
GraphZeppeli(: How to Find Connected Components (Even
When Graphs Are Dense, Dynamic, and Massive)
DAVID TENCH, Rutgers University, New Brunswick, USA
EVAN WEST, Stony Brook University, Stony Brook, USA
VICTOR ZHANG, Rutgers University, New Brunswick, USA
MICHAEL A. BENDER, Stony Brook University, Stony Brook, USA
ABIYAZ CHOWDHURY, Stony Brook University, Stony Brook, USA
DANIEL DELAYO, Stony Brook University, Stony Brook, USA
J. AHMED DELLAS, Rutgers University, New Brunswick, USA
MARTÍN FARACH-COLTON, Rutgers University, New Brunswick, USA
TYLER SEIP, MongoDB, New York, USA
KENNY ZHANG, Stony Brook University, Stony Brook, USA

Finding the connected components of a graph is a fundamental problem with uses throughout computer
science and engineering. The task of computing connected components becomes more di!cult when graphs
are very large, or when they are dynamic, meaning the edge set changes over time subject to a stream of edge
insertions and deletions. A natural approach to computing the connected components problem on a large,
dynamic graph stream is to buy enough RAM to store the entire graph. However, the requirement that the
graph "t in RAM is an inherent limitation of this approach and is prohibitive for very large graphs. Thus,
there is an unmet need for systems that can process dense dynamic graphs, especially when those graphs are
larger than available RAM.

We present a new high-performance streaming graph-processing system for computing the connected
components of a graph. This system, which we call Gra%hZe%%e()n, uses new linear sketching data struc-
tures (C+,eS-e./h) to solve the streaming connected components problem and as a result requires space
asymptotically smaller than the space required for a lossless representation of the graph. Gra%hZe%%e()n is
optimized for massive dense graphs: Gra%hZe%%e()n can process millions of edge updates (both insertions
and deletions) per second, even when the underlying graph is far too large to "t in available RAM. As a result
Gra%hZe%%e()n vastly increases the scale of graphs that can be processed.
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1 INTRODUCTION
Finding the connected components of a graph is a fundamental problem with uses throughout com-
puter science and engineering. A recent survey by Sahu et al. [72] of industrial uses of algorithms
reports that, for both practitioners and academic researchers, connected components were the
most frequently performed computation from a list of 13 fundamental graph problems that include
shortest paths, triangle counting, and minimum spanning trees. It has applications in scienti"c
computing [68, 76], 0ow simulation [77], metagenome assembly [28, 64], identifying protein fam-
ilies [58, 82], analyzing cell networks [5], pattern recognition [32, 40], graph partitioning [50, 51],
random walks [38], social network community detection [46], graph compression [39, 49], medical
imaging [34], and object recognition [33]. It is a starting point for strictly harder problems such
as edge/vertex connectivity, shortest paths, and k-cores. It is used as a subroutine for path"nd-
ing algorithms such as Djikstra and A∗, some minimum spanning tree algorithms, and for many
approaches to clustering [25, 26, 67, 81].

The task of computing connected components becomes more di!cult when graphs are very
large, or when they are dynamic, meaning the edge set changes over time subject to a stream of
edge insertions and deletions. Applications on large graphs include metagenome assembly tasks
that may include hundreds of millions of genes with complex relations [28], and large-scale clus-
tering, which is a common machine learning challenge [26]. Applications using dynamic graphs
include identifying objects from a video feed rather than a static image [41] or tracking commu-
nities in social networks that change as users add or delete friends [10, 12]. And of course, graphs
can be both large and dynamic. Indeed, Sahu et al.’s [72] survey reports that a majority of industry
respondents work with large graphs (> 1 million nodes or > 1 billion edges) and a majority work
with graphs that change over time.

A natural approach to computing the connected components on a large, dynamic graph stream
is to buy enough RAM to store the entire graph. Indeed, dynamic graph stream processing systems
such as Aspen and Terrace [23, 66] can e!ciently query the connected components of a large graph
subject to a stream of edge insertions and deletions when the graph "ts in RAM. However, the
requirement that the graph "t in RAM is prohibitive for most large graphs: for example, a graph
with ten million nodes and an average degree of 1 million, using 2 B to encode an edge, would
require 10 TB of memory. We show in Section 6 that the Aspen and Terrace graph representations
are signi"cantly larger than this lower bound.

In public graph-data-set repositories, most graphs are smaller than typical single-machine RAM
sizes. As Figure 1 illustrates, nearly all graphs in Network Repository [70] can be stored as an
adjacency list in less than 16 GB. This "xed memory budget furthermore implies that graphs with
large numbers of vertices must be sparse. Similarly, the Stanford SNAP graph repository and the
SuiteSparse repository have few graphs larger than 16 GB, and graphs with many nodes are always
extremely sparse.

Large, dense graphs, we argue, are absent from graph repositories not because they are un-
worthy of study, but because there are few tools to analyze them. To illustrate: dense graphs do

A preliminary version of this article appeared in Tench et al. [75].
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Fig. 1. Published graphs have few nodes or are sparse. Each point represents a graph dataset from Net-
workRepository. Any point below the dark line indicates a graph that can be represented as an adjacency
list in 16 GB of RAM.

appear in Network Repository [70], but these graphs are never larger than a few GB; moreover,
as the graphs’ vertex count increases, the maximum density decreases such that the densest graphs
never require more than 10 GB. A compelling explanation for the absence of large, dense graphs
is selection bias: interesting dense graphs exist at all scales, but large, dense graphs are discarded
as computationally infeasible and consequently are rarely published or analyzed. Moreover, some
large dense graphs are known to exist as proprietary datasets: for instance, Facebook works with
graphs with 40 million nodes and 360 billion edges. These graphs are processed at great cost on
large high-performance clusters and are consequently not released for general study. [19]

Thus, there is an unmet need for systems that can process dense graphs, especially when those
graphs are larger than available RAM. Existing systems are not designed for large, dense, dynamic
graph streams and instead optimize for other use cases. Aspen and Terrace are optimized for large,
sparse, dynamic graphs that completely "t in RAM, and their performance degrades signi"cantly
on dense graphs and graphs larger than RAM. There is a deep literature on parallel systems for
connected components computation in multicore [29], GPU [6], and distributed settings [14, 44]
but these focus on static graphs which "t in RAM. Many external memory [13] and semi-external
memory [1] systems focus on graphs that are too large for RAM and must be stored on disk, but
none of these systems focus on graphs whose edges can be deleted dynamically.

In this article, we explore the general problem of connected components on large, dense, dy-
namic graphs. We introduce Gra%hZe%%e()n, which computes the connected components of
graph streams using a O(V /log3(V ))-factor less space than an explicit representation of the graph.
Gra%hZe%%e()n uses a new !0-sketching data structure that outperforms the state-of-the-art on
graph sketching workloads. Additionally, Gra%hZe%%e()n employs node-based bu1ering strate-
gies that improve I/O e!ciency. These techniques allow Gra%hZe%%e()n to scale better than exist-
ing systems in several settings. First, for in-RAM computation, Gra%hZe%%e()n’s small size means
it can process larger, denser graphs than Aspen or Terrace: speci"cally, dense graphs are twice as
large as Aspen and at least 40 times larger than Terrace given 64 GB of RAM. Moreover, even if
the input graph "ts in RAM on all systems, Gra%hZe%%e()n is up to 3.5 times faster than Aspen
and 6 times faster than Terrace on large dense graphs. Gra%hZe%%e()n also has comparable query
latency to Aspen and Terrace for su!ciently large or dense graphs. Finally, Gra%hZe%%e()n scales
to SSD at the cost of a 29% decrease to ingestion rate, and is more than two orders of magnitude
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faster than Aspen and Terrace, which su1er signi"cant performance degradation when scaling out
of RAM.

Gra%hZe%%e()n employs a new sketch algorithm, overcoming a computational bottleneck of
existing linear sketching techniques in the semi-streaming graph algorithms literature [21]. The
asymptotically best existing streaming connected components algorithm is Ahn et al.’s S.rea23
)n4CC [3, 62], which has asymptotically low space and update time complexity. S.rea2)n4CC
relies on !0-sampling, which it uses to sample edges across arbitrary graph cuts. However, the
best known !0-sampling algorithm su1ers from high constant and polylogarithmic factors in its
space and update time, as we show in Section 3. This overhead makes any implementation of the
S.rea2)n4CC data structure infeasibly slow and large. Gra%hZe%%e()n employs what we call
C+,eS-e./h, a specialized !0-sampling algorithm for sampling edges across graph cuts, to solve
the connected components problem. For large graphs, C+,eS-e./h uses four times less space
than the best general !0-sampling algorithm and can process updates more than three orders of
magnitude faster.

Gra%hZe%%e()n also uses new write-optimized data structures to overcome prohibitive resource
requirements of existing semi-streaming algorithms. Streaming algorithms have had a signi"cant
impact in large part because they require a small (polylogarithmic) amount of RAM. In contrast,
graph semi-streaming algorithms have higher RAM requirements: for most problems on a graph
with V nodes, sublinear RAM is insu!cient to even represent a solution so O(Vpolylog(V )) RAM
is typically assumed. With the large polylog factors, this is often more RAM than is feasible in prac-
tice; see Section 2. We propose the hybrid streaming model, which enjoys the memory advantage
of the streaming model while allowing enough space in external memory to compute on dynamic
graph streams. In this model, there is stillO(Vpolylog(V )) space available, but onlyO(polylog(V ))
of this space is RAM and the rest is disk, which may only be accessed inO(polylog(V ))-size blocks.
The simultaneous challenges in this model are to design algorithms that use small total space but
also have low I/O complexity. While existing graph semi-streaming algorithms use small space,
their heavy reliance on hashing and random access patterns make them slow on disk. We show
that Gra%hZe%%e()n is simultaneously a space-optimal in-RAM semi-streaming algorithm and an
I/O e!cient external memory algorithm for the connected components problem. We also validate
its performance experimentally, showing that Gra%hZe%%e()n can operate on modern consumer
solid-state disk, increasing the scale of dynamic graph streams that it can process while incurring
only a 29% cost to stream ingestion rate.

Results. In this article, we establish the following:
— GraphZeppelin: We present a new high-performance streaming graph-processing sys-

tem for computing the connected components of a graph. This system, which we call
Gra%hZe%%e()n, uses new linear sketching data structures (C+,eS-e./h, described be-
low) to solve the streaming connected components problem using onlyO(V log3(V )) bits—a
O(V /log3(V ))-factor less space than any lossless representation of the graph. Gra%hZe%3
%e()n is optimized for massive dense graphs: Gra%hZe%%e()n can process millions of edge
updates (both insertions and deletions) per second, even when the underlying graph is far
too large to "t in available RAM. As a result Gra%hZe%%e()n vastly increases the scale of
graphs that can be processed.

— CubeSke,-h: !0-sampling optimized for graph connectivity sketching. We give a
new !0-sampling algorithm, C+,eS-e./h, for vectors of integers mod 2. Given a vector of
length n and failure probability δ , C+,eS-e./h uses O(log2(n) log(1/δ )) bits of space and
O(log(n) log(1/δ )) average time per update, which is a factor of O(log(n)) faster than the
best existing !0-sampler for general vectors [21].
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C+,eS-e./h is a key subroutine in Gra%hZe%%e()n, where it is used to sample graph edges
across arbitrary cuts as part of connected components computation. Here it is used to sketch
vectors of length

(V
2
)
= O(V 2), whereV denotes the number of nodes in the graph. We show

experimentally that C+,eS-e./h’s ingestion is more than 3 orders of magnitude faster than
the state-of-the-art !0 sampling algorithm on graph streaming workloads, and its queries are
two orders of magnitude faster.
In addition to the O(log(V ))-factor speedup, several non-asymptotic factors contribute to
this performance improvement as well. First, the existing algorithm’s average update cost is
dominated by O(log(V ) log(1/δ )) division operations, while C+,eS-e./h’s average update
cost is dominated by O(log(1/δ )) bitwise XOR operations, which are much faster. In addi-
tion, the general algorithm performs 128-bit arithmetic operations (including division) when
processing graphs with more than 105 nodes, whereas C+,eS-e./h can use standard 64-bit
operations to achieve the same error probability. Finally, both algorithms match the asymp-
totic space lower bound but C+,eS-e./h uses roughly 4 times less space than the general
algorithm.

— Asymptotic guarantees of GraphZeppelin: space-optimality, I/O e.ciency,
O(log(V )) average time per update. Gra%hZe%%e()n’s core algorithm matches the
O(V log3(V ))-bit space lower bound for the streaming connected components problem, and
its average per-update time cost of O(log(V )) is O(log(V ))) times faster than the best ex-
isting algorithm [3]. Additionally, Gra%hZe%%e()n can e!ciently ingest stream updates
even when its sketch data structure is too large to "t in RAM: its I/O complexity is
sort(length of stream) +O(V /B log3(V ) +V log∗(V )) and for realistic block sizes it is an I/O-
optimal external-memory algorithm [18]. As a result, given a "xed amount of RAM and
disk, Gra%hZe%%e()n is capable of e!ciently computing the connected components of larger
graphs than existing algorithms in the streaming or external memory models.

— Empirical achievements of GraphZeppelin: better scaling for in-memory, out-
of-core, and parallel computation, and undetectable failure probability. Gra%hZe%3
%e()n’s C+,eS-e./h-based design increases the size of input graphs that can be processed,
scales well to persistent memory, and facilitates parallelism in stream ingestion. As a result,
Gra%hZe%%e()n can ingest 2–5 million edge updates per second on a single scienti"c work-
station (see Section 6), both when its data structures reside completely in RAM and also
when they reside on fast disk. As a result of these advantages, Gra%hZe%%e()n is faster and
more scalable than the state-of-the-art on large, dense graphs:
– GraphZeppelin handles larger graphs for in-RAM computation. Gra%hZe%3

%e()n’s space-e!cient C+,eS-e./h allows it to process graph streams larger than can be
stored explicitly in a "xed amount of RAM and give it an asymptotic O(V /log3(V )) space
advantage over state-of-art systems on dense graphs. Given the polylogarithmic factors
and constants, we need to determine the actual crossover point where Gra%hZe%%e()n
processes graphs more compactly than Aspen and Terrace. We show empirically that this
crossover point occurs when the space budget is between 32 and 64 gigabytes. That is,
for dense graphs on several hundred thousand nodes, Gra%hZe%%e()n is 40% more com-
pact than Aspen and several times more compact than Terrace, and this advantage only
increases for larger space budgets or input sizes. Additionally, for dense graph streams on
218 nodes Gra%hZe%%e()n ingests updates six times faster than Terrace and three times
as fast as Aspen.

– GraphZeppelin can use persistent memory to handle even larger graphs.
Gra%hZe%%e()n’s node-based work bu1ering strategy facilitates out-of-core computation,
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allowing Gra%hZe%%e()n to use SSD to increase the scale of graph streams it can process
while incurring a small cost to performance. We show experimentally that Gra%hZe%3
%e()n ingests updates more than two orders of magnitude faster than Aspen and Terrace
when all systems swap to disk, and that using SSD slows Gra%hZe%%e()n stream ingestion
by only 29%.

– GraphZeppelin’s stream ingestion is highly parallel. Gra%hZe%%e()n employs a
node-based work bu1ering strategy that facilitates parallelism and improves data locality.
We show experimentally that Gra%hZe%%e()n’s multithreaded stream ingestion system
scales well with more threads: its ingestion rate is 25 times higher with 46 threads than an
optimized single-thread implementation.

2 PRELIMINARIES
2.1 Graph Streaming and Hybrid Graph Streaming
In the graph semi-streaming model [27, 61] (sometimes just called the graph streaming model),
an algorithm is presented with a stream S of updates (each an edge insertion or deletion) where
the length of the stream is N . Stream S de"nes an input graph G = (V,E) with V = |V| and
E = |E |. The challenge in this model is to compute (perhaps approximately) some property of
G given a single pass over S and at most O(Vpolylog(V )) words of memory. Each update has
the form ((u,v),∆) where u,v ∈ E,u ! v and ∆ ∈ {−1, 1} where 1 indicates an edge insertion
and −1 indicates an edge deletion. Let si denote the ith element of S , and let Si denote the "rst i
elements of S . Let Ei be the edge set de"ned by Si , i.e., those edges which have been inserted and
not subsequently deleted by step i . The stream may only insert edge e at time i if e " Ei−1, and
may only delete edge e at time i if e ∈ Ei−1.

In Section 4, we additionally use a new variant of the graph semi-streaming model, which we
call the hybrid graph streaming model (since it incorporates some components of the external
memory model [78] into the semi-streaming model). In this model, there is an additional constraint
on the type of memory available for computation: only M = Ω(polylog(V )) = o(V ) RAM is avail-
able, and D = O(Vpolylog(V )) disk space is available. A word in RAM is accessed at unit cost, and
disk is accessed in blocks of B = o(M) words at a cost of B per access. Any semi-streaming algo-
rithm can be run with this additional constraint, but may become much slower if the algorithm
makes many random accesses to disk. The algorithmic challenge in the hybrid graph streaming
model is to minimize time complexity (of ingesting stream updates and returning solutions) in ad-
dition to satisfying the typical limited-space requirement of the data stream model. In Section 4, we
show how Gra%hZe%%e()n can be adapted to this model, and is both a space-optimal single pass
streaming algorithm withO(log2(V )) update time and an I/O e!cient external memory algorithm.

We now summarize the streaming connected components problem studied in [3]:
Pr5,(e2 1 (The S.rea2)n4 C5nne/.e6 C52%5nen.7 Pr5,(e2). Given an insert/delete edge

stream of lengthN that de!nes a graph G = (V,E), return the sets of vertices that de!ne the connected
components of G.

In Section 4, we present an improved algorithm for the above problem and analyze its perfor-
mance in the hybrid graph streaming model. The algorithms for the connected components prob-
lem that we study in this article are probabilistic and guarantee that the connected components
they return are exactly correct with high probability.

The above models and problem de"nition assume that there is a single connected components
query, which is issued at the end of the entire stream of edge updates. Dynamic graph process-
ing systems ideally support answering queries interspersed with graph updates. In Section 5, we
present a streaming graph processing system which is based on our improved algorithm but
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supports arbitrarily interspersed queries and edge updates. In this article, we assume a non-
adaptive adversary generating the input stream, that is, edge updates cannot be a function of the
answers to prior queries.

2.2 Prior Work in Streaming Connected Components
We summarize S.rea2)n4CC, Ahn et al.’s [3] semi-streaming algorithm for computing a spanning
forest (and therefore the connected components) of a graph.

For each node vi in G, de"ne the characteristic vector fi of vi to be a 1-dimensional vector
indexed by the set of possible edges in G. fi [(j,k)] is only nonzero when i = j or i = k and edge
(j,k) ∈ E. That is, fi ∈ {−1, 0, 1}(V

2 ) s.t. for all 0 ≤ j < k <
(V

2
)
:

fi [(j,k)] =



1 i = j and (vj ,vk ) ∈ E
−1 i = k and (vj ,vk ) ∈ E
0 otherwise




Crucially, for any S ⊂ V , the sum of the characteristic vectors of the nodes in S is a direct
encoding of the edges across the cut (S,V \ S). That is, let x = ∑

v ∈S fv and then |x[(j,k)]| = 1 i1
(j,k) ∈ E(S,V \ S).

Using these vectors, we immediately have a (very ine!cient) algorithm for computing the
connected components from a stream: Initialize fi = {0}(V

2 ) for all i . For each stream update
s = ((u,v),∆), set fu [u,v]+ = ∆ and fv [u,v]+ = −∆.

After the stream, run Boruvka’s algorithm [63] for "nding a spanning forest as follows. For the
"rst round of the algorithm, from each ai arbitrarily choose one nonzero entry (w,y) (an edge in E
s.t. w = i or y = i). Add ei to the spanning forest. For each connected componentC in the spanning
forest, compute the characteristic vector of C: aC =

∑
v ∈C fv . Proceed similarly for the remaining

rounds of Boruvka’s algorithm: in each round, choose one nonzero entry from the characteristic
vector of each connected component and add the corresponding edges to the spanning forest. Sum
the characteristic vectors of the component nodes of the connected components in the spanning
forest, and continue until no new merges are possible. This will take at most O(log(V )) rounds.

The key idea to make this a small-space algorithm is to use “!0-sampling” [21] to run this version
of Boruvka’s algorithm by compressing each characteristic vector fi into a data structure of size
O(log2(V )) that can return a nonzero entry of fi with constant probability.

De!nition 1. A sketch algorithm is a δ !0-sampler if it is
(1) Sampleable: it can take as its input a stream of updates to the coordinates of a non-

zero vector a, and output a non-zero coordinate (j, f [j]) of f . S(f ) denotes the sketch of
vector f .

(2) Linear: for any vectors f and д, S(f ) + S(д) = S(f + д) and this operation preserves
sampleability, i.e., S(f + д) can output a nonzero coordinate of vector f + д.

(3) Low Failure Probability: The algorithm may fail by either not returning an answer (a
null answer) or returning an incorrect value for a coordinate of f (an incorrect answer).
The algorithm may give a null answer with probability at most δ . The algorithm may give
an incorrect answer with probability at most 1/V c for some constant c .

For all !0-samplers in this article, S(f ) is a vector and adding two sketches is equivalent to
adding their vectors elementwise.

Le22a 1 (A6a%.e6 8r52 [21], The5re2 1). Given a 2-wise independent hash family F and an
input vector of length n, there is an δ !0-sampler using O(log2(n) log(1/δ )) bits of space.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 9. Publication date: May 2024.
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We denote a !0 sketch of a vector x as S(x). Since the sketch is linear, S(x)+S(y) = S(x +y) for
any vectors x and y. This allows us to process stream updates as follows: we maintain a running
sum of the sketches of each stream update, which is equivalent to a sketch of the vector de"ned by
the stream. That is, let at

i denote ai after stream pre"x St . For the jth stream update sj = ((i,x),∆)
we obtain S(f j

i ) = S(sj ) + S(f j−1
i ).

Linearity also allows us to emulate the merging step of Boruvka’s algorithm by summing the
sketches of all nodes in each connected component. We require an independent !0-sampler for each
v ∈ V and each of the O(log(V ) rounds of Boruvka. For each of these !0-samplers we set δ = 1/3,
so each !0-sampler is O(log2(V ) bits (From Lemma 1). We refer to the O (logV ) !0-sampler data
structures for a single v ∈ V as a node sketch. As there are O (V ) node sketches, the total size of
the entire data structure is O(V log3(V )). Recent work [62] has shown that this is asymptotically
optimal.

The above description assumes that the exact number of nodes V is known a priori. This is not
strictly necessary: All we need is a loose upper bound on the number of nodes we will eventually
see. Given an upper boundU s.t.V ≤ U ≤ V c for some constant c , we can simply de"ne fi to have
length

(U
2
)
. The node sketch of fi then has sizeO(log3(U 2)) = O(log3(V )). We create a node sketch

forvi the "rst time it appears in a stream update (vi ,vj ) so the total space cost is stillO(V log3(V )).
Similarly, even if nodes are identi"ed in the input stream as arbitrary strings instead of integer IDs
in the range [V ], we can use a hash function with range [O(U 2)] to ensure that every node gets a
unique integer ID with high probability.

3 !0-SAMPLING REVISITED
Existing !0-sampling algorithms are asymptotically small and fast to update, but in practice high
constant and logarithmic overheads in size and update time prevent these algorithms from being
useful for a streaming connected components algorithm. We now review some details of the best
known !0-sampling algorithm and demonstrate experimentally that using it to emulate Boruvka’s
algorithm for graph connectivity would be prohibitively slow and would require an enormous
amount of space. Then we introduce an !0-sketching algorithm which exploits the structure
of the connected components problem to improve performance, and experimentally demon-
strate that it is 4 times smaller and 3 orders of magnitude faster to update than the state-of-
the-art.

The best known !0-sampling algorithm [21] is summarized in Figure 3. Given a vector f ∈ Zn ,
the data structure consists of a matrix of log(n) by q log(1/δ ) “buckets” (for some small constant
q). Each bucket represents the values at a random subset of positions of f . This representation is
lossy: we can recover a nonzero element of f from bucket Bi, j only when a single position in Bi, j
is nonzero. Equivalently, the support of Bi, j , denoted by supp(Bi, j ), is 1. If supp(Bi, j ) = 1, we say
that Bi, j is good, and say that it is bad, otherwise. With probability 1−δ , ∃i, j s.t. Bi, j is good and
therefore we can recover a nonzero value from f . Each bucket includes a checksum that indicates
whether it is good with high probability.

Each bucket Bi, j contains three values: ai, j ,bi, j , and ci, j . If Bi, j is good, then the checksum test
on line 15 passes and f [bi, j ] = ai, j/bi, j . If the checksum test fails Bi, j is bad.

When a stream update (e,∆) arrives, its membership in each bucket is determined using the hash
function on line 3: if hash(e) ≡ 0 (mod 2i ) then e is in Bi, j . If it is in bucket Bi, j , it is applied to
ai, j ,bi, j , and ci, j according to the logic on lines 7–9. When the sketch is queried, it checks whether
each bucket passes the checksum test on line 15. If some bucket passes this test, its sampled value is
returned. Figure 2 gives an example of this process. For a more thorough analysis of this algorithm
see [21].
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Fig. 2. Compressing a characteristic vector. Each highlighted cell contains one nonzero element from the
vector and can be sampled, yielding an edge incident to node 1.

1: function +%6a.e_7-e./h(idx, ∆) " Add ∆ to vector index ‘idx’
2: for all col ∈ [0,q log(1/δ )) do
3: col_hash( hash(col, idx)
4: row( 0
5: checksum( r [col]idx mod p
6: while row == 0 OR col_hash[row-1] == 0 do
7: col[row].a( col[row].a + idx ) ∆
8: col[row].b( col[row].b + ∆
9: col[row].c( col[row].c + ∆ ) checksum

10: row( row + 1
11: function 9er:_7-e./h( ) " Get a non-zero vector index
12: for all col ∈ [0,q log(1/δ )) do
13: for all bucket ∈ col do
14: value( bucket.a/bucket.b
15: if value is integer AND bucket.c == bucket.b ) r [col]value mod p then
16: return {value, bucket.b} " Found a good bucket, done
17: return sketch_failure " All buckets bad

Fig. 3. State—of—the—art !0-sampling algorithm.

Existing ℓ0-samplers are slow to update for graph streaming workloads. Note in line 9
of Figure 3 that updating ci, j of bucket Bi, j requires modular exponentiation (computed on
line 5), necessitating O(log(n)) multiplication operations and O(log(n)) modulo operations
(where the modulus is a large prime). As a result, in the worst case, this algorithm performs
O(log(n) log(1/δ )) arithmetic operations per stream update. In the average case, the update modi-
"es only O(log(1/δ )) buckets, however, the cost to generate checksums is still O(log(n) log(1/δ )).
Moreover, for su!ciently large vectors, this modular exponentiation must be done on integers
larger than a 64-bit machine word, drastically increasing computation time in practice.

The “Standard !0” column of Figure 4 displays the single-threaded ingestion rate in updates
per second of the state-of-the-art !0-sampling algorithm for vectors of various sizes. These results
were obtained on a Dell Precision 7820 with 24-core 2-way hyperthreaded Intel(R) Xeon(R) Gold
5220R CPU @ 2.20 GHz and 64 GB 4x16 GB DDR4 2933 MHz RDIMM ECC Memory. Note how
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Fig. 4. C)beSke,-h is faster than standard !0 sketching. Ingestion rates (in updates/second) are listed for
both !0 sketching methods.

Fig. 5. C)beSke,-h is significantly smaller than standard !0 sketching. Sizes are listed for both !0 sketching
methods.

ingestion rate decreases as vector length increases, and in particular there is a catastrophic slow-
down at vector length 1010. This dramatic decrease in ingestion rate is due to the need to perform
modular exponentiation on integers larger than 264, requiring the use of 128-bit integers thus slow-
ing computation. When sketching characteristic vectors of length O(V 2) for streaming connected
components, 128-bit integers are required when V ≥ 105.

When using !0-sampling for Boruvka emulation, each stream update ((u,v),∆) must be applied
to the node sketches of u and v . For any node u, the node sketch of u is made up of log(V ) !0-
sketches of au . Each of these !0-sketches has a failure rate of δ = 1/100 and, therefore, a width of
log(1/δ ) = 7. Processing a stream update requires 2·7 ·O(log2(|au |) = 28 ·O(log2(V )) multiplication
and modulo operations. For a graph with a million nodes, S.rea2)n4CC must apply each update
to 28 sketch vectors of length 1012, so it can process roughly 800/28 = 29 edge updates per second.

Existing ℓ0-samplers are large for graph streaming workloads. Each node sketch consists of
log(V ) !0 sketches and each !0-sketch is a vector of 7c log(V 2) = 14c log(V ) buckets. Each bucket
is composed of three integers so a node sketch consists of 42c log2(V ) integers. As noted above,
128-bit(16 B) integers are necessary when V ≥ 105, so for c = 2 the size of a node sketch is
1344 log2(V )B. Since there is a node sketch for each node in the graph, the entire streaming data
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Fig. 6. C)beSke,-h answers queries faster than standard !0 sketching. .ery speeds (in queries/second) are
listed for both !0 sketching methods.

structure has size 1344V log2(V )B. When V = 1 million, this data structure is roughly 500 GiB in
size.

Existing ℓ0-samplers are slow to query for graph streaming workloads. Querying an !0
sketch requires performing a modular exponentiation, at a cost of O(log(n)) multiplications, for
each bucket. Figure 6 shows that, for a vector of length 1012 (corresponding to a graph with 1
million nodes), a !0 sketch query takes 1/38000 of a second or 26 microseconds. The "rst Boruvka
round of a connectivity query for a graph on 1 million nodes requires querying 1 million !0 sketch
sketches, which takes 1e+6/38000 > 26 seconds, in addition to the cost of merging the sketches.
A system operating under these parameters would be limited to at most 2 queries per minute. A
user that wants to make frequent connectivity queries on a high-speed graph stream would "nd
this lower bound on query latency prohibitively high.

Using existing ℓ0-samplers o/ers no advantage on modern hardware. The goal of a stream-
ing connected components algorithm is to use smaller space than would be required to store
the entire graph explicitly. As we demonstrate empirically in Section 6, the most space-e!cient
dynamic graph processing system, Aspen, requires roughly 4 B of space for each edge in the
graph. A straightforward back-of-the-envelope calculation reveals that even for dense graphs
with average degree V /2, S.rea2)n4CC would use less space than Aspen only on very large
inputs which require enormous RAM capacities and decades of processing time: 1344V log2(V )B
≤ 4B · V 2/4 only when V ≥ 5 · 105. Processing half a million-node graph using S.rea2)n4CC
would require 220 GB of RAM and, at an ingestion rate of less than 35 edges per second, would
take more than 56 years to process the graph’s roughly 64 billion edges. While S.rea2)n4CC’s
space complexity is much smaller than explicit graph representations like Aspen’s asymptotically,
in absolute terms it o1ers no advantage on modern hardware.

3.1 Improved ℓ0-Sampler for Graph Connectivity
We present C+,eS-e./h, an !0-sampling algorithm for vectors on the integers mod 2, which is
smaller than the best existing general-purpose !0-sampling algorithm and is asymptotically faster
to update. Since addition of characteristic vectors (Section 2.2) can be thought of as addition over
vectors ∈ Z2, C+,eS-e./h is su!cient for solving the connected components problem. Addition-
ally, C+,eS-e./h may be useful for other sketching algorithms for problems such as edge- or
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1: function +%6a.e_7-e./h(idx) " Toggle vector index ‘idx’
2: for all col ∈ [0,q log(1/δ ) do
3: col_hash( hash1(col, idx)
4: row( 0
5: checksum( hash2(col, idx)
6: while row == 0 OR col_hash[row-1] == 0 do
7: col[row].α ( col[row].α ⊕ idx
8: col[row].γ ( col[row].γ ⊕ checksum
9: row( row + 1

10: function 9er:_7-e./h( ) " Get a non-zero vector index
11: for all col ∈ [0,q log(1/δ )) do
12: for all bkt ∈ col do
13: if bkt.γ == hash2(col, bkt.α ) then
14: return bkt.α " Found a good bucket, done
15: return sketch_failure " All buckets bad

Fig. 7. Pseudocode for the C)beSke,-h algorithm.

vertex-connectivity, testing bipartiteness, and "nding minimum spanning trees and densest sub-
graphs [2, 3, 30, 57].

Since C+,eS-e./h’s goal is to recover a nonzero entry from vectors of integers mod 2, it can
use a much simpler bucket data structure than the general-purpose !0-sketch, improving space
and update time costs. The C+,eS-e./h algorithm is summarized in Figure 7. Each bucket Bi, j
maintains two values: αi, j , which is used to recover the position of a single nonzero entry, and
γi, j , which is used as a checksum. αi, j and γi, j are each O(log(n)) bits, and, therefore, require O(1)
machine words. Since each vector value is either 0 or 1, ∆ = 1 for every stream update (e,∆), and
so for simplicity we refer to the update as (e).

Function +%6a.e_7-e./h() in Figure 7 describes how C+,eS-e./h processes a stream update.
Given update (e), if h1(e) ≡ 0 (mod 2i ) then e is in Bi, j . For each such Bi, j , αi, j = αi, j ⊕bin(e) and
γi, j = γi, j ⊕h2(bin(e)) where ⊕ denotes bitwise XOR, bin(ew ) denotes the binary representation of
ew , and h1 and h2 are hash functions drawn from a 2-wise independent family of hash functions.
Note that the procedure for determining whether e ∈ Bi, j is identical to the algorithm in Figure 3,
but the procedure for updating Bi, j is di1erent. Importantly, C+,eS-e./h never performs modular
exponentiation, which as we will show makes it a loд(V ) factor faster than the existing algorithm
in the average case. As a result of +%6a.e_7-e./h(), given a sequence of updates (e1), (e2), . . . , (ek )
to the data structure

αi, j =
⊕
w ∈[k]

bin(ew ), (1)

γi, j =
⊕
w ∈[k]

h2(bin(ew )). (2)

Function 9er:_7-e./h() describes how C+,eS-e./h returns a nonzero entry of the input vec-
tor. For any bucket Bi, j :

result =




e ′ if αi, j = bin(e ′) and γi, j = h2(bin(e ′))
FAIL if αi, j = 0 and γi, j = 0 OR

if γi, j ! h2(αi, j )
A nonzero entry is recovered from C+,eS-e./h by attempting to recover a nonzero entry from

each Bi, j until one returns a value other than FAIL. If no such bucket exists, the algorithm returns
NULL.
ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 9. Publication date: May 2024.



GraphZeppeli( 9:13

The5re2 1. CubeSketc( is an !0 sampler that, for input vector x ∈ Zn
2 , has space complexity

O(log2(n) log(1/δ )), worst-case update complexity O(log(n) log(1/δ )), average-case update complex-
ity O(log(1/δ )), and failure probability at most δ .

Pr558. The space and update time results follow by construction: each bucket Bi, j requires a
constant number of machine words, and i ∈ [O(log(n)]) and j ∈ [O(log(1/δ )]. Applying an update
to any bucket Bi, j requires constant time, and in the worst case, an update will be applied to each
of the O(log(n) log(1/δ )) buckets. In the average case, an update is applied to O(log(1/δ )) buckets.

Le22a 2. CubeSketc(’s selection process succeeds with probability at least 1 − δ . Equivalently,
CubeSketc( contains a bucket Bi, j with a single nonzero entry, that is, Pr

[
∃i, j s.t. supp(Bi, j ) = 1

]
≥

1 − δ .
Pr558. Adapted from [21]. Choose i ∈ [log(n)] such that 2i−2 ≤ ‖x ‖0 < 2i−1 where ‖x ‖0 denotes

the !0 norm of x , i.e., the number of nonzero entries of x . Let Ax be the set of positions of nonzero
entries in x . Then, since h1 is drawn from a 2-universal family of hash functions, ∀j ∈ [6 log(1/δ )],

Pr
[
supp(Bi, j = 1)

]
=

∑
k ∈Ax

1
2i

(
1 − 1

2i

) ‖x ‖0−1

>
‖x ‖0
2i

(
1 − ‖x ‖02i

)
> 1/8.

Then Pr
[
supp(Bi, j ! 1)∀j ∈ [6 log(1/δ )]

]
< (1 − 1/8)6 log(1/δ ) = (7/8)6 log7/8(1/δ )/log7/8(2) =

δ−6/log7/8(2) < δ . !

Le22a 3. CubeSketc(’s checksum succeeds with high probability. That is, ∀w,y, if supp(Bw,y ) =
1 then γw,y = h2(αw,y ) and if supp(Bw,y ) > 1 then Pr

[
γw,y ! h2(αw,y )

]
≥ 1 − 1/nc for some

constant c.

Pr558. When Bi, j has a single nonzero entry, it always passes the error check. That is, if
supp(Bi, j ) = 1, αw,y = bin(ei )where ei is the single nonzero element of Bi, j , andγw,y = h2(bin(ei )).

When Bi, j has more than one nonzero entry, then it passes the error check only in the rare
event of a hash collision: If supp(Bi, j ) > 1, "x ei ∈ Bi, j . By Equations (1) and (2), γw,y = h2(αw,y )
i1

⊕
j ∈Bi, j \ei

h2(bin(j)) ⊕ h2(bin(ei )) = h2(αw,y ). Since h2 is a 2-wise independent hash function,
assuming that γi, j is c log(n) bits:

Pr

h2(bin(ei )) = 56

7
⊕

j ∈Bi, j \ei

h2(bin(j))89
:
⊕ h2(αw,y )


=

1
2c log(n) =

1
nc .

!

Lemmas 2 and 3 imply that C+,eS-e./h is sampleable with probability 1 − δ (see De"nition 1).
C+,eS-e./h may be added via elementwise

⊕
(exclusive or). Linearity of C+,eS-e./h follows

from the observation that exclusive or is a linear operation. !

Figure 4 illustrates that C+,eS-e./h is far faster than the standard !0-sampling algorithm. In
fact, when sketching characteristic vectors of graphs with at least 105 nodes, it is more than 3
orders of magnitude faster. This dramatic speedup is a result both of C+,eS-e./h’s asymptot-
ically lower update time complexity, and the fact that its update cost is dominated by bitwise
exclusive OR operations, which are in practice much faster than the division operations standard
!0-sampling performs. Similarly, C+,eS-e./h’s query operations require computing one hash per
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bucket, which is fast in practice. Finally, standard !0 sampling is slowed signi"cantly by the need to
performO(log(V ) log(1/δ ) modular exponentiation operations on 128-bit integers for each update
whenV ≥ 105. C+,eS-e./h does not require 128-bit operations until processing graphs with tens
of billions of nodes.

Figure 5 shows that, for the same input vector length and failure probability, C+,eS-e./h is
twice as small as standard !0 sampling for smaller vectors and four times smaller for larger vectors.
This is a result of the fact that C+,eS-e./h’s bucket data structures use half the machine words
of standard !0 sampling and the fact that C+,eS-e./h does not need to use 128-bit integers for
longer vectors.

Querying C+,eS-e./h is up to 320 times faster than standard !0 sketching due in part to elimi-
nating modular exponentiation and requiring only 64 bit machine words (as for ingestion above).
Per Figure 6, on a million-node graph C+,eS-e./h performs 12 million queries per second or only
83 nanoseconds per query. When performing the "rst round of a connectivity query on a graph
with 1 million nodes, we query all the sketches which takes only ≈ 83 milliseconds. This is much
faster than the 26 seconds required for the standard !0 sketch as described above. C+,eS-e./h’s
low query latency allows it to quickly answer queries, even on large datasets. In Section 6.6 we note
that Gra%hZe%%e()n’s connectivity query performance depends on both the underlying sketches’
ingestion and query performance.

4 BUFFERING FOR I/O EFFICIENCY AND IMPROVED PARALLELISM
In the streaming connectivity problem, stream updates are !ne-grained: each update represents the
insertion or deletion of a single edge. Since streams are ordered arbitrarily, even a short sequence
of stream updates can be highly non-local, inducing changes throughout the graph. As a result,
S.rea2)n4CC and similar graph streaming algorithms do not have good data locality in the worst
case. This lack of locality can cause many CPU cache misses and therefore reduce the ingestion
rate, even when sketches are stored in RAM. The cache-miss cost can be high since ingesting
each stream update (u,v,∆) requires modifying a logarithmic number of sketches, and can thus
induce a poly-logarithmic number of cache misses. The consequences are even worse if sketches
are stored on disk since each edge update requires loading a logarithmic number of sketches from
disk, leading to the following observation.

O,7er;a.)5n 1. In the hybrid semi-streaming model with M = o(V log3(V )) RAM and D =
Ω(V log3(V )) disk, St)eam,-.CC uses Ω(1) I/Os per update and processing the entire stream of length
N uses Ω(N ) = Ω(E) I/Os.

Any sketching algorithm that scales out of core su1ers severe performance degradation unless it
amortizes the per-update overhead of accessing disk. Such an amortization is not straightforward,
since sketching inherently makes use of hashing and as a result induces many random accesses,
which are slow on persistent storage. We now introduce a sketching algorithm for the stream-
ing connected components problem that amortizes disk access costs, even on adversarial graph
streams, and as a result is simultaneously a space-e!cient graph semi-streaming algorithm and
an I/O-e!cient external-memory algorithm. We also note that the design facilitates parallelism,
which we experimentally verify in Section 6.

4.1 I/O-E)icient Stream Ingestion
We describe Gra%hZe%%e()n’s I/O e!cient stream ingestion procedure in the hybrid streaming
model (see Section 2.1).

Arbitrarily partition the nodes of the graph into node groups of cardinality max{1,B/log3(V )}.
Let U ⊂ V denote a node group, and let S(U) denote the node sketches associated with the nodes
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in U. Store S(U) contiguously on disk. This allows S(U) to be read into memory I/O e!ciently:
if node groups are of cardinality 1, then B is smaller than the size of a node sketch, and if each
node group has cardinality B/log3(V ) > 1, then the sketches for the group have total size O(B).

Applying stream update ((u,v),∆) to node sketches of u and v immediately upon arrival takes
Ω(1) I/Os since the corresponding sketches must be read from disk. To amortize the cost of fetching
sketches, Gra%hZe%%e()n only fetches S(Ui ) when it has collected max{B, log3(V )} updates for
Ui . Since there may be O(V ) node groups, collecting these updates for each node group cannot
be done in RAM. Instead, we collect these updates I/O e!ciently on disk using a gu!er tree, a
simpli"ed version of a bu1er tree [9] which uses O(V (log3(V )) space.

Like a bu1er tree, a gutter tree consists of a tree whose vertices each have bu1ers of size O(M).
Each non-leaf vertex has O(M/B) children. We refer to a leaf vertex of the gutter tree as a gu!er ,
because it "lls with stream data but is periodically emptied by applying the contained stream data
to sketches. Each leaf vertex in the gutter tree is associated with a node group U and has size
max{B, log3(V )}, the same size as S(U). When a gutter for node group U "lls, Gra%hZe%%e()n
reads S(U) and the updates stored in the gutter into memory, applies the updates to S(U), and
writes S(U) back to disk. Since data does not persist in leaf vertices, no rebalancing is necessary.

Le22a 4. G)a/(Ze//e0,-’s stream ingestion uses O(V log3(V )) space and sort(N ) =
O(N /B(logM/B (V /B))) I/Os in the hybrid streaming setting.

Pr558. Gra%hZe%%e()n’s sketch data structures use O(V log3(V )) space.
Each leaf in the gutter tree has a gutter of size max{B, log3(V )}. This is one gutter for each node

group and there are V /(max{1,B/log3(V )}) node groups so the total space for the leaves of the
gutter tree is O(V log3(V )).

In the level above the leaves, there areV log3(V )/B · B/M vertices each with size M , so the total
space used at this level isO(V log3(V )). Each subsequent higher level of the tree usesO(M/B) space
less than the level below it, so the total space used for the entire gutter tree is O(V log3(V )).

The I/O complexity of the gutter tree is equivalent to that of the bu1er tree, except that leaf
gutters are 0ushed by reading in the appropriate sketches from disk and applying the updates in the
gutter to these sketches. Asymptotically this incurs no additional cost so the total I/O complexity
for ingestion is sort(N ). !

4.2 I/O-E)icient Connectivity Computation
Le22a 5. Once all stream updates have been processed, G)a/(Ze//e0,- computes connected com-

ponents using O((V log3(V )/B) + (V log∗(V )) I/Os in the hybrid streaming model.

Pr558. Each round of Boruvka’s algorithm has three phases. In the "rst, an edge is recovered
from the sketch of each current connected component. In the second, for each edge its endpoints
are merged in a disjoint set union data structure which keeps track of the current connected
components. In the third phase, for each pair of connected components merged in phase 2, the
corresponding sketches are summed together. We analyze the I/O cost of each phase of a round
separately.

In the "rst round, to query the sketches in the "rst phase, all of the sketches must be read into
RAM which can be done with a single scan. This uses O(V log3(V )/B) I/Os.

The disjoint set union data structure has size O(V ) and must be stored on disk. In the second
phase, the cost of each DSU merge is log∗(V ) I/Os, because a merge requires a leaf-to-root traversal
of the union "nd data structure and this leaf-to-root path has length at most log∗(V ). In the worst
case, each parent resides in a di1erent block from its child so each step of the path requires an I/O.
Since there are at most V merges, the total I/O cost is V log∗(V ).
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In the third phase, summing the sketches of the merged components together is I/O e!cient if
B = O(log3(V )), since the disk reads and writes necessary for summing sketches are the size of a
block or larger. The cost for the third phase is O(V log3(V )/B).

If B = ω(log3(V )), sketches are much smaller than the block size. Since the merges performed
in each round of Boruvka are a function both of the input stream and of the randomness of
the sketches, these merges induce random accesses to the sketches on disk and so summing the
sketches for each merge takes O(1) I/Os. In total, the third phase takes O(V ) I/Os in this case.

Since the number of connected components decreases by at least half in each round, the I/O
cost of each round at at most half the cost of the previous round. Therefore, the asymptotic cost of
the entire Boruvka algorithm is the cost of the "rst round, that is, O((V log3(V )/B) + (V log∗(V ))
I/Os. !

C5r5((ar: 1. When E = Ω(V log3(V )) and B = o(log3(V )) or M = O(V ), G)a/(Ze//e0,- is I/O
optimal for the connected components problem; i.e., it uses sort(E) = O(E/B(logM/B (V /B))) I/Os.

Note that for optimality the graph cannot be too sparse. In practice, for some graph streams M =
O(VB) and D = O(V log3(V )). In this case, we can omit the upper levels of the gutter tree and write
I/O e!ciently to the leaf gutters stored on disk. In Section 5, we describe how Gra%hZe%%e()n can
perform stream ingestion using either a full gutter tree or just the leaf gutters, and evaluate the
performance of both approaches in Section 6.

5 SYSTEM DESCRIPTION
The Gra%hZe%%e()n algorithm is split into two components: stream ingestion, in which edge
updates are processed and stored using C+,eS-e./h, and query-processing, in which a span-
ning forest for the graph is recovered from these sketches. These components use SSD when the
sketches are so large that they do not "t in RAM. Their implementations are parallel for better
performance on multi-core systems.

Gra%hZe%%e()n’s user-facing API consists of e64e_+%6a.e() for processing stream updates,
and ()7._7%ann)n4_85re7.() to compute and return the connected components. On initialization,
Gra%hZe%%e()n allocates log(V )C+,eS-e./h data structures for each node in the graph, for a total
sketch size of approximately 280V · log2(V ) bytes. It also initializes its bu1ering data structure.

5.1 Stream Ingestion
Each update in the input stream is immediately placed into a bu1ering system. Periodically, the
bu1ering system produces a batch of updates bound for the same graph node u. This batch is
inserted into a work queue, which then hands the batch o1 to a Graph Worker , i.e., a thread
for carrying out batched sketch updating. Because each batch is only applied to a single node
sketch, and because each of the log(V ) C+,eS-e./hes in a node sketch can be updated in parallel,
many Graph Workers can operate in parallel without contention (see Section 5.1). A high-level
illustration and pseudo code of Gra%hZe%%e()n stream ingestion are shown in Figures 8 and 9,
respectively.

Bu/ering. Gra%hZe%%e()n’s bu1ering system ingests updates from the stream and periodically
outputs a batch of updates for a single node in the graph. Gra%hZe%%e()n implements two bu1er-
ing data structures: a gutter tree, described in Section 4, and a simpli"ed version of the gutter tree,
which only includes the leaves. Depending upon available memory, Gra%hZe%%e()n uses only one
of these two bu1ering structures at any time. The leaf-only version is fundamentally a special case
gutter tree used when su!cient memory is available (M > V · B) and is optimized for this case.
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Fig. 8. GraphZeppeli( stream ingestion data flow.

1: function e64e_+%6a.e(edge( {u, v}) "Write edge update to bu1ers
2: ,+88er_)n7er.({u, v})
3: ,+88er_)n7er.({v, u})
4: function 65_,a./h_+%6a.e( ) " Apply batched updates to supernode
5: {batch, node}( 4e._,a./h( )
6: for all sketch ∈ supernodes[node] do
7: +%6a.e_7-e./h_,a./h(sketch, batch)
8: function +%6a.e_7-e./h_,a./h(sketch, batch)
9: for all update ∈ batch do

10: sketch.+%6a.e_7-e./h(update)

Fig. 9. Pseudocode for GraphZeppeli(’s core stream ingestion routines. e/0e_)p/a,e() is part of the user
API, while /1_ba,-h_)p/a,e(), and )p/a,e_2ke,-h_ba,-h() are internal functions.

These bu1ering techniques confer several bene"ts. First, when Gra%hZe%%e()n’s sketches are
so large that they do not "t in RAM and are stored on SSD, applying updates to a single node sketch
in large batches amortizes the I/O cost of reading the node sketch into memory. Without bu1ering,
each stream update would incur Ω(1) I/Os in the worst case. We demonstrate in Section 6.4 that
bu1ering facilitates I/O e!ciency and parallelism.
Gutter tree. Gra%hZe%%e()n allocates 8MB for each non-leaf bu1er in the gutter tree. The gutter
tree writes updates to the disk in blocks of 16KB, and has a fan-out of 8MB

16KB = 512. A write block
of 16KB is an e!cient I/O granularity for SSDs and a bu1er size of 8MB balances bu1ering perfor-
mance with the latency of 0ushing updates through the gutter tree. When V > 5 · 104, the size of
a sketch is greater than 100KB, much larger than the 16KB block. Therefore, the leaf nodes of the
gutter tree accumulate updates for a single graph node. Gra%hZe%%e()n allocates space for each
leaf gutter equal to twice the size of a node sketch.

When we initialize Gra%hZe%%e()n, we leverage the static structure of the gutter tree to pre-
allocate its disk space. A call to ,+88er_)n7er.({u,v}) inserts {u,v} to the root bu1er of the gutter
tree. Another thread asynchronously 0ushes the contents of full bu1ers to the appropriate child
using the pwrite system call. When a 0ush causes the bu1er of a child node to "ll, that child
node is recursively 0ushed before the 0ush of the parent continues. When a leaf gutter is full
this thread moves the batch of updates into the work queue for processing by Graph Workers in
65_,a./h_+%6a.e().
Leaf-only gutter tree. For each graph node u we maintain a gutter that accumulates updates for u.
When the system is initialized, we allocate the memory for each of these gutters. By default, each
leaf gutter is 1/2 the size of a node sketch. This choice balances RAM usage with I/O e!ciency as
shown in Section 6.4. ,+88er_)n7er.((u,v)) inserts edge e = (u,v) directly into the gutter for node
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u. As before, when the gutter becomes full, it is 0ushed and the batch is inserted into the work
queue. Note that the leaf-only gutter data structure need not "t entirely in RAM, so long as at least
a page of memory is available per bu1er the rest can be e!ciently swapped to SSD; see Section 6.

Work queue. The work queue functions as a simple solution for the producer-consumer problem,
in which the thread "lling bu1ers produces work and the Graph Workers consume it. Once a bu1er
is "lled the ,+88er_)n7er.() function inserts the batch of updates into the work queue. Later a
Graph Worker removes the batch from the front of the queue in 65_,a./h_+%6a.e().

Insertions to the queue are blocked while the queue is full, and Graph Workers in need of work
are blocked while the queue is empty. The work queue can hold up to 8д batches, where д is the
number of Graph Workers. A moderate work queue capacity of 8д limits the time either the bu1er-
ing system or graph workers spend waiting on the queue, even when batch creation is volatile,
while keeping the memory usage of the work queue low.

Sketch updates. In each call to 65_,a./h_+%6a.e(), Graph Workers call 4e._,a./h() to receive
a batch of updates bound for a particular node u from the work queue. The Graph Worker then
uses +%6a.e_7-e./h_,a./h(sketchu , batch) to update each of the O(log(V )) C+,eS-e./he7 in
the node sketch of u.

As described in Section 3.1, a C+,eS-e./h is a vector of buckets, each of which consists of
a 64 bit α value and a 32 bit γ value. Each C+,eS-e./h stores a two dimensional array A of
buckets Bi, j , with dimensions log(V 2) ) (log(1/δ ) = 7). To apply an update (e = {u,v}) to a
C+,eS-e./h, the Graph Worker determines which buckets Bi, j contain e , and sets αi, j := αi, j ⊕ e
and γi, j := γi, j ⊕ hy (e). The hash values are calculated using xxHash [20].

Each C+,eS-e./h data structure uses 7 log(V 2) = 14 log(V ) 12 B buckets. In total, this is
168 log(V ) bytes per C+,eS-e./h, and 168 log(V ) log3/2(V ) bytes per node sketch.

Multithreading sketch updates. Applying a batch to a node sketch in 65_,a./h_+%6a.e() is
handled asynchronously by a Graph Worker, allowing what we call batch-level parallelism. We
implement these workers using C++ STL threads.

We use OpenMP [65] to dispatch a group of threads to process each C+,eS-e./h update in +%3
6a.e_7-e./h_,a./h(). We refer to this as sketch-level parallelism. OpenMP allows us to specify
the number of threads to allocate to a task and handles work allocation transparently. When updat-
ing a node sketch, applying a batch to each C+,eS-e./h is treated as one work unit and OpenMP
allocates the log(V ) units between the apportioned threads.

Implementing both batch- and sketch-level parallelism gives us a natural way to tune Gra%hZe%3
%e()n’s performance. For instance, we can decide to con"gure more Graph Workers with fewer
threads per group, or fewer Graph Workers with more threads per group. We experimentally de-
termine a good con"guration for our hardware and datasets (see Section 6.4).

A single work unit is never shared between threads in the same group. As a result, a C+,eS-e./h
is only modi"ed by one thread in a group, so no locking is necessary at the sketch level. However,
locking is necessary at the batch level because consecutive batch updates may be requested to the
same node sketch, and thus multiple graph workers may seek to dispatch thread groups to the same
sub-sketches. We minimize the size of this critical section by exploiting linearity of !0-samplers.
Rather than locking a node sketch S(x) for the entire batch operation, we apply the updates to an
empty sketch S(x0) and lock only to add S(x) = S(x) + S(x0).

5.2 *ery Processing
When a connectivity query is issued, Gra%hZe%%e()n calls ()7._7%ann)n4_85re7.() which re-
turns a spanning forest of the graph. The "rst step of post-processing is to 0ush the bu1ering data

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 9. Publication date: May 2024.



GraphZeppeli( 9:19

1: function e64e_+%6a.e(edge( {u, v}) "Write edge update to bu1ers
2: ,+88er_)n7er.({u, v})
3: ,+88er_)n7er.({v, u})
4: function 65_,a./h_+%6a.e( ) " Apply batched updates to supernode
5: {batch, node}( 4e._,a./h( )
6: for all sketch ∈ supernodes[node] do
7: +%6a.e_7-e./h_,a./h(sketch, batch)
8: function +%6a.e_7-e./h_,a./h(sketch, batch)
9: for all update ∈ batch do

10: sketch.+%6a.e_7-e./h(update)

Fig. 10. Pseudocode for GraphZeppeli(’s core post-processing routines. li2,_2pa((i(0_31re2,() is part of
the user API, while -lea()p() is an internal function.

structure of any remaining updates, moving the batches to the work queue in /(ean+%(). We then
wait for the Graph Workers to "nish processing these batches. Finally, Gra%hZe%%e()n runs Boru-
vka’s algorithm to generate a spanning forest of the input graph. This algorithm is summarized in
Figure 10.

6 EVALUATION

Experimental setup. We implemented Gra%hZe%%e()n as a C++14 executable compiled with
g++ version 9.3 for Ubuntu. All experiments were run on a Dell Precision 7820 with 24-core 2-way
hyperthreaded Intel(R) Xeon(R) Gold 5220R CPU @ 2.20 GHz, 64 GB 4x16 GB DDR4 2933 MHz
RDIMM ECC Memory and two 1 TB Samsung 870 EVO SSDs. In some of our experiments, we
arti"cially limited RAM to force systems to page to disk using Linux Control Groups. We put a
swap partition and the gutter tree data on one of the two SSDs, and the other SSD held the datasets.

6.1 Datasets
We used two types of datasets in this article. First, we generated large, dense graphs using a
Graph500 speci"cation, and converted these to streams for our evaluation. We also evaluated cor-
rectness on graphs from the SNAP graph repository [48] and the Network Repository [70]. All
datasets used are described in Figure 11.
Synthesizing Dense Graphs and Streams. We created undirected graphs using the Graph500 Kro-
necker generator. We produced "ve simple, undirected graphs. These graphs are dense: each has
roughly one-half of all possible edges. The Graph500 generator does not output simple graphs by
default, so to produce our "ve simple graphs we pruned duplicate edges and self-loops [8].

We then transformed each of the "ve graphs into a random stream of edge insertions and dele-
tions with the following guarantees: (i) an insertion of edge e always occurs before a deletion of
e , (ii) an edge never receives two consecutive updates of the same type, (iii) we disconnect a small
(fewer than 150) set of nodes from the rest of the graph, and (iv) by the end of the stream, exactly
the input graph (with the exception of the edges removed to disconnect the vertices in (iii)) remains.
Note that this mechanism deliberately adds edges not in the original graph, but they are always
subsequently deleted. We implemented (iii) to guarantee some non-trivial connected components
in each stream’s "nal graph.
Publicly Available Datasets. We also used the following real-world datasets. p2p-gnutella is a
graph representing the Gnutella peer-to-peer network [69]. rec-amazon is a co-purchase recom-
mendation graph for products listed on Amazon [47], where each node represents a product and
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Fig. 11. Dimensions of datasets used in this evaluation.

there is an edge between two nodes if their corresponding products are frequently purchased
together. google-plus is a graph among users of the Google Plus social network [56] where
edges represent follower relations. web-uk is a web graph, where edges represent links between
pages [70]. Each of these real-world graphs was converted to a stream using the process described
above.

6.2 GraphZeppeli( is Fast and Compact
We now demonstrate that, given the same memory resources, Gra%hZe%%e()n can handle larger
inputs than Aspen and Terrace on su!ciently large and dense graph streams. We also show that
unlike these systems, Gra%hZe%%e()n maintains good performance when its data structures are
stored on SSD.

Both Aspen and Terrace are optimized for the batch-parallel model of dynamic graph process-
ing. In this model, updates are applied to a non-empty graph in batches containing exclusively
insertions or exclusively deletions. This contrasts with our streaming model, an initially empty
graph is de"ned entirely from a stream of interspersed inserts and deletes. To avoid unfairly penal-
izing Aspen and Terrace, we group the input stream into batches insertions and deletions to these
systems (ignoring any query correctness issues this may introduce) and present these batches as
the input stream. Whenever one of these arrays "lls, we feed it into the appropriate batch update
function provided by Aspen or Terrace.

We ran Gra%hZe%%e()n, Aspen, and Terrace on each Kronecker stream. We used a batch size of
106 for Aspen and Terrace because we found this to produce the highest ingestion rates for both
systems. To record memory usage we logged the output of the Linux top command tracking each
system every "ve seconds. All experiments were run for a maximum of 24 hours.
Memory Pro!ling. Gra%hZe%%e()n’s space-e!cient C+,eS-e./he7 make it aO(V /log3(V ))-factor
smaller than Aspen or Terrace asymptotically. Given the polylogarithmic factors and constants,
this experiment determines the actual crossover point where Gra%hZe%%e()n is more compact
than Aspen and Terrace. As shown in Figure 12, Gra%hZe%%e()n is smaller than Terrace even on
kron15, and uses roughly equivalent memory to Aspen on kron13–kron17. For kron18 we observe
the Aspen uses roughly double the memory as Gra%hZe%%e()n. For larger dense graphs, we this
di1erence will continue to grow because of the asymptotic di1erence in space usage.

Note that Terrace does not currently support batch deletions, so we rely on its individual edge deletion functionality instead
and do not maintain a deletions array.
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Fig. 12. GraphZeppeli( uses less space than Aspen or Terrace to process large, dense graph streams. Space
usage for each system is given in Gibibytes. Terrace timed out on kron17 in this experiment. For the sake
of completeness, the table includes space utilization for all datasets. The chart includes only the dense Kro-
necker graphs.

I/O Performance and Ingestion Rate. Unlike Aspen and Terrace, Gra%hZe%%e()n maintains consis-
tently high ingestion rates when its data structures are stored on SSD. In Figure 13 we summarize
the results of running Aspen, Terrace, and Gra%hZe%%e()n with only 16GB of RAM. The ingestion
rates of both Aspen and Terrace plummet once their data structures exceed 16GB in size and they
are forced to store excess data on SSD. Neither Aspen nor Terrace were able to "nish their largest
evaluated stream within 24 hours (217 for Terrace and 218 for Aspen). In comparison, Gra%hZe%3
%e()n’s ingestion rate remains high when its memory consumption extends into secondary stor-
age. Gra%hZe%%e()n’s gutter tree "nished the kron18 stream with an average ingestion rate of
2.50 million updates per second, a 29% reduction to its performance compared to when its sketches
are stored entirely in RAM.

In RAM, Gra%hZe%%e()n’s ingestion rate is higher than Aspen’s and Terrace’s on all Kronecker
streams. We summarize these results in Figure 14. Notably, on kron18 Gra%hZe%%e()n ingests 4.25
million updates per second, over three times faster than Aspen. Gra%hZe%%e()n ingests more than
an order of magnitude faster than Terrace on these streams, so we omit it from the "gure.

Figure 15 displays the ingestion rates of Aspen, Terrace, and Gra%hZe%%e()n on kron17 as a
function of graph density. As with all of the Kronecker graph streams used in this work, the graph
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Fig. 13. GraphZeppeli( remains fast even when its data structures are stored on disk, unlike Aspen and
Terrace.

Fig. 14. GraphZeppeli( is faster than Aspen and Terrace even when all data structures fit in RAM.

starts out empty at the beginning of the stream and gradually grows denser as the stream pro-
gresses and more edges are inserted. Gra%hZe%%e()n’s 5 million updates/sec performance does
not depend on graph density. In contrast, Aspen ingests quickly (almost 3 million u/s) at low den-
sity but quickly falls o1 to slightly more than 1 million u/s as density increases. Terrace ingests
more slowly even when the graph is sparse and exhibits a slight fall-o1 as density increases. The
drastic decrease in Terrace’s ingestion rate at around 42.5% density is due to its data structures
over0owing the available 64 GB of RAM and paging to disk (see Figure 13). The brief period of low
(1.5 million u/s) ingestion rate for Gra%hZe%%e()n at very low density corresponds to the begin-
ning of the stream, when Gra%hZe%%e()n is "lling its bu1ers and not yet processing updates.

6.3 GraphZeppeli( is Reliable
Gra%hZe%%e()n’s sketching algorithm is not deterministically correct: it has a nonzero failure
probability, which is guaranteed to be at most 1/V c for some constant c . To establish that fail-
ures do not occur in practice, we compared Gra%hZe%%e()n with an in-memory adjacency matrix
stored as a bit vector. Speci"cally, we applied stream updates to Gra%hZe%%e()n and the adjacency
matrix and periodically queried Gra%hZe%%e()n and compared its results with the output of run-
ning Kruskal’s algorithm on the adajacency matrix. We performed 1,000 such correctness checks
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Fig. 15. GraphZeppeli(’s 5 million updates/sec performance does not depend on graph density. In contrast,
Aspen ingests quickly (almost 3 million u/s) at low density but quickly falls o4 to slightly more than 1 million
u/s as density increases. Terrace ingests more slowly even when the graph is sparse (likely due to unoptimized
implementation of edge deletions) and exhibits a slight fall-o4 as density increases.

Fig. 16. GraphZeppeli( updates sketches in parallel, increasing ingestion rate by 26)when using 46 threads.

each on the kron17, p2p-gnutella, rec-amazon, google-plus, and web-uk streams. No failures were
ever observed. While our algorithm’s performance is optimized for dense graphs, this experiment
demonstrates that it succeeds with high probability for both dense and sparse graphs.

6.4 GraphZeppeli( is Highly Parallel
Due to the atomized nature of sketch updates, we expect stream ingestion to scale well on multi-
core systems. We experimentally demonstrate this claim by varying the number of threads used
for processing updates and observe a signi"cant speed-up.

Figure 16 shows the ingestion rate of Gra%hZe%%e()n as the number of threads processing the
kron17 graph stream increases. The threads are given a pool of 64GB RAM so that the parallel
performance can be measured without memory contention. To avoid external memory accesses,
we use leaf-only gutters for bu1ering. The per-thread increase in ingestion rate is signi"cant; the
ingestion rate for 46 threads is approximately 26 times higher than that of a single thread. Ad-
ditionally, at 46 threads the marginal ingestion rate is still positive, suggesting that adding more
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Fig. 17. GraphZeppeli( gu5er size vs. ingestion speed.

threads would further increase performance. We also experimentally determined that a group size
of one gives the best performance with our combination of machines and inputs.

6.5 GraphZeppeli( Bu)ering Facilitates Parallelism and I/O E)iciency
Applying sketch updates is highly scaleable, but only if updates are bu1ered and applied in batches.
When sketches are stored on disk, processing each update individually requires Ω(1) IOs. Addi-
tionally, cache contention and thread synchronization bottleneck the ingestion rate even when
sketches are in RAM. For these reasons we retain bu1ers of a constant factor f of the node-sketch
size.

Figure 17 summarizes the ingestion rate of Gra%hZe%%e()n on the kron17 stream for di1erent
values of f when the sketches are stored in RAM and when they are stored on disk. Gra%hZe%%e()n
is given 46 Graph Workers and a group size of 1. With bu1ers of size 1 (no bu1ering), Gra%hZe%3
%e()n ingests 130,000 updates per second in RAM, 33 times slower than when f = .10. On SSD, the
ingestion rate is only 2,000 insertions per second, 3 orders of magnitude slower than peak on-disk
performance.

When the sketches "t in RAM, performance increases rapidly indicating that f can be quite small
while providing a high ingestion rate. However, once memory requirements exceed main memory,
f must be larger to o1set disk IOs. To achieve an ingestion rate within 5% of peak performance on
kron17, f as small as 0.01 is su!cient for entirely in RAM computation, while f = .50 is required
when node sketches partially reside on disk.

6.6 Connectivity *eries Are Fast
We show experimentally that Gra%hZe%%e()n gives comparable query performance to Aspen and
Terrace on dense graphs when all systems’ data structures "t in RAM. When their data structures
reside on disk, Gra%hZe%%e()n answers queries more than "ve times faster than Aspen (and Ter-
race ingests too slowly to test).

Gra%hZe%%e()n’s bu1ering strategies create a tradeo1 between stream-ingestion rate and query
latency. When Gra%hZe%%e()n receives a connectivity query, it must process remaining stream
updates in its bu1ering system before computing connectivity using Boruvka’s algorithm. Large
bu1ers improve stream-ingestion rate (see Section 6.5), particularly when sketches are stored on
disk, but this comes at the cost of increased query latency since these large bu1ers must be emptied.
For the same reasons, small bu1ers improve query latency but may decrease the ingestion rate.

Figure 18(a) compares the query latency of Gra%hZe%%e()n, Aspen, and Terrace on the kron17
stream where connectivity queries are issued as graph density increases during the stream. In this
experiment Gra%hZe%%e()n used small 400-byte leaf-only bu1ers, enough space for 100 stream
updates. When the graph is sparser, both Aspen and Terrace answer queries more quickly than
Gra%hZe%%e()n. As the stream progresses and the graph becomes denser, Gra%hZe%%e()n’s query
time stays constant while Aspen’s and Terrace’s increase. By 30% density, Gra%hZe%%e()n is faster
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Fig. 18. GraphZeppeli( query performance is comparable to or be5er than Aspen and Terrace for dense
graphs.

than Aspen, though Terrace remains the fastest. Even with Gra%hZe%%e()n’s small bu1er size its
ingestion rate was 3.95 million updates per second, three as fast as Aspen and almost six times
faster than Terrace (until Terrace exceeds RAM size and slows drastically).

Figure 18(b) compares the query latency of Gra%hZe%%e()n and Aspen when RAM is limited
to 12 GiB, forcing both systems to store part of their data structures on disk. Terrace ingests too
slowly given only 12 GiB of RAM to be included in the experiment. In this experiment, Gra%hZe%3
%e()n used 8.3 KB leaf-only bu1ers (one-tenth of sketch size). Gra%hZe%%e()n takes 24 seconds to
perform queries regardless of graph density. Aspen’s queries are fast until the graph is too dense
to "t in RAM; its last query takes 142 seconds, "ve times slower than Gra%hZe%%e()n. Notably,
Gra%hZe%%e()n maintains an ingestion rate of 4.15 million updates per second, 46 times faster
than Aspen. Both systems spend the majority of time on insertions, where Gra%hZe%%e()n’s ad-
vantages come through.

7 RELATED WORK

Graph Sketching Systems. A practical method for using linear-sketching algorithms for
connected-components computation was presented in Tench et al. [75]. They show how techniques
from the AGM connectivity sketch [3] can used to develop a connected-components algorithm
that is simultaneously space-optimal in the dynamic semi-streaming model and I/O-e!cient in
the external-memory model. They also built a graph-stream-processing system which is compared
with state-of-the-art graph streaming systems [23, 66].

The present article serves as the journal version for Tench et al. [75], but it also contains
follow-up work. Speci"cally, the evaluation in Tench et al. focus primarily on measuring the
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graph-stream-ingestion rate, whereas this article’s expanded evaluation also focuses heavily on
measuring (a) query latency and (b) the sensitivity of ingestion and query performance as a func-
tion of graph density.

In particular, this article contains new experiments in order to (1) compare the query latency
of di1erent !0-sketching algorithms, and to (2) evaluate the ingestion rate and query latency of
Gra%hZe%%e()n and other streaming-graph processing systems as a function of graph density.
This "rst class of experiments demonstrates how using the C+,eS-e./h sketching algorithm
(proposed in [75]) decreases Gra%hZe%%e()n’s query latency by two orders of magnitude. The
second class of experiments demonstrates that unlike existing graph-processing systems,
Gra%hZe%%e()n’s performance, remarkably, depends on the number of nodes, but not the den-
sity of edges.

Thus, this article shows that, contrary to conventional wisdom, computing on massive and dy-
namic graphs is possible even when these graphs are not sparse.

Graph Streaming Systems. Existing graph stream processing systems are designed primarily
to handle updates in batches consisting entirely of insertions or entirely of deletions. Streaming
systems that process updates in batches are generally divided into two categories. The "rst (which
includes Terrace) consists of those systems which "nish ingestion prior to beginning queries and
"nish queries prior to accepting any additional edges [7, 15, 24, 60, 66, 73, 74]. The second (which
includes Aspen) allows updates to be applied asynchronously by periodically taking “snapshots”
of the graph during ingestion to be used in conducting queries [17, 23, 35, 36, 54].

The batching employed in these systems limits the granularity at which insertions and dele-
tions may be interspersed. In contrast, Gra%hZe%%e()n allows for insertions and deletions to be
arbitrarily interspersed without sacri"cing query correctness.

External Memory Systems. There is a rich literature of graph processing systems process static
graphs in external memory. Some such systems store the entire graph out-of-core [31, 45, 53, 84, 86],
and others are semi-external memory systems that maintain only the vertex-set in RAM [4, 52, 71,
83, 85]. Some systems provide (at least theoretical) design extensions to handle queries on graphs
with insert-only updates [16, 45, 79, 80, 84], but to the best of our knowledge Gra%hZe%%e()n is the
"rst to leverage external-memory e1ectively in the streaming model of insertions and deletions.

Practical Sketching Systems. While linear sketching was "rst implemented in a graph process-
ing system in Tench et al. [75], linear sketching implementations for purposes other than graph
processing have been widely studied. Some examples include sketches for recovering frequent
items [22, 55] and estimating the cardinality of sets of items [11, 59]. Of particular note are sketches
which realize the Johnson–Lindenstrauss lemma [37], which have found wide use in applications
such as SDD system solvers and spectral sparsi"ers [42, 43].

8 CONCLUSION
Gra%hZe%%e()n computes the connected components of graph streams using space asymptot-
ically smaller than an explicit representation of the graph. It is based on C+,eS-e./h, a new
!0-sketching data structure that outperforms the state-of-the-art on graph-streaming workloads.
This new sketching technique allows Gra%hZe%%e()n to process larger, denser graphs than exist-
ing graph-streaming systems given a "xed RAM budget and to ingest these graph streams more
quickly. Even when Gra%hZe%%e()n’s sketch data structures are too large to "t in RAM, its work-
bu1ering strategies allow it to process graph streams on SSD. Gra%hZe%%e()n is simultaneously a
space-optimal graph semi-streaming algorithm and an I/O-e!cient external-memory algorithm.
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The small space complexity of Gra%hZe%%e()n’s linear sketch is optimized for large, dense
graphs, unlike prior graph-processing systems, which often focus on sparse graphs. Thus,
Gra%hZe%%e()n demonstrates that computational questions on graphs once thought intractably
large and dense are now within reach.

Currently large, dense graphs are studied rarely and at great cost on large high-performance
clusters [19]. Finding more applications that require processing large, dense graphs is an excit-
ing direction for future work. Since Gra%hZe%%e()n’s sketches can be updated independently
(Section 5.1), we believe that they can be partitioned throughout a distributed cluster without
sacri"cing stream ingestion rate.

Gra%hZe%%e()n illustrates that additional algorithmic improvements help make graph semi-
steaming algorithms into a powerful engineering tool by reducing the update-time complexity
and allowing sketches to be stored e!ciently on SSD. These techniques may generalize to other
graph-analytics problems.

The AGM connected components sketch is a crucial subroutine for other graph sketching algo-
rithms including approximate and exact MST, k-edge connectivity and vertex connectivity, mini-
mum cut, spectral sparsi"ers, and more. However, unchanged these algorithms su1er from similar
issues to the original connectivity sketch—they are larger than RAM and have computationally
expensive update procedures. Developing implementable and I/O e!cient versions of these algo-
rithms is an exciting direction for future work.
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