T = @ where m < n. Since o(U) > n,
we can find some normal fine ultrafilter W € M on P, 4 such that o(W) > m. We may identify W
as a normal fine ultrafilter W’ on P, j”’ A induced by j | 1 € M.

Applying the induction hypothesis (%),, in M with respect to W’, S and j(P), we know that
there is B € W’ such that M[G*] F B C Tr,,(S). Since in P, A and P, j''A are isomorphic, we know
thatB’ = j~'(B) = {j!(a) : a € B}isin W.In particular, both B, B’ arein V. As a result, applying
(%), for all I < m in V, we get that B’ is an m-stationary subset of P4 in V[G]. In V[G], let D €
T NnTr,(B)asT is n-stationary.

Let u = D nx and we know u is a regular cardinal in x. By the elementarity of j*, we have
T (D) = j*"D € j*"T n (Tr,, ;BN Note that j*"'D € (Tr,,(j'B))M®, since j”"V con-
tains (P, j*"" D) n j(B") (Remark 2.15). To see this, let a € (P, j*"D)n j(B"),since B’ € V, we have
that j(B') € M. Thus a € M. As a result, a’ = j~!(a) € V. Hence, in V[G], we must have that
a’ cDNB and j(a') = j’a’ = a € j"'V. Therefore, in M[G*], j*"'D € Tr,,(j"B’) = Tr,,(B) C
Tr,,(S) by Lemma 2.16. This contradicts with the fact that Tr,,(S) n j*"'T = @ in M[G*]. O

4 | PREPARING THE GROUND MODEL AND RADIN FORCING

Start with a model of GCH where x is an H(A™*+)-hypermeasurable cardinal where A4 is the least
measurable cardinal greater than x. Our goal is to produce a universe V where 2 = A* and there
exists an elementary embedding j : V — M such that

1) HA™) cM;
(2) forevery X C A, thereis g € V such that j(g)(x) = X;;
(3) foranyn € w, A is (n,x*)-s-stationary.

Let r : x — x be the function that takes any « to the minimal measurable cardinals a < r(«).
Since x is an H(A*")-hypermeasurable cardinal, r : x — x. Since the preparation is standard,
we will only sketch the proof and refer the readers to the relevant literature for more details.
Specifically, we follow largely [10, 11, 16].

We will use some standard facts about term-space forcing.

Definition 4.1. Let P be a forcing and Q be a P-name for a forcing. Define Q/P to be the poset
consisting of terms ¢ such that I, ¢ € Q. The order on Q/P is: ¢ < t if and only if I, ¢ < 7.

Fact 4.2.

(1) [12, Proposition 22.3] Fix a forcing P and a P-name for a forcing Q. Let G C P be generic over
V andlet H C Q/P be generic over V. Then I = {i;(¢) : ¢ € H}is an i;(Q)-generic filter over
VIG].
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(2) [10, Fact 2] Let x be such that x* = x and P be a x-c - ¢ forcing. Let Q be a P-name for
Add(x, 7). Then in V, Add(x, y) is forcing equivalent to Q/P.

4.1 | Stepone

The first stage is to ensure that there is a universe V; in which

(1) xis an H(A**)-hypermeasurable cardinal;
(2) GCH holds at all inaccessible x < xand 8 > 4;
(3) there is an elementary embedding j : V; — M such that
« HA™) C M,
e crit(j) = x,
» j(r)(x) =Aand
s *MCM
along with i : V; = N being the ultrapower by the normal measure derived from j, there is
F € V,, that is generic for i(Add(x,1")) over N;
(4) V,isaxt*-c. cforcing extension of V.

For the construction, see [16, Corollary 2.7]. Apter and Cummings [1] independently, in some
unpublished work, has an alternative way of achieving the above.

4.2 | Steptwo

We may take V, from the previous subsection as our ground model in this subsection. The second
step is to perform the Easton support iteration (Pg, Q, : @ <x,f < x+1) such that for any a <
x, Q, is trivial unless IFp_ o is inaccessible, in which case Q. is a P,-name for Add(a, r(ct)*).
Finally, let Q, be the P,-name for Add(x,A"). Let G = G, * g, be V-generic for P, ., = P, * Q,.
Let j : V — M be the embedding from Step One. We may without loss of generality assume that
j = jg where E is a short (x, A**)-extender on x. Leti : V — N be the ultrapower by the normal
ultrafilter on x derived from j.

Proposition 4.3. InV[G]wecanlift j C j* : V[G] = M[H] such that

1) (H@ )l c M[H];
(2) forevery £ < AT thereis g € V[G] such that j*(g)(x) = &;
(3) 2¢ =24 = 1.

Proof. We need to construct a generic for j(P,,,). By definition of P, ; and by elementarity of j,
we have that

J(Pey) = (P * Add(x,A%) % Py i) * Add(j(x), j(AY DY,

where Pé‘ﬁ i) is an iteration starting at the first MP«+1-inaccessible above x (and in particular

above A%). In particular, after forcing j(P, . ), (Z’I)M"(P"“) remains A*- this explains (3). Up to
x + 1 we can take G as the M-generic filter. In V[G], we can find some G, ) that is M[G]-
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M[G]
(,j (1))
is that we can find g,y € V[G] that is generic for Add(j(x), j(4)*)MIG*Hol, This uses crucially (3)
in the preparation of Step One. Let us outline some key points. Leti : V' — N be the ultrapower
by the normal ultrafilter derived from jand letk : N — M be the natural map defined as k([ f]) =
j(f)(x). Then by Fact 4.2(2), i(Add(x, A+))/ Py, is forcing equivalent to i(Add(x,A*)). Hence we
can find in V a generic for i(Add(x, A*)) /Pi() over N. By Fact 4.2(1), this can be transferred along
the embedding k to a generic for j(Add(x,A1")) over M[G j(o))- More details can be found in [16,
Theorem 2.11] or [11, The second step, pp. 245-246].

We proceed with the usual Woodin surgery argument [12, Chapter 25] and alter the values of
9j() (We abuse notation and keep denoting the altered functions by g, ) so that for every § <
A, gico,je) 1 = ger and gjq ie)(x) = &. 1t is routine to check that gy, is still generic, and
that j”G C G X Gy jx) X gji) =: H.Sowe mayliftin j C j* : V[G] — M[H]. Note that we have
(H(AT*))VI6] ¢ M[H]. To see this, as P,,; € H(A**)” ¢ M is a x*-c - ¢ forcing extension of V,
we know that H(A+*)16] ¢ M[G] c M[H]. Since we ensured that j*(g, £ )(x) = gjc0) jie)() = &,
we have shown that (1) and (2) hold. O

generic for P (see [12, Proposition 15.1 and the paragraph before Lemma 25.5]). The key point

Corollary 4.4. Assume GCH, x isa H(A*)-hypermeasurable cardinal wherex < A is a measurable
cardinal. Then there is a generic extension V* where

(1) 2*=2 =A% > A;
(2) thereis an elementary embedding j* : V* — M* such that
(@) crit(j) =1 H((2)M"" € M*,
(b) forevery X C Athereis g € V* such that j(g)(x) = X;
(3) foralln < x, A is (n,x")-s-stationary.

Proof. Let V* and j* : V* — M* be as in the conclusion of Proposition 4.3. In particular (1), (2a)
hold. Moreover, for every £ < A%, there is a function g € V* such that j*(g)(x) = &. To see (2b),
take any X C A and factor j* through the ultrapower embedding i* : V* — N* by the normal
ultrapower derived from j* and let k : N* — M™ be the factor map such that koi* = j* defined
by k(i*(9)(x)) = j*(¢)(x).Since A* + 1 C Im(k), we have that crit(k) > A*. In particular, for every
X C A, such that X € N*, k(X) = X. Also note that k(PY" (1)) = PM"(1) = PN"(1). The reason is
that N* E 24 = A* and crit(k) > A*. Therefore, every X C A is of the form j*(f)(x). Finally, to see
(3), note that V* is a generic extension of V by a x**-c - ¢ forcing (the Step One forcingisx**-c - c
and the Step Two forcing is x*-c - ¢), so we may reason as in the proof of Theorem 1.10 following
the proof of Theorem 3.3. O

From now on, let us denote by V* = V and j* = j the model and the elementary embedding
of the previous corollary. Let us give a brief description of the notations we use for Radin forcing
[26] and relevant background for our main result. For full detailed definitions and proofs consult
[14].

4.3 | Radin forcing

Let U be a measure sequence derived from j of length A, thatis, U = (x)"(U(§) | £ < A) such that
for every £ < A we define recursively

U@ ={XcV,|U§e€jont
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and U(0) is just the normal measure derived from j using x. More generally, a measure sequence is
any sequence of ultrafilter w of any length, denoted by lh(w), which is derived from some elemen-
tary embedding j; in the same way U was derived, always starting with the seed crit(j) which we
denote by k(W) = crit(j;). We denote by MS the class of all measure sequences. It is well known
(see, for example, [14]) that we may only consider & € MS which concentrate on M S, that is,

Remark 4.5. We will always assume that given aset A € (| w, foreveryv € A, ANV, ;) € 0.
Such a v is said to be addable to A. For generally, we say that 77 = (0y, ..., U,,) is addable to (w, A),
and denote it by 77 << A, ifforevery1 <i < n,0; € Aand An Vi) € (0

Given two measure sequences i, U, we denote &t < wifut € Vw)- If B C MS, then

B< = | J{@@, ..., u,) € B" | &, <@t < - <}

n<w

Let us follow the description of Radin forcing from [14] with the exception that g < p means q is
a stronger condition.

Definition 4.6. The Radin forcing with U, denoted by Ry; consists of all finite sequences p = (d; |
i < k) such that each d; is either an ordinal x; < x (which we identify as the measure sequence
@ = (x;)) or a pair (@, A7), such that

(1) d, = (U, AP) where A? € (" U;
Q) a] <) < - <@l

(3) ifd; is a pair then Af eN ﬁip and if i > 0 then for every i1 € Af’, ﬁf’_l <.

Notation 4.7. We denote the length of the condition [h(p) = k, the lower part p, = (d; | i < lh(p)),
the upper part (U, A) (so we may write p = p;~(U, A)), Let xo(p) = x(dy_;),andR_, ={p, | p €
Ry}

Definition 4.8. Let p,q € R;. We say that p is a direct extension of g and p <* q if

(1) lh(p) = lh(q);
(2) foreveryi < Ih(p), & =] and A” C Al.

Definition 4.9. Let p € R;,. A one-step extension of p is obtained by choosing i < lh(p) ﬁf’ and
ve AIP which is addable to (111p , ALP ) and forming the condition

P (@) :=(d; | j <) (0,A] N Vo) (@, AL \ Viy1) " {d; | 1 < j < Th(p)).
We define recursively, p™(0;, ..., U,41) = (P (01, oo s U, )) ¥ (Dppyq)-

Remark 4.10. We clarify the notations regarding concatenation and one-step extension.

* p—(w, A) is the string concatenation in the usual sense. In particular, in order for this to make
sense, x(w) > x(0) for all 0 € p and we always need to specify the large set A.
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* p~¥(w) is the one-step extension as in the definition above. In particular, x(w0) < x(0) for some
U € p and we only specify the measure sequence since the measure one set for w is already
determined.

We define the order by p < g if there are 0, ... 0,,, such that 0; € A? and p <* g7 (0, ...U,)). Let
us list some basic properties of Ry; (for the proof see [14]):

Proposition 4.11.

(1) Rpisxt-c-c

(2) For any condition p, (Ry/p,<") is x(ﬂg )-directed closed. In particular, if lh(p) =1 the
(Rgz/p,<*) is x-closed.

(3) Forany p = (d; | i < lh(p)) € Ry, and any i < lh(p), we can factor

Ry/p = (Rﬁf/P Mi+1)XRg/p\i+1),

wherep [ i+1=(d;|j<i)andp\i+1={(d;|i<j<!lh(p))

(4) Ry satisfies the Prikry property: For any sentence in the forcing language o, and any condition
p € Ry there is a direct extension p* <* p such that p* |- o v p* I =o',

(5) Ry satisfies the strong Prikry property: For every dense open set D C R;; and any condition p,
there is p* <* p and a p*-fat tree * T such that for every maximal branch t € T, p*"™(t) € D.

We will need the following proposition that reduces R;;-names to names which depends on
bounded information:

Proposition 4.12. Let (y, | a < x) € V be any sequence of ordinals below x and p = p(’)‘(ﬁ, A) e
Ry and (x, | v, < x) be a sequence of Ry-names such that p I+ %, Cy,. Then there is q < p,
qo = Py and a function f : A9 — V, such that for every w € A4, f(Ww) is an R;-name forced by
q, (W, A7 N V() to be a subset of k(W) and "W I+ f(WD) = X,)-

Proof. The proof is exactly as in [8, Lemma 2.13] exploiting the x-closure of <* of the upper part
to determine T N ¥,yp)- O

Definition 4.13. Let G C Ry be V-generic. We denote by
MS; ={ne MS|3peGIi<lh(p)a=a}.
The generic Radin club is the set O(MS;) = {a < x : i € MS;, a = k(a)}.

We say that a set A is generated by a set in the ground model if there is B € V such that A =
O(B N MS;). Other useful lemmas concerning Radin forcing can also be found in [7, 8].

T In this situation we say that p* decides ¢ and denote p*||c.

*Namely, a tree T C (MS N V,)" for some n < w, such that for each t € T, p*™(t) € Ry and there is i < Ih(p*), & <
Ih(@} ) such that succp(t) :={w | t"w e Ty e al (£).
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4.4 | Compactness and stationarity in Radin extensions

Let G C Ry be V-generic. It turns out that some large cardinal properties of x in the generic exten-
sion V[G] correspond to combinatorial properties of [h(U) (see the discussion in the introduction
for some examples). One which is relevant to us the that of a weakly compact cardinal which is
due to the second author and Ben-Neria:

Lemma 4.14 [8, Lemma 3.14]. Suppose that (2°)™ does not divide lh(U), then in VR0 E x is not
weakly compact.

In particular, the measure sequence U which we have prepared satisfies that [h(U) = 1 <
(2°)M. To show that x has some reflection properties in the generic extension, we will need to
analyze stationary sets and higher order stationary sets in Radin forcing extensions.

Ben-Neria [7] has characterized clubs and stationary sets in the generic extension using
measure sequences:

Theorem 4.15 [7]. If U satisfies cf (Ih(U)) > x*, wherex = x(U), then given p;(U,A) = p -t isa
club subset of x, there exists a measure one set A’ C A and a set T such that for somen < x, T € U(§)
forall§ € [n,In(U)) and py(U,A") IF O(T N MSg) C t.

It follows that if ¢ f(Ih(U)) > x*, any set A € V such that A € U(¢) for unboundedly many &’s
below [h(U), will generate a stationary set in VXu, that is, O(A N MS;) will intersect any club
(see [7, Proposition 15]). There are stationary sets which are not generated from a ground model
set [8, Proposition 2.12] and the exact characterization of stationary sets appears in [7, Theorem
19] and uses the notion of measure function:

Definition 4.16. A measure function is a function b : MS — V. such that for every s € MS,

b(a) € N a.

Theorem 4.17 [7, Theorem 19]. Suppose that U satisfies ¢ f(Ih(U)) > x*, wherex = x(U), and S is
Ry-name such that p I+ S is a stationary subset of k. Then thereis e = e(’)‘(U, B) < p and a measure
function b such that for every 77 € B<%:

Z, \1:={wez, e b)) (U,B- V) lFxW)eT

and 7 << b(w)} € U(§)
for unboundedly many & < lh(U).

For the sake of convenience, let us denote Z, \@ as Z, . This provided the main ingredient in
[7] to guarantee stationary reflection in the generic extension:

Theorem 4.18 [7]. Suppose that U is a measure sequence such that cf(Ih(0)) > x**, then VR0 E
every stationary set at x reflects and moreover every x-sequence of stationary subsets of x reflects
diagonally (or in our terminology, x is 2-d-stationary).
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Our intention is to generalize this characterization to higher levels of stationarity and show
that the measure sequence we produced in the preparation, guarantees that x is k-d-diagonal-
stationary for all k € w in V?0,

Definition 4.19. Given A C V, let

Indy(A) = {a < Ih(U) | A € U@)}.

Definition 4.20. Fix n < x and a measure sequence U on x of length 1. Let y < A. We say that
ACV, is

(1) U-(n, x)-s-club if Indy(A) € Cub(™’;
(2) U-(n, y)-s-stationary if Ind;;(A) € NS/(I”’X);
(3) U-(n, x)-s-nullif Indy(A) € NS/%"’X),

5 | HIGHER ORDER STATIONARY REFLECTION IN THE RADIN
EXTENSION

In this section we present the proof of Theorem 1.11. We restate the theorem for the convenience
of the reader.

Theorem. Relative to the existence of a H(A**)-hypermeasurable cardinal x where A > x is a mea-
surable cardinal, it is consistent that a strongly inaccessible cardinal x is n-d-stationary foralln € w,
but x is not weakly compact.

By the results from Section 3, we may assume the following: there is an elementary embedding
Jj 1 V = M with critical point x such that

1) VE2X=2=1"> A

(2) HA**)C M and*M C M;

(3) Ais (w,x™)-s-stationary;

(4) forevery X C A there is f such that j(f)(x) = X.

By the fact that H(A**) C M, we can then derive a measure sequence U of length A from j (see [14,
Lemma 5.1]). In particular, for £ < A, U(§) concentrates on # € MS NV, such that @ is derived
from an embedding j’ : V — M’ such that k(@) is the critical point of j’ and

(1) 2@ > Ih@a);
(2) for every X C lh(@) there is f such that j'(f)(x(@1)) = X.

The reflected objects here are the initial segments of U, namely {U | ¢ : £ < lh(U)}. By our
assumption, any proper initial segment of U belongs to M, hence, reflection is possible. Further-
more, for each such reflected measure sequence, one can form an elementary embedding that
derives it. We refer the reader to [14, Lemma 5.1] for this type of arguments.

By shrinking to a measure one set in N\U, we may abuse our notations by assuming that each
i € MS NV, there is an embedding j’ from which # is derived as above. We call these measure
sequences good. If in addition, £ < 1 is (p, x*)-s-stationary for p < w, then we may assume U(§)
concentrates on good measure sequences @ such that lh(#@) is (p, k()™ )-s-stationary.
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The argument is to prove inductively on n € w — {0} that for any good measure sequence U on
x with [h(U) = 4, the following sequence of propositions holds.

Proposition 5.1 (¢, ,). If VX0 E « is n-d-stationary, then In(U) = 4 is (n — 1,x*)-s-stationary.
If in addition A is (n — 1, x™)-s-stationary, then the following propositions hold:

Proposition 5.2 (¢, ). In VR0, S is n-d-stationary if and only if S N O(I' N MS) # @ for allT C
MS thatis U-(n — 1,x™)-s-club.

Proposition 5.3 (¢, ,). Let T be a Ry-name such that p I- T C «x is n-d-stationary. Then there is
e= e(’)‘(U,B) < p and a measure function b such that

D) Z,, :={w : ey (W, b))~ (U,B = V1)) IF k(W) € T}is U-(n — 1,x*)-s-stationary;

(2) foreveryi] € B<®, Z, \1] :={W € Z, | 1] << b(W)}is U-(n — 1,x*)-s-stationary, where j <<
b(w) means for any measure sequence U appearing in 7}, it is the case that v € b(w) and b(w) N
Viw) € () U, namely, U can be added below (W, b(w)).

We call such (e, b) an n-d-stationary witness for T

Proposition 5.4 (¢, ). If T is a Rz-name such that an n-d-stationary witness (e, b) for T exists, then
e I~ T is n-d-stationary.

If in addition A is (n, x*)-s-stationary, then the following proposition holds:

Proposition 5.5 (¢, ,). In VRu, for any sequence of n-d-stationary sets {(S; : i < k), there exists a
U-(n,x*)-s-club subset T* C MS in V such that O(T* N MS;) C A, Tr(S)).

Remark 5.6. Strictly speaking, we should decorate these propositions with U, namely ¢ j» should
be ng[.{n for j =0,1,2,3,4, since for each n € w, we quantify over all good measure sequences.
In the following, we suppress the superscript if the measure sequence we are dealing with is U.
Otherwise, we will always decorate with the superscript to make precise which good measure
sequence the induction hypothesis is applied to.

Fix an embedding j : V — M with critical point k¥ witnessing that U is good. Namely,

(1) U is derived from j;
(2) 2> Ih(0) =: 4;
(3) for every X C A thereis f such that j(f)(x) = X.

The base case n = 1. Note that ¢, is saying that if VX0 k x is regular, then Ih(U) = A must
have cofinality > x*. This is true and follows from the arguments in [14, Lemmas 5.11-5.13] and
the fact if £ < 2%, then £ is not a weak repeat point for U. Recall that for an ordinal 6 € cof (> k™),
(0, x*)-s-stationary subsets of 6 are just the unbounded subsets of 6 and when 6 is regular, 1-d-
stationary subsets of @ are just stationary subsets of 8 as the club filter at 8 is always normal. Thus
$1.1:$215$3,1, b4, Were proved in [7].

We focus on the inductive case n > 1. The argument is, to some extent, a generalization of that
in [7].

9su9a9|7 suowwo) anneal) ajqesijdde ayy Agq paulanob ase sa|d11de YO ‘9sn Jo sa|nJ 10} Aieaqiq auljuQ A3|IM UO (Suolllpuod-pue-swialfwod-As|im Aleaqiiauljuo//:sdiiy) suonipuo) pue
swJal 8y 89S '[520Z/£0/,0] uo Aseiqi auluo AspIm ‘(SINT) A18100S |eonewayleN uopuo Ag "0v6ZL swil/zLLL OL/Iop/woo As|im Aleiqiduljuo-oosylewpuol//:sdiy woly papeojumoq ‘9 ‘¥Z0Z ‘0SLL697L



22 of 28 | BENHAMOU and ZHANG

Proof (of ¢, ). If Ih(U) is not (n — 2,x*)-s-stationary, then by ¢,,_,, in VRU, ¥ is not n — 1-
d-stationary and in particular not n-d-stationary. So we may assume that [h(U) is (n — 2,x%)-
s-stationary. Suppose A = lh(U) is not (n — 1,x™)-s-stationary. Let (A4; | i < x) be a sequence of
(n — 2,x")-s-stationary subsets of A such that n; <KTrziz(A1-) = .

For each i < x, by our assumption about the embedding j, let f; be such that j(f;)(x) = A;
andletT; =4, ¢ {w € MS : lh(w) € fi(x(w))}so thatin particular Ind(T;) = A;. Thenby ¢, ,, 4,
O('; N MS;) is an — 1-d-stationary set for any i < x.

We would like to prove that (O(I'; N MS;;) | i < x) witness that x is not n-d-stationary. Indeed

B :={0 | Vi < x(0), Ind;(T; NV, ) is (n — 2,%(0)*)-s-stationary in lh(0)}

is U-null. To see this, for every § < Ih(U), Indy ¢(T;) = A; N § and since niqTr}’;iz(Ai) =0¢,0 |
¢ ¢ j(B). We may assume without loss of generality that MS; N B = @. If x(0) € O(MS;) would
have been a n — 1-d-stationary point of all the O(T'; N MS;) for i < x(0). In particular x(0) is n —
1-d-stationary. By the induction hypothesis ¢, Ih(0) is (n — 2,x(0)*)-s-stationary. By ¢J .,
Inds(T; NV, () should have been (n — 2, x(0)™)-s-stationary in [h(0). This would mean that 0 €
B N MS, which is a contradiction. O

From now on, assume 4 is (n — 1, x*)-s-stationary.

Proof (of ¢, ,,). Work in V[G].

* («): Let (T; | i < x) be a sequence of n — 1-d-stationary sets. As A is (n — 1,x")-s-stationary,
we can apply ¢, ; to find I' € V which is a U-(n — 1,%*)-club such that O(T' n MS;) C
Ai<KTr;l_1(Ti). By our assumption on S, we have that@ # SN O(T' N MSg) € SN A Tri(T).
Hence S is n-d-stationary.

* (—): Suppose there exists a set I' C MS that is U-(n — 1,x%)-s-club such that SN O(l'n
MS;) =0, we will cook up a n — 1-d-stationary set H such that Trg_l(H )N S is bounded.
This implies that S is not n-d-stationary.” Since A is assumed to be (n — 1, x*)-s-stationary, by
Lemma 2.6(3), we can find T, C 4 which is (n — 2, x")-s-stationary such that Trziz(TO) CC=
Ind;(T). By our assumption on j, there is f € V such that j(f)(x) = T. Let

I'={weV,NnMS : lh(w) € f(x())}

Note that Indy(I") = T,. Indeed, U | £ € j(I") ifand only if £ € j(f)(x) = T,. Let H = O(T' n
MS;). Since I is U — (n — 2,x*)-s-stationary, by ¢, ,,_;, H is an n — 1-d-stationary subset of
x in V[G]. Note that

Claim 5.7. Tre_ (H) = O(T* N MS;), where

I* ={a: T NV, is a-(n — 2,x(@)")-s-stationary}.
Proof of the Claim. Let @i € T N MS . Note that @ is good and lh(@) is (n — 2, x(it))-s-stationary.
We can then apply the induction hypothesis gbg‘n_l to conclude that O(T" N MS; N V) = HN

x(@1) is n — 1-d-stationary in V[G | @] and thus in V[G], as the upper part of the forcing does not
add subsets to (i2). It follows that x(&z) € Trd__ (H).

 Note that if S is n-d-stationary, and H is n — 1-d-stationary, then Trg_1 (H) N S must be unbounded.
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For the other direction, clearly each a = x(@t) € Tr¢_ (H) = Tr?_ (O(I" n MS)) is a limit
point of O(MS;;) and therefore in O(MS;). Hence &t € MS;. We note that if O(T' N MS;) N
V(@ is (n — 1)-d-stationary, then by ¢7 |, lh(@) is (n — 2, x(@)*)-s-stationary. Apply ¢, _, to
conclude that I NV, ) is @-(n — 2, x(@1)*)-s-stationary. As a result, x(#) € I'™".

It suffices to show that I'** — ' is U-null, that is, Indy(T’* — T') = @. Indeed, this will imply
that Tre__ (H) = O(T* N MS) C* O(T'n MS;)soTre_ (H) n S will be bounded. Fix ¢ < 1h(U).
By the definition, if U | £ € j(T*), then I" = j(I')nV, is U | é-(n — 2,x*)-s-stationary, so £ €
Tre. (Indy(I")) = Tr*_ (Ty) € Indy(D),so U | ¢ € j(I). O

Proof (of ¢,,). Let p= p, (U, A). By Proposition 4.12, we may assume that for each w € 4,
there is an R;-name f(w) such that p~w forces T N (x(w) + 1) = f(w). Furthermore, we may
assume there exists a measure function b satisfying the following: for each w € A, and any r €
R_.(1), there exists a direct extension r’ of 7 in R_,(;y such that '~ (w, b(w)) decides the statement
x(w) € f(w). Split A into two sets:

Al = {a €A | dte R<K(ﬂ)/p05 tn(aa b(a))n(U’ A) I+ K('L_l) € T}9 A2 =A \ Al
Note that 1 = Ind;(A;) W Indy(A,).
Claim 5.8. A, is U-(n — 1,x")-s-stationary.

Proof. Otherwise, Ind;;(A;)isnot(n — 1,x*)-s-stationary, and thus A, isaU — (n — 1, x*)-s-club.
Note that by our construction of p and by definition of A, forevery i € A, and any ¢ € R_s)/ Py,
there is a direct extension ¢’ of ¢ such that

{7 (@, b@) (U, A\ Vigay1) - x(@) € T

Let H be any generic with p € H. Since p I~ T is n-d-stationary, we have V[H] k (T) is n-d-
stationary and by ¢, ,, (I)y N O(4; N MSy) # @. Hence we can find # € A, and a condition
p' :=t"(#i,a)"5"(U,A’) € H/psuchthat p’ |- x(i1) € T. By the definition of A,, there isa direct
extension * of t’ in R_, () such that t*~(@, b(@))"(U, A \ V, (;,1) IF x(@) & T. So the condition

p* =t"(@b@) na)s(U,A")
forces both x(it) € T and x(%) & T, which is a contradiction. O

Let S, = Indy(A)) & NSE”_LF). For each £ €S, U | £ € j(A)). By elementarity of j
and the definition of A,, find some t; € R, such that f; <z_ p, and t?(U MEjb)U

NGO, J(A)\ Vi) I jry & € J(T).

By the x*-completeness of NSE"_I”‘Jr), we can find e, € R_,./p, such that Z, =4, { € A :
e, (,b(@))~(U,A) IF x(21) € T} is U-(n — 1,x*)-s-stationary. Then e, is the desired lower part.
All that is left to do is to shrink the measure one set.

Let us say that € A< is nice, if Z, \ 7isU~(n — 1,x™)-s-stationary. We next show that we can
find a U-measure one set B such any 77 € B<“ is nice. We achieve the task in steps by inducting
on the length of the finite sequence of measure sequences.
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Let us first check that A, = {w : () is nice} € (| U. Suppose for the sake of contradiction that
this set is not in U(&) for some & < lh(U). Let S = Indy(Z, ). For each y € S — (£ + 1), we can
find some w, € A N j(b)(U | y) with j(b)U I y)n Viw,) € (] w,. Note that such a w, exists

since A{ N j(b)(U | y) € U(§). Since NS&"‘L’H) isx*-complete, there are w € V, and (n — 1,x%)-
s-stationary S’ C S such that for any y € S, , = w. But then w must be nice since for every y €
S’, by elementarity and the definition of Z, \ (w), U ' y € j(Z,, \ (w)). Hence S’ C Indy(Z, \
(w)), contradicting with the fact that 0 & A;.

Suppose 77 € A" is nice, then Ap 1 = {0 : 7w is nice} is in (| U. The argument is similar
to the previous step, by looking at the set Z, \ 77, and again applying the x*-completeness of

stl"‘l’“). Let

A Az

+1= A n.n+1 ‘=

n nice nE(A,)"

{0 € MSNV, | Vnice € (4,)" NV, ), 7 € 47,1}

Then A,,,; € (| U. Finally, it is easy to see that B = [, ., A, is as desired. Namely, (e;"(U, B), b)
is an n-d-stationary witness for T O

Proof (of ¢3,). By ¢, ,, we need to prove that (T); N O(' N MS;;) # @ for every set I' which is
a U-(n — 1,x*")-s-club, whenever e € G. Suppose toward a contradiction that this is not the case
and fix T as above and e’ < e such that ¢’ IF T N O(I'N MS;) = 0. Let 77/ € B<® be such that
e =e[~(U,A’) <* e™(1]') and 7] be the part of 7’ above max(e,). Since (e, b) is an n-d-stationary
witness, the set Z, \ 7 is U-(n — 1, x*)-s-stationary subset of A, and since T"is a U-(n — 1,x*)-s-
club in 4, there is § € Indy(Z,, \ %) N Indy(T). In particular, we can find b € TN (Z, \7) N A’
such that A’ NV, ;) € [ . Consider the condition

e" =e,"(w,bw)NA") (U,A").
Then e* < ¢’ and also e* is compatible with e]' (w0, b(w0)) (U, A). So there exists an extension of

e* that forces the following:

(1) TnoTNMS;) =0,
(2 xw)eT,
(3) w eTNMSg,

which is a contradiction. O
It remains to prove ¢, ,. From now on, assume that 4 is (n, xT)-s-stationary.

Claim 5.9. Suppose that (e, b) is an n-d-stationary witness for 7. Then there is a U-(n,x")-s-

clubT, such that foreachv € I, (U, BN VK(E))"(U,B \ Vioy+1) IF T N x(0) is n-d-stationary. In

particular, in the generic extension V[G] withe € G, O(T N MS;) C Trg(T).

Proof. By definition of an n-d-stationary witness, we have that for each 7 € B<*, I ndg(Z, \ 7) &
N Sﬁ”_l"‘ﬂ and therefore Trﬁil(I nd(Z, \ 7)) € Cubfl"”‘Jr)T. Since N Sﬁ””‘ﬂ is x*-complete and 1

TIndeed, 1 \ Tr:tl(I MdU(Ze(J \ 7)) is not (n, ™ )-s-stationary as witnessed by I "dU(ZeO \ 7).
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is (n, x*)-s-stationary, we have

c:= () Tre (Indy(Z,, \ ) € Cub™*".
ﬁEB“‘)

Let
F'={i€B|VyEB“n Vi Ze, \ 1 NV is #-(n — 1,x(@)*)-s-stationary}.

To see that T'is a U — (n, x*)-s-club, fix any & € C. Note that for every 7§ € B<® = j(B<*)n V,,
we have that j(Z, \ 7)) NV, = Z, \ 7 and therefore £ € Trgil(I ndy(Z,, \ 7)). By definition this
means that Ind(Z,, \ ) is (n — 1,x™)-s-stationary in £ = [h(U | £), hence U | £ € j(T') and
¢ € Indy(D). This implies that C C Ind(T) and thus Tisa U — (n,x*)-s-club.

Suppose toward a contradiction that there are 0 €Tl and g < e(’)‘(ﬁ,B N VK@)"(U, B),
(t; | i < x(0)) a sequence of R;-names such that q I+ 7; C k(D) is (n — 1)-d-stationary and
A, <x(5)Trg_1(fi) NT N x(0) = @. Note that by definition of I', we have that lh(0) is (n — 1, k(D) *)-
s-stationary, and 0 is good. By ¢in_1, there is an extension q’ < q and a v-(n — 1, %(0)™)-s-club
set Ty such that g’ |- O(T, N MS;) C Ai<x(U)Trg_1(i'i)- As (t; : i < x(D)) is an R;-name, we may
assume ¢’ — Vi1 = 4 — Vigoya-

Recall that by the definition of T, Z, \ N V) is U-(n — 1, x(0)*)-s-stationary where 7] is the
partof g’ in V', ;) above max(e,). Thus g’ is of the form g/ =7~ (U, D), where g, < Ranex(eg) 0" Hence
we can find ¢ € Indy(T,) N Indy(Z,, \ 1] NV (). Therefore, thereis # € Ty N Z, \ 7NV, ND
such that D NV, ;) € (] i. Form the condition

r = qy"1" (@, b(@) n D)~(U, D).

Note that r < g’ and r is compatible with e, (@, b(@))~(U,B\ Vi@y+1)- It follows that some exten-
sion of r forces x(@) € T N A, <x(ﬁ)Trg_1(i'i) N x(0), contradicting with the fact that r < q’ forces
that TN A Tre_, () N x(@) = @. O

Proof (of ¢,,). Let p=p " (U,A)IF (S; : i <x) be an Ry-name for a sequence of n-d-
stationary sets.
For each i, let A; be a maximal antichain subset of

{e € Ry : 3 a measure function b, (e, b) is an n-d-stationary witness for S;}.

Such a maximal antichain exists by ¢, ,,. By the x*-c - ¢ of Ry, each |4;| < x. Hence, we can list
these conditions as {e}c : k < x}along with the corresponding witnessing measure functions {b;c :
k < x}.

By Claim 5.9, for each i,k < «, there is B; € Cub/({""‘ﬂ such that for any & € B;, j(p})~(U |
&) ”_Rm : j(S;) Nx is n-stationary. Note that this is just a reformulation of the claim in terms of

the elementary embedding j. By the x*-completeness of NSQ”‘+ and the fact that A is (n,x%)-s-
stationary, B = [, ;. Bix € Cub/(l"”‘ﬂ.
Let G C Ry be generic. In V[G], we define the function f : ¥ — x. Foreachi < x, let p; < x be

the least such that p; > max(k, x,(p} )) where

* ko(p;) = max {x(v) : UE p;}nk;
* p, is the unique element in A, N G
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and define f(i) = p;. Let C be the club of closure points of f. Then by Theorem 4.15, there is a
U-0-club T C MS such that O(T' N MS;) C Cy.
Finally, consider

I ={@ €T : Vi <x(@)Vk < x(@) p. & I~ S; N (@) is n-d-stationary}.

Note that Ind;(I'*) D Indy(T') N B and hence I'* is also in Cubﬁ"”ﬁ). To see this, for any & <
Ih(U) such that £ e Band U | £ € j(T'), We need to check U | £ € j(I'*). Fixi < x and k < x.
Since £ € B, we know that j(p;c)“U MRy j(S;) Nx is n-d-stationary, as desired. We claim
that I'* witnesses the lemma, namely that O(T* N MS¢) C A, Trd(S).

For each # € I'" N MS; and i < x(@1), we know that f(i) < x(@). In particular, the unique p;
that belongs to G satisfies that k < x(&). As a result, p, @ € G and forces that S; N (&) is n-d-
stationary. So in V[G], S; N k(@) is n-d-stationary for any i < x(@). O

Theorem 1.11 now follows easily from the proof in this section and Lemma 4.14.

Remark 5.10. Here is a comment on the necessity of the goodness assumption on the measure
sequence in the proof above. More precisely, without the hypothesis that for any X C A4, there is
f € V such that j(f)(x) = X, the statement ¢, , may not be true. For example, if x is strong in
the ground model satisfying GCH and there is no inaccessible cardinal above it. In any Radin
extension using a measure sequence whose length is the first repeat point, ¥ will remain mea-
surable (and hence for example 3-d-stationary) but the length of the measure sequence is not
(2,x™)-s-stationary.

6 | QUESTIONS

The first question regards the possibility to separate higher order stationary reflection principles
from weak compactness in an optimal way:

Question 6.1. Assuming only the existence of a n-stationary cardinal (n-d-stationary cardinal) x
for n < w, is it consistent that there is a cardinal A which is n-stationary (n-d-stationary cardinal)
but not even I1}-indescribable?

Question 6.2. Is it consistent for a successor cardinal to be w-stationary?

Problem 6.1. Characterize the measure sequences U such thatin VR0, x is Hllq—indescribable, where
n>1.

The next question is more open-ended:
Question 6.3. What other compactness properties can hold at x in the Radin extension Vv

assuming that the length of the sequence (< 2*) satisfies the certain compactness properties? For
example, how about being a Jénsson cardinal?
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