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Abstract. We continue the study of the Galvin property from [6] and
[1]. In particular, we deepen the connection between certain diamond-
like principles and non-Galvin ultrafilters. We also show that any Dodd
sound non p-point ultrafilter is non-Galvin. We use these ideas to formu-
late what appears to be the optimal large cardinal hypothesis implying
the existence of a non-Galvin ultrafilter, improving on a result from [2].
Finally, we use a strengthening of the Ultrapower Axiom to prove that
in all the known canonical inner models, a κ-complete ultrafilter has the
Galvin property if and only if it is an iterated sum of p-points.

0. Introduction

In this paper, we study certain aspects of the Galvin property of ultrafil-
ters:

Definition 0.1. Let U be a uniform ultrafilter over ». We say that U has
the Galvin property if for any sequence ïAiði<2» , there is I ∈ [2»]» such that
⋂

i∈I Ai ∈ U .

More generally, if ¼ f » and U is a uniform ultrafilter over », we denote by
Gal(U, ¼, 2») the statement that for any ïAiði<2» there is I ∈ [2»]¼ such that
⋂

i∈I Ai ∈ U . Galvin proved in 1973 every normal ultrafilter has the Galvin
property. Gitik and Benhamou [7] recently improved this result to show
that any product of »-complete p-points over » has the Galvin property.1

Benhamou [1] then proved what appears to be a slight improvement of this
result:

Theorem 0.2. Suppose that U is Rudin-Keisler equivalent to an n-fold sum
of »-complete p-points (See Definition 1.4). Then U has the Galvin property.
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The main theorem of this paper shows that under natural combinatorial
hypotheses which hold in all known canonical inner models, the converse of
the above theorem is true.

Main Theorem 0.1. Assume the Ultrapower Axiom and that every irre-
ducible ultrafilter is Dodd sound. If U is a »-complete ultrafilter on » with
the Galvin property, then U is Rudin-Keisler equivalent to an iterated sum
of »-complete p-points on ».

The hypotheses of this theorem will be discussed and explained further
later in the introduction.

The study of the Galvin property is motivated by its presence in various
areas of set theory and infinite combinatorics [7, 8, 6, 3, 4, 2, 16, 5]. One
particularly noteworthy incarnation of the Galvin property is the maximal
class in the Tukey order, which we shall now explain in more detail.

Definition 0.3. For two posets (P,fP ), (Q,fQ)
2, we say that P fT Q if

there is a cofinal map f : Q → P .3 We say that P,Q are Tukey equivalent
and denote P ≡T Q, if P fT Q and Q fT P .

The Tukey order finds its origins in the Moore-Smith convergence notions
of nets and is of particular interest when considering the poset (U,§) where
U is an ultrafilter. The Tukey order restricted to ultrafilters over É has been
extensively studied by Isbell [20], Milovich [27, 28], Dobrinen and Todorce-
vic [14, 15, 12], Raghavan, Dobrinen, and Blass [32, 10], and many others.
Lately, this investigation has been stretched to ultrafilters over uncountable
cardinals and in particular to measurable cardinals by Benhamou and Do-
brinen [2]. It turns out that the Tukey order on Ã-complete ultrafilters over
measurable cardinal behaves differently from the one on É and requires a
new theory to be developed. One of these differences revolves around the
maximal class. For a given ¼, a uniform ultrafilter U on » is called Tukey-top
with respect to ¼ if its Tukey class is above every ¼-directed poset of size 2».
It turns out that an ultrafilter U is Tukey-top with respect to ¼ if and only if
¬Gal(U, ¼, 2»). In particular, a uniform ultrafilter over » is Tukey-top with
respect to » if and only if it is non-Galvin.

Working in ZFC (with no additional set theoretic hypotheses), Isbell [20]
constructed ultrafilters on É which are non-Galvin, this construction was
accomplished independently by Juhász [23]. The first construction of non-
Galvin ultrafilters over measurable cardinals is due to Garti, Shelah, and
Benhamou [6], using the existence of Kurepa trees to prevent a certain ul-
trafilter from having the Galvin property. This connection between Kurepa
trees and the Galvin property is further explored in this paper, where we
define (Definition 2.3) a diamond-like principle ♢∗

thin(W ), and a slight weak-
ening (Definition 2.12) of it that ensures that an ultrafilter is non-Galvin
(Lemma 2.5).

2We shall abuse notation by suppressing the order in a poset.
3A map f : Q → P is called cofinal if for every cofinal set B ¦ Q, f ′′B is cofinal in P .
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In [2], Isbell’s construction together with other features from [1] enabled
the construction of a non-Galvin ultrafilter over a »-compact cardinal. Here
we improve this initial large cardinal, isolate the notion of a non-Galvin
cardinal (Definition 4.1), and prove the following:

Main Theorem 0.2. Suppose that » is a non-Galvin cardinal then » car-
ries a »-complete ultrafilter U such that ¬Gal(U, », »+). In particular if in
addition 2» = »+ then U is a non-Galvin ultrafilter.

We also prove that »-compactness implies non-Galvinness (Theorem 4.7),
that some degree of Dodd soundness implies it (Corollary 2.11), and that
in the known canonical inner models, a »-compact cardinal is a limit of
non-Galvin cardinals (Proposition 5.9).

In [9], Gitik and Benhamou noted that although the existence of a non-
Galvin ultrafilter is equiconsistent with a measurable cardinal, the latter as-
sumption (measurability) does not outright imply that there is a non-Galvin
ultrafilter. More precisely, in Kunen’s model L[U ], since every Ã-complete
ultrafilter is Rudin-Keisler equivalent to a power of the normal ultrafilter
U , Theorem 0.2 can be invoked to deduce the Galvin property for every
Ã-complete ultrafilter in L[U ]. Being the simplest example of a canonical
inner model which can accommodate a measurable cardinal, the result in
L[U ] suggests that the Galvin property, like many other combinatorial prop-
erties of ultrafilters, has a rigid form in the canonical inner models. Indeed,
the result from L[U ] was later generalized [1] to the Mitchell-Steel models
L[E] up to a measurable limit of superstrong cardinal4 (See Theorem 0.2).
These results in the inner models suggest the following question [1, Question
5.1]:

Question 0.4. Is there an inner model with a non-Galvin ultrafilter?

In this paper we take a more ambitious approach and work under the
Ultrapower Axiom (UA)5 which is a combinatorial principle discovered by
Goldberg [17]. The advantage of UA is that with one simple axiom, which
holds in all known canonical inner models, many of the usual principles are
captured; for example, the linearity of the Mitchell order and instances of
GCH. More relevant for our purposes, the presence of UA imposes rigidity
on the structure of ultrafilters:

Theorem 0.5 (UA). Let W be a Ã-complete ultrafilter. Then W can be
written as the n-fold sum of irreducible ultrafilters.6

4A cardinal κ is superstrong if there is an elementary embedding j : V → M with
crit(j) = κ and Vj(») ¦ M .

5In this paper, we will use the structural consequences of UA rather than UA itself, so
we choose not to provide the precise statement of the axiom, which can be found in [17].

6Recall the irreducible ultrafilters are those ultrafilters which are minimal in the Rudin-
Froĺık order. Equivalently, W is irreducible if there is no ultrapower embedding j : V → M

and an ultrafilter U ∈ M such that jW = (jU )
M ◦ j.
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In [1], this kind of characterization, together with further fine structural
properties of the Mitchell-Steel extender models L[E] was already used to
prove the following:

Theorem 0.6. If L[E] is an iterable Mitchell-Steel model containing no su-
perstrong cardinals, then every »-complete ultrafilter in L[E] has the Galvin
property.

The point here is that in L[E] every »-complete ultrafilter takes the form
of Theorem 0.2 and therefore satisfies the Galvin property.

The existence of canonical inner models with superstrong cardinals is
open, though provable from widely believed conjectures: the fine struc-
ture for inner models with superstrong cardinals has been developed as-
suming iterability hypotheses [35]. Therefore the current knowledge about
canonical inner models does not quite reach the level where a »-complete
non-Galvin ultrafilter exists, although our results below show that the con-
ditional canonical inner models built based on iterability hypotheses can
contain non-Galvin ultrafilters.

Here we shall prove the following stronger (in several senses) result:

Main Theorem 0.3 (UA). Assume that every irreducible ultrafilter is Dodd
sound (See Definition 1.1(6)). Then a uniform Ã-complete ultrafilter over
a regular cardinal has the Galvin property if and only if it is a D-limit of
n-fold sums of »-complete p-points over ».

We note that in the above theorem, the ultrafilter D might be just a Ã-
complete ultrafilter over a cardinals ¼ < » (see Theorem 1.10). By results
of Schlutzenberg [34], in the Mitchell-Steel extender models L[E], every
irreducible ultrafilter is Dodd sound, so the assumption in the theorem holds
in L[E]. Hence Theorem 0.3 implies that in the canonical inner models of
the form of L[E], even above a superstrong cardinal, the n-fold sum of
p-points, in fact, characterizes the ultrafilters with the Galvin property.
This characterization implies for example that Ã-complete ultrafilters over
successor cardinals always possess the Galvin property (Corollary 5.2).

As a corollary, we obtain the characterization of the Tukey-top ultrafilters:

Corollary 0.7 (UA). Assume that every irreducible ultrafilter is Dodd sound,
then a Ã-complete ultrafilter over a regular cardinal is Tukey-top if and only
if it is not a D-sum of n-fold sums of »-complete p-points over ».

This corollary may come as a bit of a surprise if one is familiar with the
Tukey order on É: Dobrinen and Raghavan proved independently that it is
consistent that there are non-Tukey-top ultrafilters on É that are not n-fold
sums of p-points [10], more specifically, a generic ultrafilter for P (É×É)/fin ·
fin is such an ultrafilter; this result was stretched by Dobrinen in [12, 13].

One might suspect that under these very restrictive assumptions, we again
run into the situation where every »-complete ultrafilter has the Galvin
property, but by theorem 0.2, a non-Galvin cardinal suffices to guarantee
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the existence of a non-Galvin ultrafilter. Our next result suggests that in the
canonical inner models, non-Galvin cardinals are exactly the large cardinal
assumption needed to ensure the existence of non-Galvin ultrafilters:

Main Theorem 0.4 (UA). Assume that every irreducible ultrafilter is Dodd
sound. If there is a »-complete non-Galvin ultrafilter on an uncountable
cardinal », then there is a non-Galvin cardinal.

One feature which seems to require more effort is to obtain a non-Galvin
ultrafilter which extends the club filter (i.e. q-point). The ultrafilters that
were constructed in [2] from a »-compact cardinal extended the club filter
and it is not clear at this point whether a non-Galvin cardinal implies the
existence of such ultrafilters. Nonetheless, in the canonical inner models,
the implication holds. In fact, the existence of a non-Galvin ultrafilter is
equivalent to the existence of a non-Galvin q-point:

Main Theorem 0.5 (UA). Assume every irreducible ultrafilter is Dodd
sound. Suppose » is an uncountable cardinal that carries a »-complete non-
Galvin ultrafilter. Then the Ketonen least non-Galvin »-complete ultrafilter
on » extends the closed unbounded filter.

The organization of this paper is as follows:

• In section §1, we collect some basic definitions and facts from the
theory of ultrafilters.

• In Section §2, we establish the connection between non-Galvin ul-
trafilters and various diamond-like principles.

• In Section §3, we use partial soundness to conclude that some ultra-
filter is non-Galvin and define the corresponding diamond ♢−

thin.
• In Section §4, we introduce the non-Galvin cardinals and prove Main
Theorem 0.2.

• In Section §5, we work in the canonical inner models and prove Main
Theorems 0.1,0.3,0.4,0.5.

• In Section §6, we state some open questions and suggest further
directions.

0.1. Notation. Our notation is mostly standard. Let » be a cardinal and
X be any set. Then [X]» = {Y ∈ P (X) | |Y | = »} and [X]<» = {Y ∈
P (X) | |Y | < »}. When X is a set of ordinals, we identify elements of [X]<»

with their increasing enumerations. We write <»X for the set of all functions
f : µ → X where µ < » and ³X for the set of all functions f : ³ → X. Let »
be regular. For two subsets of », we write X ¦∗ Y to denote that X \ Y is
bounded in ». Similarly, for f, g : » → » we denote f f∗ g if there is ³ < »
such that for every ³ f ´ < », f(´) f g(´). We say that C ¦ » is a closed
unbounded (or club) subset of » if it is a closed subset with respect to the
order topology on » and unbounded in the ordinals below ». The club filter
over » is the filter:

Club» := {X ¦ » | X includes a closed unbounded subset of »}.
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If f : A → B is a function, then f“(X) = {f(x) | x ∈ X} and f−1[Y ] = {a ∈
A | f(a) ∈ Y }.

1. Preliminaries

We only consider Ã-complete ultrafilters over regular cardinals in this
paper. We will, however, consider ultrafilters on » that fail to be uniform or
»-complete. For a Ã-complete ultrafilter U , we denote by MU the transitive
collapse of the ultrapower of the universe of sets by U and by jU : V → MU

the usual ultrapower embedding. Given an elementary embedding j : V →
M and an object A ∈ M , we let Ä = min{³ | A ∈ Vj(³)} and define
D(j, A) := {X ¦ VÄ | A ∈ j(X)}. When A is an ordinal, we will always
replace VÄ in the above definition by Ä. If M is any model of ZFC and f is a
function or relation defined in the language of set theory, the relativization
of f to this model is denoted by (f)M ; for example, if » ∈ M , we might
consider (»+)M , V M

» , etc.
The primary large cardinals we will be interested in are measurable car-

dinals. We say that a cardinal » is measurable if it carries a non-principal
»-complete ultrafilter. In the introduction, we also mentioned the compact
cardinals, which can be characterized using the filter extension property: we
say » has the ¼-filter extension property if every »-complete filter on ¼ can
be extended to a »-complete ultrafilter. A »-compact cardinal is a cardinal
» which has that »-filter extension property. For more background on large
cardinals, we refer the reader to [25].

Definition 1.1 (Special properties of ultrafilters). Let U be an ultrafilter
over a regular cardinal ». We say that:

(1) A function f on » is said to be constant (mod U) if there is a set
A ∈ U such that f ↾ A is constant. A function f is unbounded (mod
U) if ∀³ < », f−1[³] /∈ U . A function f is almost one-to-one (mod
U) if there is a set A ∈ U such that f ↾ A is almost one-to-one in
the sense that for any x, {³ ∈ A : f(³) = x} is bounded below ».

(2) U is a p-point if every function f : » → » which is unbounded
(mod U) is almost one-to-one (mod U).7

(3) U is µ-indecomposable if for any function f : » → µ, there is µ′ < µ
such that f−1[µ′] ∈ U .

(4) U is weakly normal if whenever f : A → » is such that A ∈ U and f
is regressive, there is A′ ¦ A, A′ ∈ U such that f ′′[A′] is bounded.8

(5) U is ³-sound if the function j³ : P (») → MU defined by j³(X) =
jU (X) ∩ ³ belongs to MU .

(6) U is Dodd sound if it is [id]U -sound.

7Note that for κ-complete ultrafilters over κ this is equivalent to the definition of
p-points using the existence of pseudo-intersections [24]. In general, without assuming
κ-completeness, these definitions are not equivalent.

8The notion of decomposability and weak normality makes sense also for filters when
requiring the sets to be positive instead of measure 1.
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(7) U is »-irreducible if every ultrafilter W on an ordinal ¼ < » that is
Rudin-Froĺık below U is principal. (See Definition 1.15.)

Remark 1.2. (1) The concept of Dodd soundness arose in inner model
theory, where it serves as a strong form of the initial segment con-
dition [33]. Though on first glance it may appear quite different,
the Dodd soundness of a mouse is essentially equivalent to the Dodd
soundness of its last extender as defined above. The formulation of
Dodd soundness given here is due to Goldberg [17].

(2) Note that if U is ³-sound then {jU (A) ∩ ³ | A ¦ »} ∈ MU . This is
in fact equivalent. Indeed, if {jU (A) ∩ ³ | A ¦ »} ∈ MU then it is
the inverse of the transitive collapse of {j(S) ∩ [id]U | S ∈ P (»)}.

(3) Note that if U is an ultrafilter over a regular cardinal », and ¼ <
» is such that ¼ ∈ U , then automatically, U is a p-point as for
any function f : » → », f ↾ ¼ is bounded and hence there are no
unbounded functions mod U .

(4) If U is irreducible and uniform on ¼, then U is ¼-irreducible.

Proposition 1.3. Let f : » → » be any function and U an ultrafilter over
».

(1) f is unbounded mod U if and only if sup³<» jU (³) f [f ]U .
(2) f is almost one-to-one mod U if and only if there is a (monotone)

function g : » → » such that jU (g)([f ]U ) = [g ◦ f ]U g [id]U .

Proof. (1) is trivial. For (2), Suppose that f is almost one-to-one on A ∈ U ,
and let for each ³ < » g(³) = sup f−1[³ + 1] ∩ A. Then for each À ∈ A
g(f(À)) = sup f−1[f(À) + 1] ∩ A g À, hence [g ◦ f ]U g [id]U . For the other
direction, let g be a monotone function such that [g ◦ f ]U g [id]U . Then
there is a set A ∈ U such that for each ³ ∈ A, g ◦ f(³) g ³. Hence if
´ ∈ f−1[³], then g(³) g g(f(´)) g ´, hence f−1[³] ¦ g(³) + 1. □

Definition 1.4. Suppose U is an ultrafilter over X and for each ³ ∈ X, U³

is an ultrafilter over X³. Define the limit

U - lim ïU³ð³∈X =
{

Y ¦ X | {³ ∈ X | Y ∩X³ ∈ U³} ∈ U
}

and the sum
∑

U

ïU³ð³∈X =
{

Y ¦ ∪³∈X{³} ×X³ | {³ ∈ X | (Y )³ ∈ U³} ∈ U
}

where (Y )³ = {´ ∈ X³ | (³, ´) ∈ Y } is the ³th fiber of Y .
The key property of sums is that they yield ultrafilters that represent

iterated ultrapowers:

Lemma 1.5 ([17, Cor. 5.2.7]). If U is an ultrafilter on X and ïW³ð³∈X is
a sequence of ultrafilters, then letting W ∗ = [³ 7→ W³]U , M∑

U ïW³ð³∈X
=

(MW ∗)MU and j∑
U ïW³ð³∈x

= (jW ∗)MU ◦ jU . Moreover, U - lim ïW³ð³∈X =

j−1
U [W ∗]. □
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The sum construction is often used to obtain an ultrafilter representing
an iterated ultrapower in this way, and in this context, the choice of the
sequence ïW³ð³∈X representing W ∗ is usually irrelevant and distracting.
For this reason, we introduce a notation that allows us to remain agnostic
about this choice.

Definition 1.6. If U is an ultrafilter over X and MU satisfies that W ∗ is
an ultrafilter, then U⌢W ∗ denotes

∑

U ïW³ð³∈X , where W³ is a sequence
of ultrafilters such that W ∗ = [³ 7→ W³]U .

Technically, the definition of U⌢W ∗ depends on the choice of the un-
derlying sets of W³. This ambiguity causes no issues, however, since if
W ′

³ is another sequence such that W ∗ = [³ 7→ W ′
³]U , then letting Z =

∑

U ïW³ð³∈X and Z ′ =
∑

U ïW ′
³ð³∈X , there is a set S ∈ Z ∩ Z ′ such that

Z ∩ P (S) = Z ′ ∩ P (S).

Definition 1.7. We define recursively when U is an n-fold sum of p-points.
W is a 1-fold sum of p-points if W is a p-point. We say that W is an n+1-
fold sum of p-points if there are n-fold sums of p-points U³ and a p-point
ultrafilter U such that U is Rudin-Keisler equivalent to

∑

U ïU³ð³<».

We shall now prove a slight improvement of the form of ultrafilters which
have the Galvin property in Theorem 0.2, this will be turn out to be an
exact characterization of the ultrafilters with the Galvin property under UA
plus every irreducible is Dodd sound in Main Theorem 0.3. We need the
definition of the modified diagonal intersection:

Definition 1.8. Suppose that W is a »-complete ultrafilter over » and let
ÃW : » → » be the function which represents » mod W . For a sequence
ïAiði<» of subsets of », we define the modified diagonal intersection by

∆W
i<»Ai = {³ < » | ∀i < ÃW (³), ³ ∈ Ai}

Fact 1.9. If W is a »-complete ultrafilter over » and ïAiði<» ¦ W , then:

(1) ∆W
i<»Ai ∈ W .

(2) for every i0 < », (∆W
i<»Ai) \ (Ã

−1[i0 + 1]) ¦ Ai0 .

Theorem 1.10. Suppose that ¼ < », let D be any ultrafilter over ¼ and
ïWÀðÀ<¼ be a sequence of n-fold sums of »-complete p-point ultrafilters over

». Then
∑

D ïWÀðÀ<¼ has the Galvin property.

Proof. Denote by Z :=
∑

D ïWÀðÀ<¼, and let us assume for simplicity of

notation that n = 2. Hence Z =
∑

D ï
∑

UÀ
ïUÀ,¸ð¸<»ðÀ<¼, where each UÀ

and UÀ,¸ is a »-complete p-point over ». For A ∈ Z, define

A
(2)
i,j = {k < » | ïi, j, kð ∈ A}

A
(1)
i = {j < » | A

(2)
i,j ∈ Ui,j}

A(0) = {i < ¼ | A
(1)
i ∈ Ui}.
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Note that

A ∈
∑

D

ï
∑

Ui

ïUi,jðj<»ði<¼ ô {i < ¼ | (A)i ∈
∑

Ui

ïUi,jðj<»} ∈ D

ô {i < ¼ | {j < » | A
(2)
i,j ∈ Ui,j} ∈ Ui} ∈ D ô A(0) ∈ D.

For any W ∈ {Ui | i < ¼} ∪ {Ui,j | i < ¼, j < »}, choose ÃW : » → » such
that [ÃW ]W = » and ÃW is almost one-to-one. Such a function exists since
W is a »-complete p-point. Define ÄW : » → » by

ÄW (³) = supÃ−1
W [³+ 1] + 1.

Next we define:

Ä(1)(³) = sup
i<³

ÄUi
(³), and Ä(2)(³) = sup

i,j<³
ÄUi,j

(³).

Note that Ä(1), Ä(2) : » → » since » is regular. Now we are ready to prove
the Theorem. Let ïAiði<2» be a sequence of sets in Z. Since ¼ < »,we can

assume without loss of generality that there is a set A
(0)
∗ ∈ D such that for

every i < 2», A
(0)
∗ = (Ai)

(0). Let N be an elementary substructure of H(¹)
for some large enough ¹ such that:

(1) |N | = ».
(2) <»N ¦ N .
(3) » ¦ N and »+ ∩N ∈ »+.
(4) ïAiði<2» ∈ N .

Let ³∗ = »+ ∩N .

Claim 1.11. For every ï³1, ³2ð ∈ [»]2 and ¶ < ³∗, there is ¶ < ´ < ³∗

such that

(1) ∀i ∈ (A∗)
(0), (A´)

(1)
i ∩ ³1 = (A³∗)

(1)
i ∩ ³1.

(2) ∀i ∈ (A∗)
(0)∀j < ³1, (A´)

(2)
i,j ∩ ³2 = (A³∗)

(2)
i,j ∩ ³2.

Proof. Consider the statement

ϕ(³1, ³2, ¶) ≡ ∃´ > ¶ (1) ' (2)

H(¹) |= ϕ(³1, ³2, ¶) as witnessed by ³∗ and since ³1, ³2, ¶ ∈ N , the elemen-
tarity of N implies that there is such ´ ∈ N and in particular ´ < ³∗. □

Define a sequence ïµi | i < »ð inductively, suppose that ïµj | j < ið was
defined. Let ¶ = supj<i µj + 1 ∈ N and apply the claim to ¶ and

³1 = Ä(1)(i), and ³2 = Ä(2)(i)

to produce µi > ¶ (and thus µi ̸= µj for all j < i). We claim that
⋂

i<»

Aµi
∈
∑

D

(ï
∑

Ui

ïUi,jðj<»ði<¼.

To see this, we define for every À ∈ (A∗)
(0),

(A∗)
(1)
À = (A³∗)

(1)
À ∩∆

UÀ

i<»(Aµi
)
(1)
À \ ÄUÀ

(À)
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and for every À ∈ (A∗)
(0), ¸ ∈ (A∗)

(1)
À , define

(A∗)
(2)
À,¸ = (A³∗)

(2)
À,¸ ∩∆

UÀ,¸

i<» (Aµi
)
(2)
À,¸ \ ÄUÀ,¸

(¸)

Let
A∗ =

⋃

À∈A
(0)
∗

⋃

¸∈(A∗)
(1)
À

{À} × {¸} × (A∗)
(2)
À,¸

Claim 1.12. For every ï³, ´, µð ∈ A∗, and for every i < », ³ ∈ (Aµi
)(0),

´ ∈ (Aµi
)
(1)
³ and µ ∈ (Aµi

)
(2)
³,´.

Proof of claim. Let ï³, ´, µð ∈ A∗. By definition of A∗, ³ ∈ (A∗)
(0), ´ ∈

(A∗)
(1)
³ and µ ∈ (A∗)

(2)
³,´ . In particular,

(∗) ³ < ÃU³(´) and ´ < ÃU³,´
(µ).

For i < », we note first that ³ ∈ (Aµi
)(0) since we assume (Aµi

)(0) =

(A∗)
(0). Now to see that ´ ∈ (Aµi

)
(1)
³ , split into cases. If i < ÃU³(´),

then ´ ∈ (Aµi
)
(1)
³ by the definition of the modified diagonal intersection. If

i g ÃU³(´), then ´ < ÄU³(i). Also, by (∗), ³ < ÃU³(´) f i and therefore

ÄU³(i) f sup³<i ÄU³(i) = Ä(1)(i). By the choice of µi, (1) of Claim 1.11

´ ∈ (A³∗)(1)³ ∩ Ä(1)(i) = (Aµi
)(1)³ ∩ Ä(1)(i).

Finally for µ, if i < ÃU³,´
(µ), then µ ∈ (Aµi

)
(2)
³,´ . If i g ÃU³,´

(µ), then as in

the previous paragraph, ´ < ÃU³,´
(µ) f i and thus

µ < ÄU³,´
(i) f Ä(2)(i).

We conclude that µ ∈ (A³∗)
(2)
³,´∩Ä

(2)(i). By the choice of µi and (2) of Claim

1.11, µ ∈ (Aµi
)
(2)
³,´ ∩ Ä(2)(i). □

By the claim, that for every ï³, ´, µð ∈ A∗ and every i < », ï³, ´, µð ∈ Aµi
,

namely A∗ ¦
⋂

i<»Aµi
. Finally, we note that A∗ ∈ Z. Indeed, (A∗)

(0) ∈ D

by the choice of (A∗)
(0). Also, for every i < », and ³ ∈ (A∗)

(0), ³ ∈ (Aµi
)(0)

and so (Aµi
)
(1)
³ ∈ U³. We conclude (A∗)

(1)
³ ∈ U³. Also, for ´ ∈ (A∗)

(1)
³ ,

´ ∈ (Aµi
)
(1)
³ and therefore (Aµi

)
(2)
³,´ ∈ U³,´ . It follows that (A∗)

(2)
³,´ ∈ U³,´ .

Hence A∗ ∈ Z, and in particular
⋂

i<»Aµi
∈ Z. □

Recall that the sequence of ïU³ð³∈X is called discrete if there is a sequence
of pairwise disjoint sets ïA³ð³∈X such that A³ ∈ U³. We say that ïU³ð³∈X
is discrete mod U , if there is Y ∈ U , Y ¦ X such ïU³ð³∈Y is discrete.

Fact 1.13.
∑

U ïU³ð³<» ≡RK U - lim ïU³ð³<» iff ïU³ð³<» is discrete mod U .

Proposition 1.14. If U is a p-point ultrafilter, then any sequence ïU³ð³<»

of distinct »-complete ultrafilters is discrete mod U .

Proof. See [24, Cor. 5.15]. □
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Definition 1.15. (Orderings of ultrafilters) Let U,W be ultrafilters over
ordinals », ¼ (resp.) define:

(1) the Rudin-Keisler order by U fRK W if there is a function Ã : ¼ → »
such that U = {B ¦ » | Ã−1[B] ∈ W}.

(2) the Rudin-Froĺık order by U fRF W if there is a set I ∈ U and
a discrete sequence ïWiði∈I of ultrafilters over » such that W =
U - lim ïWiði∈I .

(3) the Ketonen order by U <k W if j′′WU is contained in a countably
complete ultrafilter U∗ of MW such that [id]W ∈ U∗.

For more background on ultrafilters, their orderings, and the Ultrapower
Axiom, we refer the reader to [24] and [17].

We also record here the definition and basic properties of the canonical
functions.

Definition 1.16. For every ¸ < »+, we fix a cofinal sequence ï¸iði<cf(¸).

Define recursively the canonical functions f³ : » → » for ³ < »+ as follows:
f0 = 0 is the constant function with value 0. Given f³, define f³+1(x) =
f³(x) + 1. For limit ¸ < »+ we split into cases:

(1) if cf(¸) < », define f¸(x) = supi<cf(¸) f¸i(x).

(2) if cf(¸) = », define f¸(x) = supi<x f¸i(x).

It is not hard to see that the canonical functions are increasing modulo
the bounded ideal, but the main reason we are interested in those functions
is the following:

Proposition 1.17. Let k : N → M be an elementary embedding (not nec-
essarily definable in N) with critical point ». Then for every ³ < (»+)N ,
k(f³)(») = ³.

Proof. By induction on ³. Clearly, for ³ = 0, k(f0)(») = 0 and if k(f³)(») =
³ then by elementarity k(f³+1)(») = ³ + 1. For limit ¸, if cf(¸) < »,
then the functions used in the definition of f¸ are ïf¸iði<cf(¸) are pointwise

mapped by k; that is, k(ïf¸i | i < cf(¸)ð) = ïk(f¸i) | i < cf(¸)ð. It follows
by elementarity and the definition of f¸ that k(f¸)(») = supi<cf(¸) k(f¸i)(»).

Hence by the induction hypothesis, k(f¸)(») = supi<cf(¸) ¸i = ¸. If cf(¸) = »

then the sequence ïf¸i | i < »ð is stretched by k to k(ïf¸i | i < »ð) = ïf ′
¸i

|
i < k(»)ð but for every i < », as k(i) = i, we have f ′

¸i
= k(f¸i). Again by

the definition of f¸, elementarity, and the induction hypothesis, we conclude
that:

k(f¸)(») = sup
i<»

f ′
¸i
(») = sup

i<»
k(f¸i)(») = sup

i<»
¸i = ¸.

□

2. Diamond-like principle and the Galvin property

In [6], a relation between Kurepa trees and the Galvin property has been
established to construct a »-complete non-Galvin ultrafilter. In this section,
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we exploit the deep connection between Kurepa trees and diamond principles
which was first observed by Jensen [22], to find new combinatorial properties
of ultrafilters which ensures the Galvin property.

Definition 2.1. Let S be a stationary set. ♢∗(S) is the assertion that there
is a sequence ïA³ð³∈S such that A³ ¦ P (³) and:

(1) |A³| f ³.
(2) for every X ¦ » there is a club C such that for each ³ ∈ C ∩ S,

C ∩ ³,X ∩ ³ ∈ A³.

Proposition 2.2. If ♢∗(S) holds then any ultrafilter U over a regular car-
dinal » satisfying Club» ∪ {S} ¦ U and cfMU ([id]U ) f crit(jU ) must be
non-Galvin.

Proof. Suppose otherwise, and let CX for every X ¦ » be the club guar-
anteed by item (2) of ♢∗(S). Then CX ∈ U . Also, for each ³ ∈ S, let
ïI³i ði<cf(³) be a partition of A³ such that |I³i | < ³. Now for each X ¦ »,

consider the function fX : CX ∩ S → » defined by fX(³) = i < cf(³) for
the unique i such that X ∩ ³ ∈ I³i . Since cfMU ([id]U ) f crit(jU ), there is
a function Ã : » → On such that i < cf(³) f Ã(³) and [Ã]U = crit(jU ). It
follows that there is AX ¦ CX ∩S, AX ∈ U and µX < » such that for every
³ ∈ AX , fX(³) = µX . There are 2»-many subsets with the same µX = µ∗.
Now apply Galvin’s property to those 2»-many sets in order find »-many
distinct subsets of », ïXÀðÀ<» for which A∗ :=

⋂

À<»AXÀ
∈ U . Now for each

³ ∈ A∗ ∩ S, |I³µ∗ | < ³. Since » is regular, we may apply Födor’s lemma to

find a stationary set S′ ¦ A∗ ∩ S and ¹ < » such that |I³µ∗ | = ¹ for each

³ ∈ S′. Consider ïXiði<¹+ and for each i ̸= j < ¹+ let ´i,j < » be high
enough so that Xi ∩ ´i,j ̸= Xj ∩ ´i,j . Take any ³ ∈ S′ \ supi ̸=j<¹+ ´i,j . To
reach a contradiction, note that on one hand, since ³ ∈ S′, |I³µ∗ | = ¹. On

the other hand, for every i ̸= j < ¹+, Xi ∩ ³ ∈ I³µ∗ and the sets Xi ∩ ³ are
all distinct. □

Let us introduce a similar guessing principle ♢∗
thin(U) to the one above,

which can be formulated in terms of the ultrapower and does not involve the
club filter. Then we will prove that ♢∗

thin(U) implies that U is non-Galvin.

Definition 2.3. An ultrafilter W on a regular cardinal » satisfies ♢∗
thin(W )

if there is a sequence of sets ïA³ð³<» such that:

(1) for all A ¦ », for W -almost all ³, A ∩ ³ ∈ A³.
(2) ³ 7→ |A³| is not almost one-to-one mod W .

The sequence ïA³ð³<» is called a ♢∗
thin(U)-sequence.

In the ultrapower, this is expressed as follows:

Lemma 2.4. ♢∗
thin(U) is equivalent to the existence of a set A ∈ MU such

that:

(1) {jU (S) ∩ [id]U | S ¦ »} ¦ A.
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(2) there is no function f : » → » such that jU (f)(|A|M ) g [id]U .

Proof. The witnessing ♢∗
thin(U)-sequence is just the sequence ïA³ð³<» rep-

resenting A in MU . Clearly, condition (1) is equivalent to the fact that for
every S ¦ », {³ < » | S ∩ ³ ∈ A³} ∈ U . By Proposition 1.3, condition
(2) is equivalent to the function ³ 7→ |A³| not being almost one-to-one mod
U . □

Lemma 2.5. If ♢∗
thin(W ), then W is non-Galvin.

Proof. Assume towards contradiction that W has the Galvin property. Enu-
merate A³ = {A³,i | i < |A³|}. For every set X, there is BX ∈ W such
that for every for every ³ ∈ BX , X ∩ ³ ∈ A³. By our assumption, there
are »-many distinct sets {Xi | i < »} such that B :=

⋂

i<»BXi
∈ W .

Note that the key property of B is that for every i < » and for all ³ ∈ B,
Xi∩³ ∈ A³. Since the function ³ 7→ |A³| is not almost one-to-one mod W ,
there is ¹ < » and an unbounded subset B′ ¦ B such that for every ³ ∈ B′,
|A³| = ¹. Consider {Xi | i < ¹+}. For every i ̸= j < ¹+, find ³i,j < » such
that Xi ∩ ³i,j ̸= Xj ∩ ³i,j and take ³∗ = supi,j<¹+ ³i,j . By regularity of »,
³∗ < ». Since B′ is unbounded there exists some ´∗ ∈ B′ with ´∗ > ³∗. It
follows that for every i < ¹+, Xi ∩ ´∗ ∈ A´∗ , and also for every i ̸= j, since
³i,j < ´∗, Xi ∩ ´∗ ̸= Xj ∩ ´∗. It follows that i 7→ Xi ∩ ´∗ is a one-to-one
function from ¹+ into A´∗ . This contradicts the fact that ´∗ ∈ B′ and thus
|A´∗ | = ¹. □

Corollary 2.6. Suppose that » is regular and U is an ultrafilter extending
the club filter on ». Assume that there is a sequence of sets ïA³ð³<» such
that:

(1) for every ³ < », |A³| < ³.
(2) for every X ¦ », {³ < » | X ∩ ³ ∈ A³} ∈ U .

Then ♢∗
thin(U) holds and in particular U is non-Galvin.

Proof. It remains to show that ³ 7→ |A³| is not one-to-one on a set in U .
If A ∈ U , then A is stationary since Club» ¦ U . By Födor applied to the
function ³ 7→ |A³| restricted to A, there is an unbounded subset S′ ¦ A
and ¹ < » such that for every ³ ∈ S′, |A³| = ¹. In particular, ³ 7→ |A³| is
not almost one-to-one on A. □

The most important class of ultrafilters which satisfy ♢∗
thin are the non

p-point Dodd sound ultrafilters as will be proven in Lemma 2.8. To prove
that lemma, we will need the following characterization due to Goldberg of
Dodd sound ultrafilters [17, Thm. 4.3.26]:

Theorem 2.7. A uniform ultrafilter U on an ordinal ¶ is Dodd sound if and
only if there is a sequence ïA³ð³<¶ such that for any sequence ïS³ ¦ ³ð³<¶,
the following are equivalent:

(a) There is a set S ¦ » such that for U -almost every ³, S ∩ ³ = S³.
(b) For U -almost every ³, S³ ∈ A³.
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Lemma 2.8. Let » be regular and U a non p-point Dodd sound ultrafilter,
then ♢∗

thin(U).

Proof. Assume that U is a non p-point Dodd sound ultrafilter. Let ïA³ð³<»

be the sequence obtained by Theorem 2.7. Note that for every S ¦ »,
the sequence ïS ∩ ³ð³<» satisfies condition (a) of Theorem 2.7. By the
theorem, we conclude that for U -almost every ³, S ∩ ³ ∈ A³. It follows
that jU (S) ∩ [id]U ∈ [³ 7→ A³] and {jU (S) ∩ [id]U | S ¦ »} ¦ [³ 7→ A³]U .
Similarly, from the implication (b) to (a) we deduce that [³ 7→ A³]U ¦
{jU (S) ∩ [id]U | S ¦ »}. By Dodd soundness, the function j[id]U : P (») →
{jU (S) ∩ [id]U | S ¦ »} defined by j[id]U (S) = j(S) ∩ [id]U belongs to MU .
Thus MU |= |[³ 7→ A³]U | = 2». Finally, ³ 7→ |A³| cannot be an almost
one-to-one function mod U : otherwise, the class of any unbounded function
» f [Ã]U would also be an almost one-to-one mod U . To see this, suppose

that [Ä ]U = », then [³ 7→ 2Ä(³)]U = 2» and by our assumption, this is
represented by an almost one-to-one function mod U 9. Let X ∈ U be the
set witnessing that ³ 7→ 2Ä(³) is almost one-to-one mod U . Also we let
Y ∈ U be such that for every ³ ∈ Y , Ä(³) f Ã(³). We claim that Ã ↾ X ∩Y
is almost one-to-one as for any µ < »,

{³ < » | Ã(³) < µ} ∩X ∩ Y ¦ {³ < » | Ä(³) < µ} ∩X ∩ Y ¦

¦ {³ < » | 2Ä(³) f 2µ} ∩X ∩ Y.

The right most set is bounded by the choice of X. We conclude that U is a
p-point contradiction. □

Note that an ultrafilter U satisfying ♢∗
thin(U) need not be Dodd sound

since by Lemma 2.4 we only cover the set {jU (S)∩ [id]U | S ¦ »}. However,
at least for »-complete Dodd sound ultrafilters, the second requirement of
♢∗

thin(U) regarding the function ³ 7→ |A³| is equivalent to U not being a
p-point.

Proposition 2.9. Let » be measurable and U be a »-complete Dodd sound
ultrafilter over », and let [³ 7→ A³]U = {jU (S) ∩ [id]U | S ¦ »}. Then U is
a non p-point ultrafilter if and only if the function ³ 7→ |A³| is not almost
one-to-one mod U .

Proof. One direction follows from the previous lemma. Let us prove the
other, note that ³ 7→ |A³| cannot be bounded on a set in U , just otherwise,
suppose that ¹ < » is such that B∗ := {³ < » | |A³| f ¹} ∈ U . Take any ¹+-
many sets {Xi | i < ¹+} such that there is µ < » such that for all i ̸= j < ¹+,
Xi∩µ ̸= Xj ∩µ. For each i < ¹+, Denote by Bi := {³ < » | Xi∩³ ∈ A³} ∈
U . By »-completeness and fineness, there is µ∗ ∈ B∗ ∩ (

⋂

i<¹+ Bi) \ µ. It
follows that |Aµ∗ | = ¹ but also for each i < ¹+, Xi∩µ∗ ∈ Aµ∗ are all distinct
sets. Contradiction. We conclude that ³ 7→ |A³| is an unbounded function

9Being an almost one-to-one function mod U is clearly a property of an equivalence
class mod U .
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mod U which is also not almost one-to-one according to (1). Hence U is not
a p-point. □

We cannot drop the »-completeness assumption here:

Example 2.10. Suppose that W is a fine normal ultrafilter over P»(¼) for
» < ¼ where ¼ is a regular cardinal. By [17, Theorems 4.4.37 & 4.4.25], there
is a Dodd sound non uniform ultrafilter U on ¼ (and therefore p-point) which
is Rudin-Keisler equivalent to W . Note that there is no function which is
unbounded (and therefore no function which is almost one-to-one) mod U .
In particular, ³ 7→ |A³| is not almost one-to-one mod U . Also, note that
U satisfies ♢∗

thin(U) and therefore is an example of a non-Galvin ultrafilter
over ¼ which is uniform and not ¼-complete.

Corollary 2.11. If U is a non p-point, Dodd sound ultrafilter over a regular
cardinal », then U is non-Galvin.

In attempt to pinpoint the exact guessing principle that catches non-
Galvinness, we note that the usage of ♢∗

thin(W ) in the argument of Lemma
2.5 can be replaced with the following weakening:

Definition 2.12. Let » f ¼ f 2». An ultrafilter W on a regular cardinal
» satisfies ♢∗

par(W,¼) if there is a sequence of sets ïX³ð³<¼, A ∈ MW such
that:

(1) {jU (X³) ∩ [id]U | ³ < ¼} ¦ A.
(2) For any function f : » → », jU (f)(|A|MW ) < [id]W .

Clearly, ♢∗
thin(W ) implies ♢∗

par(W, 2») which in turn imply ♢∗
par(W,¼) for

any ¼ ∈ [», 2»].

Proposition 2.13. ♢∗
par(W,¼) implies that ¬Gal(W,», ¼)

Proof. The argument of Lemma 2.5 gives this stronger result. □

The principle ♢∗
par(W,¼) is equivalent to the existence of a set K ¦ P (»)

of size ¼ and a sequence ïA³ð³<» such that:

(1) For every X ∈ K, {³ < » | X ∩ ³ ∈ A³} ∈ W .
(2) The function ³ 7→ |A³| is not almost one-to-one mod W .

The referee pointed out to us the strong similarity of ♢∗
par to the notion

of pseudo-Kurepa families due to Todorcevic [36]. Indeed, many of the
initial segments of the sets in K must be equal in order for the sets A³ of
asymptotically bounded cardinality to exist.

Next, we would like to provide two closure properties of the class of ul-
trafilters satisfying ♢∗

thin.

Lemma 2.14. Suppose U is an ultrafilter on » and Z is the U -limit of a
discrete sequence of ultrafilters WÀ on » such that ♢∗

thin(WÀ). Then ♢∗
thin(Z).

Proof. Fix a partition of » into sets SÀ ∈ WÀ. For each À < », let ïAÀ
³ð³<»

witness that ♢∗
thin(WÀ). Then let A³ = AÀ

³ where À < » is unique such
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that ³ ∈ SÀ. Fixing A ¦ », we would like to show that B := {³ < » |
A∩³ ∈ A³} ∈ U - lim ïWÀðÀ<». For any À < », then BÀ := {³ ∈ SÀ | A∩³ ∈

AÀ
³} ∈ WÀ. Since for each ³ ∈ SÀ, A³ = AÀ

³, we conclude that BÀ ¦ B
and therefore B ∈ WÀ. It follows that B ∈ U - lim ïWÀðÀ<». It remains to

show that c(³) = |A³| is not almost one-to-one on any set B ∈ W . Suppose
otherwise, and let B ∈ W witness that c is almost one-to-one. Pick any
À < » such that B ∈ WÀ to reach a contradiction note that B ∩ SÀ ∈ WÀ,
and the function c is almost one-to-one on this set. However, for every

³ ∈ B ∩ SÀ, A
À
³ = A³ = c(³) and so ³ 7→ |AÀ

³| is almost one-to-one on
B ∩ SÀ, contradicting ♢∗

thin(WÀ). □

Lemma 2.15. Suppose U is an n-fold sum of p-points on » and ïWÀðÀ<»

is a sequence of (not necessarily discrete) »-complete ultrafilters on » such
that ♢∗

thin(WÀ). Then letting Z = U - lim ïWÀðÀ<», we have ♢∗
thin(Z).

Proof. We first consider the case that U is a p-point. Then replace U with
UW = D(jU ,W ) where W is the point in MU represented by À 7→ WÀ. Note
that UW is Rudin-Keisler below an ultrafilter on » which implies that UW

concentrates on a set of (»-complete) ultrafilters of size ». By enumerating
those ultrafilters W ′

À for À < », we can shift UW to an ultrafilter U ′ on »

such that [id]UW
is identified with [À 7→ W ′

À]U ′ . Also, note that U ′− limW ′
À =

U − limWÀ since the factor map k : MU ′ → MU sends k([À 7→ W ′
À]U ′) = W

and thus

X ∈ U ′ − lim ïW ′
ÀðÀ<» ô jU ′(X) ∈ [À 7→ W ′

À]U ′ ô

ô jU (X) = k(jU ′(X)) ∈ W ô X ∈ U − lim ïWÀðÀ<».

Since U ′ fRK U , and U is a p-point, U ′ is also a p-point (see [24, Cor
2.8]). The sequence ïW ′

ÀðÀ<» represents the identity in U ′, it is one-to-one

mod U ′, since all the W ′
À’s are »-complete, by Proposition 1.14 the sequence

is discrete on a set in U ′.10 This allows us to apply the previous lemma,
obtaining thin diamond for U ′- lim ïW ′

ÀðÀ<» = U - lim ïWÀðÀ<».
Now suppose the lemma is true for n-fold sums of p-points, and we will

prove it when U is an n + 1-fold sum. We can fix a p-point D such that
U is the D-limit of a sequence of n-fold sum p-points UÀ on ». As in the
previous paragraph, since D is a p-point, we may assume that the UÀ’s
are discrete. Let U∗ = [À 7→ UÀ]D, then by elementarity, MD |= U∗ is
an n-fold sum of p-points. Applying the induction hypothesis in MD to
U∗ and the ultrafilters jD(ïWÀðÀ<») = ïZ∗

À ðÀ<jD(»), we conclude that Z∗ =

U∗- lim ïZ∗
À ðÀ<jD(») satisfies ♢∗

thin(Z
∗). Let [³ 7→ Z³]D = Z∗ and assume

10Note that even if the WÀ’s we started with were not distinct, the W ′

À’s will be distinct
on a set in U ′. For example, if WÀ = W0 for every ξ, then UW is the principle ultrafilter
concentrating on {W0} and thus U ′ is principle and W0 = W ′

À. It is still true that on a
measure one set in U ′, i.e. {0}, the sequence ïW ′

ÀðÀ<» is distinct. In this case, the lemma

is trivial as Z = W0.
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without loss of generality that for every ³ < », ♢∗
thin(Z³) holds. We claim

that

(∗) Z = D- lim ïZ³ð³<» = U - lim ïWÀðÀ<»

from which it follows that ♢∗
thin(Z), by the argument of the previous para-

graph. To see (∗), since we assumed that the U³’s are discrete, by the theory
of sums and limits of ultrapower

j∑
D ïU³ð³<»

= jD- lim ïU³ð³<»
= jU∗ ◦ jD and [id]D- lim ïU³ð³<»

= [id]U∗ ,

hence

X ∈ D- lim ïZ³ð³<» ô jD(X) ∈ Z∗ = U∗- lim ïZ∗
À ðÀ<jD(») ô

ô jU∗(jD(X)) ∈ jU∗(jD(ïWÀðÀ<»))([id]U∗) ô

ô jD- lim ïU³ð³<»
(X) ∈ jD- lim ïU³ð³<»

(ïWÀðÀ<»)([id]D- lim ïU³ð³<»
) ô

ô X ∈ (D- lim ïU³ð³<»)- lim ïWÀðÀ<» ô X ∈ U - lim ïWÀðÀ<».

□

3. Partial Dodd soundness and skies

A finer analysis of the diamond-like principles of the previous section
reveals that partial soundness suffices for an ultrafilter to be non-Galvin.
To better understand this improvement, let us prove the following theorem
in terms of general elementary embeddings.

Theorem 3.1. Suppose that j : V → M is an elementary embedding with
crit(j) = » such that ¼ = sup{j(f)(») | f : » → »} and {j(A)∩¼ | A ¦ »} ∈
M . Then there is À such that D := D(j, À) and ¬Gal(D,», 2»).

Remark 3.2. Note that from the assumptions of the Theorem it follows that
¼ < j(»), indeed, if ¼ = j(»), then since we are assuming {j(A) ∩ ¼ | A ¦
»} ∈ M , we have j′′P (») ∈ M and therefore {j(f)(») | f : » → »} ∈ M . It
follows that M |= cf(j(»)) = 2». But by elementarity, M |= j(») is regular.
Contradiction.

Proof. Denote A = {j(A)∩¼ | A ¦ »} ∈ M . Enumerate V» in V , f : » → V»

such that for every x ∈ V», f
−1[x] is unbounded in ». Since A ∈ (Vj(»))

M ,
there is j(») > À g ¼ such that j(f)(À) = A. By similar arguments we can
ensure that there are some functions g, h : » → » such that for the same À we
will also have » = j(g)(À) and ¼ = j(h)(À). Let D = D(j, À), jD : V → MD

be the ultrapower and kD : MD → M be the factor map kD([ϕ]D) = j(ϕ)(À).
Note that

¼ = kD([h]D), » = kD([g]D), A = kD([f ]D)

and therefore », ¼,A ∈ Im(kD). It follows that crit(kD) > » and [g]D = ».
Since

kD([h]D) = ¼ f À = kD([id]D),
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the elementarity of kD implies that [h]D f [id]D. Recall that for any function
ϕ : » → », j(ϕ)(») < ¼ thus by elementarity of kD,

(∗) for any function ϕ : » → », jD(ϕ)(») < [h]D.

By our initial assumption, ¼ > j(³ 7→ 2³)(») = 2» and since M |= |A| = 2»,

MD |= |[f ]D| = 2[g]D < [h]D.

Denote by B³ = f(³), note that and fix a set X∗ ∈ D such that if ³ ∈ X∗

then |B³| = 2g(³) < h(³). Pick any 2» distinct subsets of », ïA³ð³<2» , then
j(A³) ∩ ¼ ∈ A and by elementarity jD(A³) ∩ ¼′ ∈ B. It follows that

X³ := {À < » | A³ ∩ h(À) ∈ BÀ} ∈ D

We claim that ïX³ð³<2» witness that ¬Gal(U, », 2»). Otherwise, there is
I ∈ [2»]» such that XI := ∩i∈IXi ∈ D. Let us argue that there must be
¹ < » such that

sup{h(À) : À ∈ XI ∩X∗, 2g(À) < ¹} = ».

To see this, assume otherwise, then for each ¹ < » we can define

Ä(¹) = sup{h(À) | À ∈ XI ∩X∗, 2g(À) f 2¹}

then Ä : » → » is well defined. Since 2jD(g)([id]D) = 2[g]D = 2», we conclude
that jD(Ä)(») g jD(h)([id]D) = [h]D, contradicting (∗). We proceed as
before, find ´ ∈ XI ∩X∗ such that the restriction of ¹-many of the sets in
I to h(´) are distinct. This produces a contradiction. □

Let us define the concept of a sky of an elementary embedding at ¶, which
was first considered in the case that ¶ = É by Puritz [30, 31] and generalized
to measurable cardinals later by Kanamori [24]. This concept will enable us
to simplify our future definitions.

Definition 3.3. Let j : V → M be an elementary embedding where
M is transitive and » be any cardinal. We define a transitive relation
on [sup(j′′»), j(»)): ³ ¯ ´ if there is a function f : » → » such that
j(f)(´) g ³. We derive the equivalence relation ³ ≡ ´ if ³ ¯ ´ and ´ ¯ ³.
A sky of j at » is a ≡-equivalence class. We denote by sky(³) the sky of ³
at » for the unique » such that ³ ∈ [sup(j′′»), j(»)).

Note that the only interesting situation is when » is not a continuity point
of j. Since M is transitive, z is a well-defined well-ordering of the skies.
Moreover, since ³ f ´ implies ³ ¯ ´ then each sky is a half-open interval.

Suppse now that U is a Ã-complete ultrafilter over ». It is clear that for
any ³ < jU (»), ³ ¯ [id]U as ³ = [f ]U for some f : » → » and therefore
³ = jU (f)([id]U ). So sky([id]U ) is the maximal sky. This simple observation,
together with Proposition 1.3, leads to an elegant characterization of p-
points in terms of skies:

Corollary 3.4. Let U be a Ã-complete ultrafilter over », then U is a p-point
if and only if jU has a unique sky at ».
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We can now reformulate Theorem 3.1 in terms of skies:

Corollary 3.5. Suppose that U is a »-complete, ¼-sound ultrafilter over »
such that ¼ is the least element of the second sky at ». Then U is non-Galvin.

Proof. By the definition of À in the proof of Theorem 3.1, we can choose
À = [id]U and the theorem ensures that U = D(jU , [id]U ) is non-Galvin. □

Note that a embedding j with critical point » has at least two skies at »
if and only if sup{j(f)(») | f : » → »} < j(»).

Corollary 3.6. Suppose that there is a superstrong embedding j : V → M
with crit(j) = » and at least two skies. Then » carries a non-Galvin ultra-
filter.

The reason that ♢∗
thin (Definition 2.1) is not equivalent to Dodd soundness

is that we are only trying to cover {jU (S) ∩ [id]U | S ¦ »} with a set A in
MU , while in Dodd soundness we need the actual set {jU (S)∩ [id]U | S ¦ »}
to be in MU . Let us call this property covering soundness. The innovation
here is to work with covering ¼-soundness which is just the ability to cover
{jU (S) ∩ ¼ | S ¦ »}.

However, without any further assumptions, we can always take PMU (¼) as
our covering set, so covering ¼-soundness is always true. What makes ♢∗

thin
non-trivial is the second requirement that there is no function f : » → »
such that jU (f)(|A|MU ) g [id]U . This rules out our previous example of
PMU (¼) or any other trivial example. Equipped with our new terminology
of skies, we note that (2) of Definition 2.1 is in fact equivalent to |A|M not
laying the top sky (namely sky(|A|MU ) z sky([id]U )).

Assuming (full) ¼-soundness, the results of this section ensure that the
“covering” set could be chosen to be precisely {jU (S)∩¼ | S ¦ »}. Moreover,
with this choice, the MU -cardinality of the covering set is 2». Then, under
the assumption on ¼ in Theorem 3.1 there is no function f : » → » such
that jU (f)(2

») g ¼.
Bearing the idea of skies in mind, we see the following common theme:

if A is the covering set and ¼ is the degree of covering soundness then
sky(|A|MU ) z sky(¼). Let us formulate a diamond-like principle which
generalize both Theorem 3.1 and ♢∗

thin(U). It corresponds to covering ¼-
soundness, allowing ¼ to lay in an arbitrary sky (except the least one).
This diamond-like principle is essential to prove the characterization of Ã-
complete non-Galvin ultrafilters.

Definition 3.7. Let U be an ultrafilter over a regular cardinal ». ♢−
thin(U)

is the statement that there is A ∈ MU and ¼ < jU (») such that:

(1) {jU (S) ∩ ¼ | S ¦ »} ¦ A.
(2) there is no function f : » → » such that jU (f)(|A|M ) g ¼11.

Clearly ♢∗
thin(U) implies ♢−

thin(U) by taking ¼ = [id]U . Also,

11i.e. sky(|A|M ) z sky(λ).
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Corollary 3.8. If U is an ultrafilter over a regular cardinal » which is ¼-
sound where ¼ is such that for every function f : » → », jU (f)(») < ¼, then
♢−

thin(U).

Proof. By ¼-soundness of U , A := {jU (S) ∩ ¼ | S ¦ »} ∈ MU and MU |=
|A| = 2». There cannot be a function g : » → » such that jU (g)(2

») g ¼,
since otherwise, the function g′(³) = g(2³) would be a function from » to »
such that jU (g

′)(») g ¼, contradicting the assumptions of the corollary. □

Theorem 3.9. ♢−
thin(U) implies that U is non-Galvin.

Proof. Fix any ïX³ð³<2» sequence of distinct subsets of ». [³ 7→ A³]U = A
and [f ]U = ¼ = jU (f)([id]U ). By our assumption,

B³ = {À < » | X³ ∩ f(À) ∈ A³} ∈ U

We claim that ïB³ð³<2» witness that ¬Gal(U, », 2»). Otherwise, there is
I ∈ [2»]» such that BI := ∩i∈IBi ∈ U . Consider the map À 7→ |AÀ|, note
that |AÀ| f Ã(À) where jU (Ã)([id]U ) = |A|, and therefore there must be
¹ < » such that

sup{f(À) : À ∈ BI , Ã(À) < ¹} = ».

Just assume otherwise, then for each ¹ < » we can define

g(¹) = sup{f(À) | À ∈ BI , Ã(À) f ¹}

then g : » → » is well defined. Since jU (Ã)([id]D) = |A| we conclude that
jU (g)(|A|) g jU (f)([id]D) = ¼, contradicting condition (2). Now the contin-
uation is as before, we find ´ ∈ BI such that f(´) is high enough so that the
restriction of ¹+-many of the sets in I to f(´) are distinct. This produces a
contradiction. □

The advantage of using the class of ultrafilters satisfying ♢−
thin(U) over

the class satisfying ♢∗
thin, is that is it upward closed with respect to the

Rudin-Keisler ordering.

Lemma 3.10. Suppose that ♢−
thin(U) holds and U fRK W , then ♢−

thin(W )
holds.

Proof. Let k : MU → MW be an elementary embedding such that jW = k◦jU
and A, ¼ witnessing ♢−

thin(U). For every S ¦ », we have

jW (S) ∩ k(¼) = k(jU (S) ∩ ¼) ∈ k(A).

Hence {jW (S)∩k(¼) | S ¦ »} ¦ k(A) ∈ MW . By elementarity, |k(A)|MW =
k(|A|MU ). Suppose toward contradiction that there is a function g : » →
» such that jW (g)(k(|A|MU )) g k(¼), then k(jU (g)(|A|)) g k(¼) and by
elementarity if k, jU (g)(|A|) g ¼, contradiction. □

Lemma 3.11. Suppose that Z is an ultrafilter on » which is the U -limit of
a discrete sequence of ultrafilters WÀ on » and such that ♢−

thin(WÀ). Then

♢−
thin(Z).
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Proof. Fix a partition of » into sets SÀ ∈ WÀ. For each À < », let ïAÀ
³ð³<»

and fÀ witness that ♢−
thin(WÀ). Then let A³ = AÀ

³ where À < » is unique
such that ³ ∈ SÀ and f(³) = fÀ(³). Let A ¦ », we would like to show
that B := {³ < » | A ∩ f(³) ∈ A³} ∈ U - lim ïWÀðÀ<». Take any À < »,

then BÀ := {³ ∈ SÀ | A ∩ fÀ(³) ∈ AÀ
³} ∈ WÀ. Since for each ³ ∈ SÀ and

f(³) = fÀ(³), A³ = AÀ
³, we conclude that BÀ ¦ B and therefore B ∈ WÀ.

It follows that B ∈ U - lim ïWÀðÀ<». It remains to show that c(³) = |A³| is
in a lower sky than f . Suppose otherwise and let g : » → » such that for
some B ∈ W , ³ ∈ B → g(c(³)) g f(³). Pick any À < » such that B ∈ WÀ

to reach a contradiction note that B ∩ SÀ ∈ WÀ, and for every ³ ∈ B ∩ SÀ,

g(|AÀ|³) = g(c(³)) g f(³) = fÀ(³). However, the sky ³ 7→ |AÀ
³| is below

the sky of fÀ, contradicting the choice of fÀ. □

For a non-discrete sequence, we have the following:

Lemma 3.12. Suppose that Z is an ultrafilter over » which is Rudin-Keisler
equivalent to

∑

U ïWÀðÀ<¼, where U is any ultrafilter over ¼ f » and W ′
Às

are ultrafilters over » such that ♢−
thin(WÀ) holds. Then ♢−

thin(Z) holds.

Proof. Let W ∗ = [À 7→ WÀ]U . By our assumption,

MU |= W ∗ is an ultrafilter over jU (») and ♢−
thin(W

∗).

Let jW ∗ : MU → MW ∗ be the ultrapower of MU by W ∗. It follows that
there is A ∈ MW ∗ and ¼ < jW ∗(jU (»)) such that {jW ∗(S) ∩ ¼ | S ∈
P (jU (»))

MU } ¦ A and there is no function f : jU (») → jU (») ∈ MU

such that jW ∗(f)(|A|MW∗ ) g ¼. Note that MW ∗ = M∑
U ïWÀðÀ<¼

and

j∑
U ïWÀðÀ<¼

= jW ∗◦jU . We claim thatA and ¼ witness that♢−
thin(

∑

U ïWÀðÀ<¼).

Indeed, for anyX ¦ », jU (X) ∈ P (jU (»))
MU and therefore jW ∗(jU (X))∩¼ ∈

A. Similarly, for any function f : » → », jU (f) : jU (») → jU (») ∈ MU and
therefore jW ∗(jU (f))(|A|MW∗ ) < ¼. □

4. Non-Galvin cardinals

As pointed out in the introduction, a measurable cardinal does not imply
the existence of a non-Galvin ultrafilter [9]. In [1], the question regarding
which large cardinal properties imply the existence of non-Galvin ultrafilters
was raised and in [2] a »-compact cardinal was proven to carry such an
ultrafilter. We open this section with a new large cardinal property:

Definition 4.1. » is called non-Galvin cardinal if there are elementary
embeddings j : V → M , i : V → N , k : N → M such that:

(1) k ◦ i = j.
(2) crit(j) = », crit(k) = i(»).
(3) »N ¦ N and »M ¦ M
(4) there is A ∈ M such that i′′»+ ¦ A and M |= |A| < i(»).
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Note that by condition (4), » ¦ A and that A can be chosen so that
min(A \ ») = i(»).

The next proposition implies that we may assume that the embedding j
in the definition of non-Galvin cardinals is an ultrapower embedding and
the embedding i is an extender ultrapower derived from it.

Proposition 4.2. Suppose that j : V → M , i : V → N , k : N → M and
A ∈ M are as in Definition 4.1. Then there is a »-complete ultrafilter U over
V» and Ä < jU (») which, together with the ultrapower by the (», Ä)-extender
E derived from jU and [id]U , witnesses that » is non-Galvin. Namely, the
following hold:

(1) kE ◦ jE = jU .
(2) crit(jU ) = », crit(kE) = Ä = jE(»).
(3) »ME ¦ ME and »MU ¦ MU .
(4) j′′E»

+ ¦ [id]U and MU |= |[id]U | < jE(»).

Proof. We may assume sup(A) = sup i′′»+ and A ∩ i(») = ». Let U be the
ultrafilter derived from j using A. Let Ā = [id]U and let kU : MU → M be
the unique elementary embedding with kU ◦ jU = j and kU (Ā) = A. Note
that » and i(») are in the range of kU since these ordinals are definable
in M using A as a parameter: » is the least ordinal not in A, and i(») =
| sup(A)|M . Therefore kU (») = ». Let Ä be such that kU (Ä) = i(»).

Let E be the extender of length Ä derived from jU . Let kE : ME → MU

denote the unique factor embedding with kE ◦ jE = jU and kE ↾ Ä = id.

ME MU

V

N M

jE

kE

i

k

j

jU

kU

We will verify (1), (2), (3), and (4). Of course, (1) is true essentially by
the definition of kE .

For (2), note that crit(jU ) = » since kU ◦ jU = j and kU (») = ». The fact
that crit(kE) g Ä follows from the definition of kE . To see crit(kE) = Ä and
kE(Ä) = jU (»), we will show that12

HullMU (j′′UV ∪ Ä) ∩ jU (») = Ä

12For a model M , HullM (A) denotes the usual closure of the class A ¦ M under the
Skolem functions of M , which in the case of an ultrapower simplifies to HullMU (A) =
{jU (f)(ξ) | f : κ → V, ξ ∈ A}.
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This will establish that crit(kE) = Ä and kE(Ä) = jU (») since kE is the
inverse of the transitive collapse of HullMU (j′′UV ∪Ä). To prove this equality,

it suffices to show the inclusion HullMU (j′′UV ∪ Ä) ∩ jU (») ¦ Ä.

Since k◦i = j and since crit(k) = i(»), we have HullM (j′′V ∪i(»)) ¦ k′′N ,
and therefore HullM (j′′V ∪ i(»)) ∩ j(») ¦ k′′N ∩ j(») = i(»). Since

k′′U [Hull
MU (j′′UV ∪ Ä)] ¦ HullM (j′′V ∪ i(»)),

we have

HullMU (j′′UV ∪ Ä) ¦ k−1
U [HullM (j′′V ∪ i(»))]

In particular,

HullMU (j′′UV ∪ Ä) ∩ jU (») ¦ k−1
U [HullM (j′′V ∪ i(»)) ∩ j(»)]

= k−1
U (i(»)) = Ä

Since kE(Ä) = jU (») > Ä and kE ◦ jE = jU , it follows Ä = jE(»). Note
also that Ä < jU (»), and so the fact that kE(Ä) = jU (») implies kE(Ä) ̸= Ä
and hence crit(kE) = Ä.

For (3), the inner model MU is closed under »-sequences since it is the
ultrapower of V by a »-complete ultrafilter. The inner model ME is closed
under »-sequences by Lemma 4.3 below, since cf(Ä) > » and »Ä ¦ ME . To
see that cf(Ä) > », note that cf(i(»)) > » sinceN satisfies that i(») is regular
and N is closed under »-sequences. Therefore M satisfies that cf(i(»)) > ».
By the elementarity of kU , and since kU (Ä) = i(»), MU satisfies cf(Ä) > ».
Here we use that kU (») = ».

Finally, we verify (4). By elementarity of kU , since |A| < i(»), we have
|Ā| < Ä. So we just have to show that j′′E»

+ ¦ Ā. Suppose ³ ∈ j′′E»
+. We

claim that kU (³) ∈ ran(i). Let ¯ be a wellorder of » of ordertype j−1
E (³).

Then jE(¯) has ordertype ³. Note that

kU (jE(¯)) = kU (jU (¯) ∩ Ä) = j(¯) ∩ i(») = i(¯)

Thus kU (³), which is the ordertype of kU (jE(¯)) is equal to the ordertype
of i(¯), which is in the range of i. It follows that (kU ◦ jE)

′′»+ ¦ i′′»+ ¦ A.
Since kU (Ā) = A, we conclude that j′′E»

+ ¦ k−1
U [A] ¦ Ā. □

The proof of the following lemma, which was cited in the previous propo-
sition, appears in [18, Lemma 2.9]:

Lemma 4.3. Suppose E is an extender of length Ä with crit(jE) = ». If
»Ä ¦ ME, then

»ME ¦ ME. In particular, if E is the extender of length
Ä derived from an elementary embedding j : V → M where »M ¦ M ,
cf(Ä) > », and M ⊨ Ä» = Ä, then »ME ¦ ME. □

Let us turn to the proof of Main Theorem 0.2:

Theorem 4.4. Suppose that » is a non-Galvin cardinal. Then there exists
a »-complete ultrafilter U over » such that ¬Gal(U, », »+). In particular, if
2» = »+ then U is non-Galvin.
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Proof. We use the notation of 4.1. As before, we can fix an ordinal ¿ < j(»)

such that for some sequence A⃗ = ïA³ð³<» such that A = j(A⃗)¿ and for some
sequence »⃗ = ï»³ð³<», i(») = j(»⃗)¿ . Let U = D(j, ¿) be the ultrafilter on »
derived from j using ¿. Since crit(j) = », U is a »-complete ultrafilter over
». We will show ¬Gal(U, », »+).

Let ïfÀðÀ<»+ denote the sequence of canonical functions on » (see defini-

tion 1.16). For À < »+, define

BÀ = {³ < » : fÀ(»³) ∈ A³}

Note that BÀ ∈ U since

j(BÀ) = {³ < j(») : j(fÀ)(j(»⃗)³) ∈ j(A⃗)³}

and

j(fÀ)(j(»⃗)¿) = j(fÀ)(i(»)) = k(i(fÀ))(i(»)) = i(À) ∈ A = j(A⃗)¿

The point here is that in N , g⃗ = i(f⃗) is the sequence of canonical functions
on i(»), and since crit(k) = i(»), by proposition 1.17, for any ¸ < i(»+),
k(g¸)(i(»)) = ¸. The fact that k(i(fÀ))(i(»)) = i(À) follows from this obser-
vation when ¸ = i(À) (and thus i(fÀ) = gi(À)).

Suppose Ã ¦ »+ and
⋂

À∈Ã BÀ ∈ U . We must show that |Ã| < ». Since

|A|M < i(»), it suffices to show that i(Ã) ¦ A: then ot(i(Ã)) < ot(A) < i(»),
and hence N ⊨ ot(i(Ã)) < i(»), which by elementarity implies ot(Ã) < ».

The proof that i(Ã) ¦ A is similar to the calculation in the previous

paragraph: Since
⋂

À∈Ã BÀ ∈ U , for all ¸ ∈ j(Ã), j(f⃗)¸(i(»)) ∈ A. Fix À ∈

i(Ã), and we will prove that À ∈ A. We have k(À) ∈ j(Ã), so j(f⃗)k(À)(i(»)) ∈

A. But j(f⃗)k(À) = k(gÀ), hence k(gÀ)(i(»)) = À. It follows that À ∈ A. □

Remark 4.5. Note that in condition (4) the definition 4.1 of non-Galvin
cardinal it is important to work with »+ instead of 2» for there are no
canonical functions in general up to 2».

Remark 4.6. As proven in [2], if » is »-compact then there are 22
»
-many

»-complete non-Galvin ultrafilters that extend the closed unbounded filter
on ». On the other hand, assuming the Ultrapower Axiom and that every
irreducible ultrafilter is Dodd sound, the least non-Galvin cardinal carries
a unique non-Galvin ultrafilter that extends the closed unbounded filter on
». Under these assumptions, if » carries distinct non-Galvin ultrafilters
extending the closed unbounded filter, then the Ketonen least distinct such
ultrafilters are precisely the least two extensions of the closed unbounded
filter concentrating on singular cardinals (see the proof of Theorem 5.6).
These ultrafilters are irreducible (and in fact are Mitchell points) by [17,
Corollary 8.2.13, Proposition 8.3.39]. Therefore D0 ◁ D1, so » carries a
non-Galvin ultrafilter in Ult(V,D1), and so » is not the least non-Galvin
cardinal.

As a first upper bound for the non-Galvin cardinals we have the following:
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Theorem 4.7. If » is »-compact, then » is a non-Galvin cardinal.

Proof. Let U be a normal ultrafilter on ». Since |PMU (P»(»
+))| = 2», there

is a transitive model M with

PMU (P»(»
+)) ¦ M, |M | = 2»

By Hayut’s result [19, Cor. 6], there is a transitive model N , an elementary
embedding j0 : M → N , with crit(j0) = » along with some s ∈ N , s ¦
j0(»)

+ such that j′′0»
+ ¦ s with |s|N < j0(»). Define W the »-complete

ultrafilter on P»(»
+) derived from j0 and s. Note that W is fine since

j′′0»
+ ¦ s and it measures all the subsets of P»(»

+) in MU . Let jW : MU →
MW be the ultrapower of MU by W defined in V , and j : V → MW be the
embedding j = jW ◦ jU . Let ¼ = jW(») < j(») and let E be the extender of
length ¼ derived from j.

Claim 4.8. E is also the extender of length ¼ derived from jW

Proof. For any X ¦ » we have that

j(X) ∩ ¼ = jW(jU (X)) ∩ jW(») = jW(jU (X) ∩ ») = jW(X).

Thus for all ³ < ¼, ³ ∈ j(X) iff ³ ∈ jW(X). □

Finally let i : V → NE be the ultrapower of V by E and A = [id]W ∈ MW .
We claim that i, j, A witness that » is a non-Galvin cardinal. Indeed, i(») g
¼. To see that i(») f ¼, we compute the ultrapower i′ of MU by E, and since
MU is closed under »-sequences, it follows that i(») = i′(»). By the previous
claim, jW also factors through i′ and thus jW(») = k′(i′(»)) g i′(») = i(»),
as wanted.

By the usual argument about the derived extender, the factor map k : NE →
MW has critical point i(») (see for example [21, Lemma 20.29(ii)]). Also,
MW |= |A| < jW(») = i(») and since W is fine, j′′W»+ ¦ A.

Claim 4.9. For every ³ < »+, i(³) = jW(³).

Proof. Note that i(U) ∈ NE is a normal measure on i(»), let X ∈ i(U)
be any set, k(X) ∈ j(U) = jW(jU (U)). Note that jW(jU (U)) is generated
by j′′WjU (U) by Theorem 6 and Corollary 8 of [11, Section 3]. Therefore
there is a set Y ∈ jU (U) such that jW(Y ) ¦ k(X). Since U is normal,
there is a set A ∈ U such that jU (A) ¦∗ Y and j(A) ¦∗ k(X), which
in turn implies that i(A) ¦∗ X. Now we note that i(A) ∈ R, where R
is the NE-ultrafilter (external) derived from k and jW(»). We conclude
that i(U) ¦ R and thus that i(U) = R (as two NE-ultrafilters). So k
factors through ji(U) and k′ : Mi(U) → MW has critical point > jW(») (since
k′(jW(»)) = k′([id]i(U)) = k(id)(jW(»)) = jW(»)). To conclude the claim,

let ³ < »+ and f : » → » be the canonical function such that jU (f)(») = ³,
then

jW(³) = jW(jU (f)(»)) = j(f)(jW(»)) = k(i(f))(jW(»))
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By elementarity, i(f) : i(») → i(») is the canonical function for i(³). Since
ji(U) is the ultrapower by a normal ultrafilter over jW(»), we conclude that

k(i(f))(jW(f)) = k′(ji(U)(i(f)))(jW(»)) = k′(i(³)) = i(³)

as desired. □

□

» is superstrong with an inaccessible target (which simply means that
there is an elementary j : V → M such that crit(j) = », Vj(») ¦ M , and
j(») is inaccessible in V ), then by the argument of 3.1, » is a non-Galvin
cardinal. Moreover, any subcompact cardinal is a limit of cardinals that are
superstrong with an inaccessible target.

Hayut proved [19] that »+-Π1
1-subcompactness implies »-compactness and

he conjectures that these notions are equiconsistent13. So morally speaking,
»-compact cardinals should be strictly greater than non-Galvin ultrafilters
in the large cardinal hierarchy. In the next section, we will see that at least
under UA this is the case. Finally, we establish the connection between
Dodd soundness and non-Galvin cardinals:

Lemma 4.10. Suppose that U is a »-complete non p-point ¼-sound ultrafil-
ter, and let E be the (», ¼)-extender derived from jU and ¼ = sup{jU (f)(») |
f : » → »}. Then j′′E2

» ∈ MU and moreover jU , jE , kE and j′′E2
» witness that

» is a non-Galvin cardinal.

Proof. Derive the extender E from ¼ i.e E = ïEa | a ∈ [¼]<Éð where Ea is

an ultrafilter over [»]|a| defined by

Ea = {X ¦ [»]|a| | a ∈ j(X)}

By ¼-soundness of U , E ∈ MU and we let i = jE : M → ME . Note that
j′′EP (») can be calculated in MU and therefore j′′EP (») ∈ MU . Also, note
that jE(») g ¼ and since E ∈ MU , we must have that for every a ∈ [¼]<É,
jEa(») < ¼ hence jE(») f ¼. We conclude that the critical point of the
factor map kE : ME → MU is ¼ = jE(»). Finally, observe that j′′E2

» ∈ MU .
To see this, simply note that jE ↾ On = (jE)

MU ↾ On14 and therefore
j′′E2

» = (jE)
MU ′′2» ∈ MU . □

5. In the canonical inner models

In this section, we work within the framework of UA and “every irre-
ducible is Dodd sound.” By results of Goldberg [17] and Schlutzenberg [34],
these assumptions hold in the extender models L[E]. Our first goal of this

13Since by the results of [29], if there is a weakly iterable premouse with a κ-compact
cardinal then in that inner model κ is also κ+-Π1

1-subcompact cardinal.
14This is since MU is closed under κ-sequences and thus the class of functions from

[κ]<É to the ordinals is the same from the point of view of V and MU . Now both jE ↾ On

and (jE)
MU ↾ On are completely determined by those functions.
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section is to prove Main Theorem 0.3 regarding the characterization of Ã-
complete non-Galvin ultrafilters. To do that, we will need some preparatory
results.

Theorem 5.1 (UA). Suppose » is either successor or strongly inaccessible
and U is a »-irreducible non-»-complete ultrafilter on ». Then ♢−

thin(U).

Proof. By [17, Theorems 8.2.22 and 8.2.23],MU is closed under<»-sequences
and every A ∈ [MU ]

» is covered by some B ∈ MU such that |B|MU = ».
By the assumptions of the theorem, U is not »-complete and therefore
crit(jU ) < ». Let E»

É = {¿ < » | cf(¿) = É}, define the function g : E»
É → »

by g(¿) = Ä for the minimal measurable cardinal Ä such that jU (Ä) > ¿.
By [17, Lemma 4.2.36], g(¿) is well defined and g(¿) f ¿. Since cf(¿) = É,
g(¿) < ¿. By Födor, there is an unbounded S ¦ E»

É and »∗ < » such that for
every ¿ ∈ S, g(¿) = »∗. In particular, jU (»

∗) g ». If jU (»
∗) > », let µ = »∗,

otherwise » is a limit of MU -strongly inaccessible cardinals. Let »∗ < µ < »
be the least strongly inaccessible cardinal. In any case, jU (µ) > » and since
MU is closed under < »-sequences, µ is a strongly inaccessible cardinal in V .
Therefore j′′UP»(») is covered by a set B ∈ MU of cardinality less than jU (µ).
Let A = {

⋃

S : S ∈ [B]» ∩MU}. Then |A|MU < jU (µ), and for any S ¦ »,
jU (S) ∩ »∗ ∈ A where »∗ = sup j′′U» g jU (µ). Note that »∗ > jU (f)(³) for
any f : » → » and ³ < »∗ and in particular there is no function f : » → »
such that jU (f)(|A|MU ) g »∗. We conclude that A witnesses ♢−

thin(U). □

Corollary 5.2 (UA). If U is a Ã-complete ultrafilter over »+ then ♢−
thin(U)

and in particular U is non-Galvin.

Proof. By [17, Lemma 8.2.24], U =
∑

D ïWÀðÀ<¼D
where D is an ultrafilter

over ¼D < »+, ïWÀðÀ<¼D
is discrete and MD |= W = [À 7→ WÀ]D is jD(»

+)-

irreducible which cannot be jD(»
+)-complete. By the previous theorem,

MD |= ♢−
thin(W ). Therefore, for D-almost all À, ♢−

thin(WÀ) which by Lemma

3.11, implies that ♢−
thin(

∑

D ïWÀðÀ<¼D
) holds. □

Theorem 5.3 (UA). Assume that every irreducible is Dodd sound. If W is
a »-complete ultrafilter over », then the following are equivalent:

(1) W has the Galvin property.
(2) ¬♢−

thin(W ).
(3) W is an n-fold sum of »-complete p-points over »

Proof. Let W be »-complete ultrafilter. If W is an n-fold sum of »-complete
p-points then by Theorem 1.10 W has the Galvin property which by Theo-
rem 3.9 implies ¬♢−

thin(W ). Let W be a »-complete ultrafilter over » which
is not an n-fold sum of »-complete p-points. Let U fRF W be irreducible,
which exists since W is nontrivial. If U is not a p-point then by the as-
sumptions of the theorem, U is a non p-point ultrafilter Dodd sound over »
and therefore by Lemma 2.8, ♢∗

thin(U) holds and thus also ♢−
thin(U). Since

U fRK W , Lemma 3.10 applies, so we can conclude that ♢−
thin(W ). Hence
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we may restrict ourselves to the case where there is a p-point RF-below W
(and this p-point must be »-complete). By [17, Thm. 5.3.14], there is a
fRF -maximal U fRF W that is an n-fold sum of »-complete p-points over
». Let ïWÀðÀ<» be a discrete sequence with W = U - lim ïWÀðÀ<». By the
choice of U , the embedding jU : V → MU can be factored as a finite iterated
ultrapower

V = M0
j0,1
−→ M1

j1,2
−→ · · ·

jn−1,n
−→ Mn = MU

where inMk, jk,k+1 is the ultrapower embedding associated to a »k-complete
p-point Uk over »k and »k = j0,k(»). Also, denote by Zk the ultrafilter
associated with j0,k; i.e.,

Zk = U⌢
0 U⌢

1 · · ·⌢ U⌢
k−2Uk−1

For this notation, see Definition 1.6. Since WÀ is nonprincipal, there is an
irreducible ultrafilter DÀ fRF WÀ. Suppose that DÀ is ÄÀ-complete uniform
ultrafilter over ¶À for some ÄÀ f ¶À f ». Note that

∑

U DÀ fRF W . Let m
be the least such that »m−1 < ¶∗ := [À 7→ ¶À]U f »m where »−1 is defined
to be 0. Let D∗ = [À 7→ DÀ]U is an MU -ultrafilter over ¶∗. Note that
D∗ ∈ Mm since Mn ¦ Mm and since crit(jm,n) = »m it is an Mm-ultrafilter.
Moreover, M»m

n ∩Mm = M»m
n ∩Mn and therefore (jD∗)Mm ↾ Mn = (jD∗)Mn .

By elementarity of jMm

D∗ , jMn

D∗ ◦ jm,n = jMm

D∗ (jm,n) ◦ j
Mm

D∗ and we have that

(1) jMn

D∗ ◦ jU = jMm

D∗ (jm,n) ◦ j
Mm

D∗ ◦ j0,m.

Claim 5.4. If Mm |= D∗ is not »m-complete, then ♢−
thin(W ) holds.

Proof of claim. Since DÀ is irreducible, by our assumption, it is a non »-
complete Dodd sound ultrafilter. Note that in this case m > 0, since if
m = 0, the D∗ must be »-complete. Let us split unto cases:

Case 1: If ¶∗ = »m, then D∗ is a uniform ultrafilter on »m and it must be
»m-irreducible. By Theorem 5.1 Mm |= ♢−

thin(D
∗) holds. By Lemma

2.15, we conclude that ♢−
thin(Z

⌢
mD∗) holds in V (see Definition 1.6

for this notation), and hence by Lemma 3.10 ♢−
thin(W ) follows as

well.
Case 2: Assume that ¶∗ < »m.
Case 2(b): Assume crit(jMm

D∗ ) > »m−1. Note that the two step iteration

ultrapower jMm

D∗ ◦ jUm−1 is given by a »m−1-complete p-point
on »m−1 in Mm (see [1, Lemma 1.11]), which contradicts the
maximality of U .

Case 2(c): Assume crit(jMm

D∗ ) f »m−1 < ¶∗ < »m. Since D∗ is an ir-

reducible uniform ultrafilter over ¼D∗ g »+m−1, D∗ is »+m−1-
irreducible and therefore by [17, Theorem 8.2.22], MD∗ is closed
under »m−1-sequences which in turn implies that P (»m−1) ¦
MD∗ . By Lemma [17, Lemma 4.2.36], jMm

D∗ (»m−1) > »m−1. Let

¼ = jMm

D∗ (»m−1). We claim that Um−1
⌢D∗ is ¼-sound and that

for every function f : »m−1 → »m−1, jUm−1
⌢D∗(f)(»m−1) < ¼
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which by Corollary 3.8 implies that ♢−
thin(Um−1

⌢D∗). Indeed

for any function f : »m−1 → »m−1, since jMm

D∗ (»m−1) > »m−1,

jMm

D∗ (jUm−1(f))(»m−1) = jMm

D∗ (jUm−1(f) ↾ »m−1)(»m−1) = jMm

D∗ (f)(»m−1),

and jMm

D∗ (f) : jMm

D∗ (»m−1) → jMm

D∗ (»m−1). Hence j
Mm

D∗ (f)(»m−1) <

jMm

D∗ (»m−1).
To see that Um−1

⌢D∗ is ¼-sound, derive the (»m−1, ¼)-extender

E from jMm

D∗ inside Mm. Note that E is also the (»m−1, ¼)-

extender derived from jD∗ ◦ jm−1,m since for ³ < jMm

D∗ (»m−1)
we have that:
³ ∈ jMm

D∗ (jm−1,m(X)) ∩ jMm

D∗ (»m−1) iff ³ ∈ jMm

D∗ (jm−1,m(X) ∩

»m−1) iff ³ ∈ jMm

D∗ (X).
Now D∗ is a uniform ultrafilter over ¶∗ > »m−1, hence we have

that jMm

D∗ (») < [id]D∗ and since D∗ is Dodd sound we have

that E ∈ (MD∗)Mm . In particular, {jE(X) | X ¦ »m−1} ∈
(MD∗)Mm where jE : Mm−1 → ME . Let kE : ME → (MD∗)Mm

be the factor map. It follows that crit(kE) = jMm

D∗ (»m−1). Fi-

nally, note that jUm−1
⌢D∗(X) ∩ jMm

D∗ (»m−1) = jE(X), hence

{jUm−1
⌢D∗(X) ∩ jMm

D∗ (»m−1) | X ¦ »m−1} ∈ (MD∗)Mm

as desired. We conclude that Mm−1 |= ♢−
thin(Um−1

⌢D∗). By

Lemma 3.12♢−
thin(Zm−1

⌢Um−1
⌢D∗, and this ultrafilter is Rudin-

Keisler below W . □

By the claim, we may assume that for Mm |= D∗ is »m-complete over »m.
It follows again that inMm, D∗ cannot be a p-point, as this would contradict
the maximality of U , recalling that

∑

U DÀ fRF W and that this ultrafilter
∑

U DÀ can be represented as an n + 1-fold sum of »-complete p-points by
(1). Since D∗ is irreducible in Mm, Mm |= D∗ is Dodd-sound and non
p-point. By Lemma 2.8 Mm |= ♢∗

thin(D
∗) holds. In particular, ♢−

thin(D
∗)

holds. In any case, Lemma 2.15 applies to conclude that ♢−
thin(Zm

⌢D∗)
holds, and since this ultrailter is RK-below W , lemma 3.10 ensures that
♢−

thin(W ) holds. □

Theorem 5.5 (UA). Assume that every irreducible ultrafilter is Dodd sound.
For every Ã-complete ultrafilter W over » the following are equivalent:

(1) W has the Galvin property.
(2) ¬♢−

thin(W ).
(3) W is the D-sum of n-fold sums of »-complete p-points over » and

D is a Ã-complete ultrafilter on ¼ < ».

Proof. The proof that (3) ⇒ (1) ⇒ (2) is in the previous theorem. It
remains to prove that ¬♢−

thin(W ) implies that W is a D-sum of n-fold sums
of »-complete p-points over ». Equivalently, let us prove the contrapositive,
suppose that W is a Ã-complete ultrafilter over » which is not an n-fold
sum of p-points. Now let us move to the general case, suppose that W
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is just Ã-complete. By [17, Lemma 8.2.24], there is a countably complete
ultrafilter D fRF W on ¼ < » such that if W = D- lim ïWÀðÀ<¼ then

MD |= Z = [À 7→ WÀ]D is jD(»)-irreducible. If Z is not jD(»)-complete

then by Theorem 5.1. MD |= ♢−
thin(Z) and therefore W = D- lim ïWÀðÀ<¼

will also satisfy ♢−
thin by Lemma 3.11. If Z is jD(»)-complete, then Z is a

jD(»)-complete ultrafilter which is not a D′-sum of n-fold sums of p-points
and we fall into the first case where we assumed that W was »-complete
(inside MD and replacing » by jD(»)). We conclude that ♢−

thin(Z) holds

and again, it follows from that ♢−
thin(W ) holds. □

Next, we turn to the proof of Main Theorem 0.5.

Theorem 5.6 (UA). Assume that every irreducible ultrafilter is Dodd sound.
Suppose » is an uncountable cardinal that carries a »-complete non-Galvin
ultrafilter. Then the Ketonen least non-Galvin »-complete ultrafilter on »
extends the closed unbounded filter.

Proof. We claim that in this context, the Ketonen least non-Galvin ultra-
filter U is equal to the Ketonen least ultrafilter W on a regular cardinal ¶
extending the closed unbounded filter and concentrating on singular cardi-
nals. First, note that W is irreducible by [17, Corollary 8.2.12].

Claim 5.7. W is ¶-complete

Proof of Claim 5.7. Suppose towards a contradiction thatW is not ¶-complete
and let µ = crit(jW ) < ¶. SinceW is Dodd sound, jW is a 2<¶-supercompact
embedding (see [17, Lemma 4.3.4]), and so jW witnesses that µ is 2<¶-
supercompact. In particular, µ is 2µ-supercompact, and therefore every
µ-complete filter on µ extends to a µ-complete ultrafilter. This yields a
µ-complete ultrafilter W ′ on µ extending the closed unbounded filter on µ
adjoined with the set of singular cardinals less than µ. Since µ < ¶, it fol-
lows that W ′ <k W (see [17, Lemma 3.3.15]) contradicting the minimality
of W . □

End of proof of Theorem 5.6. Note that W is not a p-point since W extends
the closed unbounded filter but is not normal; therefore by Corollary 2.11,
W is non-Galvin, and hence U is below W in the Ketonen order.

Conversely, since U is the Ketonen least non-Galvin ultrafilter, by Theo-
rem 0.2, U is irreducible and not a p-point. Without loss of generality, we
can assume that U is Dodd sound. Moreover, U is a µ-complete ultrafilter
on µ for some measurable cardinal µ.

Let ¼ = sup{jU (f)(µ) | f : µ → µ}. Since U is not a p-point, ¼ f [id]U .
Since U is Dodd sound, {jU (A) ∩ ¼ : A ¦ µ} ∈ MU , which implies

{jU (f) ∩ (¼× ¼) | f : µ → µ} ∈ MU

and hence {jU (f)(µ) | f : µ → µ} ∈ MU , which implies that MU satisfies
cf(¼) f 2µ .
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Let D be the ultrafilter on µ derived from jU using ¼. Then D is below
U in the Ketonen order. Since cfMU (¼) f 2µ , D concentrates on singular
cardinals. Moreover, for any f ∈ µµ , ¼ is closed under jU (f) — that is,
jU (f)[¼] ¦ ¼ — so D concentrates on the set of closure points of f . It
follows that D extends the closed unbounded filter. Therefore W is below
D in the Ketonen order, so by the transitivity of the Ketonen order, W is
below U in the Ketonen order. It follows that U = W as claimed. This
implies that U extends the club filter, which proves the theorem. □

Let us turn our attention to the non-Galvin cardinals. Main Theorem
0.4, which we now prove, shows that the existence of a non-Galvin cardinal
is exactly the large cardinal assumption needed to conclude the existence of
non-Galvin ultrafilters in an inner model.

Theorem 5.8 (UA). Assume that every irreducible ultrafilter is Dodd sound.
If there is a »-complete non-Galvin ultrafilter on an uncountable cardinal »,
then there is a non-Galvin cardinal.

Proof. Let W be a non-Galvin ultrafilter on ». By Theorem 0.5, W is
Rudin-Keisler equivalent to an n-fold sum of irreducible ultrafilters. By
Theorem 0.2, it is impossible that all these ultrafilters are p-points (even on
measure one sets) so » must carry an irreducible ultrafilter U which is not
a p-point. By our assumption, every irreducible is Dodd sound. Since U is
a »-complete, non p-point, Dodd sound ultrafilter, Lemma 4.10 applies, and
we conclude that » is a non-Galvin cardinal. □

Proposition 5.9 (UA). If » is »-compact and no cardinal ¿ < » is »-
supercompact, then » a limit of non-Galvin cardinals.

Proof. Since » is »-compact, a theorem of Kunen [26, Lemma 3] implies that
for every À < (2»)+, there is a countably complete ultrafilter U on » such
that jU (À) > À. Let UÀ denote the Ketonen least such ultrafilter. By [17,
Lemma 7.4.34] and [17, Proposition 8.3.39], UÀ is a Mitchell point : for any
ultrafilter W <k U , W lies below U in the Mitchell order.

Since » is strongly inaccessible, there is an É-club C ¦ (2»)+ such that for
all À ∈ C, for all countably complete ultrafilters D of rank less than À in the
Ketonen order, jD(À) = À. For À ∈ C, UÀ is a uniform irreducible ultrafilter
on », and so it follows from [17, Theorem 8.2.23] that UÀ witnesses crit(jUÀ

)
is <»-supercompact. Since » is measurable, it follows that crit(jUÀ

) is »-
supercompact, and so by the assumptions of the proposition, crit(jUÀ

) = ».
In other words UÀ is »-complete.

Now let W witness that » is a non-Galvin cardinal. Fix À ∈ C larger
than the Ketonen rank of W . Then W is below UÀ in the Mitchell order,
and so » is non-Galvin in MUÀ

. It follows that » is a limit of non-Galvin
cardinals. □
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In particular, the least cardinal » that is »-compact is larger than the
least non-Galvin cardinal assuming UA.15

6. Open problems

Question 6.1. Is it consistent that there is a »-complete uniform ultrafilter
U over » satisfying the Galvin property that is not an n-fold sum of »-
complete p-points over »?

Recently, Gitik gave a positive answer to this question, thus our charac-
terization of ultrafilters with the Galvin property cannot be proved in ZFC.
The following question seems more plausible for a positive answer in ZFC:

Question 6.2. Is every uniform »-complete ultrafilter U over »+ non-
Galvin, i.e., ¬Gal(U, »+, »++) holds?

Under UA, the answer is positive by Corollary 5.2.

Question 6.3. Does a non-Galvin cardinal entail the existence of a non-
Galvin ultrafilter which extends the club filter?

By Main Theorem 0.2, a non-Galvin cardinal entails the existence of a
non-Galvin ultrafilter. Assuming UA and that every irreducible is Dodd
sound, Main Theorem 0.5 shows that a non-Galvin cardinal also entails the
existence of »-complete non-Galvin ultrafilter which extends the club filter.

Question 6.4. Does every fine normal ultrafilter over P»(»
+) satisfy Gal(U, », 2»

+
)?

The answer would be interesting even under UA. This is the first step
toward answering the more general problem:

Question 6.5. Characterize the Tukey-top ultrafilters on » with respect to
¼ < » assuming UA plus every irreducible is Dodd sound.

Question 6.6. Is there a similar characterization under UA for Ã-complete
ultrafilters with the Galvin property over singular cardinals?

We believe that such a characterization exists and that similar methods
to those appearing in this paper should be useful.

In the absence of GCH we have the following questions which are open:

Question 6.7. If we replace i′′»+ by i′′2» in the definition of non-Galvin
cardinal, do we get a »-complete ultrafilter such that ¬Gal(U, », 2»)?

More generally:

15It should be provable from UA that any cardinal κ that is κ-compact is a limit of
non-Galvin cardinals. Here there are two cases. If κ is a limit of cardinals γ that are
κ-compact, then each of these cardinals γ is γ-compact, so κ is a limit of non-Galvin
cardinals. If κ is not a limit of κ-compact cardinals, one would like to show, as above,
that there is a non-Galvin ultrafilter W on κ that is below some κ-complete ultrafilter on
κ in the Mitchell order. The issue is that it is unclear how to show that the Mitchell order
on κ-complete ultrafilters has rank (2»)+ if some ν < κ is κ-supercompact.
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Question 6.8. Is it consistent that there is a »-complete ultrafilter U such
that ¬Gal(U, », »+) but Gal(U, », 2»)?

The result of this paper resolves these two questions under UA plus every
irreducible is Dodd sound.

The following two questions address the assumptions in the main theorems
of this paper.

Question 6.9. Is it consistent that there is a cardinal » which is »+-
supercompact and that every irreducible ultrafilter is Dodd sound?

Question 6.10. Does UA imply that every irreducible ultrafilter is Rudin-
Keisler equivalent to a Dodd sound ultrafilter?

Let us conclude this paper with a diamond-like principle which is a reason-
able candidate to be equivalent to non-Galvin ultrafilters. Such a principle
would be valuable as there is no known formulation of the Galvin property
in terms of the ultrapower. This would be also interesting from the point of
view of the Tukey order since this order involves functions which typically
have domains of size 2», and thus not available in the ultrapower.

Definition 6.11. We say that ♢−
par(U) holds if and only if there is A ∈ MU ,

¼ and ïXiði<2» ¦ P (») such that:

(1) {jU (Xi) ∩ ¼ | i < 2»} ¦ A.
(2) there is no function f : » → » such that jU (f)(|A|MU ) g ¼.

The argument of Theorem 3.9 can be adjusted to conclude that ♢−
par(U)

implies that U is non-Galvin.

Question 6.12. Is ♢−
par(U) equivalent to U being non-Galvin?

The next question seeks an analogous result on É to the one of this paper:

Question 6.13. Is it consistent that every ultrafilter on É which is not
Tukey-top is an n-fold sum of p-points?
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