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Filters trade o! accuracy for space and occasionally return false positive matches with a bounded error. A
fundamental limitation in traditional "lters is that they do not change their representation upon seeing a false
positive match. Therefore, the maximum false positive rate is only guaranteed for a single query, not for an
arbitrary set of queries. We can improve the "lter’s performance on a stream of queries, especially on a skewed
distribution, if we can adapt after encountering false positives.

Adaptive "lters, such as telescoping quotient "lters and adaptive cuckoo "lters, update their representation
upondetecting a false positive to avoid repeating the same error in the future.Adaptive"lters require an auxiliary
structure, typically much larger than the main "lter and often residing on slow storage, to facilitate adaptation.

However, existing adaptive "lters are not practical for twomain reasons. First, they o!er weak adaptivity
guarantees, meaning that "xing a new false positive can cause a previously "xed false positive to come back.
Secondly, the sub-optimal design of the auxiliary structure results in adaptivity overheads so substantial that
they can actually diminish overall system performance compared to a traditional "lter.

In this paper, we design and implement the A!"#$%&’QF, the "rst practical adaptive "lter with minimal
adaptivity overhead and strong adaptivity guarantees, which means that the performance and false-positive
guarantees continue to hold even for adversarial workloads. TheA!"#$%&’QF is based on the state-of-the-art
quotient "lter design and preserves all the critical features of the quotient "lter such as cache e#ciency and
mergeability. Furthermore, we employ a new auxiliary structure design which results in considerably low
adaptivity overhead and makes theA!"#$%&’QF practical in real systems.

We evaluate theA!"#$%&’QF by using it to "lter queries to an on-disk B-tree database and "nd no negative
impact on insert or query performance compared to traditional "lters. Against adversarial workloads, the
A!"#$%&’QF preserves system performance, whereas traditional "lters incur 2→ slowdown from adversaries
representing as low as 1% of the workload. Finally, we show that on skewed query workloads, theA!"#$%&’QF
can reduce the false-positive rate 100→ using negligible (1/1000th of a bit per item) space overhead.
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1 Introduction
Filters [11, 41, 46, 71] are a go-to data structure in systems builders’ toolkits. Filters maintain a
compact representation of a set of items, saving space by allowing a small false-positive rate 𝜴: a
membership query to a "lter for set 𝐿 returns (’) for any 𝑀 ↓𝐿 and returns *+with probability at
least 1↔𝑁 for any 𝑀 ω𝐿 .
Filters are powerful because allowing false-positives dramatically reduces the space required

to store 𝐿 . For example, if we are required to answer queries on 𝐿 with no errors, then the size of
a data structure is at least log

(𝐿
𝑀

)
= ω(𝑂 log(𝑃/𝑂)) bits, where 𝑃 is the size of the universe [19]. In

contrast, modern "lters have size 𝑂log(1/𝑁)+𝑄𝑂, where 𝑄 is between 2 and 3 [9, 71]. This means that,
for typical false-positive rates around 1% to 0.1%, a "lter can store one or two bytes of information
per item, no matter how large the universe. This bound is tight up to lower-order terms in that any
"lter requires at least𝑂log(1/𝑁) bits [19]. Filters have been extensively used to compactly summarize
a set of items in networks, storage systems, machine learning, computational biology, and other
areas [2, 13, 16, 27, 33, 34, 40, 44, 50–52, 74, 75, 78, 86, 87, 91, 93, 94, 96].
Types of problems. The following problem settings o!er challenges for traditional "lters and
opportunities for improvement:
• Static !"#/$% lists.Given a set𝑅 of (’) items and a set 𝑆 of *+ items chosen from a universe
𝑇 , build a data structure that answers (’) to any query for an item in𝑅 , *+ for any query for an
item in 𝑆 , and answers *+with probability at least 1↔𝑁 for any other item in𝑇 .

• Dynamic !"#/$% lists. This is similar to the static (’)/*+ list problem, except that the sets𝑅 and
𝑆 may be updated dynamically.

• Skewed query distributions. In some settings, the frequency distribution of queries may be
highly skewed. In such settings, the observed false-positive rate of the "lter can be very far from
the expected rate, 𝑁. For example, if all the queries are for a single item, the observed false-positive
rate will be 0 or 1, but not in between. Avoiding repeated mistakes can reduce the false-positive
rate of a "lter, or equivalently, reduce the "lter size needed to achieve some target error rate. In
summary, "lters that ignore the skewmay perform arbitrarily poorly, whereas "lters that exploit
the skew can outperform the lower bounds.

• Adversarial queries. In this problem, the goal is to design a "lter that guarantees that the fraction
of queries from an adversary that are false positives is at most 𝑁, even when the queries are chosen
by an adversary that is trying to cause the "lter to return as many false positives as possible. Here
we assume the attacker can detect when a query results in a false positive and can repeat queries
arbitrarily. This is a more general case of the skewed-query distribution.

Prior work. Prior work has considered each of these problems separately, and consequently has
developed distinct approaches to solving each of them. Chazelle et al. [22] describe Bloomier!lters,
which encode static (’)/*+ lists. Bloomier "lters also support a limited form of dynamicity—they sup-
port moving items between𝑅 and𝑆 but not adding or deleting items. Tripunitara and Carbunar [89]
introduce cascading Bloom !lters to solve the static (’)/*+ list problem, and these are used in
many systems [25, 55, 64, 82, 83]. Reviriego et al. [80] proposed an extension of the static xor!lter
to support the static (’)/*+ list problem. Li et al. [59] proposed the seesaw counting!lter for the
dynamic (’)/*+ list problem, speci"cally in the context of detecting malicious URLs. Mitzenmacher
et al. [62] proposed adaptive cuckoo!lters to solve the skewed-query-distribution problem. Bender
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et al. [7] de"ne the notion of an adaptive "lter, which o!ers strong guarantees on the number of false
positives that an application will see, even with a skewed or even adversarial query distribution, and
present the broom "lter, which meets their de"nition. Bender et al. [6] analyzed the performance
of broom!lters [7] on queries that obey Zip"an distributions. Lee et al. [56] proposed telescoping
!lters to address the skewed query distribution problem.

This paper. We argue that all of these problems can be naturally solved, with comparable space
and better performance than the prior special-purpose solutions, by what we call amonotonically
adaptive!lter , which is a"lter that never forgets a false positive. Furthermore,we showhow to build
fully dynamicmonotonically adaptive "lters from quotient "lters [70].We design, build, and evaluate
a fully dynamic monotonically adaptive "lter, theA!"#$%&’QF, and show that it outperforms several
prior solutions to these problems. Finally, we prove lower bounds on the space required to solve the
(’)/*+ list problem, showing that theA!"#$%&’QF is space-optimal.

Like adaptive "lters, monotonically adaptive "lters can adapt, i.e. they can update their state to
correct false positives. Bender et al. de"ned what it means for a "lter to be adaptive: every query
has a probability of at most 𝑁 of returning a false positive, independent of the outcome of all prior
queries [7]. Adaptivity is a very strong property: it guarantees that after𝑂 queries—even adversarially
generatedqueries—theupper boundon thenumberof false positives is tightly concentrated around𝑁𝑂.
Speci"cally, the systemwill see at most 𝑁𝑂+𝑈

(√
𝑁𝑂log𝑂+log𝑂

)
false positives with high probability.

Adaptive!lters require two things: feedbackabout their falsepositives andauxiliarydata
to correct them. For example, if an adaptive"lter is used by an application to avoid database lookups
for non-existent items, then the application can inform the "lter that a query for an item 𝑀 was a false
positive if the subsequent database query returned that 𝑀 is not present in the database. Adaptive
"lters also need an auxiliary structure to store information to support adaptation. Bender et al.
showed that this auxiliary information is necessary and in fact must be quite large: the total size of an
adaptive "lter on a set 𝐿 essentially must be large enough to store 𝐿 [7]. The trick is to break the "lter
into two parts, a small in-memory component that is accessed on every query and a large auxiliary
structure that is accessed only during adaptations and hence can reside in slower storage. Note that all
proposed adaptive "lters have this overall structure. In some applications, such aswhen the "lter is in
front of a database, the databasemaybe able to serve as the auxiliary structure, so that the total storage
requirements of the system remain essentially unchanged. See Bender et al. for more discussion [7].
What makes monotonically adaptive "lters special is that, when they adapt, their false-positive

set only shrinks. Prior proposed adaptive "lters were not monotonic: "xing one false positive could
cause other elements to become false positives. Even "lters that meet Bender et al.’s strong de"nition
of adaptivity need not be monotonic. For example, Bender et al.’s broom "lter periodically rotates its
hash function, at which point it forgets all the false positives it corrected under the old hash function.
Fingerprint !lters, such as the quotient "lter [70], are good candidates for building practical

monotonically adaptive "lters because they store a set 𝐿 by compactly storing the set𝑉(𝐿)= {𝑉(𝑀) |
𝑀 ↓𝐿}, where𝑉 is a hash function and𝑉(𝑀) is called the!ngerprint of 𝑀 . A query for𝑊 simply checks
whether𝑉(𝑊) ↓𝑉(𝐿), so the only source of false positives is "ngerprint collisions. Fingerprint "lters
support a false-positive rate of 𝑁 on a set of size 𝑂 by using log(𝑂/𝑁)-bit "ngerprints and typically
store the "rst log𝑂 bits of each "ngerprint implicitly so that the per-item space is log(1/𝑁)+𝑈 (1) bits.
To make a "ngerprint "lter monotonically adaptive, we need only to be able to eliminate "ngerprint
collisions. To do so, we can use a hash function 𝑉 that outputs a large number of bits and initially
store the "rst log(𝑂/𝑁) bits of 𝑉(𝑀) for each 𝑀 ↓ 𝐿 , where 𝑂 = |𝐿 |. Whenever we discover a false
positive, i.e. a query𝑊 whose "ngerprint matches a "ngerprint for some 𝑀 ↓𝐿 , we modify the "lter
to store a longer "ngerprint for 𝑀 until the collision disappears. In fact, Kopelowitz et al. [54] show
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that this approach is not only natural but necessary: a space-e#cient "ngerprint "lter must have
variable-length "ngerprints to be adaptive.

We implement a prototype fully dynamicmonotonically adaptive "lter, theA!"#$%&’QF, that uses
only (1+𝑋 (1))𝑂log(1/𝑁)+𝑈 (𝑂) space. We demonstrate experimentally that it outperforms existing
purpose-built solutions for skew distribution and (’)/*+ list workloads in terms of space e#ciency,
insertion speed, and query speed.We also show a space lower bound for the static (’)/*+ list problem
and that theA!"#$%&’QFmeets the space lower bound up to low-order terms.
The challenge is to store and update these variable-length "ngerprints e#ciently in terms of

space and time. Prior theoretical proposals for building adaptive "lter have had complex mecha-
nisms for managing variable-sized "ngerprints [7]. We propose a simple scheme for implementing
variable-sized "ngerprints within the A!"#$%&’QF. Even though adapting requires extending a
"ngerprint by only two bits in expectation [7], theA!"#$%&’QF simpli"es "ngerprint management
by over-adapting, i.e. "ngerprints grow bymultiples of log(1/𝑁) bits. Over-adaptation could cause
the "lter to use too much space and over-minimize the false-positive probability below 𝑁. However,
in practice, this is not an issue.
Our results. We evaluated theA!"#$%&’QF in isolation and as a component of larger systems. The
high-level summary of our "ndings is that the A!"#$%&’QF can speed up query throughput by
delivering far fewer false positives than non-adaptive "lters. We compared the performance of the
A!"#$%&’QF to that of two other adaptive "lters, the telescoping quotient "lter (TQF) [56] and the
adaptive cuckoo "lter (ACF) [62]. We also compared it to two non-adaptive "lters, the quotient "lter
(QF) [71] and the cuckoo "lter (CF) [41].
(1) In a disk-based database, theA!"#$%&’QF is between 10→— 30→ faster than other adaptive "lters

(TQF, ACF) for overall insertion performance and is comparable to non-adaptive "lters.
(2) In a disk-based database, theA!"#$%&’QF achieves between 15%— 6→ faster overall query perfor-

mance than non-adaptive "lters (QF, CF) for adversarial queries and has comparable performance
for uniform-random query workloads.

(3) TheA!"#$%&’QF is dynamic (i.e. support deletes and resizability) but still achieves similar or
better space usage compared to purpose-built solutions for the static (’)/*+ list problem.

(4) TheA!"#$%&’QF has negligible performance overhead compared to the "lter onwhich it is based.
(5) The A!"#$%&’QF preserves all the critical features of the quotient "lter such as mergeability,

resizeability, and bulk insertions.
In summary, the adaptivity overhead is minimal in the A&’()*+"QF compared to non-
adaptive !lters. It is able to substantially improve overall system performance in scenarios
where disk accesses incur a large cost. Furthermore, it matches or beats the performance
of custom-built solutions for static !"#/$% list problems.

2 Filters and Applications
In this section, we give an overview of general-purpose "lters and adaptive "lters. We then describe
applications that can bene"t from adaptive "lters and review existing purpose-built "lters for these
applications. We divide these applications in two broad categories:
(1) Applications using traditional"lters on skewedworkload patternswhere adaptive"lters can help.
(2) Applications that use purpose-built solutions where the cost of certain false positives is very high.

2.1 General-purpose filters
For decades, the Bloom"lter [11]was essentially the only available"lter, but Bloom"lters are subopti-
mal in terms of space usage, running time, and data locality, and they support a bare-bones set of oper-
ations (insert and lookup). TheBloom"lter has inspirednumerous variants [1, 12, 18, 33, 43, 61, 76, 77].
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ThecountingBloom"lter (CBF) [43] supportsdeletes at the cost of space.TheblockedBloom"lter [76]
provides better cache locality than the standardBloom"lter but it comes at a higher false-positive rate.
The quotient "lter (QF) [8, 36, 38, 68, 71] is a "ngerprint "lter. It stores "ngerprints using Robin

Hood hashing [20]. It divides the "ngerprint into two parts, higher order log(𝑂)-bits as the quotient
and lower order log(1/𝑁)-bits as the remainder. The quotient bits are used to locate a slot in the table,
and the remainder bits are stored in that slot. It supports insertion, deletion, lookups, enumeration,
resizing, and merging. The counting quotient "lter (CQF) [71], improves upon the performance of
the quotient "lter and adds variable-sized counters to count items using asymptotically optimal
space, even in large and skewed datasets.
The cuckoo "lter [41] also stores "ngerprints but uses cuckoo hashing instead of Robin Hood

hashing. The Morton "lter [14] is a variant of the cuckoo "lter that is designed to speed up insertion
using optimizations designed for hierarchical-memory systems.

2.2 Strongly adaptive filters
A strongly adaptive !lter modi"es its state so that if a false positive is repeated, the probability that it
is still a false positive is at most 𝑁. Bender et al. [7] introduce the broom "lter and the notion of strong
adaptivity used in this paper. The broom "lter is based on the quotient "lter, but supports variable-
length "ngerprints to adapt to (and correct) false positives. Lee et al. [56] introduce the telescoping
"lter, which is also built using the quotient "lter [71]. The telescoping "lter is strongly adaptive but
avoids directly extending "ngerprints. They change the remainder (or the tag) stored in the "lter
by using a di!erent lower-order log(1/𝑁)-bits. Additionally, they maintain a table to record which
log(1/𝑁)-bits they have used as a remainder in the "lter for the adapted items. As the "lter adapts, the
size of this table grows (so in this sense their "ngerprints are variable-length and strong adaptivity
is possible). The adaptive cuckoo "lter of Mitzenmacher et al. [62] is adaptive in the sense that it
changes its representation in response to false positives, but is not strongly adaptive. See Section 2.3.

2.3 Filters for skewed query distributions
Acommonand important applicationof"lters is their use inkey-value stores basedonLog-Structured
Merge Trees (LSMs) and 𝑌𝑁-trees [15, 67]. In these key-value stores, "lters are used to avoid perform-
ing multiple expensive disk accesses per query [3, 21, 29, 45, 63, 81, 84]. In some database systems,
this type of key-value store is used as the storage engine [3, 29, 45, 81].
In an LSM tree, data is stored in SSTables, which are static, sorted arrays of key-value pairs. The

SSTables are organized into levels L0, L1, . . . , where L0 is the smallest and holds the most recently
written data. Each subsequent level is larger by a factor of𝑍, where𝑍 is a con"guration parameter. As
data is written, SSTables are moved down the structure and are merged into each other according to
a chosen compaction policy. In general, at any point in time, a given key can be present in an SSTable
on any level (even multiple SSTables per level in some variants), so queries need to check at least one
SSTable on each level, which is expensive. As a result, in almost all practical systems, each SSTable
has a corresponding "lter so that queries only read data from the SSTable when the key is present
there or due to rare false positives from the "lter. Note that in this application, queries to SSTables
on smaller levels are often negative since most of the data is stored in the larger levels. However, the
smaller levels may contain recent updates, so they cannot be skipped. Thus, "lters in the smaller
levels see frequent negative queries [32].

One challenge to applying adaptive "lters to LSMs is that the SSTables are typically static andmost
LSM trees store their"lters in their SSTables. However, this is not necessary or universal. For example,
SplinterDB stores its"lters separately from thedata they cover [29].AnLSMcould even store adaptive
versions of its "lters only in memory. The adaptivity information would be lost on a crash, meaning
that false positives might increase after a crash, but this should be rare enough to be insigni"cant.
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Query workloads to database systems commonly follow a power-law or otherwise skewed distri-
bution [28, 65]. As a result, state-of-the-art benchmark suites YCSB, TPC-C, and TPC-E incorporate
data skew intomost of their workloads [23, 30, 47, 58]. In fact, many systems have tried to mitigate or
even exploit the e!ects of data skew [5, 24, 37, 66, 95]. A skewed database queryworkload also results
in a skewed workload for "lters. Moreover, as noted above, many of the queries will be negative.
Adaptive "lters, such asA!"#$%&’QF, can outperform non-adaptive "lters on skewed workloads
by eliminating repeated false positives on frequently accessed keys.

2.4 Filters for Y!"/N# list problems

DetectingMalicious URLs. Malicious websites pose a major threat to internet users. For example,
merely visiting a malicious URL may cause a user’s web browser to be hijacked [88]. Since URLs are
long [49] and abundant [85], an e!ective way for a router to block malicious URLs is to store them
as the (’) list of a "lter [59].

However, it is important not to block legitimate URLs that are false positives [35], so every positive
response of the malicious-URL "lter must be veri"ed [57, 60], which is expensive. This additional
overhead imposed on false positive (safe) URLs is especially undesirable when the URL is important.
For instance, a false positive may block access to a voter registrationwebpage, or emergencyweather
information, whereas slowing the loading of other false-positive pages is relatively benign.

One way to address this variability in false positive cost is to store important false positives in a *+
list, so that they are never blocked and so they do not pay the URL-veri"cation penalty. Chazellete et
al. [22] introduced the Bloomier "lter which solves the (’)/*+ list problem. Li et al., [59] present the
Seesaw Counting Filter (SSCF), which implements a (’)/*+ list "lter speci"cally for the malicious
URL blocking problem. Reviriego et al. [80] present the Integrated Filter which also implements a
*+ list. Both focus on the case where the *+ list is static and known ahead of time. The SSCF has
an extension for adding *+ list items dynamically, but it is not guaranteed to prevent false positives
by doing so and can also introduce false negatives.
URL requests may also vary in frequency, and these frequencies may even change over time.

However, the existing "lters literature on this problem does not consider this generalization. For
this work we restrict our focus to the standard assumption that a static set of high-priority elements
must never be false positives.
Certi!cate Revocation Lists. In the TLS PKI (Transport Layer Security Public Key Infrastruc-
ture [48]), browsers should check whether a certi"cate has been revoked before trusting connections
authenticated by the certi"cate. Traditionally this was done via a “pull” approach, i.e., browsers
would check with a central repository of revoked certi"cates when they established a connection.
More recent work has sought to move to a “push” model, where browsers receive frequent updates
to the list of revoked certi"cates, so the browser can perform a purely local check when it establishes
a new connection.

Larisch, et al., [55] proposed CRLite, which uses cascading Bloom "lters to store the set of revoked
certi"cates at the client. Theyobserved that, in the case of TLS certi"cates, the universe is a small"nite
set and known at construction time. They can build a cascade of Bloom "lters to exactly represent
the set of revoked certi"cates. In the cascading Bloom "lter, each subsequent Bloom "lter contains
false positive set from the earlier Bloom "lter until the false positive set is small enough to be stored
exactly in a hash table. A central systemwould periodically push updates to this list to browsers. The
updates are encoded as bitwise deltas on the original "lters. When the space of certi"cates grows
too large, so that they need to resize the "lters, then they have to transmit new "lters from scratch.
De Bruijn graph traversal. In computational biology, de Bruijn graphs (DBGs) are at the heart of
numerous genomic sequence analysis pipelines [70, 72]. In a de Bruijn graph, each node is a 𝑎-length
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subsequence (of the DNA bases, “A”, “C”, “G”, and “T”) from the underlying biological samples, and
two nodes are connected via an edge if they share a (𝑎↔1)-length subsequence. Analyses traverse
DBGs during assembly, error correction, “contig” detection, and numerous other applications.
De Bruijn graphs are often large enough that they do not "t in the memory. Numerous methods

have been proposed to exploit their special structure for compression. One of themain tricks is to take
advantage of the fact that each node has at most 4 incoming edges and 4 outgoing edges (one for each
base that can be prepended or appended to the node). Thus a traversal can query for the existence of
each edge, so we can represent the DBG using an (approximate) set data structure that supports only
membership queries, i.e. a "lter. In this application, false positives in the "lter result in extra edges
in the graph. To avoid the false edges, Chikhi and Rizk [26] proposed to store the de Bruijn graph in
a cascading Bloom "lter as the set of queries is known in advance. Each Bloom "lter stores the false
positives from querying the earlier Bloom "lter using all possible queries during the dBg traversal.

2.5 A"acking adaptive filters
An adversary who is able to issue queries to a Bloom "lter, and detect when the "lter returns a
false positive, can eventually force the "lter to give false positives on nearly every query. It simply
issues queries until it observes a false positive and then repeats the query that induced the false
positive. Such an attack works on any "lter that does not change its representation in response to
false positives. Since adaptive "lters do change their representations in response to false positives,
some of them are more robust to attacks by adversaries.
Reviriego et al. [80] demonstrate that an adversary who is able to issue queries to an adaptive

cuckoo "lter, and detect when the "lter returns a false positive, can eventually force the "lter to give
false positives on nearly every query. The attack exploits the property that adaptive cuckoo "lters
will revert to the initial "ngerprint for some element in the represented set after a certain number
of adaptations. After "nding an adaptation loop, a sequence of queries that when queried in order
will force the "lter to 1) yield multiple false positives and 2) revert to its initial state at the end of
the loop, the adversary is able to replay this adaptation loop inde"nitely, forcing the "lter to return
many false positives. The attack succeeds even when the adversary does not have exclusive query
access to the "lter (that is, other processes/users may query the "lter at any time), though the time
to complete an attack increases in this case.
Further, Kopelowitz et al. [54] show that any variant of the adaptive cuckoo "lter, or indeed any

space-e#cient "lter with "xed-length "ngerprints, can be forced by such an adversary to su!er a
high proportion of false positives. Filters that are adaptive according to Bender et al.’s de"nition [7],
such as the broom "lter and the telescoping adaptive "lter [56], are provably robust against this type
of adversary because they guarantee a false-positive rate of 𝑁 for any sequence of queries, even those
generated by an adversary.

3 A$%&’()!QF design
In this section, we describe the high-level schema of our solution, without worrying about how to
encode this design in a small number of bits. The encoding is described in subsequent sections.

3.1 High-level design
The A!"#$%&’QF builds on the idea of "ngerprint "lters, which store a set 𝐿 by storing the set
of !ngerprints 𝑉(𝐿) = {𝑉(𝑀) |𝑀 ↓𝐿}. The basic idea behind the A!"#$%&’QF is that, initially, we
store only enough bits of each "ngerprint to ensure a false positive rate of 𝑁, i.e. we store a set 𝑏 of
"ngerprints,whereeach"ngerprint is actuallyapre!x of𝑉(𝑀), for some𝑀 ↓𝐿 .Aquery for𝑊 returns(’)
if some"ngerprint in 𝑏 is a pre"xof𝑉(𝑊).Whenwediscover a false positive, i.e., an item𝑊 ω𝐿 such that
some"ngerprint 𝑐 ↓𝑏 is a pre"xof𝑉(𝑊),we increase the lengthof 𝑐 until it is no longer a pre"xof𝑉(𝑊).
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Fig. 1. The quotient filter [71] structure. The upper part shows the logical structure. The lower part shows
the encoding of the logical structure in the quotient filter. It uses two metadata bits per slot. All items that
share the same canonical location are stored together in a run. A sequence of items without any empty slot is
called a cluster. Note: the items are showed in upper case in the canonical representation and the remainders
corresponding to the items in the slots are showed in lower case.

Themain issue that arises is: howcanweextenda"ngerprint 𝑐 inour"lterwithoutknowing the full
hash𝑉(𝑀) ofwhich it is a pre"x? To solve this problem, all adaptive "ltersmaintain a reversemap that
maps "ngerprints in 𝑏 back to their full hashes (or even the original keys). Notably, the need to store
full hashes means this map will be much larger than the "lter, possibly too large to "t in fast storage.
Thus, we would like to minimize how often this reverse map needs to be updated and/or queried.

At the veryminimum, one insert needs to be done to the reverse map for each insert to the "lter. In
addition, one reverse map query needs to be made for each adaptation. However, since adaptations
are responses to false positives, a disk access is done at this point anyway, and adapting ensures that
the o!ending querywill not cause another disk access in the future. Thus, theA!"#$%&’QFmaintains
its fast performance on general queries. Ideally, we would access the reverse map at no other time.
In the following sections, we describe how we store and update variable-length "ngerprints

e#ciently and howwemaintain the reverse map with little overhead.

3.2 !otient filter
We build theA!"#$%&’QF using the quotient "lter [71]. The quotient "lter has the ability to associate
small variable-length values with "ngerprints. We exploit this feature to extend the "ngerprint size
to adapt. Using the quotient "lter as the underlying "lter helps retain advantages, such as good
cache-locality, deletion, resizability, enumerability, mergeability, etc., that the quotient "lter has
over other "lters. In this section, we give an overview of Pandey et al.’s quotient "lter [71]. Later
in Section 4, we explain howwemodify the quotient "lter schema to build theA!"#$%&’QF.
The quotient "lter (QF) stores an approximation of a multiset 𝐿 ↗U by maintaining a compact,

lossless representation of the multiset𝑉(𝐿), where𝑉 :U↑ {0,...,2𝑂↔1} is a hash function that maps
items from the universeU to a 𝑑-bit "ngerprint. To handle a multiset of up to 𝑂 distinct items while
maintaining a false-positive rate of at most 𝑁, the QF sets 𝑑 = log2

𝑀
𝑁 (see [8] for the analysis).

The quotient "lter uses Robin-Hood hashing [20] to store the "ngerprints compactly in a table. It
consists of an array𝑒 of 2𝑃 slots and a hash function𝑉mapping items fromamultiset to𝑑-bit integers,
where 𝑑 ↘𝑓. Robin-Hood hashing is a variant of linear probing in which we try to place an item 𝑔
in slot𝑉(𝑔)/2𝑂↔𝑃 , but shift items down when there are collisions to create empty space. Robin-Hood
hashing maintains the invariant that, if𝑉(𝑔)<𝑉(𝑔≃), then 𝑔 will be stored in an earlier slot than 𝑔≃.
The quotient "lter divides 𝑉(𝑀) into its "rst 𝑓 bits, quotient 𝑉0 (𝑀), and its remaining 𝑕 bits, re-

mainder 𝑉1 (𝑀). Together, the quotient and remainder form the!ngerprint of 𝑀 . The quotient "lter
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(a)!erying D. (b)!erying X.

(c) Inserting Y.

Fig. 2. A!"#$%&’QF block diagram and the reverse map. It shows the changes to the filter and reverse map
during queries, insertions, and adaptations. (a)Hashing D gives 011dd’d”, and 011 is the quotient of the 4th
bucket. The run begins at the 4th slot, and matching remainder d is found in this run in slot 5. Filter returns
YES. (b) X hashes to 011dxx’. Filter finds 011d and returns a false positive YES. Thus, look up (011d, 0) in hash
table to obtain D. Hash D to get d’. Insert d’ in the next slot and mark extension bit. (c) Y hashes to 001a. Find
the run for bucket 001. Look for remainder 𝑔 in the run. Having found it, add y to the end of the minirun by
shi"ing everything to the right. Add Y to reverse map as the second fingerprint of the minirun.

maintains an array𝑒 of 2𝑃 𝑕 -bit slots, each of which can hold a single remainder. When an element
𝑀 is inserted, the quotient "lter attempts to store the remainder𝑉1 (𝑀) at index𝑉0 (𝑀) in𝑒 (which we
call 𝑀 ’s canonical slot). If that slot is already in use, then the quotient "lter uses Robin hood hashing
to "nd the next available empty slot to store𝑉1 (𝑀). All the items that share the same canonical slot
are stored together in a run, and a sequence of runs stored contiguously with no empty space is
called a cluster . During an insert operation, the next available empty slot is found at the end of the
cluster. If an item lands at the start of the cluster then all the items in that cluster must be shifted
to create space (see Figure 1).
The quotient "lter also maintains 2 bits of additional metadata (is_occupied and is_runend) per

slot in order to determine which slots are in use and the canonical slot of each remainder stored in
𝑒 . When an item is inserted into the canonical slot, the is_occupied bit for that slot is set to 1. The
is_runend bit is set to one for every slot that contains the last remainder in a run. Please refer to
Pandey et al. [71] for further details.

4 A$%&’()!QF Implementation
The AQF uses the same fundamental structure as the QF. Here we describe howwemodify the QF
schema to support adaptivity.

4.1 False positives
First, let us understand how false positive queries occur in the QF. The QF stores the "ngerprints
compactly and exactly in the table. Therefore, a false positive occurs due to a hash collision while
computing the "ngerprint. That is, suppose there exist two distinct items 𝑀 and𝑊 such that 𝑀 ↓𝐿 but
𝑊 ω𝐿 . If 𝑀 and𝑊 share the same "ngerprint, then a query for𝑊 will result in a false positive.
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AQF guarantees a false-positive rate 1 of 𝑁 =2↔𝑄 , where 𝑕 is the number of remainder bits, for a
set of items drawn uniformly at random from the universeU. However, if the items are drawn from
some arbitrary distribution then there is no guarantee on the false positive rate. For example, if a
query set consists of a single item that happens to be a false positive, then the false positive rate of
the "lter for that set will be 1.

4.2 Adapting to false positives
The A!"#$%&’QF can update its representation on every false positive query, ensuring that the
false-positive probability remains ⇐ 𝑁, even on repeated queries that were previously false positives.
TheA!"#$%&’QF adapts by giving an additional slot to the "ngerprint responsible for the false

positive, extending it by the next 𝑕 bits in its full hash, known as an extension. Multiple extensions
can be added if the resulting "ngerprint still produces a false positive on the given query, with
the probability that the "ngerprint incurs a false positive decreasing by a factor of 2↔𝑄 with each
extension. The!ngerprint of an item in theA!"#$%&’QF now refers to its quotient, remainder, and
any extensions that have been added to it in the "lter.
Recall that the QF has an overhead of 2.125 bits per item. We introduce an additional overhead

bit, the is_extension bit, to di!erentiate between slots storing remainders and extensions, bringing
the total overhead to 3.125 bits per slot. Slots with an unmarked is_extension bit are treated as usual.
A marked is_extension bit indicates that the slot contains an extension of the previous remainder.
Miniruns and the reversemap. To extend a "ngerprint in the "lter, we need the original key that
"ngerprint represents. We extend the "ngerprint for a given key by adding additional bits derived
from the full hash of that key. Thus, we maintain an on-disk reverse map from "ngerprints to keys.

Recall that the reverse map is not speci"c to theA!"#$%&’QF and is needed by any adaptive "lter
to retrieve the additional information necessary for adaptation. However, because theA!"#$%&’QF
adapts by appending to "ngerprints rather than reshu$ing them as done in the telescoping "lter [56]
and the adaptive cuckoo "lter [62], the bits of the "ngerprint that existed prior to adaptation stay
the same. Most notably, the quotient and remainder, which every "ngerprint starts with, are "xed
from the moment of insertion. We use this fact to construct a reverse map that does not need to be
accessed in response to natural shifting in the "lter during insertions.
Suppose two items 𝑀 and𝑊 share a quotient and remainder. Because runs are sorted by quotient,

and "ngerprints within a run are sorted by remainder, it follows that the "ngerprints of 𝑀 , 𝑊, and
any other items with the same quotient-remainder pair are stored contiguously in theA!"#$%&’QF.
Let us call this group of "ngerprints a minirun and their shared quotient-remainder pair their
minirun ID. Even when an item does not share a quotient-remainder pair with any other item, we
still consider its "ngerprint to be contained in a minirun of length 1. Theminirun rank of an item
is the rank of its "ngerprint within its minirun. Our reverse map will map a given minirun ID to a
list of all inserted keys with that minirun ID. We order the keys in this list according to the order
in which their "ngerprints appear in the minirun.

To insert a key-value pair into the database, we start by inserting its "ngerprint into the "lter. We
locate the slot in which the "ngerprint belongs and insert it into the back of its associated minirun, if
one already exists. Thus, its minirun rank𝑎 is the length of that minirun prior to the insertion, or zero
if there was no such minirun. In the reverse map, we map the 𝑎th element under this minirun ID to
the key of the key-value pair we are inserting. Finally, we insert the key-value pair into the database.

When querying for a key in the database, we always start by querying the "lter for its "ngerprint,
obtaining its minirun rank 𝑎 if the "ngerprint is present. If the "lter returns a positive, we then query
the reverse map for the 𝑎th key under this minirun ID. The query is detected to be a false positive

1The false-positive rate is de"nedas the ratio of thenumber of false positives reportedover the total number of queries in the set.
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if that key di!ers from the queried key. If so, we use the key provided by the reverse map to adapt the
o!ending "ngerprint in the "lter, which we can do without modifying the reverse map. Otherwise,
we query the database as usual to obtain the value for the queried key.

Figure 2 shows the state of theA!"#$%&’QF and reverse map during insertions and adaptations.

The reversemapas adatabase. So far,we have acted as though the reversemap and the database are
two separate data structures, both on disk. This would imply that the reverse map incurs additional
disk accesses during every insertion and positive query. We call this the split reverse map setup.

However,we canmerge the database and reversemap into a single key-value store, eliminating this
cost. Because the reverse map allows us to uniquely identify the original key of any "ngerprint in the
"lter, we can simply store any relevant values next to these keys in the reversemap. That is, instead of
the reversemapmapping from "ngerprints to keys and the databasemapping from keys to values, we
use the reversemap as a singlemapping from"ngerprints to key-value pairs. In e!ect, the reversemap
replaces the database. This does not require any additional queries over the conventional key to value
mapping – after all, the "lter is always queried before the database, sowe already have the "ngerprint
for any queried item by the time we turn to the database. We call this themerged reverse map setup.
For our on-disk experiments, we use the merged setup with all adaptive "lters. However, note

that this optimization leads to the items in the database being stored in hash order. Thus, the merged
setup no longer supports range queries. For applications that wish to use range queries, the split
setup would su#ce. We evaluate the overhead of using the split setup later.

Counters. Like the counting quotient "lter upon which it is based, the A!"#$%&’QF supports
e#ciently storing duplicate items by maintaining an optional variable-length counter with each
"ngerprint. In the CQF, each itemuses one slot for its remainder, followed by 0 ormore slots encoding
the number of times that "ngerprint is present in the "lter. The CQF encodes the counter such that
singleton "ngerprints use zero additional slots for their count, so the CQF is no less space e#cient
than a non-counting quotient "lter even when the set contains no duplicates. However, because the
CQF has only two metadata bits, encoding the counters is fairly complex.
Since the AQF has three metadata bits, we can use a much simpler encoding. The AQF has three

types of slots—remainders, extensions, and counters—and we only need to distinguish between
the two types of “extra” slots that can follow a remainder: extension slots and counter slots. In our
encoding, both extension and counter slots have the is_extension bit set, and we use the is_runend
bit to indicate whether the slot holds an extension or a counter. This is safe because we indicate the
end of a run by setting the is_runend bit on only the "rst slot of the last "ngerprint in the run, which
always stores the remainder – any other slots of that "ngerprint are free to use their own is_runend
bit to indicate whether they are extension or counter slots.
It’s worth noting that in both the CQF and theA!"#$%&’QF, use of this counter is not restricted

to storing counts speci"cally. It can be used to optionally attach any kind or number of associated
values next to any "ngerprint in the "lter.

4.3 Dynamic Y!"/N# List Problem
We can extendA!"#$%&’QF to the dynamic (’)/*+ list problems as follows. First, we extend the "lter
to store an extra bit with each "ngerprint, i.e. we extend each slot with one extra bit.We then store all
elements of both𝑅 and 𝑆 in the "lter, performing adaptations to eliminate any "ngerprint collisions
that occur during insertion and using the extra bit to recordwhich set each "ngerprint belongs to.We
can now add new items to𝑅 and𝑆 in the sameway: add the item to the "lter, performing any adapta-
tionnecessary to eliminate"ngerprint collisions and tagging the itemswith their origin.Wecandelete
items by simply deleting them from the "lter. Deleting a "ngerprint 𝑐 maymean that we can shorten
other"ngerprints in the"lter thatwe extended because they collidedwith 𝑐 . Finding any such eligible
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"ngerprints is easy and e#cient because theA!"#$%&’QF stores"ngerprints sorted lexicographically,
so all the "ngerprints that can be shortened will be stored in a contiguous run of slots containing 𝑐 .

Like the quotient "lter, theA!"#$%&’QF also supports growing and shrinking. The data structure
described in this section operates by initially provisioning the table with enough slots to hold a
certain number of elements and adaptivity bits. In the case of the staticA!"#$%&’QF "lter described
in Section 5.1, when sizes 𝑂 and𝑖 of the (’) list and *+ list, respectively, are known ahead of time,
we can predict the total space cost with high con"dence, as per Theorem 2. This tight allocation of
the table is what allows us to match the lower bound from Theorem 7.

Alternatively, if the (’) and *+ list sizes are not known in advance, we can instead "x two upper
bounds 𝑂̂ and 𝑖̂ on their maximum allowed size, and construct the following dynamic (’)/*+ "lter:
we allocate our table as a function of 𝑂̂ and 𝑖̂ (instead of 𝑂 and𝑖), and perform all the insertions into
the *+ list and queries of (’) list elements dynamically, as they are needed. The closer 𝑂 and𝑖 get
to 𝑂̂ and 𝑖̂, respectively, the closer the space cost will be to the space lower bound for a static "lter
on these *+ list and (’) list sets.

4.4 Skewed and AdversarialWorkloads
The basicA!"#$%&’QF structure is monotonically adaptive, i.e. it never repeats a false positive. The
cost of never forgetting false positives is that, over time, the A!"#$%&’QF needs more and more
slots to hold adaptivity information. Like the regular quotient "lter, the cost of an insert into the
A!"#$%&’QF is ε(log𝑂/(1 ↔ 𝑗)2) w.h.p., where 𝑂 is the number of slots and 𝑗 is the fraction of
slots that are currently in use [10]. Thus, as theA!"#$%&’QF adapts, 𝑗 approaches 1 and insertions
performance can fall o! a cli!. In static and dynamic (’)/*+-list problems, this can be mitigated by
making the "lter large enough to accommodate the anticipated number of items.

However, for skewedandadversarialworkloads,we can recover spaceusedby adaptation, ensuring
that the total space used by the "lter remains constant over time. This compromisesmonotonicity but
still ensures that the number of false positives from any sequence of𝑎 queries is very close to 𝑁𝑎 w.h.p.
The basic idea is to periodically rebuild the "lter with a new hash function. Rebuilding the "lter

puts the attacker back into the position of attacking a "lter about which he has no information. Thus
we can drop any adaptivity information after the rebuild. In other words, when we do the rebuild,
each itemwill consume a single slot.

So, for example, we can build the "lter, say, 10% larger than necessary, run the "lter until the extra
space is consumed by adaptations, and then rebuild. Furthermore, we can de-amortize the rebuild
process. See Bender et al. for details [7].

5 Static Y!"/N# List Bounds
In this section, we prove a space lower bound for solving the static (’)/*+ list problem and we show
that we can useA!"#$%&’QF to build an optimal solution to the static (’)/*+ list problem, up to low
order terms. Importantly, existing practical solutions to this problem (namely the Seesaw Counting
Filter [59], and the Bloomier Filter [22]) are either not always correct solutions to the problem, or
their space cost is at least constant factor away from the lower bound.

Let𝑇 be a "nite universe of elements, and let𝑅 and 𝑆 be subsets of𝑇 , with𝑅⇒𝑆 =⇑. Let 𝑁 ↓ (0,1).
A!"#/$%!lter supports querieswith the following guarantees: (i) every query for𝑊 ↓𝑅 must answer
(’), (ii) every query for 𝑘 ↓𝑆 must answer *+, and (iii) every query for 𝑀 ω𝑅⇓𝑆 answers (’)with
probability at most 𝑁. Notice that (’)/*+ "lters are static data structures. Although it’s possible to
consider a dynamic version where the elements of either the (’) or *+ set (or both) are inserted and
deleted dynamically, in this section we do not study this scenario.
Throughout this section we will let 𝑂= |𝑅 | be the size of the (’) list,𝑖= |𝑆 | be the size of the *+

list set, and𝑃= |𝑇 | be the size of the universe.
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5.1 Upper Bound for Y!"/N# Filters
Next we give an upper bound for the static (’)/*+ list problem, based on the A!"#$%&’QF. We
maintain the notation of the previous section, and let 𝑙 :=𝑁𝑖/𝑂 be the number of *+ false positives per
(’) element. Consider the following implementation, which we refer to as the (’)/*+A!"#$%&’QF.
(1) Create anA!"#$%&’QF 𝑏 with capacity for𝑂 elements, andA(𝑂,𝑖,𝑁) bits reserved for adaptivity,

where
A(𝑂,𝑖,𝑁) := (1+𝑋 (1))𝑂log(1+𝑙)+𝑈 (𝑂).

(2) Insert into 𝑏 every element from𝑅 .
(3) Query 𝑏 on each element from 𝑆 .
(4) If 𝑏 becomes full at any point before all queries are done, fail.
(5) Return 𝑏 .

Importantly, the queries in the "nal step "x all false positives from 𝑆 . The resulting "lter satis"es
the requirements of a (’)/*+ "lter.

P,+#+)%$%+* 1. The !"#/$%A&’()*+"QF uses
(1+𝑋 (1))𝑂log(max{1/𝑁,𝑖/𝑂})+𝑈 (𝑂) bits of space.

P,++-. The space cost is the sum of the space reserved for the remainders, plus the per-slot
metadata bits, plus the space reserved for adaptivity bits. This is a total of𝑂log(1/𝑁)+𝑈 (𝑂)+A(𝑂,𝑖,𝑁)
bits. Observe that

A(𝑂,𝑖,𝑁)=
{
𝑈 (𝑂) if 𝑙 ⇐ 1
(1+𝑋 (1))𝑂(↔log(1/𝑁)+log(𝑖/𝑂))+𝑈 (𝑂) otherwise

Notice that 𝑙 ⇐ 1 if and only if 1/𝑁 ↘𝑖/𝑂. Hence,
𝑂log(1/𝑁)+𝑈 (𝑂)+A(𝑂,𝑖,𝑁)

=
{
𝑂log(1/𝑁)+𝑈 (𝑂) if 1/𝑁 ↘𝑖/𝑂
(1+𝑋 (1))𝑂log(𝑖/𝑂)+𝑈 (𝑂) otherwise

= (1+𝑋 (1))𝑂log(max{1/𝑁,𝑖/𝑂})+𝑈 (𝑂).
⊋

Notice that the construction of the (’)/*+A!"#$%&’QFmay fail if the space initially reserved is
insu#cient. The following theorem, the central result of this section, establishes that failure is unlikely.

T.’+,’/ 2. Suppose𝑚 ((log3/2𝑂)/⇔𝑂) ⇐ 𝑙 ⇐ 2𝑅 (𝑀) . Then, the number of adaptivity bits added to the
!"#/$%A&’()*+"QF is at mostA(𝑂,𝑖,𝑁) with probability 1↔1/poly(𝑂). In particular, the probability
that the construction succeeds is 1↔1/poly(𝑂).

In the rest of this section, we prove this theorem. Let𝑛 be the number of adaptivity bits needed
after all the elements of𝑆 are queried in step (5).Wewant to show that𝑛⇐A(𝑂,𝑖,𝑁)with probability
1↔1/poly(𝑂).

Let𝑉 be "ngerprint hash function. For any 𝑀,𝑊 ↓𝑇 , let lcp(𝑀,𝑊) be the longest common pre"x of
𝑉(𝑀) and𝑉(𝑊). We decompose𝑛 into two parts: Let𝑛1 and𝑛2 be the number of adaptivity bits added
in steps 3 and 4, respectively. For any 𝑊 ↓𝑅 , let 𝑛1 (𝑊) and 𝑛2 (𝑊) be the number of adaptivity bits
added in step 3 and 4, respectively, to the "ngerprint of𝑊. Then,𝑛=𝑛1+𝑛2, and𝑛𝑆 =

∑
𝑇↓𝑈𝑛𝑆 (𝑊).

L’//" 3. We have𝑛1=𝑈 (𝑂) with probability 1↔1/poly(𝑂).

P,++-. This follows directly from Lemma 9 in Bender et. al. [7]. ⊋
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Wewill use the following basic result about the distribution of the maximum of a collection of
independent geometric random variables.

L’//" 4 ([39]). Let𝑜1,...,𝑜𝑉 be independent geometric random variables with parameter 1/2. Let
𝑝𝑉 :=max𝑆𝑜𝑆 . Then,

0⇐E[𝑝𝑉 ]↔log(𝑞)𝑟𝑉 ⇐ 1,
where𝑟𝑉 is the 𝑎-th harmonic number.

L’//" 5. E[𝑛2] ⇐𝑂(1+log(𝑞)+log(1+𝑙))
P,++-. We say that 𝑘 ↓ 𝑆 has a so" collision with 𝑊 ↓𝑅 if the baseline "ngerprints of 𝑊 and 𝑘

match, that is, lcp(𝑊,𝑘) ↘ log(𝑂/𝑁).
Fix an arbitrary 𝑊 ↓ 𝑅 . We claim that E [𝑛2 (𝑊)] ⇐ 1+ log(𝑞) + log (1+𝑙). Let 𝑠 be the (random)

numbers of 𝑘 ↓ 𝑆 that have a soft collision with 𝑊. For each 𝑘 that has a soft collision with 𝑊, let
𝑏 (𝑘) := lcp(𝑊,𝑘)↔log(𝑂/𝑁); this is the smallest number of adaptivity bits that𝑊 must have to "x a false
positive 𝑘. Then,
𝑛2 (𝑊)= max

𝑊 has a soft collision with 𝑇
𝑏 (𝑘).

Observe that 𝑏 (𝑘) is a geometric random variable with parameter 1/2. Because all "ngerprints are
independent, the 𝑏 (𝑘)’s are independent. This is true even if𝑠 is known. Thus,𝑛2 (𝑊) conditioned
on𝑠 =𝑎 is identically distributed as the maximum of 𝑎 independent geometric random variables
with parameter 1/2. Call this maximum𝑝𝑉 . Then,

E[𝑛2 (𝑊) |𝑠 =𝑎]=E[𝑝𝑉 ] .
For 𝑎 =0, we have E[𝑛2 (𝑊) |𝑠 =𝑎]=0. For 𝑎 ↘ 1,

E[𝑛2 (𝑊) |𝑠 =𝑎] ⇐ 1+log(𝑞)𝑟𝑉 (by Lemma 4)
⇐ 1+log(𝑞) (1+ln𝑎) (as𝑟𝑉 ⇐ 1+ln𝑎 for 𝑎 ↘ 1)
=1+log(𝑞)+log𝑎 .

Hence, E[𝑛2 (𝑊) |𝑠] ⇐ 1+log(𝑞)+log(1+𝑠). Then,
E[𝑛2 (𝑊)]=E[E[𝑛2 (𝑊) |𝑠]] (by the tower rule)

⇐E[1+log(𝑞)+log(1+𝑠)]
⇐ 1+log(𝑞)+log(1+E[𝑠]). (by linearity of expectation and Jensen’s inequality)

Notice that𝑠 =
∑

𝑊↓𝑋𝑠 (𝑘), where𝑠 (𝑘) is an indicator random variable that is 1 exactly when 𝑘 has
a soft collision with𝑊. Recall that E[𝑠 (𝑘)] =𝑁/𝑂. By linearity of expectation, E[𝑠] =𝑁𝑖/𝑂= 𝑙, and,
"nally,

E[𝑛2 (𝑊)] ⇐ 1+log(𝑞)+log(1+𝑙).
This concludes the proof of the claim. The lemma follows by summing over all 𝑊 ↓ 𝑅 , and using
linearity of expectation. ⊋

To simplify notation, let 𝑙=𝑁𝑖/𝑂 be the mean number of queries that have a soft collision with
any "xed 𝑀 ↓𝐿 .
L’//" 6. Suppose 𝑚 ((log3/2𝑂)/⇔𝑂) ⇐ 𝑙 ⇐ 2𝑅 (𝑀) . Then, 𝑛2 ⇐ (1 + 𝑋 (1))E [𝑛2] with probability

1↔1/poly(𝑂).
P,++- )0’$1.. Recall that𝑛2=

∑
𝑇↓𝑈𝑛2 (𝑊). The proof is divided into two parts. First, we show

that the random variables𝑛2 (𝑊) are negatively associated (NA). Roughly speaking, this is because
when some query from 𝑆 is a false positive due to "ngerprint match with 𝑊 ↓ 𝑅 , then the new
adaptivity bits make following queries less likely to cause a false positive on 𝑊. Though intuitive,
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proving that the𝑛2 (𝑊)’s are NA is challenging because we can’t directly apply standard theorems
on negative association [90].
For each 𝑊 ↓ 𝑅 , let 𝑡 (𝑊) be the number of 𝑘 ↓ 𝑆 such that lcp(𝑊,𝑘) ↘ log(𝑂/𝑁) +𝑛1 (𝑊), that is,

elements that can cause a false positive due to a "ngerprint match with 𝑊 (and only with 𝑊). The
argument rests on the following four properties of the random variables involved:
(1) The𝑡 (𝑊)’s are NA random variables.
(2) Conditioned on the𝑡 (𝑊)’s, the𝑛2 (𝑊)’s are independent.
(3) The probability that𝑛2 (𝑊) is large is a non-decreasing function of the𝑡 (𝑊). Formally, for every

𝑢 , Pr[𝑛2 (𝑊) ↘ 𝑢 |𝑡 (𝑊)=𝑎] is a non-decreasing function of 𝑎 .
(4) Conditioned on𝑡 (𝑊), the random variable𝑛2 (𝑊) is independent of the𝑡 (𝑊≃)’s with𝑊≃ε𝑊.
Once negative association of the 𝑛2 (𝑊)’s is established, we are almost in the conditions of the

Cherno!-Hoe!ding inequality for the sum
∑

𝑇↓𝑈𝑛2 (𝑊). Unfortunately, there is one hypothesis that
is not met, namely they𝑛2 (𝑊)’s are not deterministically bounded—in the worst case, an unbounded
number of adaptivity bits may need to be added to some element 𝑊. This, however, is unlikely,
as 𝑛2 (𝑊) = 𝑈 (log(𝑙 + 𝑂)) with probability 1 ↔ 1/poly(𝑂); this is by a Cherno! bound, and a tail
bound on the geometric distribution. We can put this observation to work and circumvent the
boundedness requirement of Cherno!-Hoe!ding, using the following truncation trick: We de"ne
𝑛≃
2 (𝑊) :=min{𝑛2 (𝑊),𝑈 (log(𝑙+𝑂))}, and apply the Cherno!-Hoe!ding bound on the truncated sum

𝑛≃
2 :=

∑
𝑇↓𝑈𝑛

≃
2 (𝑊). Once concentration around the mean is established on𝑛≃

2, we conclude the proof
by showing that, with high probability, no truncation is actually done, so the analysis on𝑛≃

2 applies
to𝑛2 most of the time. Speci"cally:
(1) 𝑛2=𝑛≃

2 with probability 1↔1/poly(𝑂);
(2) E

[
𝑛≃
2
]
⇐E[𝑛2].

⊋

P,++- +- T.’+,’/ 2. The construction of the "lter succeeds if and only if𝑛⇐A(𝑂,𝑖,𝑁). Since
𝑛 =𝑛1+𝑛2, and by Lemma 3, Lemma 5 and Lemma 6 we have𝑛 ⇐𝑈 (𝑂) + (1+𝑋 (1)) (𝑂(1+ log(𝑞) +
log(1+𝑙)))=𝑈 (𝑂)+(1+𝑋 (1))𝑂log(1+𝑙)=A(𝑂,𝑖,𝑁), with probability 1↔1/poly(𝑂). ⊋

5.2 Lower Bound for Y!"/N# Filters
A lower bound for this problem was sketched out in Reviriego et al. [79], but without a rigorous
proof. Moreover, the lower bound as stated in that work is hard to compare against our upper bound
usingA!"#$%&’QF; here, we give an equivalent but more condensed lower bound.

T.’+,’/ 7. Suppose𝑃 ↘𝑄 (𝑂2/𝑁+𝑖2), for some large enough constant 𝑄 >0, and 𝑁 ⇐ 1/2. Then, the
number of bits used by a static !"#/$% !lter is at least

𝑂log
(
max

{
1
𝑁
,
𝑖

𝑂

})
+log(𝑞)min{𝑁𝑖,𝑂}+𝑈 (1).

Before diving into the proof let us brie%y discuss the lower bound. Dividing by 𝑂, we have that
a (’)/*+ "lter uses at least

log(max{1/𝑁,𝑖/𝑂})+𝑈 (1)= log(1/𝑁)+log(max{𝑁𝑖/𝑂,1})+𝑈 (1)
bits per (’) element. For comparison, traditional "lters have an information-theoretical lower bound
of log(1/𝑁)+𝑈 (1) bits per element. This can be interpreted as follows: When building a (’)/*+ "lter,
we need to (i) record the 𝑂 (’) list elements while ensuring that at most an 𝑁 fraction of all other
elements are incorrectly reported as present, and to (ii) record the𝑖 *+ elements. To accomplish
(i) we need at least log(1/𝑁) bits per element, just like a regular "lter. The number of additional bits
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needed to accomplish (ii) depends on 𝑙 :=𝑁𝑖/𝑂, which is the number of *+ false positives per (’)
element. When 𝑙 ⇐ 1, only a small constant number of extra bits per *+ element are needed; when
𝑙 > 1, log(𝑙) extra bits per *+ element are needed. We have omitted the proof for space but the
complete proof can be found in the full version of the paper [92].

6 Evaluation
The goal of the evaluation is to answer the following questions regarding the performance of the
A!"#$%&’QF:
(1) How does the insertion and query performance of theA!"#$%&’QF compare to other adaptive

and non-adaptive "lters?
(2) How well does the A!"#$%&’QF improve overall database performance, compared to other

adaptive and non-adaptive "lters?
(3) Howmuch space does theA!"#$%&’QF use to adapt?
(4) How does theA!"#$%&’QF compare to prior solutions to the (’)/*+ list problem?
(5) How does the false positive rate in theA!"#$%&’QF change during a dynamic workload?
(6) How fast can twoA!"#$%&’QF instances be merged?

6.1 Results summary
We compare theA!"#$%&’QF 2 against two state-of-the-art adaptive "lters, the telescoping adaptive
"lter (TQF) [56] and the adaptive cuckoo "lter (ACF) [62]. We also include two non-adaptive "lters,
the quotient "lter (QF) [71] and the cuckoo "lter (CF) [42], as baselines to understand the overheads
and bene"ts of adaptivity. The quotient and cuckoo "lter are chosen as baselines as these are the
"lters upon which the adaptive "lters used in our evaluation are developed.
We found that adaptivity is an extremely e#cient way to reduce the false-positive rate of a "lter.

For example, on a Zip"an query workload, theA!"#$%&’QF is able to reduce the false-positive rate
by about 100→ for an additional cost of less than 1/1000th of a bit per item. In contrast, a non-adaptive
"lter would need 7 bits per item to achieve the same false-positive rate reduction.

Absent any system, theA!"#$%&’QF has comparable space usage to the other "lters. For example,
theA!"#$%&’QF uses more space than the cuckoo "lter, but only by 1%. Most notably, theA!"#2
$%&’QF performs at par with the quotient "lter on which it is based, indicating little to no overhead
for its adaptivity. On the other hand, the adaptive cuckoo "lter and telescoping adaptive "lter are
signi"cantly slower than their respective non-adaptive counterparts.
However, when the cost of a false positive is increased by including an on-disk database, the

bene"ts of adaptivity become apparent. For example, when used to "lter queries from a "xed dataset,
theA!"#$%&’QF is able to learn the query set, seeing 10→ fewer false positives over 200millionqueries
than the quotient "lter and the cuckoo "lter. This resulted in 4-7→ faster queries. Furthermore, using
theA!"#$%&’QF to "lter queries in a B-tree databases had query throughput that was impervious
to an adversarial query workload, whereas the throughput of non-adaptive "lters dropped about
2→with the inclusion of an adversary representing a mere 1% of queries.

Although the bene"ts of maintaining a low false positive rate during queries are shared by all three
adaptive "lters, the inclusion of a database reveals that theA!"#$%&’QF is much faster than other
adaptive "lters during insertions. The systems using the TQF and the ACF slow down signi"cantly
as the "lters "ll up due to frequent modi"cations of their on-disk backing stores. Between 85-90%
fullness, theA!"#$%&’QF averages 5→ the insertion throughput of the ACF and 30→ that of the TQF.
Other results. TheA!"#$%&’QFmatches the rate of change of false-positive rate during queries
from a real-world dataset compared to other adaptive "lters. The A!"#$%&’QF solves dynamic
2https://github.com/splatlab/adaptiveqf
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(’)/*+ problems with changing sets. TheA!"#$%&’QF supports fast merges and bulk insertions.
Finally, despite being dynamic, theA!"#$%&’QF achieves similar or better space usage compared
to purpose-build solutions for the static (’)/*+ problem.

6.2 Experimental setup
One challenge we face is that the "lters do not all support the same false-positive rates. Thus, we
pick a target false-positive rate and con"gure each "lter to get as close as possible to the target
false-positive rate without sacri"cing performance. This is in accordance with the prior research
on evaluating "lters [41, 70, 73]. Our target false-positive rate is 2↔9 (↖0.2%) which is the commonly
used in most practical system con"gurations [42, 71].

We con"gure the quotient "lter-based "lters (AQF, TQF, and QF) with 9-bit remainders. We use 12-
bit "ngerprints and blocks of size 4 in the cuckoo"lter-based "lters (ACF, CF). This results in all "lters
having a false-positive rate of 2↔9. We use MurmurHash2 [4] as the hash function for all "lters. The
A!"#$%&’QF does not require any special properties in the hash function compared to other "lters.
Machine speci!cation. All experimentswere run on an Intel(R) Xeon(R) Gold 6338 CPU@2.00GHz
with 96 MiB L3 cache. The machine has 1 TB of memory, 64 CPUs, and 4 TB of SSD-based local
instance storage, 64-bit platform.We restrict our runs to a single core.

6.3 Microbenchmarks
We evaluate the performance of the "lters in RAM.We create the "lters with 227 (134M) slots, which
makes them substantially larger than the L3 cache on the machine where experiments are performed.
We "ll each "lter to 90% load factor3 and report the performance of the "lter as a function of load
factor. Although all of the "lters evaluated in our benchmarks support up to 95% load factor, we
restrict them to 90% in order to give them room to store any additional data needed to adapt.
Speed. We evaluate adaptive "lter performance on two fundamental operations: insertions and
lookups. We evaluate insertions on uniformly random 64-bit keys, and lookups on both uniform-
random and Zip"an distributions [31]. In the Zip"an distribution, we use a Zip"an coe#cient of
1.5 and a universe size of 10 million items. We do not count the time required to generate the input
to the "lters, only the time to insert and query items in the "lters. This way we only measure the
di!erences in "lter performance. We perform 200 million queries for both query distributions. The
numbers reported for both insertions and queries are the average of 5 trials.

We perform the benchmarks in isolation of any overheads from the reverse maps. For the adaptive
"lters, which use reverse maps to obtain keys for adaptation, we pick valid arbitrary keys that will
su#ce in order to simulate having the reverse map present. We still measure hashing as part of the
"lters’ performance because it is done independently of the reverse map and database.

Figure 3 shows the throughput of adaptive and non-adaptive "lters for insertions and queries. The
A!"#$%&’QF is based on the counting quotient "lter.A!"#$%&’QF is not slower than the quotient
"lter, but it is slightly faster during both insertions and queries, indicating that the overhead of
adaptivity in theA!"#$%&’QF is minimal. Increased query speed may also be attributed in part to
the slightly lower false positive rate resulting from adaptation. The CF has the highest insertion
throughput among all the "lters, which is consistent with previous research [41, 70, 73]. In exchange,
the quotient "lters o!er fast resizing, mergeability, and e#cient variable-length counters/values.

In contrast, there is a noticeable overhead in the ACF compared to the CF when it comes to queries
due to the need to hash a given query multiple times. The CF can use a single hash function to obtain
both the index and the tag of an item simultaneously. On the other hand, the tag of an item in the
ACF depends on the location of the tag. This means that the ACF must "rst apply a hash to calculate
3Load factor is the ratio of the number of occupied slots over the total number of slots in the "lter
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Fig. 4. Parallel insertion throughput
scaling up with number of threads.
Filters built with 226 slots.

the indexes of an item, and only then apply additional hashes to search for the tag. Similarly, the
TQF also sees a lower throughput due to the additional overhead of applying arithmetic coding to
encode and decode hash selectors when making queries. Aside from queries, both the ACF and TQF
have additional overhead during insertions for the same reason. As items naturally shift and move
during insertions, the tags stored need to be rehashed in order to re%ect their new locations.

When switching to Zip"an queries, all "ve "lters bene"t. Since the "lters are easily large enough
to overwhelm the machine’s L3 cache, skewing the queries allows the cache to be more e!ective.
The adaptive "lters can also maintain a signi"cantly lower false positive rate than the non-adaptive
"lters. However, the extra overhead in the ACF and TQF from the use of hash selectors puts a cap
on how fast their queries can be, so the decreased false positive rate and increased cache friendliness
have limited bene"t. The QF ends up having high variance in its Zip"an query speed. This is a result
of the high impact of locality in theQF, which uses linear probing in contrast to the CF.When popular
items fall in small clusters, queries are fast, but if they are in larger clusters, query performance
slows down. TheA!"#$%&’QF does not see the same variance since it quickly adapts to any Zip"an
distribution regardless of its locality.

Space. We evaluate the space e#ciency of the "lters by measuring the actual space needed to store
items. We report the space e#ciency at 90% load factor. This is space usage prior to any adaptation,
so each "lter contains the same number of items and uses the same number of slots. Table 2 shows
the empirical space usage and false-positive rate of di!erent "lters in these experiments. The space
reported in the table is only the "lter space. It does not include the space required by the reverse hash
map. TheA!"#$%&’QF has ↙8↔9% space overhead compared to the non-adaptive quotient "lter.

Parallelism. TheA!"#$%&’QF preserves thread safety from the counting quotient "lter. It divides
the slots in blocks of 4096 slots each anduses a lightweight spin lock for each block to avoid corruption.
During an insertion or an adaptation, each thread "rst acquires two locks on consecutive blocks, the
block inwhich the item hashes and the next one. Two consecutive locks helps to avoid any corruption
in case the shifting of items over%ows into the next block.
It is also possible to execute mixed operations concurrently using twomodi"cations. First, locks

would also have to be acquired during queries, whichwould not be necessary if insertions and queries
are performed in separate phases. Second, if the database being used also supports concurrent inserts,
the lock acquired during "lter inserts would need to be held until the database insert is "nished. This
is to ensure the items in the sameminirun are also inserted into the database in the same order as they
are inserted into the "lter. However, this is only necessary if there are mixed inserts and adaptations
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Filter Size (log) Map Inserts Map Updates Map Queries
AQF 20 943718 0 0
TQF 20 943718 3608887 3356560
ACF 20 947815 584829 584829
AQF 24 15099494 0 0
TQF 24 15099494 56697889 52650676
ACF 24 15103591 9336669 9336669

Table 1. Number of reverse map accesses during insertions. The TQF and ACFmake additional updates and
queries in maintaining the reverse map. All filters of a given size were filled to 90% load.

Filter ↔log(FPR) Space (MB)

AQF 9 203.610
TQF 9 218.104
ACF 9 201.402
QF 9 186.818
CF 9 201.401

Table 2. Empirical space usage for same false positive
rate. All filters were created with 226 slots.

Filter CAIDA Shalla

AQF 31.6M 15.8M
TQF 8.4M 6.7M
ACF 34.1M 18.3M
QF 24.1M 16.8M
CF 119.2M 62.2M

Table 3. !eries per second on real-world datasets
a"er 226 inserts.

being done concurrently; in an insert-only workload, items in a minirun are identical in the "lter
until an adaptation happens, so the order of insertions into the database does not matter.

Figure 4 shows insertion throughput of theA!"#$%&’QF in isolation, as a function of the number
of threads used, to demonstrate that the A!"#$%&’QF itself maintains good parallelism. We also
show the performance of the QF for comparison. For this experiment, we use a "lter of size 226, and
we con"gure the locks to span 216 slots each. Therefore, there are 210 locks and contention is low.We
vary from 1 thread to 12 threads in the increments of 2. Both theA!"#$%&’QF and QF show almost
linearly scaling with the increasing number of threads, with theA!"#$%&’QF being slightly faster.

6.4 System benchmarks
In this section, we evaluate the performance of A!"#$%&’QF as a front-end "lter to a disk-based
B-tree database. We create an instance of the disk-based B-tree by using the B-tree implementation
from SplinterDB [29]. For these tests, we disable the 𝑌𝑁-tree structure and its accompanying "lters
in SplinterDB, and use it as a "lter-less on-disk dynamic 𝑌-tree. Because "lters are frequently used
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alongside databases too large to "t in memory, storing data on disk using the B-tree is representative
of real-world database systems.

We create an in-memory "lter together with an on-disk map holding uniformly distributed keys
with randomly generated values that represents a database. For the non-adaptive "lters, the database
holds the full set of keys-value pairs. For the adaptive "lters, the database instead maps the "nger-
prints stored in the "lter to their associated key-value pairs based on the optimization of using the
reverse map as the database described in Section 4.

To perform an insertion, a key is"rst inserted into the in-memory"lter, and then the key-value pair
is inserted into the database. For non-adaptive "lters, the key-value pair is inserted into the database
directly. For adaptive "lters, a "ngerprint is obtained when inserting into the "lter, and then the
"ngerprint-key-value triple is inserted into thedatabase,mapping the"ngerprint to thekey-valuepair.
To perform a query, the key is queried in the "lter. If the "lter returns “negative,” then that key

is not in the database and no disk query is performed. If the "lter returns a “positive,” the key and
any corresponding data are retrieved from the database. The non-adaptive "lters do this by directly
querying thedatabase for thekey, anda falsepositiveoccurs if thedatabasewasnotable to"ndthatkey.
Theadaptive"lters insteadquery thedatabase for the"ngerprint found in the"lter, anda falsepositive
occurs if thekey stored in thedatabasedoesnotmatch thekey thatwasqueried for. The adaptive"lters
can then use the returned key to adapt the "lter so that the queried key no longer returns “positive.”

Insertion performance. Figure 5 shows insertion throughput of the database as a function of the
"lter load factor. For this experiment, we create "lters with 225 slots and insert keys from a uniform
random distribution until the "lters are 90% full. At 1% progress intervals, we record the amount
of time taken and calculate the insertion throughput over that interval.

The system has similar performance when using theA!"#$%&’QF compared to the non-adaptive
QF and CF "lters. This shows that there is little to no overhead of using the adaptive "lter on the
insertion performance of the system.

Since insertions into the B-tree are the main bottleneck, all 5 "lters start with roughly equal inser-
tion throughput. However, the ACF and TQF fall o! over time. This is due to the cost of maintaining
the reverse map. Table 1 shows the number of additional accesses to the reverse map done by the
adaptive "lters. As "ngerprints are inserted into theA!"#$%&’QF, no entries for previous insertions
need to be modi"ed in the reverse map. As the ACF "lls up, it needs to do a large number of kick
outs. Since the tag being stored to represent an item changes depending on its location in the "lter,
it is not su#cient to simply move a tag when performing a kick out. Instead, every kick out requires
an expensive query to the backing map so that a new "ngerprint can be hashed. The frequency
of kick outs increases with load factor. When a "ngerprint is inserted into the TQF, it may cause
other "ngerprints to shift. The reverse map implemented with the TQF is based on location – keys
are stored alongside their "ngerprints and thus need to shift with them. The constant shifting of
"ngerprints induces many additional reverse map accesses.

Adversarial query performance. In Figure 6, we measure the e!ect of a query-only adversary on
system throughput. Even if the overall query distribution is uniform, an attacker can arti"cially skew
the distribution by skewing their ownqueries.An adversary candetect the latencydi!erence between
negative and positive queries (including false positives), and even without knowledge of the actual
insertion set, record a list of positive queries. They can then repeat these queries to intentionally
induce I/Os. Even in a systemwith a cache, the adversary needs only collect enough false positives
to overload the cache, then proceed to cycle between these queries to render the cache ine!ective.

In this experiment, we con"gure a "lter of size 226 and insert 90% that many random 32-byte key-
value pairs. Then,we perform 200Mqueries. The"rst 100Mwarmup the cache and give the adversary
time to collect false positives. We then measure the average query throughput over the next 100M
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queries. We vary both the cache size and the frequency of adversarial queries over di!erent trials.
We do experiments on cache sizes of 1%, 3%, 6%, 12%, and 25% the size of the input dataset. Figure 6
shows only the results of the minimum andmaximum cache sizes. There are marginal improvements
to the performance of the non-adaptive "lters when provided a larger cache. However, even with
the cache holding 25% of the dataset, an adversary representing less than 1.5% of the total queries
can cause query throughput for the entire system to drop by 2→ that of normal operation, which is
already lower than that of theA!"#$%&’QF. This increases to 3→with 3% adversarial in%uence and
up to 10→with 10% adversarial in%uence.

It is intuitive to expect that a large cachewould be able to o!set the e!ects of an adversary.However,
these experiments show that increasing the size of the cache has a disproportionately low impact.
The adversary induces disk accesses by cycling through known false positives which it hopes are
out-of-cache. The chance that a false positive is out of cache equals the proportion of key-value pairs
that do not "t in cache. That is, by increasing the cache size 25→, we do not decrease the e!ectiveness
of the adversary by 25→, but rather by 25%. A vast majority of of adversarial queries (75%) will still
be out-of-cache. Moreover, with the cache being a page cache, the adversary only needs to collect
one false positive from each page (or at least frommost pages) in order to e!ectively cycle the entire
dataset through cache. In conclusion, any reasonably-sized cache is largely ine!ective against this
particular kind of query adversary.
TheA!"#$%&’QF o!ers high and consistent query performance irrespective of the frequency of

adversarial queries. Even without adversarial queries the AQF has comparable query performance
to the non-adaptive "lters. But in the presence of adversarial queries it can o!er up to an order of
magnitude higher query performance.

Mergedvs. split reversemap. As discussed inSection4, the reversemapanddatabase canbemerged
into a single data structure so that reverse map inserts and queries do not incur additional overhead.
This makes the database unable to perform range queries. The split reverse map and database setup,
however, does support range queries. Table 4 compares the two setups to show the overhead of
using the split setup in the case that one would like to use range queries. The insertion throughput is
halved due to needing to insert into both the database and reverse map individually. However, query
throughput is a!ected by only about 1%due to the infrequency of false positives on generalworkloads.

6.5 Adaptivity rate for real-world datasets
In application benchmarks, we use real-world datasets to evaluate the rate of change of false positive
rate and space usage in adaptive "lters in the presence of queries.
To evaluate the false positive rate over time, we "rst construct all three adaptive "lters and "ll

them to 90% load factor. We then construct a query set that will be performed over time, and the
"lters will adapt to the false positive queries. We also construct multiple independent query sets
from the Zip"an distribution, which we use to compute the instantaneous false positive rate. The
"lters do not adapt while measuring the instantaneous false positive rate.
We perform a total of 3 million queries when the "lters adapt to measure the rate of change of

false positive rate and the space usage. We compute the instantaneous false positive rate and space
usage after every 1% of queries. To compute the instantaneous false positive rate, we construct 100
independent query sets from a Zip"an distribution. During the false positive computation, we turn
o! the adaption in the "lters. Therefore, "lters only adapt during normal queries and do not adapt
while computing the false positive rate.

We use three di!erent datasets for application workloads. The "rst dataset is synthetic and gen-
erated from the Zip"an distribution (with Zip"an constant 1.5) on a universe of size 1 billion. The
second dataset is CAIDA passive traces [17], a set of anonymized network traces collected by the
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Fig. 7. False-positive rate (FPR) and additional space usage over time. The adaptive filters are able to almost
immediately reduce their FPR by up to 100→ on a skewed workload. The A!"#$%&’QF is able to achieve a
marginally lower or equivalent FPR at negligible space overhead.

Center for Applied Internet Data Analysis between April 2008 and January 2019. The third database,
the Shalla [53] block list, is a list of about 3millionmalicious URLs compiled by Shalla Secure Services.
For our experiments, we perform insertions and queries from the Shalla list.

Figure 7 shows the rate of change of false positive rate and space during queries in adaptive "lters.
The false positive rate immediately drop for all three "lters. This is because the "lters adapt to hot
items early in the query sequence. Later on, the "lters adapt to infrequent items, each of which brings
a smaller drop in the false positive rate.
The drop in false positive rate over time is similar for all three adaptive "lters for the Caida

and Shalla datasets. These two datasets are not very skewed, and therefore the strong adaptivity
advantage of A!"#$%&’QF over the TQF and ACF is not especially apparent.
On Zip"an queries, the false positive rate for all three "lters drops equally. However, over time

the false positive rate in the A!"#$%&’QF drops to lower than the TQF and ACF. This shows that
the strong adaptivity guarantees in theA!"#$%&’QF lead to a lower false-positive rate over time.
The TQF and ACF do not adapt completely the "rst time they encounter the false positive, which
can result in subsequent false positive results when colliding with the already adapted key.

The space usage (in bits/item) increases over time slightly in theA!"#$%&’QF, because adaptation
involves using additional slots for some "ngerprints. However, the rarity of false positives means
this additional space is negligible, and false positives will become even more rare over time.
For actual query throughput, we list the numbers in Table 3. This includes costs incurred by

occasional queries to the database. The A!"#$%&’QF has comparable query throughput to both
the AQF and QF. All "lters bene"t from cache-friendliness induced by the skewed distribution of
CAIDA’s queries. However, theA!"#$%&’QF and ACF see more improvement than the QF due to
their ability to adapt to the most popular false positive queries in the distribution.
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6.6 Dynamic workloads
Apart from static workloads, we also evaluate the change of false positive rate in theA!"#$%&’QF
in the presence of deletions, insertions, and queries over time. This simulates the real-world use
cases where the items in the (’) list change over time. We do not include other adaptive "lter
implementations, TQF and ACF, in this experiment as they do not support deletes.
Like with Figure 7, we compute instantaneous false-positive rates after every 1% of queries. At

10% intervals, we delete and replace 20% of the items. To compute the instantaneous false-positive
rate, We use 1 million queries from the same Zip"an distribution without adapting.

Figure 8 shows the false positive rate over time in the presence of deletions, insertions, and queries.
Every 10% of the operations, we introduce a massive churn in which 20% of the items in the "lter are
replaced. There are a couple of spikes in the false positive rate that coincide with the churns. They
are caused when one of the inserted items causes a popular query to become a false positive. But
the "lter quickly adapts to the new item, and the false positive rate once again drops very low. TQF
and ACF are excluded from these experiments as those implementations do not support deletions.

In these experiments, we lose strong adaptivity. This is a deliberate choice and not a limitation of
theA!"#$%&’QF. We can support strong adaptivity in the presence of updates to the *+ list and (’)
list by associating a small value to the"ngerprints as described in Section 4.3. Strong adaptivity can be
preserved in the presence of deletions by setting an item’s counter to zero instead of deleting the item
completely. We chose in these experiments not to preserve strong adaptivity in order to demonstrate
the "lter’s ability to maintain a low false positive rate in dynamic environments and because the
highly dynamic nature of these experiments would make the extra space usage impractical.

6.7 Merge and bulk load performance
Filters are often used to build inverted text indexes on genomics data [69], where they are merged
with other "lters during compaction. Therefore, mergeability is a critical feature in "lters for easy
adoption in database systems.

TheA!"#$%&’QF supports e#cient merging by the same means as the CQF, since we do not store
any auxiliary hash encoding information. In contrast, merging in the TQF and ACF is not straightfor-
ward due to the hash selectors obscuring the original keys. To evaluate the merge performance of the
A!"#$%&’QF, we use an in-memory hash table as the reverse map because we just want to evaluate
the "lter’s merging speed. Note that merging two reverse maps is easy, because minirun lists sharing
an ID can be concatenated, so long as miniruns in the "lter are also concatenated during merging.
We also evaluate bulk loading in the A!"#$%&’QF, where the entire list of items is known. We

"nd that the raw execution time of merging and bulk inserting is extremely low. For bulk loading,
we would prepare by "rst sorting the items in hash order.
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Reverse Map Setup Inserts Queries
Merged 2.32→105 1.843→107
Split 1.12→105 1.819→107

Table 4. Operations per second using the merged
vs split reverse map setup. Tests were run using
filters of size 226. In the split setup, reverse map and
database inserts are independent, so insertion has
half the speed. However, due to the infrequency of
false positives, querying is only 1-2% slower.

Operation Time/insert (𝑙𝑣)
Insert into "lter 0.520092
Insert into half-size "lter 0.353332
Merge two half-size "lters 0.039147
Sort in hash order (qsort) 0.348060
Bulk insert 0.019569

Table 5. Average latency for random inserts; inserting
into two filters of half the size and then merging; and
sorting items beforehand followed by bulk inserting.

Table 5 shows themerge and bulk-build performance of theA!"#$%&’QF. Normal and bulk inserts
were done on "lters of size 226 until 90% load factor. Merging was done between two "lters of size 225.
Merging two existing "lters is 13x faster than constructing a full "lter from scratch, thanks to the "n-
gerprints in the smaller "lters already being sorted. Similarly, bulk loading, in whichwe sort and then
insert using a specialized insertion procedure, is about 70% faster than random insertions. For sorting
we used the C standard qsort function. Specialized sorting functions for a given situation may be
even faster. Merging is slower than bulk loading due to comparing quotient-remainder pairs between
the two merged "lters, as well as an overhead in identifying runs when stepping through the "lter.

6.8 Space comparison to static Y!"/N# solution
Figure 9 shows the space usage of CRLlite [55], a custom-built and static (’)/*+ list solution based
on the cascading Bloom "lter, and theA!"#$%&’QF. The space usage of theA!"#$%&’QFwhile being
dynamic is always smaller or similar to CRLite. For the evaluation, we "x the aggregate size of the *+
list and (’) list to 1 million items and evaluate the space with changing ratio of the *+ list and (’) list.

6.9 Non-adaptive filter additional space
The adaptive "lters have higher space usage (due to the overhead of adaptivity) compared to the
non-adaptive"lters. Therefore,weperformedanexperimentwherewecon"gured theQFandCFwith
a higher number of bits to give them extra space and lower false-positive rate. With extra space, the
uniform query performance of the CF increases by 1%, and the Zip"an query performance increases
by 0.3%. Similar performance gains are seen for the QF. Therefore, even with extra space and a lower
false-positive rate, the CF-based system is 20% slower compared to theA!"#$%&’QF-based system.

7 Conclusion
We introduceA!"#$%&’QF in this paper. TheA!"#$%&’QF is the "rst strongly adaptive "lter which
supports high throughput operations using single-hashing and quotienting. Using the adaptive"lters
in the system we can increase the overall system throughput by avoiding repeated unnecessary
accesses to the backing stores (or other slower storage). The strongly adaptive "lter guarantees
consistently low false-positive rate over time on dynamic workloads.
Traditional "lters have been the go-to data structure for over "ve decades. However, traditional

"lters lose their bene"ts in the presence of real-world skewed and adversarial workloads. Today’s
applications can bene"t from practical adaptive "lters that o!er strong theoretical guarantees and
high performance independent of the data distribution in order to quickly and e#ciently perform
complex analyses on large-scale data.
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