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ABSTRACT: The breadth of transition metal chemical space covered by databases such as the 
Cambridge Structural Database and the derived computational database tmQM is not conducive 
to application-specific modeling and the development of structure–property relationships. Here, 
we employ both supervised and unsupervised natural language processing (NLP) techniques to 
link experimentally synthesized compounds in the tmQM database to their respective applications. 
Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for 
photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the 
chemical substructures within each dataset reveals common chemical motifs in each of the 
designated applications. We then use these common chemical structures to augment our initial 
datasets for each application, yielding a total of 21,631 compounds in tmCAT, 4,599 in tmPHOTO, 
2,782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted 
computational screening and development of refined structure–property relationships with 
machine learning. 
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1. Introduction. 

Transition metal complexes (TMCs) are used in a wide variety of applications, including 

as homogeneous catalysts1-3 for fine chemical synthesis3-6 and in advanced sensor, display, and 

data storage devices.3,7 The electronic and steric properties a TMC are influenced by those of the 

constituent metal and ligands.7,8 However, the variety of metal identities and oxidation states that 

may be used in conjunction with ligands of different connectivity and charge results in a 

combinatorial design space too large to sample exhaustively.3,7,9,10 Density functional theory 

(DFT) calculations are often leveraged in high-throughput virtual screening (HTVS) campaigns to 

explore chemical space in search of new molecules with desired properties, though the cost of such 

calculations limits the number of complexes that may be investigated.1,3,7,9,11,12 Such campaigns 

can be further accelerated through machine learning, which rely on large datasets of experimental 

and computational results for training.7,9,11 

Prior efforts have been made to curate datasets of TMCs,13-16 their constituent ligands,17-23 

and relevant reactions.4,24-27 Many of these datasets are based on entries from the Cambridge 

Structural Database (CSD),28 a digital repository of experimental crystal structures, including 

molecular crystals of thousands of TMCs. However, challenges exist with current datasets, which 

primarily fall into one of two classes. The first class of datasets are exceptionally large but contain 

properties of limited relevance to applications-based molecular discovery.10,13,24,29-36 The second 

class of datasets are highly focused, containing relevant information very specific to local regions 

of chemical space, and as such are not easily generalized to new chemical applications.14,19-23,27,37,38 

The transition metal quantum mechanics (tmQM) dataset is an example of a large, nonspecific 

dataset of interest to transition metal chemistry, containing 86,665 mononuclear TMCs.16 These 

structures were extracted from the CSD and subjected to additional filtering by retaining only 
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structures with at least one C and H atom, and only those which contain allowed non-metal 

elements (i.e., B, Si, N, P, As, O, S, Se, F, Cl, Br, and I). Furthermore, oxidation states were 

assumed for metals to ensure closed-shell character where possible and only structures that had a 

net charge of no more than +1 or less than -1 were retained. Their geometries were optimized at 

the semiempirical extended tight binding (xTB) level of theory, and DFT single-point energy 

calculations were performed on the resulting structures. While the tmQM is a valuable dataset in 

computational chemistry workflows for investigating TMCs,17,39,40 a key limitation is the absence 

of a mapping between molecular structures and the relevant areas of chemistry. This hinders 

further investigation into structures that are particularly promising for applications in catalysis, 

photochemistry, or other fields of interest. In contrast, datasets such as the ligand knowledge base 

(LKB) curated in pioneering work by Fey et al.19-22 and kraken later developed by Gensch et al.23 

are examples detailed, applications-focused datasets with limited transferability. Both datasets 

primarily consist primarily of organophosphorus ligands, include relevant physicochemical 

descriptors useful in building quantitative structure–property relationships, and are based on 

commercial and virtual libraries.19-23,41 However, these do not generalize well to other areas of 

chemistry beyond organophosphorus ligands, exemplifying a limitation of such datasets and a need 

for large datasets linked to targeted chemical applications. 

The curation of a chemically targeted and synthetically accessible TMC dataset relies on 

systematically reviewing literature on the TMCs that are contained within existing databases. The 

broad scope of TMC literature, however, would make manual processing arduous, prompting the 

use of natural language processing (NLP) techniques42,43 for efficient analysis. NLP has been 

utilized extensively in the extraction of material properties and material synthesis parameters from 

the literature.37,44-51 More recently, large language models (LLMs) coupled with prompt 



4 

 

engineering have gained increasing popularity in automating scientific text mining for chemical 

information due to their more user-friendly nature.52-56 A crucial aspect of text mining for 

classifying text based on chemical domain involves topic modeling,57 which is the identification 

of underlying themes in large sets of scientific text. For tasks of this nature, prompt engineering 

typically requires a priori definition of the possible latent topics. Nevertheless, LLMs can still be 

leveraged to obtain contextualized embeddings of the text that capture semantic information58,59 

and subsequently cluster text based on semantic similarity60,61 where each cluster corresponds to a 

latent topic, as facilitated by algorithms like bidirectional encoder representations from 

transformers for topic modeling (BERTopic).62  Simpler topic modeling approaches, such as latent 

Dirichlet allocation (LDA),63 which utilizes bag-of-words and statistical patterns of co-occurring 

words to infer latent topics, can also be employed to cluster manuscripts in a corpus.  While these 

unsupervised NLP methods have been leveraged for summarizing research trends in chemistry,64 

with an emphasis on biochemical and medicinal research65-68 as well as in the classification of 

large biomolecular datasets,69 they have yet to be extended to the space of transition metal 

chemistry and in the development of application-specific TMC datasets. 

 To construct chemically targeted TMC datasets, we conduct text mining on manuscripts 

associated with synthesizable TMCs from the tmQM database, focusing only on their titles and 

abstracts, and leverage both simple NLP tools as well as transformer models to process the text. 

Using topic modeling, we segment the structures in the tmQM database based on distinct chemistry 

applications. Through this process, we introduce four new TMC datasets – tmCAT containing 

catalytically-relevant TMCs, tmPHOTO with photoactive TMCs, tmSCO comprising TMCs with 

magnetic properties, and tmBIO containing biologically-relevant TMCs. Additionally, we 

performed substructure analysis to compare trends in metal-local structures among tmQM TMCs 
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and the four curated datasets to subsequently enrich each chemistry-specific dataset by adding 

additional tmQM TMCs that could potentially be suitable for the given application. 

2. Computational Details. 

Corpus curation and text pre-processing 

Manuscript titles and abstracts used for supervised learning as well as unsupervised 

clustering were obtained from a corpus that was curated in November 2020.70,71 Most manuscripts 

in this corpus were retrieved directly using the ArticleDownloader package.72 Manuscripts from 

the Royal Society of Chemistry (RSC), Wiley-VCH, the American Association for the 

Advancement of Science (AAAS), Springer, and Nature were obtained directly. Articles from the 

American Chemical Society (ACS) were obtained via a direct download agreement between ACS 

and the Massachusetts Institute of Technology. We created a secondary corpus of abstracts for 

manuscripts that could not be obtained with the ArticleDownloader package by scraping article 

URLs using the BeautifulSoup package v.4.12.273. We used the HTML title to retrieve manuscript 

titles. To obtain the manuscript abstract, we parsed the HTML paragraphs and retrieved the first 

paragraph that contained more than 400 characters. From a set of 100 randomly selected DOIs,  

we manually validated the abstract and title retrieval procedure, which shows that this approach 

can be used to retrieve titles and abstracts at a high rate (Supporting Information Table S1). 

However, this procedure can in rare cases (i.e., 1 case out 100 tested) lead to retrieval of an 

introduction paragraph instead of the abstract. Because the secondary corpus contains some degree 

of impurity, it was only used to identify more catalysis-relevant complexes based on the abstract 

with a trained classifier model (see Sec. 3a). 
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Abstracts were preprocessed using the NLTK v.3.8.1 package74. The text was cleaned by 

lowercasing, removing punctuation, URLs, and numbers. The cleaned text was then tokenized 

using a regular-expression tokenizer, RegexpTokenizer, implemented in the NLTK package. 

Tokenized text was filtered using stop words with standard English stop words. For unsupervised 

clustering, an additional set of stop words was introduced to avoid clustering based on chemical 

languages (See Sec. 3c). The filtered text was stemmed with the Snowball Stemmer and 

lemmatized with the WordNet Lemmatizer, both implemented in the NLTK package. 

Featurization 

 For the classification model, we featurized the corpus using the term-frequency inverse-

document-frequency (TF-IDF) vectorizer implemented in scikit-learn v.1.4.0 package75. The TF-

IDF vectorizer accounts for the frequency of a given token within a document and its frequency in 

a collection of documents, assigning lower weight to common tokens across the entire corpus. 

Only tokens that appeared in at least 10 documents were retained, and the vector included mono-, 

bi-, and trigrams. The feature vector was fit using only the training set to avoid data leakage from 

inverse document frequency weighting. To reduce the feature vector length, we evaluated the 𝛘2 

score of each feature using the training set and retained only the 300 most important features as 

computed by the 𝛘2 test. For unsupervised learning using BERTopic, we used the Sentence 

Transformers v2.2.276 package for transforming abstracts into a feature vector. The semantic 

embedding was done using the sentence transformer sentence-BERT (SBERT) model76, which 

converted the title and abstract into a 768-dimensional vector. Embedding was done using a pre-

trained Siamese BERT network, all-mpnet-base-v2 transformer, which embeds paragraphs to a 

768-dimensional vector. Embeddings can be compared using cosine similarity. We then reduced 

the dimensionality of this vector to a five-dimensional mapping using uniform manifold 
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approximation and projection (UMAP)77, which was selected because dimensionality can be 

reduced in UMAP using the same cosine metric as in the SBERT embedding. We generated a 

CountVectorizer feature vector of the corpus for unsupervised learning with latent Dirichlet 

allocation (LDA)78. LDA utilizes a bag of words vector, which consists of the overall token count 

for each document. Furthermore, LDA requires a predefined number of clusters. We decomposed 

the corpus into 20 clusters to maintain relative consistency with the 23-25-cluster size identified 

by BERTopic. The count vector was generated using scikit-learn and consists of a vector of term 

count per document.  

 While BERT-based models can, in principle, be applied without text preprocessing, this in 

practice leads to clustering by transition metal or material (Supporting Information Table S2). To 

avoid this, we introduced stop words before text processing to avoid dependence on specific 

materials or metals, with a full list of stop words provided on Zenodo79. 

NLP models 

 The catalysis classifier is a random forest classifier implemented in the scikit-learn v.1.4.0 

package. A random 80:20 train/test split was used to evaluate the model performance on a set-

aside test set. Hyperparameter optimization does not significantly affect the model performance. 

Full grid search cross-validation summary can be accessed through Zenodo repository79. Default 

random forest hyperparameters were used for training without hyperparameter optimization, with 

the exception of the minimum samples required to split a node that was set to 10, and the number 

of trees that was set to 1,000 (Supporting Information Table S3). The minimum sample split was 

increased from the default to avoid overfitting, and the number of models in the ensemble was 

increased to improve model performance. Dimensionality reduction of high-dimensional feature 
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vectors for unsupervised clustering (5-dimensional vector) and visualization (2-dimensional 

vector) were carried out using uniform manifold approximation and projection for dimension 

reduction (UMAP) using UMAP package v0.5.577. We use the 5-dimensional vector to identify 

dense clusters, and we interpret topic assignments through cluster-level TF-IDF vectors. Clustering 

on the reduced 5-dimension vector was carried out using HDBSCAN80, a hierarchical density-

based clustering algorithm using the HDBSCAN v0.8.33 package. The topic assignment of dense 

clusters was achieved using the BERTopic package v0.16.0 with a modified class-based TF-IDF 

vector (c-TF-IDF)62. Clustering using LDA was carried out with the implementation in the scikit-

learn package. 

 All machine learning models, scripts, Jupyter notebooks, datasets, and their associated 

structures are provided on Zenodo79. Geometry assignment was carried out using functionality 

implemented in the molSimplify geometry_changes branch, and the script is included in the 

Zenodo repository79. 

3. Results and Discussion. 

3a. Catalytic transition metal dataset  

To curate a dataset of catalytically relevant transition metal complexes, we utilized the 

tmQM dataset81 consisting of 86,665 unique CSD refcodes as a starting point, and we obtained the 

manuscripts associated with each CSD refcode using the ArticleDownloader package72. Through 

this procedure, we curated a corpus consisting of 28,394 unique manuscripts, accounting for 

50,968 crystals in the dataset. To utilize natural language processing models for identifying 

catalysis manuscripts, we focused on manuscript abstracts because they are information-dense 

texts that tend to avoid the discussion of broader topics and are therefore well suited for identifying 
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whether a manuscript will discuss catalysis (i.e., versus introductions). Furthermore, abstracts are 

publicly available, typically on the article's DOI-accessible HTML webpage, which enables 

retrieval of abstracts that could not be obtained using the ArticleDownloader package72. If abstracts 

could not be extracted automatically from the manuscript (here, this occurred for 4,682 of 28,394 

manuscripts), we used titles instead.  

To train a sentiment analysis model that could identify whether an abstract is associated 

with catalysis, we first identified the subset of manuscripts related to catalysis based solely on 

whether the manuscript titles contained the keyword “catal” but does not contain false-positive 

keywords (e.g., "uncatal", "acid catal" or "base catal", Supporting Information Table S3). These 

steps produced a 4,585-manuscript subset where titles were confidently labeled as addressing 

catalysis (Supporting Information Table S3). We then confidently identified non-catalytic 

manuscripts by excluding manuscripts with catalytic and associated keywords (i.e., "catal", 

"turnover", and "polymer") that occurred at least once in either the title or abstract (Supporting 

Information Table S4). This non-catalytic set consists of 20,557 manuscripts, the majority of 

manuscripts not identified as catalytic in our initial step, leaving only 3,252 unlabeled manuscripts. 

To analyze the label assignment, we randomly sampled 50 catalysis and 50 non-catalysis 

manuscripts and checked them manually. We find that 48 of the positive and 49 of the negative 

labels were correctly assigned using our approach.  

Despite our efforts to carefully label manuscripts confidently, simple pattern matching 

leads to a small number of incorrect label assignment and our approach to avoid false positive 

labels by only looking at patterns in the title is expected to miss true positive hits, motivating a 

more robust approach for identifying catalyst-focused manuscripts. We next pursued a more 

systematic approach by developing a classifier model using natural language processing. Prior to 
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training the classifier,  we first created a balanced dataset of catalysis and non-catalysis 

manuscripts by subsampling the non-catalytic manuscripts to achieve a balanced set of 4,585 non-

catalysis manuscripts to match the 4,585 catalysis manuscripts. Among the set of 9,170 

manuscripts, 1,312 manuscripts (364 catalysis, 948 non-catalysis) did not have a defined abstract, 

and the title was instead used for training the classifier model. We then separated this set of 9,170 

manuscripts into training and test sets using a stratified random split of 80:20. Using the abstract 

text of each of these papers, we preprocessed the text by elimination of uppercase letters, removal 

of punctuation, lemmatization, stemming, and removal of stop words to make the text suitable for 

natural language processing tasks (see Computational Details). We first featurized the papers based 

on the term frequency-inverse document frequency (TF-IDF) vectorizer82 from the training set (see 

Computational Details). Subsequently, a random forest classifier model was trained on the reduced 

TF-IDF feature vectors to predict whether an abstract is related to catalysis, achieving a high 

accuracy of 0.97 and strong separation between the two classes and ROC-AUC of 0.99 (Figure 1).  
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Figure 1. Prediction probability (left), confusion matrix (top right) and receiver operating 

characteristic curve (bottom right) of the catalysis classifier on the set-aside test set. All data points 

are represented as translucent circles to depict data density and colored by classification 

correctness: correct (green) and incorrect (red). 

Despite the strong overall performance, we next analyzed the specific cases where the 

model failed to ensure that it was a suitable tool for confidently assigning a catalysis focus to 

manuscripts. Out of 1,834 unique abstracts in the test set, 35 were incorrectly labeled. Only eight 

of these abstracts were given a false-positive label and were manually inspected to prevent dataset 

contamination. Among these eight abstracts, five had labels that were inaccurately assigned by the 

rule-based method (i.e., missing the “catal” and additional keywords in the abstract/title) and thus 
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should have been labeled as catalysis manuscripts. Additionally, one entry lacked an abstract, and 

its title had been used for training instead, likely contributing to the failure of the model to correctly 

predict the non-catalytic label for the manuscript. Furthermore, 27 complexes were given false-

negative labels. Among these, 14 had labels that were inaccurately assigned by the rule-based 

method. This analysis reveals that only a negligible fraction of manuscripts were wrongly labeled 

as catalysis-focused by the classifier model, and our method can detect complexes that the rule-

based approach missed. Similarly, the model can detect true positive labels that were missed by 

the rule-based method. However a larger, but still negligible, number of catalysis manuscripts 

might be missed by the model. Detailed analysis of all false labels are provided on the Zenodo 

repository.79 Unsurprisingly, the feature importance analysis of TF-IDF vectors showed that the 

most crucial features are keywords directly related to catalysis. However, several other significant 

word features were also identified, including activity, polymerization, hydrogenation, coupling, 

selectivity, Suzuki, and enantioselective, among others (Figure 2). To test the effectiveness of these 

additional tokens related to catalysis, we developed a separate random forest model that was 

trained on a TF-IDF feature vector that excluded the direct catalysis keywords (Supporting 

Information Table S5). This second random forest model still achieved 89% accuracy, 

demonstrating that other relevant keywords can still effectively identify catalysis-related 

manuscripts (Supporting Information Table S6 and Figure S1). 
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Figure 2. A word cloud of the 300 most important features of catalysis random forest classifier 
scaled by the feature importance score, not including direct catalysis keywords. Keywords directly 
mentioning catalysis were removed to highlight the significance of other common tokens. 

Given the promising performance of the classifier, we utilized the random forest model 

trained on the full TF-IDF feature vector to identify additional catalysis papers from the superset 

of all unlabeled manuscripts. This unlabeled set was comprised of any manuscript from the clean 

corpus not included in the original training/test set, which includes 3,252 manuscripts that were 

not labeled as either catalysis or not-catalysis, the excluded non-catalytic manuscripts absent from 

the subsampled set, and  manuscripts titles/abstracts mined from HTML source if they could not 

be obtained through the ArticleDownloader package. In total, this set is comprised of 20,449 

manuscripts associated with 30,345 unique CSD refcodes. By applying the random forest classifier 
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to this unlabeled set, we identified 6,208 additional manuscripts in the corpus as associated with 

catalysis (Supporting Information Figures S2–S3). With this added set, we identify the final 

tmCAT dataset, which consists of 10,793 unique manuscripts and the structures of 18,915 

associated TMCs. While NLP will identify abstracts that are associated with catalysis, it is not 

necessary that all crystal structures associated with these papers are relevant for catalysis (i.e., they 

could correspond to non-catalytic cations or catalyst precursors), and further analysis of the 

chemical composition of the dataset is merited (see Sec. 4). 

3b. Comparing catalysis and non-catalysis complexes 

We next quantified differences in the composition between catalytically-relevant tmCAT 

complexes and the broader tmQM dataset. To make this comparison, we first examined the 

distribution of transition metals in the tmQM and the tmCAT subset. Based on their frequency in 

the tmCAT dataset relative to the whole tmQM set, group 4 metals (i.e., Ti, Zr, and Hf) are most 

disproportionately used for catalysis, which can likely be attributed to the large number of papers 

and structures related to olefin polymerization with homogeneous Ziegler-Natta catalysts in our 

set (Figure 3). Group 3 metals (i.e., Sc and Y) are also extensively studied for catalysis (Figure 3). 

These metals are present in compounds that are often used as post-metallocene olefin 

polymerization catalysts83 and lactone ring-opening polymerization catalysts84. These findings 

indicate the prevalence of polymerization catalysts in the tmCAT subset, which we also explore 

further with additional text analysis in Sec. 3. Furthermore, Pd, Ru, Ir, Rh, and Au metals are 

abundant in our set, as would be expected because of their relatively frequent use in catalysis 

applications.85-88 Conversely, more earth-abundant transition metals are less commonly used in 

catalysis despite recent efforts towards sustainable catalysis using these metals89. While iron- and 

nickel-based catalysts have been studied relatively frequently, cobalt-based catalysts are notably 
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underrepresented, especially in comparison to isovalent Ir and Rh species that are more represented 

in the catalysis dataset. This analysis underscores the continued need to advance catalysis toward 

using more earth-abundant metals. 

Figure 3. Relative frequency of transition metal complexes associated with the catalysis topic. 

Metals are grouped and colored by their group number. The ratio of the total size of tmCAT relative 

to tmQM is shown as a dashed line.  

Next, we analyzed the differences and similarities between the tmCAT and the rest of the 

tmQM dataset (i.e., the non-catalytic portion) in terms of descriptors that had been computed 

during the curation of the tmQM dataset81.We first focus on electronic descriptors, such as 

molecular orbital energetics90 and metal charges that  are commonly employed in the screening of 

transition metal catalysts90,91. The relevant descriptors available in the original tmQM set81 include 

the HOMO and LUMO energies, the HOMO–LUMO gap, and the transition metal center partial 

charge. These properties were computed using the TPSSh meta-GGA hybrid functional with 

empirical D3(BJ) dispersion correction and a def2-SVP basis set based on GFN2-xTB optimized 
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geometries. Interestingly, the distribution of these descriptors show no major differences between 

catalytic (tmCAT) subset and the non-catalytic subset of the tmQM dataset (Supporting 

Information Figures S4−S7). These observations suggest that when considering a diverse set of 

complexes with wide-ranging transition metals, oxidation states, coordination environments, and 

ligands, descriptors based on frontier orbitals or metal partial charges may be insufficient for 

inferring reactivity. These observations are consistent with past work showing that frontier orbital 

energies alone struggle to generalize to catalyst activities across multiple metals and oxidation 

states.92 

We next considered geometric descriptors that evaluate the steric environment defined by 

ancillary ligands93 as another commonly employed class of descriptors for catalyst screening. We 

would expect an active catalyst (i.e., not a precatalyst) to feature an open site that can lead to the 

association of a reactant to the active site. However, active catalysts with open metal sites are 

usually not energetically stable intermediates and tend to have a sacrificial ligand or a solvent 

coordinated to the open site. To compare tmCAT structures to the non-catalytic subset of tmQM, 

we computed the percent buried volume of the metal for all complexes in the tmQM dataset. 

Analysis of the distribution of this parameter shows no significant difference in buried volume 

between the tmCAT and the rest of the tmQM dataset (Supporting Information Figure S8). We 

anticipate this lack of distinction is attributable to the fact that deposited crystal structures are 

likely precatalysts that need to undergo an activation process to form an active catalyst, meaning 

that geometric descriptors on CSD structures are unlikely to be useful for identifying catalysis-

capable complexes. 

Beyond steric metrics, one might anticipate other differences in the metal-local coordination that 

might distinguish the tmCAT and non-catalysis tmQM subsets. We hypothesized that even though 



17 

 

pre-catalyst complexes should be heavily featured in tmCAT, some noticeable differences could 

still be observed between catalysis and non-catalysis datasets when comparing coordination 

geometries because some geometries are less probable for precatalysts (e.g., those with six 

monodentate ligands or three bidentate ligands). We assigned metal coordination geometries by 

examining the geometric deviations from possible ideal transition metal geometries and assigning 

a geometric class with the lowest deviation (see Computational Details). When a haptic ligand is 

encountered (e.g., an alkene bound via its p bond to a metal center), a single occupancy was 

assigned at the geometric centroid of the haptic ligand. The most noticeable difference between 

tmCAT and the non-catalysis tmQM subset is due to the significant reduction in the number of 

octahedral complexes in tmCAT accompanied by a significant enhancement in the frequency of 

square planar complexes (Figure 4). Despite a lack of difference between tmCAT and the non-

catalytic tmQM in terms of steric descriptors, this enhancement of square planar over octahedral 

structures is consistent with our expectation of enhancing coordinatively unsaturated complexes 

in the tmCAT dataset as well as the fact that more octahedral structures are likely to be 

incompatible with catalysis due to higher-denticity ligands. Furthermore, the relative frequencies 

of other coordinatively unsaturated geometries, such as square pyramidal and trigonal planar 

complexes are also enhanced in the tmCAT dataset.  
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Figure 4. Relative frequency of different transition metal coordination geometries for the catalysis 
subset (tmCAT) and the rest of the tmQM dataset. Abbreviations: sqpl – square planar, thd – 
tetrahedral, oct – octahedral, trbp – trigonal bipyramidal, trpl – trigonal planar, lin – linear, sqpy – 
square pyramidal, other – all other coordination geometries. Randomly selected structures of the 
three most common geometries in the tmCAT set are shown on the right side. Transition metals 
are shown as spheres. Iridium is shown in pink, nickel in light green, ruthenium in purple, nitrogen 
in blue, oxygen in red, phosphorus in orange, chlorine in green, carbon in gray and hydrogen in 
white. 

 

3c. Unsupervised learning with natural language processing maps CSD structures to other 

applications 
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Given that the catalysis classifier only assigns approximately 25% of tmQM complexes to 

the tmCAT dataset, we next aimed to identify if the remaining 75% could be at least partly assigned 

to other application areas for TMCs by carrying out a more expansive review of the full corpus of 

papers in the tmQM set. Defining a topical subset within a corpus using supervised learning 

necessitates curation of a smaller subset, either manually or by defining heuristic rules for 

identifying positive and negative examples. On the other hand, by using unsupervised learning on 

the text, it is possible to identify clusters within a corpus that are semantically similar. Analyzing 

these clusters can lead to an improved understanding of different possible applications and topics 

covered by the corpus. A common approach for this purpose in natural language processing is 

topic modeling94, an unsupervised learning approach that can both cluster a corpus and identify 

topics associated with each cluster. We applied topic modeling to our full corpus of manuscript 

titles and abstracts to identify latent application topics, offering a more comprehensive view of the 

underlying themes and connections within the corpus. 

 We utilized the BERTopic model62, a method that clusters bodies of text based on their 

semantic embedding, and then assigns topics using a modified, cluster-based TF-IDF (c-TF-IDF) 

vector or other interpreter (see Computational Details). Importantly, we identified several 

subtopics that could be associated with non-catalytic applications, including biological activity, 

photoactivity, magnetism, self-assembly, and X-ray crystal structure characterization (Figure 5 

and Supporting Information Figure S9). Additionally, many of the topics uncovered by this 

analysis are complementary to our earlier labeling of catalyst papers, as other uncovered subtopics 

include several catalysis-related areas with more specific applications including polymerization, 

hydrogenation, chiral catalysis, and cross-coupling (Figure 6 and Supporting Information Figure 

S10). Even though the number of subtopic clusters and cluster composition is distinct across 
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different models (i.e., because there are multiple topic models that differ based on a random seed), 

all major subtopic clusters we identified are conserved. Using this additional information, we now 

introduce three additional datasets consisting of complexes associated with manuscripts 

consistently categorized across all five models as follows: i) tmPHOTO, which consists of 

photoactivity-associated complexes, ii) tmSCO, which consists of compounds exhibiting 

properties relevant to studies of magnetism, and iii) tmBIO, which consists of complexes with 

biologically relevant activities. We identified each of these datasets by inspecting most significant 

tokens associated with each of the cluster. For example, the tmPHOTO set is derived from the 

cluster that consists of manuscript abstracts that discuss phosphorescence, emission, and quantum 

yield, indicating that photophysical activity is discussed throughout these manuscripts. Similarly, 

we identified that tmSCO manuscript abstracts are associated with tokens that are related to spin-

crossover, magnetic properties and hysteresis, all keywords that are related to changes in the spin 

state of a TMC. Likewise, we determined that manuscript abstracts associated with tmBIO cluster 

discuss properties such as cytotoxicity, cancer, cell, and apoptosis, which are all related to 

biological activity relevant to pharmaceutical applications. 
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Figure 5. Selection of unique non-catalysis clusters identified using an unsupervised clustering 
approach showing the 25 most important tokens associated with each cluster based on the c-TF-
IDF vector. Text is scaled and colored according to the token importance. 
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Figure 6. Selection of unique catalysis clusters identified using an unsupervised clustering 
approach showing the 25 most important tokens associated with each cluster based on the c-TF-
IDF vector. Text is scaled and colored according to the token importance. 
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 Based on how semantic embedding works, we expect it to place/arrange subtopics with 

greater similarity closer to each other in the reduced dimensional space. To analyze the 

performance of the unsupervised learning approach and visualize how different topics relate to 

each other, we employed UMAP for further dimensionality reduction on the SBERT embedding, 

reducing the embeddings to two dimensions better suited for visualization while retaining the 

global structure of the data for distance comparison. We find that catalysis sub-topics are 

predominantly clustered closely to each other, suggesting that the wording used throughout 

catalysis-associated abstracts is highly similar. Furthermore, catalysis topics that are more closely 

related to each other, such as polymerization and metathesis, or hydrogenation and 

hydroboration/boration, each of which is related to olefin functionalization, are more closely 

clustered (Figure 7). As expected, the other, non-catalysis topics are more distant in the UMAP-

reduced space (Figure 7). The biologically active cluster, arguably the most different from other 

applications, due to its relevance in biological and pharmaceutical applications, stands out as the 

most distinct cluster. Manuscripts related to photoactivity and magnetism are comparatively 

clustered close to each other, which can be expected because both topics are associated with the 

transition to an excited state via external stimulus (Figure 7). Alternative dimensionality reduction 

techniques, such as t-distributed stochastic neighbor embedding (t-SNE)95, lead to similar 

conclusions, although we avoided using t-SNE because it is less effective at preserving the global 

data structure (Supporting Information Figure S11).  
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Figure 7. UMAP dimensionality reduction of SBERT embedding vectors colored by different 
cluster topics for different catalysis applications (top) and general applications (bottom). 

To support the findings from the BERTopic model, we employed an additional topic 

modeling approach, latent Dirichlet allocation (LDA).78 LDA is a Bayesian method that iteratively 

assigns two probabilities: one indicating that a given token belongs to a topic and the other 

indicating that a topic belongs to a document. This LDA analysis produces semantically similar 

clusters to BERTopic (Supporting Information Figure S12). Using the LDA approach, several 

catalysis clusters are identified, including polymerization, chiral catalysis, cross-coupling 

catalysis, olefin functionalization catalysis, and mechanism-focused catalysis. Some non-catalysis 

topics are also conserved, such as photoactivity, biological activity, magnetism, and X-ray crystal 

structure characterization. Feature reduction of the token count vector, obtained using UMAP 

reduction with Hellinger distance, leads to a similar mapping, demonstrating the close relationship 

between the identified clusters and the shorter distances between catalysis-related clusters 

(Supporting Information Figure S13). 

Even with the expanded subsets identified by unsupervised clustering using BERTopic or using 

the LDA analysis, a significant portion of the tmQM complexes are either unlabeled or assigned 

to difficult-to-interpret clusters. Furthermore, these datasets curated using simple natural language 

processing methods are not fully context-aware and don’t account for more detailed information 

present in the manuscript, such as discussion of failed experimental attempts, meaning that they 

may contain "negative" examples. That is, these subsets could contain complexes that were either 

used as counterexamples, found to be ineffective for a given activity, or represent a precursor 

structure that was crystallized before the in-situ assembly of chemically relevant species. 

Accordingly, we carried out analysis of the structures present in each dataset to both support the 

composition of these datasets and enhance them with chemically relevant species (see Sec. 4). 
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Such species might not have been originally used for a given application and therefore be missed 

by NLP approaches, but due to chemical similarity, they could have a complementary application. 

3d. Analysis of common metal-centered motifs in curated datasets 

It is intuitive that strong relationships should exist between the metal, its coordination 

environment in a TMC and the associated property or application. As a representative example, 

linear gold chlorides coordinated to phosphine or N-heterocyclic carbene (NHC)-type ligands are 

commonly utilized in catalysis96,97 but would not be expected to be relevant for spin-crossover 

because the Au metal is closed shell. We thus carried out an analysis of the metal-centered 

subgraphs to contrast trends in metal-local structure in the overall tmQM set to those in the tmCAT, 

tmPHOTO, tmBIO, and tmSCO subsets. We carried out this analysis after excluding lanthanide 

complexes because they are relatively poorly represented across all datasets.  To capture the metal-

local environment, we computed metal-centered subgraphs with a truncation of 2 bond paths away 

(i.e., d = 2) from the metal on the molecular graph. The radius of 2 was chosen because it captures 

metal-local electronic character, while also reducing the diversity of possible combinations. We 

obtained these subgraphs on the CSD-reported connectivity using the molSimplify package98, and 

we then determined the uniqueness of these subgraphs by computing and comparing the edge-

attributed molecular graph hashes of each metal-centered substructure. The Python script, resulting 

substructures, and graph hashes are all provided on Zenodo79. 

We first analyzed common structural motifs in the tmCAT dataset. Breaking down the 

dataset into structural motifs at the radius of 2 shows that while most complexes are unique when 

analyzing metal-local character, several structural motifs appear relatively frequently in the 

tmCAT dataset (Supporting Information Figure S14). Overall, 19,250 complexes in the tmCAT 
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dataset are represented by 10,094 unique d = 2 (i.e., metal-local) substructures. In particular, 

palladium dichlorides bound to either two phosphine ligands or to bidentate nitrogen-coordinating 

ligands are very common in the tmCAT dataset, appearing 131 and 89 times, respectively (Figure 

8). These metal-local motifs are likely derived from complexes that have been widely studied for 

their ability to catalyze cross-coupling reactions99. Similarly, linear gold chlorides bound to NHC 

or phosphine ligands are common in the tmCAT dataset, appearing 112 and 100 times, respectively 

(Figure 8). Linear gold complexes are known to catalyze various 𝜋-functionalization and 

annulation reactions, among others100. The high abundance of these gold and palladium motifs is 

in line with their occurrence in the tmQM superset, where the popularity of these complexes has 

led to their widespread examination in many contexts. On the other hand, several frequently 

occurring motifs were identified that are almost exclusively studied for catalysis (Figure 8). These 

include nickel catalysts with four mixed N, C, O, and P coordinating ligands, i.e., where each 

ligand type coordinates the metal once; iron dichloride catalysts with tridentate nitrogen 

coordinating ligands; and ruthenium dichloride catalysts with an NHC ligand and carbene ligand 

with a chelating oxygen group101 (i.e., likely derived from the second-generation Hoveyda-Grubbs 

catalyst102). Surprisingly, all these catalysts have been primarily studied for polymerization: Ni 

complexes are utilized for ethylene copolymerization with carbon monoxide103, Fe complexes are 

used as catalysts for linear homo-polymerization of ethylene for the synthesis of high-density 

polyethylene104, and Hoveyda-Grubbs catalysts are utilized for ring-opening metathesis 

polymerization (ROMP)105. This highlights how some motifs, despite their limited range of 

application, have been the focus of a great deal of study as a result of their industrial relevance. 
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Figure 8. Representative substructures of the tmCAT set. The occurrence of each substructure in 
the tmCAT set and tmQM superset are displayed. Transition metal centers are shown as spheres. 
Palladium is shown in light blue, gold in yellow, nickel in light green, iron in brown, ruthenium in 
purple, carbon in gray, chlorine in green, nitrogen in blue, oxygen in red, phosphorus in orange, 
and hydrogen in white. The metal atom legend is shown at the top. 

Next, we expanded our substructure analysis to the photochemistry-relevant tmPHOTO 

subset. Analysis of metal identity in tmPHOTO reveals that iridium, platinum, and copper 

complexes are significantly amplified in this dataset (Supporting Information Figure S15). 

Iridium106 and platinum107 complexes have been common targets for photophysical applications 

due to spin-orbit coupling that allows intersystem-crossing, which leads to high quantum yields. 

On the other hand, copper complexes108 have been explored as an earth-abundant alternative to 

more rare and expensive iridium and platinum complexes. Substructure mapping shows that 3,043 

complexes in tmPHOTO dataset are represented by 1,150 unique d = 2 structural motifs. Several 

commonly recurring substructures can be observed in the tmPHOTO set (Supporting Information 

Figure S16). These include iridium complexes with a coordination number of six with two 

bidentate C^N coordinating ligands and two oxygen-coordinating ligands (i.e., structural analogs 
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of Ir(ppy)2(acac)), which is a substructure that appears in tmPHOTO 101 times (Supporting 

Information Figure S17). Platinum complexes with a coordination number of four, a bidentate C^N 

type ligand, and two oxygen-coordinating ligands are other commonly recurring structural motifs 

(i.e., structural analogs of Pt(ppy)(acac)), with this substructure appearing 89 times in tmPHOTO. 

Another similarly commonly recurring motif is a 4-coordinate copper complex with mixed 

nitrogen and phosphorus coordinating atoms, including a bidentate nitrogen ligand, which appears 

89 times in the tmPHOTO dataset (Supporting Information Figure S17). Examples of structural 

motifs that are almost exclusively studied for photophysical properties include Ir complexes with 

two bidentate C^N type ligands and a bidentate N^N type ligand, as well as platinum complex 

with one bidentate C, NHC type ligand and two oxygen-coordinating ligands (Supporting 

Information Figure S17). 

Moving on to the spin-crossover relevant subset, we note that there are necessary 

differences for TMCs that exhibit switchable magnetic behavior. Here, iron, manganese, nickel, 

and cobalt complexes occur with higher relative frequency in the tmSCO set than in the tmQM 

superset (Supporting Information Figure S15). These metals are all third-row transition metals that 

tend to have relatively low d-orbital splitting energy (Δ) and, depending on the oxidation state, 

they are expected to have multiple accessible spin states. Substructure mapping shows that 834 

complexes in the tmSCO dataset are represented by 534 unique d = 2 structural motifs. A few d = 

2 structural motifs are representative of this dataset through multiple recurrences (Supporting 

Information Figure S18). These recurring motifs include manganese complexes with four nitrogen-

coordinating ligands, including a bidentate sp3 hybridized ligand and two oxygen-coordinating 

ligands, which appear 39 times in tmSCO and only six additional times (i.e., 45  in total) across 

the entire tmQM dataset. This highlights how these complexes are nearly exclusively targeted for 
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magnetic properties. Another common structural motif includes an iron center with four sp2 

hybridized nitrogen coordinating ligands and two nitrogen coordinating ligands that could be either 

isocyanides or cyanates (Supporting Information Figure S19). These complexes appear in the 

tmSCO set 27 times, and in the tmQM superset a total of 44 times. Interestingly, a relatively 

common structural motif includes iron bound to a tetradentate nitrogen-coordinating ligand with 

two additional isocyanides/cyanate ligands, which appears in the tmQM dataset 9 times, all of 

which are in the tmSCO subset, suggesting that these motifs have only been studied for 

applications related to magnetism (Supporting Information Figure S19). 

Finally, we analyzed the substructures in the biological activity subset, which we expect to 

be the most diverse due to the broad nature of this set. Ruthenium and platinum are the most 

representative metals in the tmBIO dataset (Supporting Information Figure S15). Overall, 

substructure mapping shows that 1,808 complexes in the tmBIO dataset are represented by 974 

unique d = 2 structural motifs. A high interest in platinum for biological applications can be 

attributed to cisplatin109, i.e., cis-diamminedichloroplatinum(II), the first inorganic small molecule 

approved as a pharmaceutical anti-cancer drug. Cisplatin-resistant cancers110 have led to the search 

for alternate platinum complexes as anti-cancer drugs111 and are represented in the tmBIO dataset. 

Furthermore, the high toxicity of cisplatin has led to the search for alternate inorganic and 

organometallic complexes that could be used as anti-cancer medications. In particular, the high 

promise of ruthenium arene 1,3,5-triaza-7-phosphaadamantane (RAPTA)112 compounds has led to 

a significant effort in screening ruthenium-based piano stool complexes as potential anti-cancer 

drugs113. These efforts are consistent with the makeup of the tmBIO dataset. In fact, the three most 

commonly recurring structural motifs feature ruthenium arene complexes with one chloride and 

two additional ancillary ligands (Supporting Information Figures S20–21). These complexes, 
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cumulatively, appear in the tmBIO dataset 82 times and 208 in the tmQM dataset. Furthermore, a 

motif that is closely related to cisplatin, with platinum, two chloride ligands, a single ammonia, 

and an organic N-coordinating ligand, appears in tmBIO set 17 times and has been exclusively 

studied for biological applications (Supporting Information Figure S21).  

Finally, we analyzed if any structural motifs appear frequently across different datasets to 

identify if they are frequently studied for multiple applications. To achieve this, we first created a 

subset of each dataset, consisting of commonly recurring motifs in each of the dataset (i.e. five or 

more recurrence for tmCAT and 3 or more recurrence for other datasets). We then analyzed 

overlaps between each dataset. These motifs are mostly exclusive to a given set, with more than 

82% of metal-centered motifs only appearing in one of the four sets exclusively (Figure 9). 

However, a single metal-centered substructure appears across all datasets. This motif consists of a 

nickel metal center with mixed N^N,O,O coordinating atoms and is reminiscent of salen 

complexes, despite the inability of radius 2 subgraphs to capture the entirety of tetradentate salen 

ligands (Figure 9, left inset). Salen complexes are a common enzyme mimic often used in 

asymmetric catalysis114 but could be used as targets for photoactive complexes due to the rigid 

nature of the ligand, as magnetic complexes with the nickel as the metal center, and the square 

planar coordination environment of salen ligands with Ni complex can be targets for DNA 

intercalation. Furthermore, several structural motifs were identified to reside among tmCAT, 

tmPHOTO, and tmBIO sets but not tmSCO. A noteworthy example includes an iridium motif with 

two bidentante C^N-type ligand and single bidentate N^N type ligand (i.e., Ir(ppy)2(bpy) analogs). 

These complexes are commonly used as triplet sensitizers, which can be applied for 

photocatalysis115 to access excited states and for biological applications to target reactive singlet 

oxygen formation116 (Figure 9, right inset). 
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Figure 9. UpSet plot showing how frequently recurring substructures in each of the tmCAT, 
tmPHOTO, tmBIO and tmSCO datasets intersect. Each set is defined by only retaining 
substructures with high recurrence. Each subset includes motifs that appear only in highlighted 
sets. The structure that appears in all four sets is shown as an inset on the left. A structure that 
appears in all but tmSCO sets is shown as an inset on the right. Nickel in green, iridium in pink, 
carbon in gray, nitrogen in blue, oxygen in red. A representative motif indicated by a * is found in 
the intersection of the tmBIO, tmPHOTO, and tmCAT datasets, and a motif indicated by a ‡ is 
found in all four subsets.  

Analysis of common application-specific structural motifs reveals that, for a given motif, 

there are complexes within the tmQM dataset that contain the motif but the associated manuscripts 

do not indicate the complex has been assessed for that specific application. Therefore, we 

supplemented each dataset using structural mapping to identify chemically similar structures to 

add to our data subsets. To complete this augmentation, we note that for most of these application-

specific datasets, multidentate ligands can play an important role, such as in defining the steric 

environment and introducing added stability for catalysis or inhibiting thermal relaxation pathways 



33 

 

for photoactive compounds. This is consistent with several common multidentate motifs (i.e., five-

membered rings) when considering d = 2 substructures. However, d = 2 substructures cannot 

capture bidentate ligands that form six-membered metallocycles. Therefore, to avoid introduction 

of less relevant complexes in each dataset, we identify matching metal-centered substructures in 

tmQM dataset with d = 3. Unsurprisingly, increasing the radius of metal-centered substructures 

leads to a reduction in the number of recurring substructures, with, e.g., 13,696 unique d = 3 motifs 

(vs. 19,250 for d = 2) in the tmCAT dataset (Supporting Information Figure S22). To only 

introduce additional structures with high relevance to a given application, only motifs with high 

recurrence (i.e., 5 or more for tmCAT, 3 or more for the other subsets) were supplemented. Using 

structural mapping, we augmented the tmCAT, tmPHOTO, tmSCO, and tmBIO datasets with 

2,381, 1,556, 149, and 974 additional chemically relevant complexes, respectively. The final, 

application-specific datasets we curated can be accessed on Zenodo79. 

4. Conclusions 

In summary, we employed natural language processing techniques, both supervised and 

unsupervised, to link experimentally synthesized compounds in the large and diverse tmQM 

database, which consists of 86,665 datasets, to their respective applications. Using the manuscript 

abstracts, we first trained a classifier model to identify manuscripts that are related to catalysis 

with an accuracy of 0.97. Using this model we curated a dataset of catalysis-related transition metal 

complexes, called tmCAT, which initially consisted of 18,915 unique complexes. Analysis of 

common electronic and geometric descriptors revealed that commonly used descriptors fail to 

distinguish between catalytic and non-catalytic sets. However, the analysis of coordination 

geometry of catalytically relevant complexes showed that geometries with open metal sites were 

significantly enhanced in the tmCAT set.  
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Using topic modeling, an unsupervised clustering method often used in natural language 

processing, we further curated three additional initial datasets: tmPHOTO, a dataset consisting of 

3,043 unique complexes with photophysical relevance, tmBIO, a dataset consisting of 1,808 

unique complexes with biological relevance, and tmSCO, a dataset consisting of 834 unique 

complexes with relevance to magnetism. Analyzing the chemical substructures within each dataset 

identified frequently targeted complexes for their designated applications, such as bidentate N^N 

palladium dichlorides for catalysis, iridium complexes with two C^N ligands or platinum 

complexes with one C^N ligands for photophysics, and platinum dichlorides or ruthenium piano-

stool complexes for biologically relevant complexes. By mapping these substructures to their 

applications, we identified previously synthesized complexes that had strong chemical similarity 

to those already identified for each application. We used these additional complexes to supplement 

the textually curated datasets, leading to 2,716 additional tmCAT complexes, 1,556 additional 

tmPHOTO complexes, 974 tmBIO additional complexes, and 149 additional tmSCO complexes 

in the final data sets. 

The curated tmCAT, tmPHOTO, tmBIO, and tmSCO datasets are expected to enable more 

focused high-throughput computational screening and development of predictive machine learning 

models while still allowing for exploration across diverse chemical spaces. The language models 

employed in this study also have the potential for broader application, such as to curate subsets of 

other classes of materials, such as metal-organic frameworks. 
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