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Abstract—This article introduces mosaic pages, which increase TLB
reach by compressing multiple, discrete translations into one TLB entry. Mosaic
leverages virtual contiguity for locality, but does not use physical contiguity.
Mosaic relies on recent advances in hashing theory to constrain memory
mappings, in order to realize this physical address compression without reducing
memory utilization or increasing swapping. Mosaic reduces TLB misses in several
workloads by 6–81%. Our results show that Mosaic’s constraints on memory
mappings do not harm performance, we never see conflicts before memory is
98% full in our experiments — at which point, a traditional design would also likely
swap. Timing and area analyses on a commercial 28nm CMOS process indicate
that the hashing required on the critical path can run at a maximum frequency
of 4 GHz, indicating that a Mosaic TLB is unlikely to affect clock frequency.

Data-hungry applications, such as data and
graph analytics, are often bottlenecked on the
translation lookaside buffer (TLB). A typical
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TLB can cache only a relatively small number of
address translations—often caching fewer translations
than the working sets of these applications. For ex-
ample, the data-intensive Graph500 benchmark, when
running a breadth first search on a tree with over
220 nodes, has an approximate working set size of
215 MiB, whereas a typical TLB using 4 KiB pages can
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cache translations for only about 8.6 MiB of physical
memory at once. As a result, many modern appli-
cations report 20–30% overhead attributable to TLB
misses [4, 6, 9], and some as high as 83% [1].

Given the challenges of building larger TLBs that
meet tight CPU cycle times, a primary family of tech-
niques to increase TLB reach leverage physical con-
tiguity, including the use of huge pages, segments,
and opportunistic coalescing of contiguous entries.
The downside of relying on physical contiguity is that
defragmenting physical memory is expensive and has
no good solutions in the worst case—so much so
that defragmentation can overwhelm any performance
gains from greater TLB reach. For instance, Zhu
et al. [10] recently report that a cold cache Redis
workload shows a 29% throughput gain on Linux
when switching from 4 KiB pages to transparent 2 MiB
pages—with no fragmentation; when memory is 50%
fragmented on Linux, however, throughput with 2 MiB
pages drops to only 89% of the throughput with 4 KiB
pages. Other proposals accommodate limited amounts
of discontiguity or “holes” in contiguous ranges [7, 8],
but the performance gains are the result of the residual
physical contiguity in the mappings.

This article introduces mosaic pages, a technique
for increasing TLB reach without using physical
contiguity. Without the need for physical contiguity,
one need not defragment memory. To demonstrate
the feasibility and capabilities of mosaic pages, we
present Mosaic, an end-to-end redesign of address
translation mechanisms across the hardware TLBs and
the OS. Mosaic internally uses the recently developed
Iceberg hashing [3] for physical address compression
and mitigating TLB conflicts. This article is based on
our ASPLOS ’23 paper [5].

Physical address compression. The key idea behind
mosaic pages is to compress each address translation,
so that multiple, virtually contiguous translations fit into
a single TLB entry, illustrated in Figure 1. We achieve
our compression by restricting each virtual address
to map to only a small number h of physical page
frames (via hashing), so that a virtual page’s physical
address can be encoded using only log h bits. For
concreteness, we set h = 104 in our experiments,
which means we encode each translation in seven bits.
In contrast, conventional virtual memory systems allow
each virtual page to be mapped to (almost) any of the p
physical page frames, requiring log p bits per address.
We call one of these h discrete translations to a
page frame a Compressed Physical Frame Number

(CPFN). By compressing translations, we can pack
translations for several contiguous virtual pages into a

Valid? Tag (Virtual Page #) Physical Frame #

1 0x1010

1 0x1011

1 0x1012

1 0x1013

0 … …

Valid? Tag (Mosaic Virtual Pg #) Compressed Physical 
Frame Numbers (CPFNs)

1  0x101

1 0x138

0 … …

FIGURE 1: The top illustrates a traditional TLB map-
ping virtual addresses to physical page frames. Four
contiguous virtual pages map to different physical
addresses. The bottom depicts how a Mosaic TLB
compresses the same pages into one entry, storing
only the bucket and offset for each page.

single TLB entry, expanding TLB reach by log p/ log h
without increasing the number of TLB entries. This
article shows that we can increase reach by at least a
factor of four using current TLB sizes.

Like huge pages, mosaic pages leverage virtual
contiguity but, unlike huge pages, do not require phys-
ical contiguity. In our design, each TLB sub-entry can
be mapped independently.

Mitigating conflicts. The concern with reducing h is
that it increases conflicts in mapping virtual addresses
to physical pages, and resolving these conflicts has a
cost. Specifically, when mapping a new virtual page,
we may find that its h allowed locations are already
occupied by hot pages. In this case, the conflict must
be resolved, e.g., by swapping a conflicting page to
disk. In any scheme that restricts mappings, the con-
cern is forcing the eviction of a hotter page than an
unconstrained mapping would. Smaller h decreases
the size of TLB encodings but increases the chance
of making a poor eviction choice during conflicts. This
article shows that it is possible to have a small h
with comparable swapping costs.

Our contributions. This article contributes an end-to-
end system co-design and implementation of mosaic
pages, from the architecture to the OS. We implement
the TLB changes in the gem5 simulator and modify
Linux to implement mosaic for anonymous, unshared
pages.

Using this experimental infrastructure, we demon-
strate that mosaic can indeed reduce TLB misses of

2 Publication Title Month 2021



TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

TLB Entry

 decode CPFN 

bucket 0 bucket 1 bucket n

Front yard
Pages

Backyard
Pages

MVPN
(30 bits)

Page offset
(12 bits)

 Mosaic Offset 

(6 bits)

Virtual Address

CPFN1MetadataMVPN

Physical memory organized as buckets

bucket_id, offset

...

Table of Contents
(ToC)

...

...

CPFN2CPFN3CPFN4

FIGURE 2: High-level Design of Mosaic Address
Translation.

real-world workloads, such as Graph500, by 6–81%
in simulation with comparable TLB entry width as a
current x86 chip.

Second, we contribute an implementation of our
hashing scheme for the TLB in Verilog and measure
it with a 28nm commercial CMOS process. The timing
analysis yields a maximum clock frequency of 4 GHz,
indicating that the hashing we add to the critical path
is unlikely to harm overall clock frequency or have
significant area cost.

Finally, the article demonstrates empirically that,
under memory pressure, mosaic’s swapping is compa-
rable to an unconstrained page mapping. Our experi-
ments show that commensurate with Iceberg’s prob-
abilistic bounds, as long as only 2% of memory is
held in reserve and the application(s) fit into DRAM,
conflicts are not observed. We find that the system
swaps only after memory is over 98% utilized—similar
to unmodified Linux swapping once memory is fully
utilized. Once memory is over-subscribed, mosaic typ-
ically swaps less than default Linux.

Mosaic Pages
A mosaic page is a large virtual page, composed of
↵ virtually consecutive, but not necessarily physically
contiguous, base pages (4 KiB). We say that ↵ is the
arity of a mosaic page. The key idea is to compress
each translation such that translations for all ↵ base
pages fit in one TLB entry, as illustrated in Figure 2.
Although the frames are allocated independently, we
will ensure that each page’s location can be encoded
with just a few bits of information—these bits are known

as the compressed physical frame number (CPFN)
of the page. The TLB is indexed by mosaic virtual

page number (MVPN) (or the aligned, virtual address
of the mosaic page), and each entry in the TLB holds
a series of CPFNs for each virtual page in that mosaic
page. Together, we call these CPFNs the table of

contents (ToC) for the mosaic page.
A TLB lookup for a virtual address returns the

ToC for the relevant mosaic page. The base page
offset within the mosaic page (or mosaic offset) then
determines which entry in the ToC corresponds to the
desired virtual page. The CPU then uses the CPFN to
compute the page’s actual page frame number (PFN).

Mosaic pages increase the reach of the TLB by a
factor of ↵ by leveraging virtual locality. For example,
consider current x86 TLBs, which use 36-bit physical
frame numbers. If we use 8-bit CPFNs, then we can fit
↵ = 4 CPFNs in a single TLB entry, increasing TLB
reach by a factor of 4. Furthermore, there is good
reason to believe that we can actually increase the
width of TLB entries without incurring too much cost
in terms of power or chip area, so a future production
implementation might have ↵ = 16 or even larger.

Mosaic page tables map MVPNs to ToCs. Mosaic
can use any page-table structure, such as radix trees
or hash tables.

Compressed Physical Frame Numbers
The key to compressing PFNs is that whenever we
need to allocate a physical frame for virtual address
v , we limit ourselves to a small set of possible frames
(h; for concreteness, h = 104 in our experiments). We
use the term associativity to describe these limits on
the number of frames that can map a given 4 KiB base
page. Thus, the CPFN needs to indicate only which of
the h options was chosen by the page allocator.

Our page allocator treats the frames in physical
memory as slots in a hash table, in which slots are
grouped into buckets. Each VPN is mapped to one or
more buckets via a hashing scheme and the CPFN
records which bucket and which slot within that bucket
were chosen by the allocator.

Note that this contrasts with conventional virtual
memory schemes, in which every virtual page can be
mapped to any physical frame. Thus, conventional vir-
tual memory schemes are fully associative, whereas
mosaic is a low-associativity virtual memory scheme.

Low-Associativity Page Allocation with
Hashing
The hashing scheme we use in our page allocation
scheme must meet three criteria:
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1) Low Hashing Associativity: For each item (i.e.,
virtual address) the set of possible positions where the
item could reside in the hash table is less than or equal
to a small h.
2) Stability: Once an item is inserted into the hash
table, it is not moved until a future deletion removes
it. This implies that once mapped, pages never need
to be copied within memory to ensure good perfor-
mance, whereas schemes like cuckooing must migrate
elements to maintain performance.
3) High Utilization: If p is the total number of slots
in the hash table (i.e., the total number of physical
frames), then the hash table can handle up to (1� �)p
elements at a time for some small � (� ⇡ .02 in
our experiments). Practically speaking, this means that
nearly all of the memory can be allocated (98% in our
experiments) before seeing conflicts, with extremely
high probability.

Mosaic allocates pages by using Iceberg hash-

ing [3], a recently proposed hashing scheme that
achieves the above three criteria simultaneously, which
had long been an open problem in hash-table design.
Many classical hash tables meet two of the three.

An Iceberg hash table consists of two compo-
nents: a front yard and a (much smaller) backyard ,
illustrated in Figure 2. The front yard is broken into
s buckets of some fixed size f = !(log log p) (e.g.,
f = ⇥(log2 log p)). The backyard also consists of s
buckets, each with capacity b = ⇥(log log p), where p is
the total number of slots in the hash table (i.e., the total
number of frames in physical memory). For example,
for 64-bit systems, log log p ⇡ 5.7, so a reasonable
choice would be front yard buckets of size 5.72 ⇡ 32 (or
larger) and backyard buckets of size ⇡ 5.7 (or larger).

When an item x is inserted, it first hashes to some
bucket h0(x) in the front yard. If there is a free slot in
h0(x), then the insertion uses that slot. Otherwise, if
bucket h0(x) is full, then x is placed into the backyard.
Elements in the backyard are assigned a bucket using
the power of d choices: the element hashes to d bins
h1(x), ... , hd (x) and is placed in the emptiest of those
buckets.

Evaluation
Mosaic Prototype
Our prototype implementation consists of three parts,
mosaic TLB on gem5 full system simulator, mosaic
page management in Linux, and hash function imple-
mentation in hardware. We use front yard buckets of
size f = 56, backyard buckets of size b = 8, and d = 6
choices of backyards. Thus the total associativity of the

page allocation scheme is 56+8⇥6 = 104. We encode
CPFNs into 7 bits.

Does Mosaic Reduce TLB Misses?
We evaluate TLB behavior in gem5, varying the TLB
in two dimensions. First, we vary the mosaic arity from
4 to 64, i.e., we vary the size of mosaic pages from
16 KiB to 256 KiB. Second, we vary the associativity
of the TLB from direct-mapped to fully associative.
Our ASPLOS ’23 paper describes these experimental
parameters and results in more detail [5].

To study the TLB performance of Mosaic compared
to a standard “vanilla” TLB, we run four widely used
workloads, Graph500, BTree, GUPS, and XSBench
using full system gem5 hardware simulation.

Mosaic pages can reduce TLB misses across a
wide variety of workloads and TLB associativities. In
many cases, Mosaic can reduce TLB misses by a
dramatic amount, e.g., almost completely eliminating
them in Graph500 and XSBench, reducing them by
up to about half in B-Tree and about a quarter in
GUPS. When one considers sensitivity to arity, even
with an arity of only 4 (Mosaic-4), Mosaic shows a
substantial reduction of 6–81% in TLB misses for
Graph500, BTree, and XSBench workloads, and with
an arity of 64 (Mosaic-64) reduces misses by 11–98%.
With an arity of 4, all CPFNs fit in a single unmodified
x86 TLB entry. In terms of varying associativity, the
results show that transitioning from a standard TLB to
a mosaic TLB reduces TLB misses even further. For
instance, a direct-mapped Mosaic-8 TLB outperforms
a fully associative vanilla TLB in Graph500, BTree,
and XSBench benchmarks. The results show that a
Mosaic system could leverage more efficient, lower-
associativity TLB designs.

Does Mosaic Reduce Memory Utilization?
We empirically measure the memory overhead, �,
caused by associativity conflict, and compare this to
the memory utilization achieved by the default Linux
virtual memory subsystem. Mosaic starts to have as-
sociativity conflicts once it hits a memory utilization of
1��. However, memory utilization can go beyond 1��

due to ghost pages. To evaluate these two effects,
we measure both the memory utilization when our
benchmark experiences its first associativity conflict
and its steady-state memory utilization over the entire
benchmark run.

In Mosaic, the first conflict appears at around
98.03% utilization across all workloads, indicating
that � is roughly 2%. In contrast, we observed that
vanilla Linux began swapping once memory utilization
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reached 99.2% with the same configuration. Thus,
Mosaic’s associativity restrictions do not cause Mosaic
to begin swapping significantly sooner than with the
default Linux allocator. Furthermore, over the entire
execution, the workloads are able to utilize most of the
available memory, and the overall memory overhead
of Mosaic is less than 1%.

Does Mosaic Increase Swapping?
We run each workload with various memory footprints,
from just over the size of available memory to about
57% larger and report the total number of swap I/Os
as reported by sysstat. When the workload slightly
exceeds available memory, Mosaic swaps more than
the default Linux allocator since Linux can utilize about
1% more memory than Mosaic. However, beyond
this, Mosaic matches or surpasses Linux performance,
sometimes by up to 29% in the best case. This may be
because the associativity restrictions in Mosaic slightly
perturb LRU’s decisions, preventing the impact from
known issues like cyclic memory references.

Is the Hardware Feasible?
We implemented our hardware changes in System
Verilog and synthesized it using a commercial 28nm
CMOS process. We implemented the static tables as
registers, and used Cadence synthesis tools with stan-
dard cell libraries to generate results. The synthesized
circuit ran at a maximum frequency of 4 GHz and a
latency of 220 ps and 20 picoseconds positive slack.
Additionally, increasing the number of hash functions
did not increase the latency while increasing the area
minimally.

Discussion
This section explores the impact of some of Mosaic’s
design choices.

Overlapping vs. Non-Overlapping Set
Associativity
One lesson from Iceberg hashing is that, when re-
ducing associativity, one can get better utilization with
overlapping sets. In a traditional set-associative cache
design, a given cache line maps to precisely one set,
but the line may be placed in any way within that set.
We call this a non-overlapping reduced associativity
strategy. A well-understood failure mode for this ap-
proach is when frequently accessed memory locations
are not evenly distributed across the sets, leading to
under-utilization; in other words, with n-way set asso-
ciativity, one can end up with n+1 hot lines in the same
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FIGURE 3: Memory utilization comparison (higher is
better) between Iceberg hashing and traditional set-
associative schemes with increasing numbers of ways.

set, causing associativity conflicts. In practice, one
may employ software-level strategies, such as page
coloring, to ensure that frequently accessed memory
locations are evenly distributed across the sets.

A contribution of Iceberg hashing is a way to reduce
associativity with good load balancing across the Ice-
berg buckets (i.e., the rough analog of sets in Mosaic).
A key enabler of Iceberg’s load balancing is that the
buckets are overlapping for any given virtual address.
Although Mosaic partitions physical memory at boot
time into buckets, the mapping for any given virtual
address spans multiple sets. So, for any group of n + 1
“hot” virtual addresses, each address can be mapped
to multiple, pages in different sets/buckets, avoiding
associativity pathologies.

We present a study where we replace the Iceberg
hash scheme with a simple set-associative page map-
ping scheme. Each page maps onto a set with an
increasing number of ways, using the least significant
bits of the virtual page number to select the set. We
measure XSBench workload with sizes of 40 MiB (A),
400 MiB (B), and 4,200 MiB (C). 128-ways can be rep-
resented in the same number of bits as Iceberg’s 104
choices.

Figure 3 shows that Mosaic’s Iceberg hashing gives
higher utilization for nearly all scenarios, except for
the largest workload (C) with the largest set (128-way).
This result illustrates that one is likely to get better
empirical results with overlapping partition schemes.
Moreover, Mosaic reduces the need for the application
writer to work around associativity conflicts with tech-
niques such as cache coloring.

LRU Precision
The original theory paper that described Iceberg [2]
analyzed the impact on swapping using a page-eviction
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Iceberg LRU (red) and Horizon LRU (blue). The x
axis shows eviction decisions over time, and the y
axis shows the relative age of the eviction (lower is
better). The lines indicate average relative age (and
points indicate maximum relative age) over the last
1000 evictions.

algorithm called Iceberg LRU. Iceberg LRU evicts
pages before memory is full in order to preserve
invariants, in particular, that the oldest page is always
evicted, even if it does not free a useful memory
location. For our parameter regime, Iceberg LRU keeps
13% of memory free to ensure the oldest page is
evicted and that there is a slot free for each new page.
Unfortunately, it is generally undesirable to swap pages
before memory is (nearly) full, since most use cases
are are careful to avoid induced swapping by staying
within the system’s memory capacity.

A first optimization of Iceberg LRU is to mark the
pages it wishes to evict as evictable, but only preform
the eviction when space needs to be made for a page.
This partially solves the issue, but keeping a large
percentage of pages evictable at all times results in
bad evictions and a high rate of swapping (this strategy
is shown in red in Figure 4).

To address this issue, Mosaic uses Horizon LRU in
which pages are marked evictable if they are older than
the horizon. If an eviction must be performed and none
of the eligible pages are evictable, then the horizon is
advanced to the oldest eligible page. Unlike preforming
evictions lazily, this change is a notable departure
from the Iceberg theory. So, how does Horizon LRU
perform as compared to fully associative (i.e. Global)
LRU and Iceberg LRU? We note that, of course, LRU
implementations are imprecise by nature — typically
sampling accessed bits in page tables, so swapping

schemes already tolerate some imprecision.
To understand this trade-off between LRU precision

and overly eager swapping and to apply maximum
pressure to Horizon LRU, we model a workload al-
locating unique virtual addresses without reuse. The
results (for a memory size of 217 pages) are shown
in Figure 4. They indicate that Horizon LRU does
suffer from exacerbated worst-case behavior at first
(blue points above the bound of 13% oldest), but the
system reaches a steady state where nearly all points
are under this line. Moreover, Horizon LRU makes
better swapping choices on average, at the cost of
some noise from outliers. In our other experiments,
this improved average case performance results in less
swapping.

Conclusions
This article shows how one can compress physical
addresses in the TLB, thereby reducing TLB misses
for big data workloads by 6–81% with comparable
hardware, and even further with wider TLB entries.
Many techniques for increasing TLB reach rely on
physical contiguity, whereas Mosaic does not require
contiguity or defragmentation. Moreover, we show that
these constrained mappings do not induce additional
swapping on average. Key to these results is a hashing
scheme with the right properties for address trans-
lation: a high load factor, stability, and relatively few
choices. Finally, mosaic pages are compatible with
other techniques, such as huge pages, because any
base page size can be mapped by TLB sub-entries.
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