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ABSTRACT

Covert communication is achieved when a transmitter Al-
ice can successfully transmit a message to a receiver Bob
without being detected by an attentive and capable adversary
Willie. Early results demonstrated the difficulty of the covert
communications problem: with AWGN discrete-time channels
between all parties, only O(

√
n) bits can be sent in n channel

uses. But it was soon recognized that uncertainty about the
environment at Willie, for example, uncertainty in his own
noise statistics, could allow for a positive rate: O(n) bits can
be sent covertly in n channel uses. However, most covert
communication results, including this promising positive rate
result, have been obtained for a discrete-time communications
channel. Here, we demonstrate that the assumption of a
discrete-time channel is problematic when trying to exploit
Willie’s noise uncertainty. In particular, we demonstrate that
if Alice transmits ω(

√
T ) bits in a length T interval to Bob

on a continuous-time channel, then there exists a detector at
Willie that can detect her transmission, as the probability of
false alarm and missed detection PMD+PFA → 0 as T → ∞.
In other words, the communication is not covert, unlike the
case of a discrete-time channel.

I. INTRODUCTION

Security and privacy play a major role in contemporary
wireless communication systems. Much security research fo-
cuses on employing encryption [1] or information-theoretic [2]
security approaches to protect the content of messages from
interception, but there are applications where hiding even the
existence of a signal can be crucial, for example in hiding
the presence of an implanted medical device or in military
communication. In covert communication, the transmitter Al-
ice tries to transmit a message reliably to the receiver Bob in
the presence of an adversary Willie, who tries to detect the
communication.
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Bash et. al. [3] established the fundamental limits of covert
communication for the discrete-time additive white Gaussian
noise (AWGN) channel. According to the square root law
(SRL) of [3], Alice can transmit at most O(

√
n) bits to Bob in

n channel uses with low probability of detection by adversary
Willie. This work motivated [4] and [5], which established that
if Willie has uncertainty in the statistics of the noise impacting
his receiver, O(n) bits can be transmitted covertly in n channel
uses. Since such uncertainty might not arise naturally in a
given system [6], Sobers et. al. [7] employed jamming to
achieve O(n) covert throughput in n channel uses.

The results discussed above assume a standard discrete-
time communication channel. Researchers generally consider
a discrete-time channel for analytical convenience, with the
understanding that it is functionally equivalent to the true
continuous-time channel. However, these techniques that ex-
ploit noise uncertainty or cooperative jamming are vulnerable
to detection (i.e. not covert) when the constructions developed
for the discrete-time channel are mapped to a true continuous-
time channel. Li et. al. [8] showed that the technique of
[7] cannot send O(n) bits covertly in n channel uses on a
continuous-time channel if Willie employs interference cancel-
lation, even in the presence of a jamming signal as proposed in
[7], emphasizing the more realistic continuous-time channel.

Here, we consider the performance of the constructions
of [4] and [5] when they are mapped to a continuous-time
channel in an obvious manner. By having Willie employ a
cyclostationary detector, we show that the performance results
established in [4] and [5] are indeed optimistic. By conducting
an asymptotic characterization of the cyclostationary detector,
we demonstrate that schemes employing standard bauded dig-
ital communication approaches (i.e., randomly drawn symbols
placed on a standard pulse shape with a fixed symbol interval)
are limited to sending at most O(

√
n) covert bits to Bob in n

channel uses. Furthermore, we show that Alice would indeed
be able to send O(n) bits in n channel uses covertly to Bob
on the continuous-time channel if Willie were restricted to a
power detector, hence demonstrating that it is the availability
of other detectors on the continuous-time channel that leads
to the limitation of the throughput of schemes suggested by
the design for the discrete-time channel.

Section II presents the natural extension of the constructions
of [4] and [5] to the continuous-time channel. Section III
presents a sketch of the proofs for the two main results of
the paper. Section IV presents the conclusions.



II. SYSTEM MODEL

Consider the scenario presented in Figure 1, where Al-
ice wants to transmit a message to Bob over (continuous-
time) interval [−T/2, T/2] while keeping the transmission
hidden from adversary Willie, with both channels experi-
encing additive white Gaussian noise (AWGN). Suppose Al-
ice sends an independent and identically distributed (i.i.d.)
sequence of symbols f−m/2, f−m/2+1,. . . , fm/2, such that
fi ∈ CN (0, σ2

a), using a digital communication signal in the
standard format with pulse shape q(t):

xa(t) =

m/2∑
k=−m/2

fkq(t− kTs) (1)

where Ts is the symbol period and m = T/Ts, hence
extending the Lee et. al. [4] discrete-time channel in the natural
way to continuous-time channel. We take the pulse shape q(t)
to be a square-root raised cosine (SRRC) pulse with bandwidth
(1+ β)/2Ts, where β > 0 is the excess bandwidth or roll-off
factor, but our results are valid for any pulse shape that decays
sufficiently fast to zero for t → ∞. The pulse shape q(t) is
normalized such that

∫∞
−∞ |q(t)|2dt = 1.

Fig. 1. Covert Communications Model: Transmitter Alice attempts to send
information to an intended receiver Bob without detection of the presence of
that transmission by a capable and attentive adversary Willie.

Consider H0 the hypothesis when Alice is not transmitting
and H1 the hypothesis when Alice is transmitting. Then, the
received signal yw(t) at Willie is given under each hypothesis
as:

H0 : yw(t) = nw(t)

H1 : yw(t) = xa(t) + nw(t)

where
{
nw(t)

}∞
t=−∞, the noise at Willie, is a zero-mean sta-

tionary Gaussian random process with power spectral density
Sw(f) = N0/2. Per Section I, we consider the case where N0

is not perfectly known to Willie [4], [5].
Willie conducts a binary hypothesis test to determine

whether Alice is transmitting or not. Let PFA, the probability
of false alarm, denote the probability that Willie chooses
H1 when H0 is true, and PMD, the probability of missed
detection, denote the probability that he chooses H0 when
H1 is true. Using the now standard definition of covert-
ness introduced in [3], a system is said to be covert if
PMD + PFA > 1 − ϵ for any ϵ > 0 as T → ∞. Conversely,
it is apparent that covertness is (severely) compromised if
PMD + PFA → 0, as T → ∞.

III. MAIN RESULT

Theorem 1: Given the continuous-time channel of Section
II, if Alice sends ω(

√
T ) bits over (continuous-time) interval

[−T/2, T/2], then Willie can detect her with a low probability
of error, PMD + PFA → 0, as T → ∞.

Proof: The receiver at Willie is shown in Figure 2. It
employs a cyclostationary detector to determine whether Alice
is transmitting. After front-end matched filtering to form
y(t) = yw(t) ∗ q(−t), here yw(t) is the signal received by
Willie, the receiver forms

z =
1

T

∫ T/2

−T/2

|y(t)|2e−j2πt/Tsdt

Fig. 2. Receiver construction: cyclostationary detection at Willie

Willie then employs a threshold test on |z| with threshold γ
to detect whether Alice is transmitting or not, where γ is a
constant that will be determined below. If |z| > γ, Willie
decides that Alice is transmitting; if |z| ≤ γ, Willie decides
that Alice is not transmitting.

Statistical Analysis |z| under H0

We first consider the statistics of |z| when Alice is not
transmitting. To do such, consider E[|z|2|H0].

Let the receiver noise be n(t) = nw(t) ∗ q(−t), the signal
obtained after passing the noise nw(t) on the received signal
through the front-end filter at the receiver. Then:

E[|z|2|H0] = E

∣∣∣∣∣ 1T
∫ T/2

−T/2

|n(t)|2e−j2πt/Tsdt

∣∣∣∣∣
2


=
1

T 2

∫ T/2

−T/2

∫ T/2

−T/2

E
[
|n(t)|2|n(s)|2

]
e−j2πt/Tsej2πs/Tsdtds.

For jointly Gaussian W,X, Y and Z,

E[WXY Z] = E[WX]E[Y Z] + E[WZ]E[XY ]

+ E[WY ]E[XZ].



Hence:

E[|n(t)|2|n(s)|2] = E[n(t)n∗(t)n(s)n∗(s)]

= E
[
|n(t)|2

]
E
[
|n(s)|2

]
+ E [n(t)n(s)]E [n∗(t)n∗(s)]

+ E [n(t)n∗(s)]E [n∗(t)n(s)] (2)

Consider the behavior of the first term of (2). With

E[|n(t)|2] =
∫ ∞

−∞
Sn(f)df,

where Sn(f) is the power spectral density of
n(t) = nw(t)∗q(−t). Letting F{q(t)} = Q(f) be the Fourier
transform of q(t),

E[|n(t)|2] =
∫ ∞

−∞
|Q(f)|2N0

2
df

=
N0

2

∫ ∞

−∞
|Q(f)|2df

=
N0

2
, (3)

and one can readily show that:

1

T 2

∫ T/2

−T/2

∫ T/2

−T/2

E
[
|n(t)|2

]
E
[
|n(s)|2

]
e−j2πt/Tsej2πs/Tsdt ds = O

(
1

T 2

)
(4)

The random phase of the second term of (2) causes the
expectation to be 0 for all s and t, so all that remains is to
consider the third term, which we will see is the dominant
term:

1

T 2

∫ T/2

−T/2

∫ T/2

−T/2

E [n(t)n∗(s)]E [n∗(t)n(s)]

e−j2πt/Tsej2πs/Tsdtds

=
1

T 2

∫ T/2

−T/2

∫ T/2

−T/2

R2
n(t− s)e−j2πt/Tsej2πs/Tsdtds

where Rn(t− s) is the autocorrelation function of n(t).
Letting v = s + t and u = s − t and applying the change of
variables to the above equation results in:

2

T 2

∫ T

0

∫ T−v

v−T

R2
n(u)e

−j2πu/Tsdudv (5)

≤ 2

T 2

∫ T

0

∫ T−v

v−T

R2
n(u) dudv (6)

≤ 2

T 2

∫ T

0

∫ ∞

−∞
R2

n(u)dudv, (7)

where we have used |e−j2πu/Ts | ≤ 1 and noted R2
n(u) ≥ 0

to get the second line above. Employing Parseval’s theorem∫∞
−∞ R2

n(u)du =
∫∞
−∞ S2

n(f)df motivates the evaluation:∫ ∞

−∞
S2
n(f)df =

N2
0

4

∫ ∞

−∞
|Q(f)|4df =

N2
0K1

4
(8)

where we have defined the constant K1 =
∫∞
−∞ |Q(f)|4df .

Hence:

lim
T→∞

E[|z|2|H0] ≤ lim
T→∞

2

T 2

∫ T

0

N2
0K1

4
dv (9)

= lim
T→∞

N2
0K1

2T
(10)

Hence, the random variable |z| converges to 0 in the mean
squared sense, and the rate of convergence of the mean squared
value given in (10) will be important in establishing a tight
upper bound on Alice’s throughput.

We note that the (probabilistic) convergence of |z| to 0
captures a key feature of the cyclostationary detector relative to
a power detector when Willie does not know the noise variance
N0. For a power detector, the mean is not zero when Alice is
not present; rather it depends on N0, thus making it difficult
for Willie to select a threshold when N0 is unknown, as shown
below in the proof of Theorem 2.

Statistical analysis of |z| under H1

Under H1, the signal at the output of Willie’s front-end
matched filter is given by:

y(t) =

m/2∑
k=−m/2

fkp(t− kTs) + nw(t)

where p(t) = q(t)∗q(−t). We desire to lower bound E[|z||H1]
by a constant so that Willie can set a threshold γ between 0 and
that constant; combined with the rates at which the variance
under H0 and H1 go to zero, this will establish the main result,
as shown below.

Given that E[|z||H1] ≥ E[z|H1], we consider the more
tractable E[z|H1], which we will show is sufficient. Noting
that the noise is zero mean and independent of the signal
yields:

E [z|H1] = E

[
1

T

∫ T/2

−T/2

|y(t)|2e−j2πt/Tsdt

]

=
1

T

∫ T/2

−T/2

 m/2∑
k=−m/2

m/2∑
l=−m/2

E[f∗
l fk]p(t− kTs)

p(t− lTs) + E[|n(t)|2]
)
e−j2πt/Tsdt

Using analogous arguments from our work above under H0,
we know that the second term containing E[|n(t)|2] =
O
(

1
T 2

)
. For the first term, using

E[f∗
l fk] =

{
σ2
a, l = k,

0, else



yields

E[z|H1] =
σ2
a

T

∫ T/2

−T/2

m/2∑
k=−m/2

p2(t− kTs)e
−j2πt/Tsdt

=
σ2
a

T

∫ ∞

−∞

m/2∑
k=−m/2

p2(t− kTs)e
−j2πt/Tsdt

− σ2
a

T

∫ −T/2

−∞

m/2∑
k=−m/2

p2(t− kTs)e
−j2πt/Tsdt

− σ2
a

T

∫ ∞

T/2

m/2∑
k=−m/2

p2(t− kTs)e
−j2πt/Tsdt (11)

The second and third terms of (11) will go to zero as T → ∞,
as the tails of the raised cosine pulse are absolutely integrable.
If we move the integral through the summation in the first
term, we note that the summand is the Fourier transform
F{x(t)} =

∫∞
−∞ x(t)e−j2πtf = X(f) of the (shifted) raised

cosine pulse shape squared evaluated at the frequency f = 1
Ts

.
Thus,

lim
T→∞

E[z|H1] = lim
T→∞

σ2
a

T

m/2∑
k=−m/2

e−j2πkP (f) ∗ P (f)|f= 1
Ts
,

where x(·) ∗ y(·) is the convolution of x(·) and y(·). Using
m = T/Ts.

lim
T→∞

E[z|H1] = lim
T→∞

σ2
a(m+ 1)

mTs
P (f) ∗ P (f)|f= 1

Ts

= lim
T→∞

(
σ2
a

Ts
+

1

mTs

)
P (f) ∗ P (f)|f= 1

Ts

Let the (positive) constant K2 = P (f)∗P (f)|f= 1
Ts

and noting
that as T → ∞, m → ∞, yields:

lim
T→∞

E[z|H1] = lim
m→∞

(
σ2
a

Ts
+

1

mTs

)
K2 =

σ2
aK2

Ts
(12)

Hence, for the cyclostationary detector, as T → ∞,
E[z|H1] → C, where C ̸= 0, and the constant C is
not dependent on N0. In contrast, we will see below in the
proof of Theorem 2 that, for the power detector, E[z|H1]
depends upon N0, which is unknown.

The variance of |z| under H1 is given by:

var(z|H1) = E[|z|2|H1]− (E[|z||H1])
2 (13)

≤ E[|z|2|H1]− (E[z|H1])
2 (14)

E[|z|2|H1] = E

 1

T 2

∫ T/2

−T/2

m/2∑
k=−m/2

m/2∑
l=−m/2

f∗
l fk

p(t− kTs)p(t− lTs) +

m/2∑
k=−m/2

fkp(t− kTs)n
∗(t)+

m/2∑
l=−m/2

f∗
l p(t− lTs)n(t) + |n(t)|2e−j2πt/Tsdt


∫ T/2

−T/2

m/2∑
k=−m/2

m/2∑
l=−m/2

f∗
l fkp(s− kTs)p(s− lTs)

+

m/2∑
k=−m/2

fkp(s− kTs)n
∗(s) +

m/2∑
l=−m/2

f∗
l p(s− lTs)n(s)

+|n(s)|2e−j2πs/Tsds
]∗]

As the product of two expressions, each of which involves four
terms, the above expression expands into sixteen terms. After
detailed technical evaluation (omitted) the resulting variance
has the following bound as T → ∞:

lim
T→∞

var(|z||H1) ≤ lim
T→∞

2σ2
aK3 +N2

0K1

T
, (15)

where K1 is defined above, and K3 is a (positive) constant
that depends on the noise variance and the pulse shaping filter
as K3 = P (2f) ∗ P (2f) ∗ Sn(f)|f= 1

Ts
.

Set the threshold employed by Willie to γ =
σ2
aK2

2Ts
.

The probability of false alarm PFA and the probability of
missed detection PMD can then be readily bounded using
Chebyshev’s inequality. For T large,

PFA = P (|z| ≥ γ|H0) ≤
var(|z||H0)

γ2
≤ 2N2

0K1T
2
s

T (σ2
aK2)2

and

PMD = Pr(|z| < γ|H1) = P

(∣∣∣∣|z| − σ2
aK2

Ts

∣∣∣∣ > σ2
aK2

Ts
− γ

)
≤ var(|z||H1)(

σ2
aK2

Ts
− γ

)2

PMD ≤ (2σ2
aK3 +N2

0K1)4T
2
s

T (σ2
aK2)2

Given that Ts, K1, K2 and K3 are all constants, if σ2
a =

ω
(
1/
√
T
)

, then PFA → 0 and PMD → 0 as T → ∞.
Therefore, following arguments in [3], given that Alice is using
a signal power of ω

(
1/

√
T
)

, indicating that Alice transmits

ω(
√
T ) bits in a time interval of [0, T ], then PMD+PFA → 0

as T → ∞, even with noise uncertainty at Willie. □
The above result demonstrates that a straightforward ex-

tension of constructions employed for covert communica-
tions on discrete-time channels might not be effective on the
continuous-time channel. From [7], it is apparent that a power
detector is an optimal receiver for Willie to attempt to detect



Alice’s signal for some noise uncertainty models on a discrete-
time channel. Next, we demonstrate that this is not true on
the continuous-time channel by showing that Alice would be
able to transmit at a constant rate to Bob while remaining
covert if Willie employs a power detector. Hence, it is the
existence of better detectors on the continuous-time channel
that exploit the structure of Alice’s signal that restricts her
ability to communicate covertly on such.

Theorem 2: Consider the model of Section II, with the un-
certainty in Willie’s noise variance characterized by a uniform
random variable: N0 ∼ U [l, u], where l and u are lower and
upper bounds on N0, respectively. Then, Alice can send O(T )
bits covertly to intended receiver Bob over (continuous-time)
interval [−T/2, T/2], if Willie employs a power detector.

Proof: A power detector at Willie forms the variable:

zp =
1

T

∫ T/2

−T/2

|y(t)|2dt

and compares it to a threshold τ .
The expectation of zp is given by

E[zp|H0] = E

[
1

T

∫ T/2

−T/2

|n(t)|2dt

]
=

N0

2

Similarly for H1:

E[zp|H1] = E

[
1

T

∫ T/2

−T/2

|y(t)|2dt

]

=
1

T

∫ T/2

−T/2

m/2∑
k=−m/2

m/2∑
l=−m/2

f∗
l fkp(t− kTs)p(t− lTs)

+
1

T

∫ T/2

−T/2

|n(t)|2dt

=
σ2
a

T

∫ T/2

−T/2

m/2∑
k=−m/2

p2(t− kTs)dt+
N0

2

Let Px = 1
T

m/2∑
k=−m/2

∫ T/2

−T/2

p2(t− kTs) be the average signal

power, which is a constant; then,

E[zp|H1] = σ2
aPx +

N0

2
(16)

Since we are deriving an achievability result, it is sufficient
to demonstrate performance against a detector that upper
bounds the performance of Willie. To do such, assume that
a genie averages out the variation due to measurement noise
on Willie’s received signal. Hence, under H0, Willie always
measures N0

2 , and under H1 he always measures σ2
aPx +

N0

2 .
But recall that Willie does not know the value of N0 and thus
struggles to choose the threshold τ . Consider any choice of
that threshold τ , and define the event A to be the event that

a “good” threshold is selected such that A = {τ : N0

2 ≤ τ ≤
N0

2 + σ2
aPx}. Now, consider the probability that A occurs:

P (A) = P

(
N0

2
≤ τ ≤ N0

2
+ σ2

aPx

)
= P

(
2τ − 2σ2

aPx ≤ N0 ≤ 2τ
)

=
2σ2

aPx

(u− l)
(17)

Now note that if A is not true, then PFA+PMD = 1. Hence,

PMD + PFA ≥ P (Ac) = 1− 2σ2
aPx

(u− l)
(18)

and Alice can select a constant power σ2
a small enough such

that PMD + PFA ≥ 1 − ϵ, hence establishing that Alice can
employ constant power and transmit O(n) bits covertly in n
channel uses when Willie uses a power detector. □

IV. CONCLUSION

If Alice attempts to employ bauded modulation to transmit
ω(

√
T ) bits covertly in a time interval of [0, T ] to receiver

Bob over a continuous-time channel, an attentive adversary
Willie can detect that communication as T → ∞, even in
the face of noise uncertainty at Willie, as the bauded signal
allows detection by a cyclostationary detector for which the
parameters do not depend on the noise variance. In contrast, a
power detector, which is the optimal detector in a discrete-time
channel under common uncertainty models for the noise vari-
ance, has difficulty setting a detection threshold. Hence, the
existence of better detectors in continuous-time significantly
impacts the covert throughput versus what might be suggested
by design for a discrete-time model. This work also helps to
demonstrate the challenges of covert communications as we
incorporate more faithful representations of the physical layer.
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