
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Tiny Pointers

MICHAEL A. BENDER, Stony Brook University, USA
ALEX CONWAY, Cornell Tech, USA
MARTÍN FARACH-COLTON,New York University, USA

WILLIAMKUSZMAUL, Carnegie Mellon University, USA

GUIDO TAGLIAVINI, Rutgers University, USA

This paper introduces a new data-structural object that we call the tiny pointer. In many applications, traditional log𝐿-bit pointers can
be replaced with 𝑀 (log𝐿)-bit tiny pointers at the cost of only a constant-factor time overhead and a small probability of failure. We
develop a comprehensive theory of tiny pointers, and give optimal constructions for both !xed-size tiny pointers (i.e., settings in which
all of the tiny pointers must be the same size) and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must
be small, but some tiny pointers can be larger). If a tiny pointer references an item in an array !lled to load factor 1 → 𝑁 , then the optimal
tiny-pointer size isω(log log log𝐿 + log𝑁→1

) bits in the !xed-size case, andω(log𝑁→1
) expected bits in the variable-size case.

Our tiny-pointer constructions also require us to revisit several classic problems having to do with balls and bins; these results may
be of independent interest.

Using tiny pointers, we apply tiny pointers to !ve classic data-structure problems. We show that:
• A data structure storing𝐿 𝑂-bit values for𝐿 keys with constant-factor time modi!cations/queries can be implemented to take

space𝐿𝑂 +𝑃 (𝐿 log(𝐿) 𝐿) bits, for any constant 𝑄 > 0, as long as the user stores a tiny pointer of expected size𝑃 (1) with each
key—here, log(𝐿) 𝐿 is the 𝑄 -th iterated logarithm.

• Any binary search tree can be made succinct, meaning that it achieves (1 + 𝑀 (1)) times the optimal space, with constant-factor
time overhead, and can even be made to be within𝑃 (𝐿) bits of optimal if we allow for𝑃 (log↑ 𝐿)-time modi!cations—this
holds even for rotation-based trees such as the splay tree and the red-black tree.

• Any !xed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted) with constant-factor time
overhead and (1 + 𝑀 (1))-factor space overhead.

• Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with constant-factor
time overhead and with an additional space consumption of log(𝐿) 𝐿 +𝑃 (log 𝑅) bits per 𝑅-bit value for an arbitrary constant
𝑄 > 0 of our choice.

• Given an external-memory array𝑆 of size (1 + 𝑇)𝐿 containing a dynamic set of up to𝐿 key-value pairs, it is possible to maintain
an internal-memory stash of size𝑃 (𝐿 log 𝑇→1) bits so that the location of any key-value pair in𝑆 can be computed in constant
time (and with no IOs).

In each case tiny pointers allow for us to take a natural space-ine"cient solution that uses pointers and make it space-e"cient for free.

Additional KeyWords and Phrases: pointers, space-e"cient, balanced allocation, balls and bins, hashing, load balancing, randomized
algorithms, retrieval

ACMReference Format:
Michael A. Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul, and Guido Tagliavini. 2018. Tiny Pointers. In .ACM, New
York, NY, USA, 42 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for pro!t or commercial advantage and that copies bear this notice and the full citation on the !rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

1 INTRODUCTION

Howmany bits does it take to store a pointer? If we know nothing about the pointer except that it references an item
in an array of size 𝐿, then there is a lower bound of log𝐿 bits.

For many (and perhaps even most) uses of pointers, however, this information-theoretic lower bound does not apply.
As we shall see in this paper, even a small amount of prior information about a pointer (e.g., a node’s predecessor in a
linked list) can be used to defeat the log𝐿 lower bound.

This paper introduces a general-purpose tool, which we call the tiny pointer , for compressing pointers. In settings
where pointers are used, tiny pointers can often be used instead to eliminate almost all of the space overhead of pointers.

What is a tiny pointer? Suppose𝐿 or more users (i.e., Alice, Bob, etc.) are sharing an array𝑀 of size𝐿. A user can request
a location in𝑀 via a functionA!!"#$%&(), which returns a pointer 𝑁 to a location that is now reserved exclusively for
that user, if there is an available location; the user can later relinquish the memory location by calling a function F’&&(𝑁).
Each user promises only to allocate at most one memory location at a time.1 For example, if Alice callsA!!"#$%&() to
get a pointer 𝑁 , she must call F’&&(𝑁) before callingA!!"#$%&() again.

Howlargedo thepointers𝑁 need tobe?Thenatural answer is that eachpointeruses log𝐿 bits.However, the fact that each
pointer has a distinct owner makes it possible to compress the pointers to 𝑂 (log𝐿) bits. A critical insight is that the same
pointer 𝑁 can mean di#erent things to di#erent users, via the following scheme in whichA!!"#$%&,D&’&(&’&)#&, F’&&
are given the user’s ID as an additional argument. A user 𝑃 can callA!!"#$%&(𝑃) in order to get a tiny pointer 𝑁; they
can dereference the tiny pointer 𝑁 by computing a functionD&’&(&’&)#&(𝑃, 𝑁) whose value depends only on 𝑃 , 𝑁 , and
random bits; and they can free a tiny pointer 𝑁 by calling a function F’&&(𝑃, 𝑁).

The reason that tiny pointers are not constrained by the information-theoretic lower bound of log𝐿 bits is that 𝑃 and
𝑁 together encode the allocated location, rather than 𝑁 alone. Thus this scheme provides a mechanism for how to use
information already available about a pointer (namely,who “owns” the pointer) to compress the pointer to size𝑂 (log𝐿) bits.

We refer to the algorithms for the functionsA!!"#$%&(𝑃)/D&’&(&’&)#&(𝑃, 𝑁)/F’&&(𝑃, 𝑁), along with the array𝑀 and
any associated metadata𝑄 , as a dereference table. We will often refer to the users (i.e., the owners of tiny pointers) as
keys and to the data stored at the allocated locations pointed at by the tiny pointers as values. In practice, the “users”
will often be components of a data structure that have some ownership relationship to the allocation being performed.
A dereference table that stores 𝑅-bit values in an array of 𝐿𝑅 bits (and using𝑆 (𝐿) bits of metadata) is said to support load
factor 1 → 𝑇 if the table is capable of storing (1 → 𝑇)𝐿 values at a time.

An ideal dereference table would simultaneously support a load factor with 𝑇 = 𝑂 (1), tiny-pointer sizes of 𝑂 (log𝐿),
and constant-time operations with high probability. As we shall discuss shortly, we prove a tradeo# curve between the
best achievable load factor 1 → 𝑇 and the best achievable tiny-pointer size 𝑈 . Constructing optimal dereference tables on
this tradeo# curve is one of the central questions of this paper.

Using tiny pointers to get tiny data structures. In addition to constructing dereference tables with tiny pointers,
we show that such dereference tables can be used to obtain improved solutions for a number of classic problems:

• Adata structure storing𝐿 𝑉-bit values for𝐿 keyswith constant-timemodi!cations and queries can be implemented
to take space 𝐿𝑉 +𝑆 (𝐿 log(𝑄) 𝐿) bits, for any constant 𝑊 > 0, as long as the user stores a tiny pointer of expected
size𝑆 (1) with each key—here, log(𝑄) 𝐿 is the 𝑊 -th iterated logarithm.2

1A user 𝑈 can request more than one location by creating a unique label 𝑉 for each of their allocations. In this case, we simply treat the “user” for the
allocation as the concatenation𝑈 ↓ 𝑉 , so the user𝑈 can have multiple allocations without violating the uniqueness requirement.
2That is, log(1) 𝐿 := log𝐿 and log(𝑀+1) 𝐿 := log log(𝑀) 𝐿.

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

• Any binary search tree storing𝐿 sortable keys in𝐿 nodes can bemade succinct, meaning that it achieves (1+𝑂 (1))
times the optimal space3, with constant-factor time overhead, with constant time overhead, and can be made
within𝑆 (𝐿) bits of optimal with𝑆 (log↑ 𝐿)-time modi!cations. This holds even for rotation-based trees such as
the splay tree, which is conjectured to be dynamically optimal.

• Any !xed-capacity, e.g. non-resizable, key-value dictionary storing 𝑉-bit values can be made stable (i.e., items
do not move once inserted) with constant time overhead an additive𝑆 (log 𝑉)-bit space overhead per value.

• Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with
constant time overhead and with an additional space consumption of log(𝑄) 𝐿 + 𝑆 (log 𝑋) bits per 𝑋-bit value,
where 𝑊 > 0 is an arbitrary constant.

• Given an external-memory array 𝑀 of size (1 + 𝑌)𝐿 containing a dynamic set of up to 𝐿 key-value pairs, it is
possible to maintain an internal-memory stash of size𝑆 (𝐿 log 𝑌→1) bits so that the location of any key-value pair
in𝑀 can be computed in constant time (and with no IOs).

What uni!es these problems is that each is easy to solve space-ine"ciently with pointers, and the di"culty in solving
them space-e"ciently stems from the challenge of eliminating the pointer overhead.

A theme throughout our uses of tiny pointers is the importance of having access to the full tradeo# curve of optimal
tiny-pointer constructions. This is because of the need to balance two types of space overheads: that of storing the tiny
pointers themselves, and that of storing the dereference table. The former is determined by tiny-pointer size and the
latter is determined by load factor.

Relationship to dynamic perfect hashing. To understand what makes the tiny-pointer abstraction powerful, consider
the following alternative approach to removing pointer overhead in the setting where each value has a unique owner:
construct a dynamic perfect hash function that maps keys to slots in a densely packed array, and replace pointer derefer-
ences with queries to this hash function. Such an approach has a certain elegance because it removes the pointers entirely.
However, it also hits a fundamental bottleneck: any dynamic perfect hash function mapping 𝐿 (1 + ω(1)) log𝐿-bit keys
to (1 + 𝑇)𝐿 slots must useω(𝐿 log log𝐿 + 𝐿 log𝑇→1) bits of metadata [3, 26].

The 𝐿 log log𝐿-bit termmeans that dynamic perfect hashing cannot be used to simulate pointers of size any smaller
than log log𝐿 bits. What makes our results on tiny pointers surprising is that, by reducing the lengths of pointers (rather
than attempting to eliminate them entirely), one can blast through the 𝐿 log log𝐿 lower bound, enabling both our bounds
on tiny pointers and the data-structural applications that we present in this paper.

This paper. In this paper, we !rst develop a comprehensive theory of tiny pointers. We consider both!xed-size tiny
pointers (where all of the tiny pointers have the same size in bits) and variable-size tiny pointers (where the tiny
pointers have sizes that are bounded in expectation, but di#erent tiny pointers may have di#erent sizes). For both types
of tiny pointers we determine the optimal tradeo# curve between load factor and tiny-pointer size in dereference tables.
We then go on to present the !ve applications of tiny pointers outlined above. As an ancillary result, we also reinterpret
our tiny-pointer constructions as balls-and-bins results. In doing so, we improve on the known bounds for dynamic load
balancing in some important parameter regimes.

3In this context, the optimal space to store a binary search tree is the space needed to (1) store the𝐿 nodes, each of which consists of a key and possibly
a value; and (2) store the binary-tree structure, which comprises 2𝐿 + 𝑀 (𝐿) bits of information. The reason that traditional pointer-based search trees
are not succinct is because they useω(𝐿 log𝐿) bits to store the binary-tree structure.

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

1.1 Results: Constructing Optimal Tiny Pointers

In Sections 4, 5, and 6 we develop tight asymptotic bounds for the best achievable tradeo# curve between tiny-pointer
size 𝑈 and the dereference-table load factor 1 → 𝑇 .

Optimal tradeo!s for "xed and variable-size tiny pointers. For !xed-size tiny pointers, we show that for any load
factor 1→𝑇 ↔ ε(1), there is a lower bound ofε(log log log𝐿) on the tiny-pointer size 𝑈 . On the other hand, parameterizing
by 𝑇 , we show that it is possible to achieve a !xed tiny-pointer size 𝑈 = 𝑆 (log log log𝐿 + log𝑇→1), and we give a lower
bound showing that this tradeo# curve is tight.

We show that the log log log𝐿 barrier can be eliminated by instead using variable-size tiny pointers. We prove that
for any load factor 1 → 𝑇 , it is possible to achieve average tiny-pointer size 𝑈 = 𝑆 (1 + log𝑇→1), and again we prove that
this tradeo# curve is tight for all 𝑇 .

For variable-size tiny pointers, our construction o#ers a remarkably strong concentration bound on each tiny pointer’s
size: if the expected size is 𝑃 , then the probability of any given allocation returning a tiny pointer of size greater than
𝑃 + 𝑋 for any 𝑋 > 0 is doubly exponentially small in 𝑋 .

All of our dereference-table constructions guarantee constant-time operations with high probability, that is, with
probability 1 → 1/poly𝐿. Thus, tiny pointers can be integrated into data structures while incurring only a constant-factor
time overhead.

Relationship to balls-and-bins games. In Section 8, we reinterpret our tiny-pointer results as balls-and-bins results.
Notably, we are able to apply our techniques to the dynamic load-balancing problem, a.k.a. balanced allocations [8],
where there are 𝐿 bins and up to𝑍 = 𝐿𝑎 balls present at a time: for 𝑎 ↗ 1, we give a balls-and-bins scheme with 𝑏 + 1
hash functions that achieves maximum load 𝑎 +𝑆 (

√
𝑎 log(𝑎𝑏)) + log log𝐿

𝑊 log𝑋𝑁
, which signi!cantly improves the state of the

art [59, 60] when𝑎𝑏 = 𝑂 (log𝐿).
To understand the relationship between dereference tables and balls-and-bins schemes, think of keys as balls that must

be assigned to distinct bins. Each ball 𝑐 has some probe sequence 𝑎1 (𝑐),𝑎2 (𝑐), . . . ↔ [𝐿] of bins where it can be placed.
Supporting tiny pointers of size𝑆 (𝑈) is equivalent to maintaining a dynamic balls-to-bins assignment such that each
ball 𝑐 is in some bin𝑎𝑌 (𝑐) satisfying 𝑑 ↘ 2𝑃 (𝑍) .

What makes this balls-and-bins problem interesting is that the same ball can be inserted, removed, and subsequently
reinserted over time. The !rst time that a ball is inserted, its probe sequence 𝑎1 (𝑐),𝑎2 (𝑐), . . . is independent of the
dereference table’s state. But if the ball is removed and then later reinserted, then this is no longer the case: the state of
the dereference table has now been a#ected by (and is partially a function of) the probe sequence. The result is that, in
this fully dynamic setting, even the behavior of very simple balls-and-bins schemes (e.g., random probing [43] or linear
probing [42, 56]) have resisted theoretical analysis.4

A key insight in constructing small tiny pointers is that, by designing the probe sequence of each “ball” to have a
certain careful structure, we can achieve small probe complexity (and thus small tiny pointers) for an arbitrary sequence
of ball insertions and removals. The same techniques are also what allow us to revisit other related problems such as
dynamic load-balancing in bins with unbounded capacities.

4Work in this setting typically treats linear probing and random probing as techniques for building an open-addressed hash table. In the setting where
balls cannot be moved after being placed (or equivalently, where hash-table deletions are implemented with tombstones), the only known bound on either
random probing or linear probing is due to Larson [43], who analyzed random probing with random insertions/deletions.

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Relationship to succinct hashing. At a technical level, our constructions for tiny pointers share an interesting
relationship to the constructionsused inpastworksonsuccincthashing [6, 10, 12, 26],wherea common theme is theuseof a
backyard to storea small fractionof items less space-e"ciently than theirpeers.Our tiny-pointers construction (speci!cally,
in thevariable-size case) reveals analternativeway tousebackyards: nowthe items in thebackyardhave less space-e"cient
tiny pointers than their peers, and rather than there being a single backyard, there is a cascadinghierarchy of backyards that
must interact cleanly with one another. A key technical insight of this paper is that such a hierarchy of backyards can be
implemented (i) with constant-time operations, (ii) while supporting arbitrary sequences of both insertions and deletions,
(iii) without moving items once they are inserted, (iv), without having to store the keys corresponding to items in the data
structure, and (v) with su"ciently high-probability guarantees that each layer in the cascade behaves in a predictable way.

1.2 Results: Five Applications to Data Structures

We now describe our !ve applications of tiny pointers in more detail. The !rst application is to the classic data-structural
problem of storing a dynamic set of values associated with keys. The next three applications are each black-box transfor-
mations inwhichwe showhow to remove space ine"ciency from large classes of data structures. And the!nal application
is a new data structure for a classic problem in external-memory storage.

Overcoming the 𝛚(log log 𝜴)-bit lower bound for the cost of data retrieval.Our !rst application revisits the classic
data-retrievalproblem [3, 26, 27, 29], inwhichadata structuremust store a𝑉-bit value for eachof the𝑃-bit keys in someset
𝑒 , andmust answer queries that retrieve the value associatedwith a given key.5 In the static case,where the keys/values are
given up front, it is possible to solve the retrieval problemwith𝑆 (1)-time queries using𝐿𝑉 +𝑆 (log𝐿) bits of space [27, 29];
but in the dynamic case where keys/values are inserted/deleted over time, and there are up to𝐿 keys/value pairs present at
a time (with keys taken from some large polynomial-size universe), it is known that any solution to the retrieval problem
must use a lower bound of𝐿𝑉 +ε(𝐿 log log𝐿) bits of space, even if super-constant-time operations are allowed [3, 26]. This
means that the number of metadata bits per value is ε(log log𝐿) on average, even if the values are of size 𝑉 = 𝑂 (log log𝐿).

We show that, by just slightly modifying the speci!cation of the retrieval problem, we can completely dissolve the
ε(log log𝐿)-wasted-bits-per-item lower bound. Suppose, in particular, that whenever the user inserts a key/value pair
(𝑐,𝑓), they are given back a small hint 𝑎 that they are responsible for storing. (Wewill guarantee that the hint has constant
expected size.) In the future, when the user wishes to recover the value𝑓 for 𝑐 , they present both the key 𝑐 and the hint
𝑎 to the retrieval data structure. We call this the relaxed retrieval problem and we refer to the hints as tiny retrievers.

The relaxed retrieval problem can also be viewed as a relaxation of the tiny-pointer problem: the tiny retriever 𝑎
is analogous to a tiny pointer, except that the pair (𝑐,𝑎) does not have to fully encode the position of 𝑓—instead, the
relaxed-retrieval data structure can make use of not just 𝑐 and𝑎, but can also make use of a small auxiliary data structure
whose purpose is to help recover𝑓.

Given that we have already stated tight bounds for tiny pointers, it is tempting to assume that the same bounds should
hold for tiny retrievers. We !nd that this is not so. We show how to construct tiny retrievers of expected size𝑆 (1), while
supporting queries in constant time (with high probability), and allowing for the following tradeo# curve: using time
ω(𝑊) for insertions/deletions, the size of the data structure becomes 𝐿𝑉 +𝑆 (𝐿(1 + log(𝑄) 𝐿)) bits. So, with constant-time
operations, we can achieve size, say, 𝐿𝑉 +𝑆 (𝐿 log log log log log𝐿), and with𝑆 (log↑ 𝐿)-time operations, we can achieve
size𝐿𝑉 +𝑆 (𝐿). Moreover, in the special case where the value length 𝑉 is sub-logarithmic, satisfying 𝑉 ↘

log𝐿
log(𝐿) 𝐿

, the space
consumption reduces to 𝐿𝑉 +𝑆 (𝐿) bits, even for constant 𝑊 .

5Note that queries are required to be for a key 𝑎 ↔ 𝑏—the data structure is allowed to return an arbitrary value if 𝑎 ω 𝑏 .

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

Remarkably, our construction for tiny retrievers is itself a direct application of tiny pointers—in fact, tiny retrievers
are simply variable-length tiny pointers of𝑆 (1) expected size. This is because the ability to construct𝑆 (1)-length tiny
pointers into an array withω(𝐿) entries ends up allowing for us to reduce the relaxed retrieval problem to the dictionary
problem, for which highly space-e"cient solutions are known [12].

We remark that the distinction between tiny pointers and tiny retrievers ends up being signi!cant in several of our
applications below. In some cases, tiny retrievers o#er a path to remarkable (and unexpected) space e"ciency, while
in other cases, the smooth tradeo# curve and pointer-like behavior o#ered by tiny pointers makes them a better !t. The
advantage of tiny retrievers is that they o#er a steep tradeo# between time and space; the advantage of tiny pointers is that
they o#er indirection-less reference to items, as well as a $exible tradeo# between di#erent types of space consumption
(pointer size and load factor).

Succinct rotation-based binary search trees. To describe our second application, we !rst take a digression into the
world of succinct binary trees. Since there are at most 4𝐿 ordered binary trees on 𝐿 nodes, the pointer structure of a
binary tree can be encoded in𝑆 (𝐿) bits. This observation has led to a great deal of work on optimal (and near-optimal)
encodings of binary trees [24, 25, 33, 35, 48, 49, 52, 55]. Apart from navigation, state-of-the-art trees also support a wide
variety of query operations (e.g., subtree size [24, 33, 48, 49, 55], depth [24, 49], lowest-common ancestor [24, 49], level
ancestor [24, 49], etc.), while also supporting basic dynamism (e.g., inserting/removing leaves [24, 33, 48, 49, 55], inserting
a node in the middle of an edge [24, 33, 48, 49, 55], compacting a path of length two [24, 33, 48, 49, 55], etc.).

One natural form of dynamic operation has proven elusive, however: the known succinct binary trees do not e"ciently
support rotations. The lack of support for rotations is especially important for binary search trees, which store a set of
𝐿 sortable keys in 𝐿 nodes. Almost all dynamic balanced binary search trees (e.g., AVL trees [2], red-black trees [38], splay
trees [58], treaps [57], etc.) rely on rotations when modifying the tree. None of these tree structures can be encoded with
the known succinct-tree techniques.

We give a randomized black-box approach for transforming dynamic binary search trees into succinct data structures.
If there are 𝐿 keys in the succinct search tree, each of which is 𝑃 bits long, then the size of the succinct search tree will be
𝐿𝑃 +𝑆 (𝐿 log(𝑄) 𝐿) bits. The transformation induces only a constant-factor time overhead on query operations, and only
an𝑆 (𝑊)-factor time overhead on tree modi!cations. So, for example, if we set 𝑊 = 𝑆 (log↑ 𝐿), then edge traversals take
time𝑆 (1), edge insertions/deletions take time𝑆 (log↑ 𝐿), and the tree structure is encoded using𝑆 (𝐿) bits. In contrast,
the previous state of the art [49] for implementing rotations in space-e"cient binary search trees also encoded the tree
structure in𝑆 (𝐿) bits (actually, 2𝐿 +𝑂 (𝐿) bits) but required ε̃(log𝐿) time to implement a single rotation. It is worth noting
that [49] is deterministic, while the new result succeeds with high probability.

When 𝑊 is set to be𝑆 (1), the fact that running times are preserved means that other properties, such as dynamic opti-
mality, are as well. For example, if the splay tree [58] is dynamically optimal (as the widely believed Dynamic-Optimality
Conjecture [58] posits), then so is the succinct splay tree.

Space-e#cient stable dictionaries. Our third application is a black-box approach for transforming any key-value
dictionary that stores itsvalues ina!xed-capacity, e.g.non-resizeable, array intoastabledictionarywith thesameoperation
set and with only a constant-factor time overhead. If the original dictionary stores 𝑉-bit values, then the new stable
dictionary also stores𝑉-bit values, anduses space equal to the spaceof theorginal data structureplus𝑆 (log 𝑉) bits per value.

Formally, a key-value dictionary (e.g., a binary search tree, hash table, etc.) is stable if whenever a key-value pair is
inserted, the position inwhich the value is stored never changes. (This property is sometimes also referred to as referential

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

integrity [56] or value stability [10].) Stability ensures that users canmaintain pointers into a data structure without those
pointers becoming invalidated by changes to the data structure [39, 56]. Stability is a strict requirement in many library
data structures [16–23] (and it is a core reasonwhy high-performance languages such as C++ use chained hashing [18, 21],
which is stable, instead of more space-e"cient alternatives, such as linear probing [41, 53] or cuckoo hashing [30, 34, 51]).

Empirical research on achieving stability in space-e"cient hash tables dates back to the 1980s [39, 56] (see also the
discussion in Knuth’s Volume 3 [42, Chapter 6.4]) and the resulting techniques have been built into widely-used hash
tables released by Google [1] and Facebook [32]. On the theoretical side, if a data structure is storing 𝑃-bit keys and 𝑉-bit
values, where𝑃, 𝑉 = 𝑆 (log𝐿), it is knownhow to achieve stability at the cost of an extraω(log log𝐿) bits of space per value
[26], but it is not known whether ε(log log𝐿) bits per value are necessary.6 Our result shows that it is not—stability can
be achieved with𝑆 (log 𝑉) extra bits per value. This is especially noteworthy in cases where the value-size 𝑉 is small7. Our
result applies to arbitrary !xed-capacity dictionaries, including, for example, the succinct splay tree constructed above.

Space-e#cient dictionaries with variable-size values.Our fourth application is a black-box approach for transform-
ing any key-value dictionary (designed to store !xed-size values) into a dictionary that can store di#erent-sized values for
di#erent keys. The resulting data structure incurs a constant-factor time overhead and o#ers the following guarantee on
space e"ciency. Let log(𝑄) 𝐿 be the 𝑊 -th iterated logarithm and set 𝑊 to be a positive constant of our choice. The new data
structure incurs an additive space overhead of only𝑆 (log(𝑄) 𝐿 + log |𝑐 |) bits for each value 𝑐 , where |𝑐 | is the bit-length
of the string 𝑐 . (Interestingly, the iterated logarithm log(𝑄) 𝐿 in this application comes from an entirely di#erent source
than in our previous applications.)

Theability to storevariable-lengthvalues alsoyields a simple solution to themulti-setproblem,which is theproblemof
how to design a space-e"cient constant-time hash table that stores multi-sets of keys (rather than just sets). Themulti-set
problem was !rst posed as an open question by Arbitman et al. [6], who gave a succinct constant-time hash table capable
of storing sets but not multi-sets. A series of subsequent works gave solutions to the multi-set problem, !rst in the case of
randommulti-sets [15], and then very recently for arbitrary multi-sets [14]. The known solutions come with a drawback,
however: the bound on space is the same for duplicate keys as it is for non-duplicate keys. So, if there are𝑍𝑌 copies of some
key, then they are permitted to take𝑍𝑌 times asmuch space as a single copywould, even though, in principle,𝑍𝑌 → 1 of the
copies could be encoded using an log𝑍𝑌 -bit counter. Our transformation gives a simple alternative solution that avoids this
drawback and that can even be applied directly to the original hash table ofArbitman et al. [5]: by storing themultiplicity of
eachkeyasa (variable-length)value,onecansupportarbitrarymultisetsatanadditional spacecostofonly log(𝑄) 𝐿+log𝑍𝑌+

𝑆 (log log𝑍𝑌) bits perkey,where𝑍𝑌 is themultiplicityof thekeyand𝑊 is apositive constant of our choice; this is remarkably
space e"cient considering the fact that log𝑍𝑌 bits are needed just to store themultiplicity. A nice feature of our solution is
that it also applies directly to other dictionaries such as, for example, the succinct splay tree discussed earlier in the section.

An optimal internal-memory stash. Our !nal application of tiny pointers revisits one of the oldest problems in
external-memory data structures: the problem of maintaining a small internal-memory stash that allows one to directly
locate where items reside in a large external-memory array.

In more detail, the problem can be described as follows [36]. We are given an (initially blank) external-memory array
with (1 + 𝑌)𝐿 slots, for some parameters 𝑌,𝐿. We must maintain a dynamically changing set 𝑒 of key-value pairs (where

6Interestingly, there are several speci!c approaches for which ε (log log𝐿) bits per value are known to be necessary, for example if stability is achieved
via perfect hashing (see Theorem 2 of [26]).
7One especially remarkable consequence is the following: if we wish to store𝑃 (1) control bits associated with each key in a data structure, and we wish
for the positions of those bits to be stable so that a third party who does not have access to the data structure can still access/modify the control bits, then
we can accomplish this with only𝑃 (1) extra bits of space per item.

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

keys are distinct) in the array, such that each time a key-value pair (𝑐,𝑓) is inserted into 𝑒 , the pair (𝑐,𝑓) is assigned some
permanent position where it resides in the external-memory array. We must then also maintain a small internal-memory
data structure𝑔 , known as a stash, that can be used to recover, for each key 𝑐 , precisely where its key-value pair (𝑐,𝑓)
is stored in the external-memory array. A stash enables queries to be performed in a single access to external memory.

Work on designing space-e"cient and time-e"cient stashes dates back to the late 1980s [36, 44, 45], and is also closely
related to the problem of designing space-e"cient page tables in operating systems [4, 9, 40]. The best-known theoretical
results are due to Gonnet and Larson [36], who give a stash that uses only𝑆 (𝐿 log 𝑌→1) bits of space. A consequence is
that, if 𝑌 = ω(1), the stash uses only𝑆 (𝐿) bits.

Gonnet and Larson’s result comeswith several drawbacks, however [36]. First, the stash only o#ers provable guarantees
in the setting where insertions/deletions to 𝑒 are random; in the case where 𝑒 is modi!ed by an arbitrary sequence of
insertions/deletions/queries, the problem of designing a space-e"cient stash remains open. Second, the internal-memory
operations on the stash of [36] are not constant-time in the RAMmodel (or even constant expected time, when 𝑌 = 𝑂 (1)).

By combining tiny pointers with modern techniques for constructing space-e"cient !lters, we show that it is possible
to construct a stash of size 𝑆 (𝐿 log 𝑌→1) bits that supports constant-time operations in the RAM model (not just in
expectation, but even with high probability) and that supports arbitrary sequences of insertions/deletions/queries.

2 PRELIMINARIES

In this section, we give some preliminary de!nitions and notation.

Operations.A dereference table with 𝑅-bit-values is a data structure that supports the following operations:

• C’&$%&(𝐿,𝑅, 𝑇): The procedure creates a new dereference table, and returns a pointer to an array with 𝐿 slots,
each of size 𝑅 bits. We call this array the store. The dereference table will be capable of supporting up to (1 → 𝑇)𝐿

concurrent allocations at at time. We require that 𝑇 = 𝑆 (1/𝑅).
• A!!"#$%&(𝑐): Given a key 𝑐 , the procedure allocates a slot in the store to 𝑐 , and returns a bit string 𝑁 , which we

call a tiny pointer .
• D&’&(&’&)#&(𝑐, 𝑁): Given a key 𝑐 and a tiny pointer 𝑁 , the procedure returns the index of the slot allocated to

𝑐 in the store. If 𝑁 is not a valid tiny pointer for 𝑐 (i.e., 𝑁 was not returned by a call to A!!"#$%&(𝑐)), then the
procedure may return an arbitrary index in the store.

• F’&&(𝑐, 𝑁): Given a key 𝑐 and a tiny pointer 𝑁 , the procedure deallocates slot D&’&(&’&)#&(𝑐, 𝑁) from 𝑐 . The
user is only permitted to call this function on pairs (𝑐, 𝑁) where 𝑁 is a valid tiny pointer for 𝑐 (i.e., 𝑁 was returned
by the most recent call toA!!"#$%&(𝑐)).

We say a key 𝑐 is present or allocated if it has been allocated more recently than it has been freed; in this case the
tiny pointer 𝑁 returned by the most recent call toA!!"#$%&(𝑐) is said to be 𝑐 ’s tiny pointer. The user is only permitted
to allocate at most one tiny pointer 𝑁 to each key 𝑐 . That is, each time that A!!"#$%&(𝑐) is called to obtain some tiny
pointer 𝑁 , the function F’&&(𝑐, 𝑁) must be called beforeA!!"#$%&(𝑐) can be called again.

We say that slot 𝑑 in the store is occupied if there is a present key𝑐 with tiny pointer𝑁 such thatD&’&(&’&)#&(𝑐, 𝑁) = 𝑑 ,
and otherwise we say it is free. We call occupied slots items. We typically refer to the parameter 𝐿 (i.e., the number of
slots in the store) as the table’s size or capacity.

Guarantees.Dereference tables provide the following guarantees:

• Foranytwopresentkeys𝑐1 ε 𝑐2with tinypointers𝑁1 and𝑁2, respectively,D&’&(&’&)#&(𝑐1, 𝑁1) ε D&’&(&’&)#&(𝑐2, 𝑁2).
8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

• D&’&(&’&)#&(𝑐, 𝑁) only depends on 𝑐 , 𝑁 , random bits, and the parameter 𝐿. One consequence is that, once a
key is allocated a slot in the store, the position of that slot cannot change until the key is subsequently freed and
reallocated.

The second property ensures that the act of dereferencing a tiny pointer is similar to the act of dereferencing a standard
pointer; in both cases, one does not need to access the data structure being pointed into in order to perform the dereference.
This ends up being important for several of our applications later. In particular, it ensures that in external-memory applica-
tions, eachdereference incurs only a single I/O; and it ensures that indata-structure applications, the locationspointed at by
tinypointers are stable (i.e., once a tinypointer𝑁 is allocated to akey𝑐 , the location that is beingpointed at doesnot change).

Space. The dereference table can support up to (1 → 𝑇)𝐿 allocations at a time—the quantity 1 → 𝑇 is referred to as the
table’s load factor . If theA!!"#$%& function is called when there are already (1 → 𝑇)𝐿 allocations performed that have
not been freed, then the dereference table is permitted to fail the allocation.8

The dereference table may store metadata in order to perform updates (allocations and frees) e"ciently. Metadata
can either be stored as part of the store (in slots that are not allocated), or in an auxiliary data structure that is permitted
to consume up to𝑆 (𝐿) bits. In other words, the dereference table is allowed to use𝑆 (𝐿) bits (i.e.,𝑆 (1) bits of overhead
per slot) of metadata for “free”, without that counting towards the space consumption of the store, but any additional
metadata must count towards the space consumption of the store. Note that the dereference table is not allowed to store
metadata in any slot of the store that is currently allocated.

We can now see why it is natural to require that 𝑇 ↘ 𝑆 (1/𝑅). Since dereference tables can use up to𝑆 (𝐿) space for
metadata, the total amount of space consumed by a dereference tablemay be as large as𝐿𝑅+𝑆 (𝐿) = (1→𝑇)𝐿𝑅+𝑇𝐿𝑅+𝑆 (𝐿).
The !rst term (1 → 𝑇)𝐿𝑅 is space that allocations can make use of, the second term 𝑇𝐿𝑅 is space that is allocated but not
used, and the third term𝑆 (𝐿) is metadata. The second and third terms 𝑇𝐿𝑅 and𝑆 (𝐿) cumulatively represent the total
amount of space not used by allocated objects. There is no point in the user specifying a value of 𝑇,𝑅 that results in
𝑇𝐿𝑅 = 𝑂 (𝐿), because this does not reduce the total amount of extra space below𝑆 (𝐿). Thus, we can assume without loss
of generality that the user is constrained to 𝑇 ↘ 𝑆 (1/𝑅).

Failure probability.Wewill permit allocations to have a small failure probability. That is, each allocation is permitted to
fail with probability 1/poly(𝐿),9 in which case the allocation simply returns a failure message rather than a tiny pointer.
In general, if a random event occurs with probability 1 → 1/poly(𝐿), we say that it occurswith high probability (w.h.p.).
Note that here, and throughout the paper, we use poly(𝐿) to mean 𝐿𝑐 for some large positive constant 𝑕 of our choice.

We remark that, when analyzing dereference tables, we shall always assume that the sequence of allocations, frees,
and dereferences are determined by an oblivious adversary (i.e., the sequence is determined ahead of time, rather than
adapting to the behavior of the dereference table). One consequence of this is that, if a given allocation fails, the only
e#ect on the operation sequence is that the corresponding call to (’&& is removed.

Hashing and independence.Our dereference-table constructions will all make use of hash functions. For simplicity,
we shall treat hash functions in this paper as being uniform and fully independent. This assumption is without loss of
generality since there are already known families of hash functions [31, 50] that simulate 𝐿-independence with constant-
time evaluation and linear space, and there are already well understood techniques [6, 28, 46] for applying these families

8Note that, even though a dereference table only guarantees the ability to store up to (1 → 𝑁)𝐿 allocations at a time, we still use the terms “size” and
“capacity” of a dereference table to refer to𝐿, rather than (1 → 𝑁)𝐿, since𝐿 represents the total number of𝑑-bit entries in the store.
9Speci!cally, this means that the dereference table depends on some constant 𝑐 > 0 and fails with probability at most 1/𝐿𝑂 .

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

to data structures that require 𝐿𝑃 (1) -independence, while using space only 𝑆̃ (𝐿𝑇) bits to store the hash function.10 These
known techniques can easily be applied directly to all of our data structures; the only caveat is that the families of hash
functions being used [31, 50] introduce their own additional 1/poly(𝐿) failure probability to the data structure. So, even
if a data structure o#ers sub-polynomial failure probability under the assumption of fully random hash functions, if we
wish to use an explicit family of hash functions, then we must allow for a 1/poly(𝐿) failure probability.

3 WARMUP: A SIMPLE CONSTRUCTIONANDA SIMPLE APPLICATION

To ease the reader into the notion of a tiny pointer, we we begin in this section with two simple but illustrative warmups.

A simple dereference table.Our !rst warmup is a tiny-pointer construction that supports 𝑅 ↗ log𝐿 and 𝑇 = 1/log𝐿.
This construction will not be su"cient for any of our applications in Section 7, but it does illustrate some of the basic
principles for how to design a dereference table. Additionally, it serves as a simple demonstration of how, once we have
the abstraction of a tiny pointer, it is actually relatively simple to get from there to a nontrivial result.

T*&"’&+ 3.1 (W$’+,- C").%’,#%/")). Let 𝑅 ↗ log𝐿 and 𝑇 = 1/log𝐿. There is a dereference table for 𝑅-bit values
that (i) succeeds on each allocation w.h.p., (ii) has load factor 1 → 𝑇 , (iii) has constant-time operations, and (iv) produces tiny
pointers of size𝑆 (log log𝐿) bits.

Our construction will make use of the following basic fact:

C!$/+ 3.2. Suppose we throw (1 → 𝑇)𝐿 balls into 𝐿/𝑖 bins, where the throws are independent and uniformly random. If
𝑇 = 1/log𝐿 and 𝑖 = log4 𝐿, then we have w.h.p. in 𝐿 that every bin contains fewer than 𝑖 balls.

P’""(. It su"ces to show that, w.h.p., each individual bin contains fewer than 𝑖 balls. For a given bin, the number
of balls that go to that bin is a sum𝑔 of i.i.d. indicator random variables with mean 𝑗 = 𝑖 · (1 → 𝑇). By a Cherno# bound,
we have for any 𝑃 ↔ 𝑆 (

≃
𝑗) that

Pr[𝑔 ↗ 𝑗 + 𝑃
≃
𝑗] ↘ 2→ε (𝑈2

) .

Plugging in 𝑃 = log𝐿 we can conclude that

Pr[𝑔 ↗ 𝑗 + log𝐿 ·
≃
𝑍𝑘] ↘ 2→𝑒 (log𝐿)

↘ 1/poly(𝐿) .

Since 𝑗 + log𝐿≃𝑗 = (1 → 𝑇)𝑖 + log𝐿 ·
√
(1 → 𝑇)𝑖 ↘ (1 → 𝑇 + log𝐿/

≃
𝑖) · 𝑖 = 𝑖, we can conclude that

Pr[𝑔 ↗ 𝑖] ↘ 1/poly(𝐿),

as desired. ⊋

We can make use of Claim 3.2 to prove Theorem 3.1 as follows.

P’""("(T*&"’&+ 3.1. We partition the store into𝐿/𝑖 buckets, each of which has𝑖 = log4 𝐿 slots. Each key 𝑐 hashes
to a random bucket 𝑎(𝑐) ↔ [𝐿/𝑖]. Whenever a key 𝑐 is allocated, it is allocated one of the 𝑖 slots in bucket 𝑎(𝑐). If the
key is allocated the 𝑁-th slot in the bucket, then the number 𝑁 is returned as the tiny pointer for 𝑐 . Not only does this
result in tiny pointers of length log𝑖 = 𝑆 (log log𝐿) bits, but it also makes the dereference function trivial to implement:
The functionD&’&(&’&)#&(𝑐, 𝑁) simply returns a pointer to the 𝑁-th slot of bin𝑎(𝑐).

10The basic idea is to replace the data structure of capacity𝐿 with𝐿1→𝑃 data structures of capacity𝐿𝑃 . Each item 𝑎 in the full data structure gets hashed
at random to one of the𝐿1→𝑃 data structures (using an𝑃 (1)-independent hash function), each of which only requires (𝐿𝑃)𝑄 (1) = 𝑀 (𝐿) independence.

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

It’s important to emphasize the role that Claim 3.2 plays here. The claim tells us that, whenever a key 𝑐 is allocated,
we have w.h.p. that bin𝑎(𝑐) contains at least one free slot that 𝑐 can use. In the low-probability even that there is no such
free slot, we can a#ord to declare failure.

Finally, there is one nontrivial algorithmic question that we must tackle: How can the allocation function e"ciently
!nd a free slot in bucket 𝑎(𝑐)?Within each bucket, we store a free list, which is a linked list keeping track of the free
slots in the bucket. The internal nodes of the linked lists can be kept in the store, with the node that represents a given
free slot 𝑈 being stored in that slot. Additionally, each bucket must store the head pointer for its linked list as external
metadata, but this takes very little space, coming out to𝑆 (log𝐿) · 𝐿/𝑖 = 𝑂 (𝐿) bits. With a free list for each bin, it becomes
straightforward to implement allocations/deallocations in𝑆 (1) time.

In summary, whenever a key 𝑐 is allocated, it is assigned to a free slot within bin𝑎(𝑐). If it is given the 𝑁-th slot of the
bin, then the number𝑁 acts as its tiny pointer. If the same key𝑐 is later dereferenced, then the functionD&’&(&’&)#&(𝑐, 𝑁)
simply returns a pointer to the 𝑁-th slot of bin𝑎(𝑐). We know by Claim 3.2 that each allocation will succeed w.h.p., and
we can use a free list within each bin to implement both allocations and deallocations in time𝑆 (1). ⊋

Although the above construction is quite a bit simpler than most of the constructions that will appear later on, it is
nonetheless a good starting place for how to think about constructing tiny pointers. It demonstrates the important role
that hash functions serve, and the relationship between tiny pointers and balls-and-bins games.

A simple application: binary search trees.As a simple application, let us consider the task of compressing a rotation-
based binary search tree. We will present this application in more detail (and with much better bounds) in Section 7, but
for now, we will use it a simple example of how to apply tiny pointers.

In a standard search tree, each node stores three things: a key 𝑃 , a left-child pointer 𝑁1, and a right-child pointer 𝑁2.
We can replace 𝑁1 and 𝑁2 with tiny pointers that are each dereferenced using key 𝑃 . So, for example, to determine where
the node’s left child is stored, we simply calculateD&’&(&’&)#&(𝑃, 𝑁1).

Part of what is nice about this approach is that it allows for straightforward edits to the search tree. If we want
to perform a rotation, we just need to update 𝑆 (1) tiny pointers, which, in turn, corresponds to performing 𝑆 (1)
allocations/deallocations.

With abit of care, this approach canbeused to reduce the spaceusedperpointer to𝑆 (log log𝐿) bits pernode.This bound
is far from optimal (and can also be achieved with already-known data-retrieval techniques, see, e.g., [26]). Nonetheless, it
is a good example of how to use tiny pointers, and it is a demonstration of how even our warmup construction (Theorem
3.1) can be used to get results that, a priori, are nontrivial.

4 UPPER BOUND FOR FIXED-SIZE POINTERS

In this section, we give optimal constructions for !xed-size tiny pointers. We prove the following theorem:

T*&"’&+ 4.1. Let 𝑇 ↔ (0, 1) be a parameter. There is a dereference table for 𝑅-bit values, for any 𝑅, that (i) succeeds on
each allocation w.h.p., (ii) has load factor at least 1 → 𝑇 , (iii) has constant-time dereferences and has constant-time updates
w.h.p., and (iv) has tiny pointers of size𝑆 (log log log𝐿 + log𝑇→1).

In particular, for 𝑇 = 1/log log𝐿, we get tiny pointers of size𝑆 (log log log𝐿). Thus, we can doubly-exponentially beat
raw log𝐿-bit pointers, while still supporting a load factor of 1 → 𝑂 (1).

The proof is the simplest of our tiny-pointer constructions, and makes use of two algorithmic building blocks.
11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

The "rst building block: load-balancing tables. A load-balancing table is a simple type of dereference table that
has a very speci!c internal representation, and that, unlike normal dereference tables, is permitted to fail on calls to
A!!"#$%&with a probability larger than 1/poly(𝐿). Roughly speaking, if a load-balancing table has load factor 1→ 𝑇 , then
the load-balancing table is permitted to fail on a 𝑇-fraction of allocations.

Load-balancing tables are implemented as follows. If the store is of some size𝑍, thenwe partition it into𝑍/𝑖 buckets of
size 𝑖 = ω(𝑇→2 log𝑇→1), where the constant in theω notation is selected to be su"ciently large. To allocate a slot for key
𝑐 , we hash 𝑐 into one of the buckets, using a hash function𝑎. If bucket𝑎(𝑐) contains a free slot, then we allocate any free
slot 𝑑 ↔ [𝑖] within that bucket, and we return 𝑑 as the tiny pointer. Otherwise, all 𝑖 slots in the bucket are occupied, and
the allocation fails. The functionD&’&(&’&)#&(𝑐, 𝑑) can then be implemented to simply return the 𝑑-th slot in bin𝑎(𝑐).

Load-balancing tables will serve as a building block in the dereference tables that we construct. The basic idea is
that we can use a load-balancing table to handle all but a 𝑇-fraction of allocations, and the remaining allocations can be
handled via some other mechanism. Thus, we will need the following lemmawhich bounds the total number of failed
allocations that are alive at any given moment (where we consider each allocation to be alive up until the time at which
the corresponding free occurs, even if the allocation fails).

L&++$ 4.2. Consider a load-balancing table with size𝑍 and load factor 1 → 𝑇 , where 𝑇 ↘ 1/2. Consider a sequence of
allocations and frees, where at most (1 → 𝑇)𝑍 allocations are alive at a time. Then, at any moment, the number of allocations
that have failed and are still alive is 𝑇𝑍 with probability at least 1 → exp(→𝑇𝑃 (1)𝑍).

We remark that in all of our applications of Lemma 4.2, we will have w.l.o.g. that log𝑇→1 = 𝑂 (log𝑍) (since, otherwise,
we would have log𝑇→1 = ε(log𝑍) and so could just use standard𝑆 (log𝑍)-bit pointers instead of dereference tables).
Thus the probability bound o#ered by the lemma will always be at least 1 → exp(→𝑍1→𝑀 (1)

) ↗ 1 → 1/poly(𝑍).
We defer the proof of Lemma 4.2 to Section 8.1, which establishes a more general version of the lemma. Although the

proof is nontrivial, due to interdependencies that form from the same key potentially being allocated/freed/reallocated
many times, we do not view it as one of the main technical contributions of this paper. This is because Lemma 4.2 follows
easily from a lemma established in our recent paper on space-e"cient hash tables [10]. Still, we present an alternative
proof in Section 8.1 both for completeness, as well as because the proof takes a somewhat di#erent (and more elegant)
approach than in our past work, and in order to cover a larger parameter regime.

To conclude our discussion of load-balancing tables, we must describe how to implement allocations and frees in
constant time. Here, there are two cases, depending on how 𝑖 compares to the size 𝐿 of the dereference table that the
load-balancing table is being used within.

If 𝑖 ↘ log𝐿, then we can store a 𝑖-bit bitmap for each bucket indicating which slots in the bucket are free; and we can
use standard bit-manipulation on the bitmap to implement the allocation and free functions in constant time.

We takeadi#erent approach if𝑖 ↗ log𝐿. In this case,weclaimthatwithout lossofgenerality,𝑅 = 𝑙 (log𝑖),where𝑅 is the
size in bits of each of the items being stored (wewill prove this claim in amoment). This claimmeans thatwe can keep track
ofwhich slots are free in each bucket of a load-balancing table as follows:we simply store a free list in each bucket, that is, a
linked list consistingof all the free slots,where each free slot contains apointer to thenext free slot in the list. This is possible
since each free slot is 𝑅 bits and each pointer in the linked list needs only log𝑖 = 𝑂 (𝑅) bits. The log𝑖-bit base pointers of
the𝑍/𝑖 linked lists can be stored in an auxiliary metadata array of size𝑆 ((𝑍/𝑖) · log𝑖) ↘ 𝑆 (𝑍), where𝑍 is the size of
the load-balancing table. The free lists makes it possible to implement the allocation and free functions in constant time.11

11It is tempting to try to store the metadata for the free list in the slots that are themselves free—however, a dereference table must be able to support
even the case where𝑑 is very small, meaning that the metadata per free slot could actually exceed the size of the slot.

12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

To prove that this free-list approach works, it remains to show that𝑅 = 𝑙 (log𝑖) without loss of generality. Let 1 → 𝑇 be
the load factor of the full dereference table (that the load-balancing table is part of) and let 1 → 𝑚 be the load factor of the
load-balancing table. Since𝑖 ↗ log𝐿, wemust have𝑚→1 = ε̃(

√
log𝐿). In all of our constructions of dereference tables (i.e.,

the constructions in both this section and in Section 5), if we use a load-balancing table with load factor 1 → 𝑚 satisfying
𝑚→1 = ε̃(

√
log𝐿) (or even 𝑚→1 = 𝑙 (log log𝐿)), we will always have log𝑇→1 ↗ ε(log𝑚→1). Recall that, if a dereference

table has load factor 1 → 𝑇 , then it is assumed that the dereference table is storing objects of size 𝑅 ↗ ε(𝑇→1) bits. Thus,
we have that 𝑅 = 𝑙 (log𝑇→1) = 𝑙 (log𝑚→1) = 𝑙 (log𝑖), as desired.

The second building block: a power-of-two-choices dereference table. To compensate for the higher than desired
failure probability of load-balancing tables, we develop our second building block: a simple dereference table that supports
𝑆 (log log log𝐿)-bit tiny pointers and has a lower failure probability than a load-balancing table. The downside of this
second building block is that it only supports a very small load factor.

L&++$ 4.3. There exists a 𝑇 satisfying 1 → 𝑇 = ω(1/log log𝐿), such that there is a dereference table that (i) succeeds on
each allocation w.h.p., (ii) has load factor at least 1 → 𝑇 , (iii) has constant-time updates w.h.p., and (iv) has tiny pointers of
size𝑆 (log log log𝐿).

The proof of Lemma 4.3 will make use of a celebrated balls-and-bins result [59, 60]—for more background on this result,
see also Section 8.

P’""(. We partition the store into buckets of size 𝑖 = ω(log log𝐿). When $!!"#$%&(𝑐) is called, the key 𝑐 is hashed
to two buckets𝑎1 (𝑐),𝑎2 (𝑐) ↔ [1,𝐿/𝑖]. The key 𝑐 is allocated a slot in whichever of the two buckets contains themost free
slots. The tiny pointer 𝑁 is 1 + log𝑖 = 𝑆 (log log log𝐿) bits long , and indicates which slot in the two buckets was allocated.

We can think of the allocations as balls that are inserted into bins using the power-of-two-choices rule [59, 60], with
the same ball possibly being inserted/deleted/reinserted over time. Since the load factor isω(1/log log𝐿), the expected
number of balls in each bin is 𝑆 (1). In this setting, it is known that, w.h.p., the number of balls in the fullest bin is
𝑆 (log log𝐿) [59, 60]. Thus allocations succeed w.h.p.

Finally, to implement allocations and frees in constant time, we can just use a bitmap to keep track of which slots in
each bucket are free; since each bucket is only𝑆 (log log𝐿) slots, the bitmaps are each only𝑆 (log log𝐿) bits, and thus
each bitmap !ts into a machine word. Using standard bit manipulation, the bitmaps can be used to keep track of which
slots are free in constant time per allocation/free (and to !nd a free slot for a given allocation also in constant time). The
bitmaps consume a total of𝑆 (𝐿) bits of space. ⊋

Putting the pieces together. Of course, power-of-two-choices dereference tables are not very useful on their own,
because they only support 𝑂 (1) load factors, whereas load-balancing tables have too high a probability of failure on
allocation. We now show how to combine the two data structures in order to prove Theorem 4.1.

P’""("(T*&"’&+ 4.1. Since we are willing to have tiny pointers of sizeω(log log log𝐿 + log𝑇→1), we can assume
without loss of generality that 𝑇 = 𝑂

(
1

log log𝐿

)
.

We store a 1 → 𝑇2 fraction of the allocations in a load-balancing table of size𝑍 = (1 → 𝑇/2)𝐿 slots that supports load
factor 1 → 𝑇2/𝑕 for some su"ciently large positive constant 𝑕 ; we call this the primary table. Allocations that fail in the
primary table are handled in a secondary table implemented with Lemma 4.3 to have size 𝐿⇐ := 𝑇𝐿/2 slots and support
load factor 1 → 𝑇 ⇐ := ω(1/log log𝐿⇐). If an allocation fails in the secondary table, or if the load factor of the secondary

13

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

b = Θ(δ−4 log δ−1)

Primary table

(load-balancing table)

overflow

Θ(log log n′)

Secondary table

(power-of-two-choices table)

Total size
= (1− δ/2)n

Total size
n′ = δn/2

Fig. 1. A pictoral representation of the layouts of the primary and secondary tables. The primary table is implemented to support
load factor 1 → ω(𝑁2) , so that only 𝑁2𝐿 allocations overflow to the secondary table at a time. The secondary table is implemented
to have size𝐿⇐ = 𝑁𝐿/2 and to support a (much sparser) load factor ofω(1/log log𝐿⇐

) = 𝑒 (𝑁) , so that it can successfully store all of
the overflowed allocations from the primary table.

table ever exceedsω(1/log log𝐿⇐), then the allocation fails in the full dereference table as well. Note that the total size
(in terms of slots) of the primary and secondary tables is 𝐿. See Figure 1 for a picture of the layouts of the two tables.

Since both the primary and secondary tables have constant-time operations, so does the full dereference table. Ad-
ditionally, each allocation can return a tiny pointer that is either in the primary table or in the secondary table (plus 1
bit of information indicating which table it is being pointed into). Since the primary and secondary tables both have tiny
pointers of size𝑆 (log log log𝐿 + log𝑇→1), the claim about tiny-pointer size is also proven.

Our !nal task is to bound the probability of a given allocation failing. Lemma 4.2 tells us that the number of keys
allocated in the secondary table will be amost 𝑇2𝐿 at any givenmomentw.h.p. Since the secondary table has𝐿⇐ = ω(𝑇𝐿/2)
slots, and since 𝑇 = 𝑂

(
1

log log𝐿

)
, it follows that the number of allocations in the secondary table at any given moment

is 𝑂 (𝐿⇐/log log𝐿) = 𝑂 (𝐿⇐/log log𝐿⇐) with high probability. We therefore get from Lemma 4.3 that the allocations in
the secondary table each succeed with high probability in 𝐿⇐. Without loss of generality, 𝐿⇐ ↗

≃
𝐿 (since otherwise

𝑇 ↘ 𝑆 (1/
≃
𝐿), and we can just use standard log𝐿-bit pointers). Thus the allocations in the secondary table each succeed

with high probability in 𝐿. ⊋

5 UPPER BOUNDS FORVARIABLE-SIZE POINTERS

In this section, we give optimal constructions for variable-size tiny pointers. We prove the following theorem:

T*&"’&+ 5.1. Let 𝑇 ↔ (0, 1) be a parameter. There exists a dereference table that (i) succeeds on each allocation w.h.p., (ii)
has load factor at least 1 → 𝑇 , (iii) has constant-time updates w.h.p., and (iv) has tiny pointer size𝑆 (𝑛 + log𝑇→1), where 𝑛 is
a random variable such that Pr [𝑛 ↗ 𝑑] ↘ 2→2

ε (𝑀)
for all 𝑑 . In particular, the tiny pointer size is𝑆 (1 + log𝑇→1) in expectation.

We can assume without loss of generality that 𝑇 < 𝑜 for some su"ciently small positive constant 𝑜 of our choice (if
𝑇 > 𝑜 , we can reset 𝑇 = 𝑜 = ω(1) without changing the guarantee of the theorem).

Observe that, using the same primary/secondary-table construction as in the proof of Theorem 4.1, we can immediately
reduce to the case where the load factor is a positive constant of our choice. Indeed, suppose that we could implement

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

b = Θ(1)

s = c log n̂

level 0 level 1 level 2 level 3

load-balancing tables

overflow tables
s = c log n̂

Fig. 2. A pictoral representation of the layout used to implement each container of sizeω(log 𝐿̂) . When an allocation fails in the 𝑌-th
load-balancing table, it either proceeds to the (𝑌 + 1)-th load-balancing table (if 𝑓𝑀+1 < 𝑍𝑀+1) or it proceeds to the 𝑌-th overflow table
(which is deterministically guaranteed to have a free slot).

a dereference table𝑝 with load factor 𝑜 for some positive constant 𝑜 > 0 and average tiny pointer size𝑆 (1). Then we
can use𝑝 as the secondary table in the construction: if the entire dereference table supports load factor 1 → 𝑇 , then the
requirement for the secondary table is that it must be able to support 𝑇2𝐿 items using 𝑇𝐿/2 slots. So as long as 𝑇 < 𝑜/2
(which can be assumed without loss of generality), then𝑝 su"ces.

Thus our task of proving Theorem 5.1 reduces to the task of proving the following proposition.

P’"-"./%/")5.2. There exists a dereference table that (i) succeedsw.h.p. on eachallocation, (ii) has load factorε(1), (iii) has
constant-time updates w.h.p. in𝐿, and (iv) has tiny pointer size𝑛 , where𝑛 is a randomvariable satisfyingPr [𝑛 ↗ 𝑑] ↘ 2→2

ε (𝑀)

for all 𝑑 .

Let 𝐿̂ be the maximum number of keys that can be allocated in the dereference table. We will construct a dereference
table with 𝐿 = 𝑆 (𝐿̂) slots. Because 𝐿̂ and 𝐿 are only a constant factor away from one another, we may use𝑆 (𝐿̂) bits of
metadata, and allow failures with probability 1/poly(𝐿̂).

Constructing the dereference table.We now describe our construction for the dereference table that we use to prove
Proposition 5.2. The dereference table hashes every allocated key into one of 𝐿̂/log 𝐿̂ containers, so that, at all times, each
container has log 𝐿̂ items in expectation. We deterministically limit the number of items in each container to 𝑈 = 𝑕 log 𝐿̂,
for some large enough constant 𝑕 > 1 to be determined later. When a key is hashed into a container that already has
𝑕 log 𝐿̂ items, the allocation fails.

Each container is managed independently, and its allocations/frees are performed using a scheme with log2 𝑈 levels,
as follows. For every 0 ↘ 𝑑 < log2 𝑈 , the 𝑑th level is a load-balancing table with 𝑈𝑌 := 𝑈/2𝑌 buckets, each with 𝑖 slots, for
some large enough constant 𝑖 ↗ 2 to be determined.

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

The basic idea is that, when an allocation in level 𝑑 fails due to a bucket being full, we recursively attempt the allocation
in the next level 𝑑 + 1 (which uses a di#erent hash function than does level 𝑑). Intuitively, as long as 𝑖 is a su"ciently large
constant, then each level should succeed on at least 1/2 of its allocations, which is why we can a#ord to let the next level
𝑑 + 1 have half the size of the previous one.

The problemwith this basic construction is that if even just a few consecutive levels behave badly, resulting in𝑙 (𝑈𝑌)

items being sent to some level 𝑑 , then there may not be room for those items in all of the levels 𝑑, . . . , log2 𝑈 combined. On
the other hand, our construction must be able to handle such bad scenarios, because most of the levels are so small that
we cannot o#er high-probability guarantees on their behavior. Thus, we must modify the construction so that, when
a level behaves badly, the e#ects of that bad behavior are isolated.

To do this, we add a fallback structure to each level, which we call overflow array, to prevent excessive occupancy.
The over$ow array in each level 𝑑 has 𝑈𝑌 slots (the same number of slots as the load-balancing table at that level). Let 𝑞𝑌 be
the random variable denoting the number of values currently stored in levels 𝑑 or larger, including their over$ow arrays.
Whenever an allocation at some level 𝑑 fails (because the bucket is full), we recursively allocate in the next level only
if 𝑞𝑌+1 < 𝑈𝑌+1, otherwise we place the value in any available slot in the over$ow array of level 𝑑 . The result of this is that
we deterministically guarantee 𝑞𝑌 ↘ 𝑈𝑌 for every level 𝑑 (including level 0, for which this is trivial, since 𝑈0 = 𝑈).

Importantly, no over$ow array can ever run out of space: since 𝑞𝑌 ↘ 𝑈𝑌 (deterministically), the total number of items
in the over$ow array for level 𝑑 is also a guaranteed to be a most 𝑈𝑌 , which is precisely the capacity of the over$ow array.

We are now ready to describe the full allocation algorithm. See Figure 2 for a picture of the layout used to implement
each container.

A!!"#$%&(𝑐):

(1) Hash 𝑐 into one of the 𝐿̂/log 𝐿̂ containers.
(2) If the selected container is already at full capacity 𝑈 , fail.
(3) Else, allocate 𝑐 in the selected container:

(a) For each 𝑑 = 0, 1, . . . , log2 (𝑈) → 1:
(i) Increment 𝑞𝑌 .
(ii) Try to allocate 𝑐 in the 𝑑th load-balancing table.
(iii) If the allocation succeeds:

• Let 𝑋 be the chosen slot within the chosen bucket.
• Return (level 𝑑, load-balancing table, bucket slot 𝑋).

(iv) If 𝑞𝑌+1 ↗ 𝑈𝑌+1:
• Pick any free slot in the 𝑑-th over$ow array.
• Let 𝑋 be the chosen slot in the array.
• Return (level from the back log2 (𝑈) → 1 → 𝑑, overflow array, slot 𝑋).

Notice that if an allocation ends up using a slot 𝑋 in some bucket in the 𝑑-th level’s load-balancing table, then the tiny
pointer encodes: the quantity 𝑑 , which is𝑆 (log 𝑑) bits; the fact that the allocation used the load-balancing table rather
than the over$ow array, which is𝑆 (1) bits; and the quantity 𝑋 , which is𝑆 (log𝑖) = 𝑆 (1) bits. The total length of the tiny
pointer is𝑆 (log 𝑑) in this case.12

12We follow the convention that log 𝑌 = ε (1) for all 𝑌 , so log 0 and log 1 are set to 1.

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

On the other hand, if an allocation ends up using the 𝑋-th slot in the 𝑑-th level’s over$ow array, then the tiny pointer
encodes: the quantity log2 (𝑈) → 1 → 𝑑 , which is𝑆 (log(log2 (𝑈) → 1 → 𝑑)) bits; the fact that the allocation used the over$ow
array rather than the load-balancing table, which is𝑆 (1) bits; and the quantity 𝑋 , which is𝑆 (log 𝑈𝑌) bits. Importantly,
in this case, we elect to encode log2 (𝑈) → 1 → 𝑑 , rather than the equivalent quantity 𝑑 . This allows us to bound the total
size of the tiny pointer by

𝑆 (log(log2 (𝑈) → 1 → 𝑑)) +𝑆 (1) +𝑆 (log 𝑈𝑌) = 𝑆 (log log(𝑈/2𝑌) + log 𝑈𝑌) = 𝑆 (log log 𝑈𝑌 + log 𝑈𝑌) = 𝑆 (log 𝑈𝑌).

Thus, when an allocation uses the over$ow array in level 𝑑 , we can bound the tiny-pointer size by𝑆 (log 𝑈𝑌).

Implementing operations in constant time. The information in the tiny pointers enables dereferences to easily be
performed in time𝑆 (1). Performing allocations and frees in time𝑆 (1) is slightly more di"cult, however.

Let us start by considering the naïve approach to implementing allocations and see why this is too slow.Wemust !rst
identify which container to use (this just requires us to evaluate a hash function, taking constant time). Wemust then
determinewhich levelwewill be using; ifwe endupusing level 𝑑 , then this takes timeω(𝑑),which is too slowwhen 𝑑 = 𝑙 (1).

We solve this problem as follows. Let 𝑏 to be some su"ciently large positive constant. We will implement levels
0, 1, . . . ,𝑏 → 1 using the naive approach, and then we will implement the levels 𝑏, . . . , log2 𝑈 using the Method of Four
Russians (i.e., the “lookup-table approach”). Notice that, since 𝑏 is at least a su"ciently large positive constant, the total
number of slots in the levels 𝑏, . . . , log2 𝑈 is at most 4𝑈𝑊/2𝑊 ↘ (log 𝐿̂)/10. Thus the entire state of which slots are free in
those levels can be encoded in (log 𝐿̂)/10 bits; we store this quantity as metadata for each container, totaling to𝑆 (𝐿̂) bits
of metadata across all 𝐿̂/log 𝐿̂ containers. Moreover, the hash values𝑎1 (𝑐),𝑎2 (𝑐), . . . ,𝑎log2 𝑍 (𝑐) that are used to select a
bucket in each level together represent only𝑆 ((log log 𝐿̂)2) bits (and canbe implemented to just be the!rst𝑆 ((log log 𝐿̂)2)
bits of a single hash function). Thus, the entire state of levels𝑏, . . . , log2 𝑈 , plus all of the information about the hash values
𝑎1 (𝑐),𝑎2 (𝑐), . . . ,𝑎log2 𝑍 (𝑐), can be encoded in an integer 𝑟 of (log 𝐿̂)/2 bits that can be constructed in time𝑆 (1). This
means that we can pre-construct a lookup table of size 2(log 𝐿̂)/2 =

≃
𝐿̂ that we can use to determine, for any given value

of 𝑟 , which level the allocation should use. The lookup table takes a negligible amount of metadata space, allows for
allocations to be performed in time𝑆 (1), and can be constructed in time 𝑆̃ (

≃
𝐿̂) during the dereference table’s creation.

Now that we have speci!ed how to implement allocations, frees are simple to implement, since they just update the
metadata to re$ect that the slot has been freed (this just $ips a single bit in the metadata).

We have now fully speci!ed the construction and implementation of our dereference table. It remains to analyze its
properties, namely the probability of failure, the load factor, and the tiny-pointer sizes.

Probability of failure. The only way that an allocation can fail is if there is no room in the container that it hashes to,
i.e., the container has 𝑕 log 𝐿̂ items already. Otherwise, if the container has fewer than 𝑕 log 𝐿̂ items, then the allocation
is guaranteed to succeed (but, of course, it is not guaranteed to result in a small tiny pointer).

On average, log 𝐿̂ keys hash to any particular container, so by a Cherno# bound themaximum size across all containers
is at most 𝑕 log 𝐿̂ w.h.p. in 𝐿̂ for some positive constant 𝑕 . By the union bound, this holds for all of the 𝐿̂/log 𝐿̂ containers
simultaneously, w.h.p. in 𝐿̂. Thus, if we pick 𝑈 = 𝑕 log 𝐿̂ for some large enough constant𝑕 , at any point in time, all containers
will be below capacity w.h.p. in 𝐿̂.

Load factor.Next, we verify that the total number of slots is𝑆 (𝐿̂). The dereference table for each container uses space
𝑆 (

∑
𝑌 𝑈𝑌) = 𝑆 (𝑈0) = 𝑆 (𝑈) = 𝑆 (log 𝐿̂) slots, and there are 𝐿̂/log 𝐿̂ containers. Hence, the total space is𝑆 (𝐿̂), so the load

factor is ε(1), as desired.

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

Tiny pointer size. To conclude the proof of Proposition 5.2, we analyze the tiny pointer size of a given allocation,
conditioned on the event that the allocation doesn’t fail. The size of the tiny pointer depends on which level the key ends
up allocated in. Speci!cally, as we have seen above:

• 𝑆 (log 𝑑) if the key is allocated in the 𝑑th load-balancing table;
• 𝑆 (log 𝑈𝑌) if the key is allocated in the 𝑑th over$ow array.

Fix an arbitrary container to be the one where the allocation takes place, and consider the following events:

• B𝑌 : the key is allocated in the 𝑑th load-balancing table;
• O𝑌 : the key is allocated in the 𝑑th over$ow array;
• L𝑌 : 𝑞𝑌 < 𝑈𝑌 .

We will condition on two events: (i) that the item picks the container we !xed, and (ii) that the container contains fewer
than 𝑕 log 𝐿̂ items (i.e., the allocation doesn’t fail). We will drop the conditioning notation for clarity. Let 𝑛 be the size
of the output tiny pointer. Then, by the law of total expectation,

E [𝑛] ↘
∑
𝑌

Pr [B𝑌] ·𝑆 (log 𝑑) +
∑
𝑌

Pr [O𝑌] ·𝑆 (log 𝑈𝑌) . (1)

We bound each term separately. On the one hand,

Pr [B𝑌] ↘ Pr
[
B0,L1,B1, . . . ,L𝑌→1,B𝑌→1

]

↘ Pr
[
B0

]
· Pr

[
B1 | B0,L1

]
· · · Pr

[
B𝑌→1 | B0,L1, . . . ,B𝑌→2,L𝑌→1

]
. (2)

In the last product, for every 𝑋 ↔ {1, . . . , 𝑑 → 1}, the load factor of the load-balancing table in level 𝑋 is at most 1/𝑖,
because there are 𝑞𝑅 < 𝑈 𝑅 items, 𝑈 𝑅 buckets, and each bucket has capacity 𝑖. This means that at most 1/𝑖 of the bins are
full, deterministically, so the probability that a full bucket is chosen is Firat most 1/𝑖. Hence, every term in Equation (2)
is bounded by 1/𝑖, and

Pr [B𝑌] ↘ 1/𝑖𝑌 ↘ 1/2𝑌 .

On the other hand,
Pr[O𝑌] ↘ Pr[L𝑌+1] .

We can bound the latter probability using Lemma 4.2. By construction, the load-balancing table in level 𝑑 always has at
most 𝑈𝑌 allocations made to it (including the failed ones, since 𝑞𝑌 ↘ 𝑈𝑌 and 𝑞𝑌 counts both the items in level 𝑑 and the items
in levels 𝑑 + 1, 𝑑 + 2, . . .); moreover, the allocations and frees performed on the load-balancing table (which may di#er
from those performed on the overall dereference table) are independent of the randomness used in the load-balancing
table. Assuming that the bucket size 𝑖 is a su"ciently large constant, it follows that we can apply Lemma 4.2 (where the
value of𝑍 being used in the lemma is 𝑈𝑌 and the value of 𝑇 being used in the lemma is a small positive constant) to deduce
that, with probability at least 1 → exp(→ε(𝑈𝑌)), the number of failed allocations at level 𝑑 at any given moment is less than
𝑈𝑌/2 = 𝑈𝑌+1. This, in turn, implies thatL𝑌+1 holds. Thus we can conclude that

Pr[O𝑌] ↘ 1/2ε (𝑍𝑀) .

Putting the pieces together,

E [𝑛] =
∑
𝑌

𝑆 (log 𝑑)
2𝑌

+

∑
𝑌

𝑆 (log 𝑈𝑌)
2ε (𝑍𝑀)

= 𝑆 (1) .

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Notice that these calculations show that a tiny pointer of size𝑆 (log 𝑠) has probability 2→ε (𝑉) , or, equivalently, a tiny
pointer of size𝑆 (𝑠) has probability 2→2

ε (𝑅)
. This suggests that the tiny pointer size decays at a doubly-exponential rate.

We prove this next. For any 𝑠 , in order for 𝑛 ↗ 𝑠 to occur, there must exist a positive constant 𝑚 such that at least one
of log 𝑑 or log 𝑈𝑌 is at least𝑚𝑠 . It follows that

Pr [𝑛 ↗ 𝑠] ↘
∑
𝑌↗2𝑆𝑅

Pr [B𝑌] +
∑

𝑍𝑀↗2𝑆𝑅
Pr [O𝑌]

=
∑
𝑌↗2𝑆𝑅

1
2𝑌

+

∑
𝑍𝑀↗2𝑆𝑅

1
2ε (𝑍𝑀)

.

Both sums are dominated by their !rst terms, and are thus 1/22
ε (𝑅)

. Therefore,

Pr [𝑛 ↗ 𝑠] ↘
1

22ε (𝑅)
,

which completes the proof of Proposition 5.2. As discussed earlier, Proposition 5.2, in turn, implies Theorem 5.1.

Bounding sums of tiny-pointer sizes. In our applications of tiny pointers, a common way of using variable-size
pointers will be to packω

(
log𝐿
log𝑁→1

)
of them intoω(log𝐿) bits. Therefore, we conclude this section by proving a bound

on the total number of bits consumed by a set 𝑒 of𝑆 (log𝐿/log𝑇→1) tiny pointers.

P’"-"./%/") 5.3. Using the construction in Theorem 5.1, for any set 𝑒 of𝑆
(

log𝐿
log𝑁→1

)
tiny pointers, the sum of their sizes

will be𝑆 (log𝐿) bits w.h.p.

P’""(. With high probability, all of the allocations for 𝑒 succeed. This means that we can ignore the case where
allocations fail, so when an allocation fails, we shall treat it as contributing a tiny pointer of size 0.

Let 𝑡 be the set of keys corresponding to the tiny pointers in 𝑒 . The easy case is if every key 𝑐 ↔ 𝑡 hashes to a
di#erent container; in this case, we can analyze each container separately to conclude that each tiny pointerA!!"#$%&(𝑐)
independently has length𝑆 (log𝑇→1 + 𝑛𝑎) bits, where Pr[𝑛𝑎 > 𝑠] ↘ 2→2

ε (𝑅)
. Applying a Cherno# bound for sums of

independent geometric random variables, we can conclude that
∑
𝑎↔𝑔 𝑛𝑎 ↘ 𝑆 (log𝐿) w.h.p., and thus that the total

number of bits consumed by 𝑒 is𝑆 (log𝐿).
What if some of the keys 𝑐 ↔ 𝑡 hash to the same container as other keys from 𝑡? Then we can no longer analyze

the lengths of the resulting tiny pointers independently. Let𝑔 denote the set of such keys 𝑐 . Since each tiny pointer is
deterministically at most𝑆 (log𝐿) bits, we can complete the proof by establishing that, with w.h.p., |𝑔 | = 𝑆 (1).

Let 𝑐1, 𝑐2, . . . denote the keys in 𝑡 , and let 𝑔𝑌 be the indicator random variable for the event that 𝑐𝑌 hashes to the
same container as one of 𝑐1, 𝑐2, . . . , 𝑐𝑌→1. Then |𝑔 | ↘ 2

∑
𝑌 𝑔𝑌 . On the other hand, each𝑔𝑌 satis!es E [𝑔𝑌] ↘ (𝑑 → 1)/𝐿 ↘

|𝑒 |/𝐿 ↘ 𝑆 ((log𝐿)/𝐿). Thus
∑
𝑌 𝑔𝑌 is a sum of independent indicator random variables with total mean𝑆 ((log2 𝐿)/𝐿).

Applying a Cherno# bound, we will conclude that
∑
𝑌 𝑔𝑌 = 𝑆 (1) w.h.p., which completes the proof. Speci!cally, if we

set 𝑗 = E[𝑔] = 𝑆 (log2 𝐿/𝐿) and 𝑇 = 𝑚𝑗→1 for some large positive constant𝑚 , then

Pr[𝑔 = 𝑙 (1)] ↘ Pr[|𝑔 → E[𝑔] ↗ (1 + 𝑇)𝑗] ↘

(
𝑢𝑁

(1 + 𝑇)1+𝑁

)𝑕
↘

𝑢𝑁𝑕

(1 + 𝑇) (1+𝑁)𝑕
↘

𝑆 (1)
(1 + 𝑇)𝑖

= 1/poly(𝐿) .

⊋

19

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

6 LOWERBOUNDS

In this section we prove that the bounds in Theorems 4.1 and 5.1 are tight. We begin by proving a lower bound for
variable-size tiny pointers, since it is then used as part of the proof for the !xed size case.

What makes the lower bound for variably sized tiny pointer tricky is that any single tiny pointer might be very small.
For example, the dereference table could have a single special slot that corresponds to the tiny pointer 0 (for every key),
and then if the dereference table ever wanted to make a single tiny pointer small, it could allocate the special slot. Thus,
our proof treats di#erent types of slots di#erently: for each slot 𝑋 , we de!ne a potential function 𝑟 (𝑋) indicating how
“useful” that slot is to a random insertion. The idea is that insertions that use slots 𝑋 with small potentials 𝑟 (𝑋) must,
on average, have relatively large tiny pointers; but insertions that use slots 𝑋 with large potentials 𝑟 (𝑋) must be rare,
since only a relatively small fraction of the slots can have large potentials, and the number of insertions into them can
be bounded by the number of deletions out of them.

T*&"’&+ 6.1. Consider a universe U of keys, where U is assumed to have a su!ciently large polynomial size. If a
dereference table supports variable-size tiny pointers of expected size 𝑈 and load factor 1 → 𝑇 = ε(1), then 𝑈 = ε(log𝑇→1).

P’""(. LetU be a universe of size 𝐿𝑐 where 𝑕 is a su"ciently large constant. Let 𝑇 < 1/4. Let𝑝 be a dereference table
with 𝐿 slots and load factor 1 → 𝑇 (i.e., it is capable of allocating up to (1 → 𝑇)𝐿 slots to keys fromU at a time). Moreover,
suppose that𝑝 guarantees an expected tiny-pointer length of at most 𝑗. Then we wish to show that

𝑗 ↗ ε(log𝑇→1).

To simplify our discussion, we shall think of a key 𝑐 ↔ U as residing in the location that is allocated to it. Thus
allocations correspond to insertions, and frees correspond to deletions.

Consider a workload in which the table is initialized to contain (1→ 𝑇)𝐿 arbitrary items, and then we alternate between
insertions and deletions for 𝐿𝑐/2 steps. Each insertion selects a random item ofU (with high probability in 𝐿, we never
insert an item that is already present), and each deletion selects a random item out of those present.

We treat tiny pointers as taking values inN. If the tiny pointer takes value 𝑑 , then it uses ε(log 𝑑) bits. For each item
𝑐 ↔ U, let 𝑎𝑌 (𝑐) denote the position where 𝑐 would reside in𝑝 if 𝑐 had a tiny pointer with value 𝑑 . Set 𝑠 = 𝑇→1/32. For
each position 𝑋 ↔ [𝐿] in the table, de!ne the potential 𝑟 (𝑋) to be

𝑟 (𝑋) =
|{(𝑐, 𝑑) | 𝑐 ↔ U, 𝑑 ↔ [𝑠],𝑎𝑌 (𝑘) = 𝑋}|

|U|
.

Call an insertion safe if the item 𝑐 that is inserted is inserted into one of positions𝑎1 (𝑐), . . . ,𝑎𝑉 (𝑐). Call an insertion
resource e"cient if the item 𝑐 that is inserted is inserted into a position 𝑋 satisfying 𝑟 (𝑋) ↘ 4𝑉

𝐿 .
We begin by bounding the probability that a given insertion is both safe and resource e"cient. Consider some point

in the operation sequence, with some set𝑔 of keys present in the table. Now consider the insertion of some key 𝑐 ω 𝑔 .

20

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The probability that the insertion is both safe and resource e"cient is at most

∑
empty position 𝑅↔ [𝐿]

𝑋 (𝑅)↘ 4𝑅
𝑇

𝑉∑
𝑌=1

Pr
𝑎↔U

[𝑎𝑌 (𝑐) = 𝑋]

=
∑

empty position 𝑅↔ [𝐿]
𝑋 (𝑅)↘ 4𝑅

𝑇

𝑉∑
𝑌=1

|{𝑐 |𝑐 ↔ U \ 𝑔 ⇒ 𝑎𝑌 (𝑐) = 𝑋}|

|U \ 𝑔 |

↘ 2
∑

empty position 𝑅↔ [𝐿]
𝑋 (𝑅)↘ 4𝑅

𝑇

𝑉∑
𝑌=1

|{𝑐 |𝑐 ↔ U ⇒ 𝑎𝑌 (𝑐) = 𝑋}|

|U|

= 2
∑

empty position 𝑅↔ [𝐿]
𝑋 (𝑅)↘ 4𝑅

𝑇

𝑟 (𝑋)

↘ 2
∑

empty position 𝑅↔ [𝐿]

4𝑠
𝐿

= 2𝑇𝐿
4𝑠
𝐿

=
1
4
.

It follows that the expected number of insertions that are safe and resource e"cient is at most 𝐿𝑐/2/4.
Nextwe bound the expected number of insertions𝑀 that are safe but not resource e"cient. Rather than bound𝑀 directly,

we instead examine the number of deletions 𝑣 where the deleted item is deleted from a position 𝑋 satisfying 𝑟 (𝑋) > 4𝑉
𝐿 .

With the exception of the up to𝐿 insertions that have not yet been deleted, every insertion counted by𝑀 is counted by𝑣, so

𝑀 ↘ 𝑣 + 𝐿.

By the de!nition of 𝑟 (𝑋), we have that
∑𝐿

𝑅=1 𝑟 (𝑋) = 𝑠 . It follows that |{ 𝑋 ↔ [𝐿] | 𝑟 (𝑋) > 4𝑉
𝐿 }| ↘ 𝐿/4. Each random

deletion therefore has probability at most 𝐿/4
(1→𝑁)𝐿 ↘ 1/2 of removing an item in a position 𝑋 satisfying 𝑟 (𝑋) > 4𝑉

𝐿 . Thus
E[𝑣] ↘ 𝐿𝑐/2/2which means that

E[𝑀] ↘ 𝐿𝑐/2/2 + 𝐿 ↘ (1 + 𝑂 (1))𝐿𝑐/2/2.

The expected number of safe insertions is therefore at most (1+𝑂 (1)) 34𝐿
𝑐/2, which implies that the expected number of

unsafe insertions is at leastε(𝐿𝑐/2). Each unsafe insertion results in a tiny pointer of length at leastε(log 𝑠) = ε(log𝑇→1)
bits. Since a constant fraction of the insertions are expected to result in a tiny pointer of length at least ε(log𝑇→1), we
must have 𝑗 ↗ ε(log𝑇→1). ⊋

Next we prove a lower bound for !xed-sized tiny pointers, which shows that the bound in Theorem 4.1 is tight.

T*&"’&+ 6.2. Consider a universe U of keys, where U is assumed to have a su!ciently large polynomial size. If a
dereference table supports "xed-sized tiny pointers of size 𝑈 and load factor 1→ 𝑇 = ε(1), then 𝑈 = ε(log log log𝐿 + log𝑇→1).

It su"ces to prove that 𝑈 = ε(log log log𝐿), since we have already shown that 𝑈 = ε(log𝑇→1).
The proof re-purposes a classic balls-and-bins lower bound. Say that a ball-placement rule is sequential if balls are

placed sequentially, without knowledge of future ball arrivals, and if balls are never moved after being placed.
21

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

T*&"’&+ 6.3 (T*&"’&+ 2 /) [59]). Suppose that𝑍 balls are placed sequentially into𝑍 bins using an arbitrary sequential
ball placement rule, where each ball chooses between𝑏 bins that are selected independently at randomaccording to an arbitrary
probability distribution on [𝑍]

𝑊 . Then the number of balls in the fullest bin is (log log𝑍)/𝑏 +𝑆 (1) w.h.p.

We now prove Theorem 6.2.

P’""("(T*&"’&+ 6.2. Assume for contradiction that there exists a dereference table with load factor 1 → 𝑇 = ε(1)
that supports !xed-size tiny pointers of size 𝑈 = 𝑂 (log log log𝐿) bits. Let 𝐿 be the number of slots in the dereference table,
and let𝑍 = (1 → 𝑇)𝐿 be the maximum number of allocations that the dereference table can support at a time; assume
without loss of generality that 1/(1 → 𝑇) ↔ N, so 𝐿 is a multiple of𝑍. Finally, let 𝑒 = 2𝑍 , and observe that, by assumption,
𝑒 = 𝑂 (log log𝐿)—and since𝑍 = ω(𝐿), 𝑒 = 𝑂 (log log𝑍).

Recall thatU is theuniverse fromwhichthekeysare taken.Foreachkey𝑐 ↔ U, de!nethesequence𝑎1 (𝑐),𝑎2 (𝑐), . . . ,𝑎𝑏 (𝑐) ↔
[𝑍] so that 𝑎𝑌 (𝑐) = ⇑

𝑗
𝐿 D&’&(&’&)#&(𝑐, 𝑑)⇓. Note that, by the de!nition of the D&’&(&’&)#& function, the sequence

𝑎1 (𝑐),𝑎2 (𝑐), . . . ,𝑎𝑏 (𝑐) is a function of only 𝑐 , 𝑑 , 𝐿, and the random bits of the dereference table—therefore, the sequence
is predetermined by the coin $ips, and is independent of the sequence of allocations/deallocations that are performed.
Let 𝑤 ↔ [𝑍]

𝑏 be a random variable obtained by selecting 𝑐 ↔ U at random and setting 𝑤 = ⇔𝑎1 (𝑐),𝑎2 (𝑐), . . . ,𝑎𝑏 (𝑐)↖;
and let R be the probability distribution for 𝑤.

We will now construct a sequential ball-placement rule for mapping𝑍 balls to𝑍 bins. Our rule independently assigns
each ball a random bin sequence ⇔𝑎1,𝑎2, . . . ,𝑎𝑏 ↖ ↙ R of 𝑒 bins. Equivalently, we can think of the𝑍 balls as being𝑍 keys
𝑐1, 𝑐2, . . . , 𝑐𝑗 , where each 𝑐𝑌 is selected uniformly and independently at random fromU, and each 𝑐𝑌 has a bin sequence
of ⇔𝑎1 (𝑐),𝑎2 (𝑐), . . . ,𝑎𝑏 (𝑐)↖ ↔ [𝑍]

𝑏 .
Since |U| is at least a su"ciently large polynomial in 𝐿, we have that with high probability in 𝐿, the 𝑐𝑌 ’s are distinct.

Our ball placement rule runs the dereference table on the side and uses the tiny pointers that it produces to decide where
to place balls. To place ball 𝑐𝑌 into a bin, we compute 𝑁𝑌 = A!!"#$%&(𝑐𝑌), and we place 𝑐𝑌 into the 𝑁𝑌 -th bin in 𝑐𝑌 ’s bin
sequence, which is given by bin

𝑎𝑘𝑀 (𝑐𝑌) =
⌊𝑍
𝐿
D&’&(&’&)#&(𝑐𝑌 , 𝑁𝑌)

⌋
↔ [𝑍] .

In summary, we have constructed a sequential ball placement rule that places𝑍 balls sequentially into𝑍 bins and
that chooses a set of 𝑏 = 𝑒 bins for each ball according to a probability distribution R over [𝑍]

𝑊 . By Theorem 6.3, we
can deduce that the fullest bin contains at least

ε ((log log𝑍)/𝑏) = ε ((log log𝑍)/𝑒) = 𝑙 (1)

balls with high probability in𝑍.
On the other hand, the dereference table guarantees thatD&’&(&’&)#&(𝑐𝑌 , 𝑁𝑌) ↔ [𝐿] is unique for each 𝑑 ↔ [𝑍]. The

number of balls 𝑐𝑌 satisfying ⌊𝑍
𝐿
D&’&(&’&)#&(𝑐𝑌 , 𝑁𝑌)

⌋
= 𝑋

for a given 𝑋 is therefore at most 𝐿
𝑗 = 𝑆 (1). This means that the number of balls in any given bin is also𝑆 (1). Since the

dereference table succeeds with high probability in 𝐿, we can deduce that there are𝑆 (1) balls in the fullest bin with high
probability in 𝐿. This contradicts the fact that the number of balls in the fullest bin is𝑙 (1), thereby completing the proof
by contradiction. ⊋

22

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

7 APPLYING TINY POINTERS TO FIVE PROBLEMS INDATA STRUCTURES

In this section we present several applications of tiny pointers to classical problems in data structures:

• Relaxed Retrieval: we show that a slight modi!cation to the classic retrieval problem eliminates the classical
lower bound of ε(log log𝐿) wasted bits per item (Section 7.2).

• Succinct binary search trees: we give an approach for transforming arbitrary dynamic binary search trees into
succinct data structures (Section 7.3).

• Space-e"cient stable dictionaries: we transform any !xed-capacity key-value dictionary into a key-value stable
dictionary (Section 7.4).

• Space-e"cientdictionaries:wetransformanydictionarywith!xed-sizevalues intoonewhichcanspace-e"ciently
store variably sized values (Section 7.5).

• An optimal internal-memory stash: we construct a constant-time stash that space-e"ciently stores the locations
of items residing in a large external-memory data structure (Section 7.6).

7.1 SomeGeneral-Purpose Techniques for Using Tiny Pointers

Before diving into speci!c applications, we discuss several preliminary de!nitions and techniques that will be useful
in several of the applications.

Key-value dictionaries. Several of our applications will perform black-box transformations in order to add new features
(namely, stability and variable-size values) to key-value dictionaries. Formally, a key-value dictionary (often just called
a dictionary) is any data structure that stores key-value pairs (e.g., a hash table or a tree), where each key appears at
most once. Typically, a key-value dictionary supports insertions, deletions, and queries, where queries, in particular,
return the value associated to some key. Depending on the data structure, additional operations may also be supported,
for example successor queries, which return the successor to some key.

We say that a key-value dictionary uses a value array if it designates some contiguous chunk of memory (that can be
extended or shrunk over time) whose purpose is to store the values corresponding to keys. When performing a query on
a key, the dictionary uses the key to determine where in the value array the corresponding value is currently stored. Thus,
even dictionary implementations that don’t seem to use value arrays — e.g. red-black trees — can be directly modi!ed
to use them. If values are 𝑃 bits long, then the value array can be viewed as a array of 𝑃-bit objects.

In our applications, we will restrict ourselves to dictionaries that store their values in value arrays. For simplicity,
we will assume that the dictionary uses a single value array, although all of our results can also easily be applied to a
dictionary that makes use of many separately-allocated value arrays (as long as each individual value array is at least
ε(log𝐿) bits). The reason that we assume a single value array is because, to the best of our knowledge, all of the known
space-e"cient key-value dictionaries can easily be implemented in this format, so we choose to avoid introducing
unnecessary complication to the results.

How to store value arrays of tiny pointers.A theme in several of our applications will be to modify a value array so
that, rather than storing values directly, we instead store tiny pointers of some size𝑃 . Recall, however, that tiny pointers of
size𝑃 = 𝑂 (log log log𝐿) bits are not!xed-size,meaning that some tiny pointersmay requiremore than𝑃 bits. Nonetheless,
if we are willing to use a value-array that is a constant-factor larger, then there is a simple trick, which we call chunked
pointer storage, that lets us interact with these variable-length tiny pointers in the same way that we would interact
with !xed-length tiny pointers.

23

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

Break the value array into contiguous chunks of𝑆 ((log𝐿)/𝑃) tiny pointers. By Proposition 5.3, the total number of
bits used by the tiny pointers in each chunk is𝑆 (log𝐿) with high probability in 𝐿. Thus each chunk can be stored in
𝑆 (log𝐿) bits, meaning that the entire value array can be stored in𝑆 (𝐿𝑃) bits.

There is, however, the remaining issue of how to e"ciently access andmodify the 𝑋-th tiny pointer in a given chunk. For
each chunk,wecan store anadditional𝑆 (log𝐿)-bit bitmapwhere thebits that are set to1 indicate thepositions in the chunk
where tiny pointers begin and end. To e"ciently !nd the 𝑋-th tiny pointer, it su"ces to !nd the 𝑋-th and 𝑋 + 1-th 1s in the
bitmap. (The tiny pointer can then be extracted, modi!ed, and reinserted, in constant time using standard bitmanipulation
on the bitmap and the chunk.) The problem of !nding the 𝑋-th 1 in a𝑆 (log𝐿)-bit bitmap is easily solved with the method
of four Russians [7]: simply store an auxiliary lookup table of size

≃
𝐿 that allows for such queries to be answered in a

(log𝐿)/2-bit bitmap in a single lookup, and then perform𝑆 (1) lookups to perform such a query in an𝑆 (log𝐿)-bit bitmap.

How to dynamically resize a data structure using tiny pointers. Several of our applications will also encounter
the problem of using tiny pointers in a data structure whose size dynamically changes over time. Of course, this means
that we must also dynamically resize dereference tables. Our applications will take the following approach, which we
call zone-aggregated resizing.

Consider a value array storing tiny pointers to 𝑃-bit items in a dereference table (and assume 𝑃 bits !t in𝑆 (1) machine
words). Suppose that we wish to maintain the dereference table at a load factor of 1 → ω(1/𝑃), that way the number of
bits wasted per item stored is𝑆 (1); note that this means that the tiny pointers in the value array are ω(log𝑃) bits on
average. Further suppose, however, that the value array dynamically changes size over time (meaning that items must
be added and removed from the dereference table). For our discussion here, we will assume that the value array itself
is dynamically resized to always be at a load factor of at least ε(1).

How can we update the dereference table to maintain a load factor of 1 → ω(1/𝑃) while the number of items changes
over time? Rather than just using a single dereference table, we use 𝑃 dereference tables, and addω(log𝑃) bits to each
tiny pointer in order to indicate which dereference table is being pointed into (this doesn’t change the asymptotic size
of the tiny pointers). We can grow and shrink the capacity (i.e., number of slots) of the dereference tables by either (a)
rebuilding the smallest dereference table to double its size, or (b) rebuilding the largest dereference table to halve its
size. If we assume for the moment that rebuilding a dereference table takes time proportional to the table’s size, then
the rebuilds can be de-amortized to take time𝑆 (1) per operation (i.e., per modi!cation to the dereference tables), while
maintaining the desired load factor of 1 → ω(1/𝑃).

The problemwith rebuilding a dereference table is that all of the tiny pointers into that dereference table become invali-
dated. The actual constructionof thenewdereference table can easily beperformed in linear time, buthowdoweupdate the
tinypointers in the value array? If the value arrayhas size𝐿, then thedereference table being rebuilt consists of onlyω(𝐿/𝑃)

items.Wewant to identifywhere the tinypointers to those itemsare in thevaluearray in timeω(𝐿/𝑃) rather than timeω(𝐿).
The solution to this issue is very simple: break the value array into contiguous zones each of which consists of 𝑃 values.

Within each zone, maintain 𝑃 linked lists, where the 𝑑-th linked list contains the tiny pointers that point into the 𝑑-th
dereference table. Importantly, because these linked lists are within a zone of size 𝑃 , the pointerswithin each linked list
only requireω(log𝑃) bits each; thus the linked lists do not asymptotically increase the size of the value array. On the
other hand, in order to !nd all of the tiny pointers for a given dereference table, one can simply look at one linked list
in each of theω(𝐿/𝑃) zones, allowing for allω(𝐿/𝑃) of the tiny pointers to be identi!ed in timeω(𝐿/𝑃).

For reasons that we shall see later, one of our applications will also require us to use larger zones of size poly(𝑃)
rather than just of size 𝑃 . For now, we simply remark that using larger zones of size poly(𝑃) still allows for the linked-list

24

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

overhead of each tiny pointer to be bounded byω(log𝑃) bits, and that the time needed to identify the tiny pointers to
a dereference table of size 𝑋 is only

𝑆 (𝑋 + 𝐿/poly(𝑃)), (3)

since the number of linked lists that must be examined is only𝑆 (𝐿/poly(𝑃)).

7.2 Overcoming the ε(log log𝐿)-Bit Lower Bound for Data Retrieval

Our !rst application revisits the classic retrieval problem [3, 26, 27, 29], in which a data structure must store a 𝑉-bit value
for each of the 𝑃-bit keys in some set 𝑒 , and must answer queries that retrieve the value associated with a given key. Here,
we address the dynamic version of the problem, where the data structure must support the functions I).&’%(𝑐,𝑓) (which
inserts a new 𝑐 ↔ [2𝑈] into 𝑒 and associates it with value𝑓 ↔ [2𝑂]),D&!&%&(𝑐) (which removes some 𝑐 ↔ 𝑒 from 𝑒), and
0&’1(𝑐) (which returns the value𝑓 corresponding to 𝑐 for some 𝑐 ↔ 𝑒 , or returns an arbitrary value of 𝑐 ω 𝑒), allowing
for the set 𝑒 to grow up to some maximum size 𝐿. Note that in the retrieval problem it is the user’s responsibility to ensure
that every invocation of I).&’% is on a key 𝑐 ω 𝑒 and every invocation ofD&!&%& is on a key 𝑐 ↔ 𝑒 .

It is known that, if 𝑃 = (1 + ε(1)) log𝐿 bits, then any solution to the dynamic retrieval problem must use at least
𝐿𝑉 + ε(𝐿 log log𝐿) bits of space [3], regardless of the time complexity, and even if 𝑉 = 1. It is further known that,
if 𝑃 = ω(log𝐿) and 𝑉 = 𝑆 (log𝐿), then the 𝐿𝑉 + ω(𝐿 log log𝐿) space bound can be accomplished by a randomized
constant-time data structure [26].

We will now show that, by slightly relaxing the retrieval problem, we can use tiny pointers to obtain signi!cantly
better space bounds. In the relaxed retrieval problem, the insertion/deletion/query operations are modi!ed to work
as follows. The operation I).&’%(𝑐,𝑓) now returns a tiny retriever 𝑊 which the user must remember. In the future, if
the user wishes to query 𝑐 (and they have not yet deleted 𝑐), they call0&’1(𝑐, 𝑊) to obtain the value𝑓. Finally, if the
user ever wishes to remove 𝑐 from the set 𝑒 , then they callD&!&%&(𝑐, 𝑊).

The role of the tiny retriever is similar to that of a tiny pointer—it acts as a hint to assist the data structure. Unlike for tiny
pointers, however, the pair (𝑐, 𝑊) does not have to fully encode the position of𝑓; instead, query operations0&’1(𝑐, 𝑊)
can use auxiliary metadata, beyond just 𝑐 and 𝑊 , to determine the value𝑓. We shall now see that this distinction is very
important, allowing for us to do better than both the lower bound for the retrieval problem [3] and our lower bound for
the tiny-pointer problem (Theorem 6.1). At the same time (almost paradoxically), it is our construction for variable-size
tiny pointers that allows for us to get around both of these lower bounds. In the following, let log(𝑄) 𝐿 = log log · · · log𝐿
denote the 𝑊 -th iterated logarithm of 𝐿.

T*&"’&+ 7.1. Consider the relaxed retrieval problemwith𝑃-bit keys, 𝑉-bit values, and amaximum capacity of𝐿 key/value
pairs. Let 𝑊 ↔ [log↑ 𝐿] be a parameter. There is a solution to the relaxed retrieval problem that uses tiny retrievers of expected
size𝑆 (1), and that with high probability in 𝐿: takes constant time per query, takes𝑆 (𝑊) time per insertion/deletion, and uses
total space 𝐿𝑉 +𝑆 (𝐿 log(𝑄) 𝐿) bits.

Furthermore, if log(𝑄) 𝐿 = 𝑙 (1) and 𝑉 ↘
log𝐿

log(𝐿) 𝐿
, then the space consumption becomes 𝐿𝑉 +𝑆 (𝐿) bits.

The above theorem comes with an interesting tradeo# curve: constant-time insertions/deletions can achieve a space
consumption of, for example, 𝐿𝑉 + 𝑆 (𝐿 log log log log log𝐿) bits, and 𝑆 (log↑ 𝐿)-time insertion/deletions can achieve
space consumption 𝐿𝑉 +𝑆 (𝐿) bits. Moreover, if 𝑉 is slightly sub-logarithmic, then one can even achieve constant-time
insertions/deletions with only 𝐿𝑉 +𝑆 (𝐿) bits of space.

25

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

We remark that the tiny retrievers in Theorem 7.1 are, in fact, variable-size tiny pointers as constructed in Theorem
5.1. They therefore satisfy the doubly-exponential tail inequality given by Theorem 5.1, as well as the concentration
inequality given by Proposition 5.3.

P’""(. We shall make use of Theorem 5.1 to construct a dereference table𝑝 with 2𝐿 slots.What makes our application
of Theorem 5.1 unusual, however, is that wewill not store anything in the store (if fact, we need not even allocate space for
it). Instead, we will take advantage of the fact thatD&’&(&’&)#&(𝑐, 𝑁) is a (1 + log𝐿)-bit number that has been uniquely
allocated to 𝑐 .

To implement the operation I).&’%(𝑐,𝑓), we callA!!"#$%&(𝑐) to obtain a tiny pointer 𝑁 of expected size𝑆 (1) (note
that 𝑁 will also be our tiny retriever). De!ne 𝑈𝑎 = D&’&(&’&)#&(𝑐, 𝑁) to be the slot number in [2𝐿] allocated to 𝑐 . The
main property that we will exploit is that 𝑈𝑎 ε 𝑈𝑎 ⇐ for all other 𝑐 ⇐ ↔ 𝑒 . To complete the I).&’% operation, we insert the
key/value pair (𝑈𝑎 ,𝑓) into a succinct hash table𝑥 (whose speci!cationswewill describe later). Queries and deletes are then
implemented as follows:0&’1(𝑐, 𝑁) returns𝑥 [D&’&(&’&)#&(𝑐, 𝑁)]; andD&!&%&(𝑐, 𝑁) deletes keyD&’&(&’&)#&(𝑐, 𝑁)
from𝑥 and calls F’&&(𝑐, 𝑁) on the dereference table𝑝 .

The correctness of the data structure follows from the fact that, for each𝑐 ↔ 𝑒 with tiny retriever 𝑁 ,D&’&(&’&)#&(𝑐, 𝑁)
is unique. The dereference table uses space only𝑆 (𝐿) bits and supports constant-time operations (with high probability).
Thus, to prove the theorem, it remains to analyze the hash table𝑥 .

We construct𝑥 using the most space-e"cient known construction for a hash table [12]. If𝑥 is storing up to 𝐿 keys
from a universe𝑦 and values are 𝑉 bits, then it supports the following guarantees with high probability: queries are
constant-time, insertions/deletions take time𝑆 (𝑊), and the total space consumption is

log
(
|𝑦 |

𝐿

)
+ 𝐿𝑉 +𝑆 (𝐿 log(𝑄) 𝐿)

bits. If, in addition, log(𝑄) 𝐿 = 𝑙 (1) and 𝑉 ↘
log𝐿

log(𝐿) 𝐿
, then the space becomes log

(
|𝑙 |

𝐿

)
+ 𝐿𝑉 +𝑆 (𝐿) bits.

Our use of tiny pointers ensures that the keys in𝑥 are from the very small universe𝑦 = [2𝐿]. So

log
(
|𝑦 |

𝐿

)
= log

(
2𝐿
𝐿

)
= 𝑆 (𝐿)

by Stirling’s formula. This completes the proof of the theorem. ⊋

A remark on resizing. In Subsection 7.3, we shall see an application of tiny retrievers to the problem of constructing
succinct binary search trees. In this application,wewill want to have two relaxed-retrieval data structureswhose sizes sum
to atmost𝐿. Here, we can take advantage of the fact that the hash table𝑥 used above actually o#ers a dynamically-resizing
guarantee: if, at any given moment, the hash table has size𝑍, then it uses space at most

≃
𝐿 + log

(
2𝐿
𝑍

)
+𝑍𝑉 +𝑆 (𝑍 log(𝑄) 𝐿),

with high probability in 𝐿. The full retrieval data structure (consisting of the hash table𝑥 and the dereference table𝑝)
therefore uses space at most

log
(
2𝐿
𝑍

)
+𝑍𝑉 +𝑆 (𝐿 +𝑍 log(𝑄) 𝐿) .

26

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

By Stirling’s formula, this is at most

𝑍 log𝐿 →𝑍 log𝑍 +𝑍𝑉 +𝑆 (𝐿 +𝑍 log(𝑄) 𝐿).

Thus, if we have two relaxed-retrieval data structures, one of size𝑍1 ↘ 𝐿 and one of size𝑍2 ↘ 𝐿, and𝑍 =𝑍1 +𝑍2 = ω(𝐿),
then their total space consumption will be at most

(𝑍1 +𝑍2) log𝐿 →𝑍1 log𝑍1 →𝑍2 log𝑍2 + (𝑍1 +𝑍2)𝑉 +𝑆 ((𝑍1 +𝑍2) log(𝑄) 𝐿)

=𝑍 log𝐿 →𝑍1 log𝑍1 →𝑍2 log𝑍2 +𝑍𝑉 +𝑆 (𝑍 log(𝑄) 𝐿).

By Jensen’s inequality,𝑍1 log𝑍1 +𝑍2 log𝑍2 ↗ (𝑍1 +𝑍2) log 𝑗1+𝑗2
2 =𝑍 log 𝑗

2 =𝑍 log𝐿 →𝑆 (𝐿). Thus the total space
is at most

𝑍 log𝐿 → (𝑍 log𝐿 →𝑆 (𝐿)) +𝑍𝑉 +𝑆 (𝑍 log(𝑄) 𝐿)

=𝑍𝑉 +𝑆 (𝑍 log(𝑄) 𝐿)

=𝑍𝑉 +𝑆 (𝑍 log(𝑄)𝑍)

This, of course, is the same bound that we get for a single relaxed-retrieval data structure of size𝑍.
The reason that this matters is that it allows for a simple way to perform dynamic resizing: every time that the size

𝑍 of a data structure changes by a factor of two, we move all of the items in the current relaxed-retrieval data structure
𝑧1 into a new relaxed-retrieval data structure𝑧2 (parameterized as having capacity 𝐿 = ω(𝑍) based on the new value
of𝑍). As wemove items from𝑧1 to𝑧2, the total space consumption of𝑧1 and𝑧2 will continue to be𝑍𝑉 +𝑆 (𝑍 log(𝑄)𝑍)

bits. Note that, to move an item from𝑧1 to𝑧2, we will need to generate a new tiny retriever for that item (since we are
deleting the item from𝑧1 and inserting it into𝑧2). In our binary-search-tree application, this will be easy to do by simply
running through all of the items and relocating them one by one. Furthermore, since the work of constructing𝑧2 can
be spread acrossω(𝐿) operations, it can be achieved at a cost of𝑆 (𝑊) per insertion/deletion.

7.3 Succinct Binary Search Trees

Our second application is a black-box approach for transforming dynamic binary search trees into succinct data structures.
If there are 𝐿 items in the succinct search tree, each of which is 𝑃 bits long, then the size of the succinct search tree will
be at most 𝐿𝑃 + 𝑆 (𝐿 + 𝐿 log(𝑄) 𝐿) bits, where 𝑊 > 0 is an arbitrary parameter. Path traversals in the tree incur only a
constant-factor overhead, and modi!cations to the tree incur only an𝑆 (𝑊)-factor overhead.

An advantage of our approach is that it can be applied to rotation-based search trees. This includes, for example,
red-black trees [38], splay trees [58], etc. If the dynamic-optimality conjecture [58] is true, meaning that the splay tree
is dynamically optimal, then our succinct splay tree is also dynamically optimal when 𝑊 = 𝑆 (1).

T*&"’&+ 7.2. Consider any binary search tree storing 𝛥-bit keys and 𝑖-bit values, where every node is associated with a
distinct key, and where each node has pointers to its children. For any 𝑊 > 0, the tree can be implemented to o#er the following
guarantees with high probability in the tree size𝐿: the tree takes space𝐿𝛥 +𝐿𝑖 +𝑆 (𝐿 +𝐿 log(𝑄) 𝐿) bits, traversals from parents
to children take time𝑆 (1), and modi"cations to the tree (i.e., adding or removing an edge) take time𝑆 (𝑊).

We remark that, information theoretically, the tree uses at least 𝐿(𝛥 + 𝑖) bits of space. And since the keys are distinct,
𝐿𝛥 = ε(𝐿 log𝐿). Thus, for any 𝑊 > 1, the search tree above is succinct.

27

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

P’""(. To avoid ambiguity between di#erent types of ‘keys’ and ‘values’ in our discussion, we will sometimes refer
to the 𝛥-bit keys and 𝑖-bit values stored by the user as user keys and user values.

We will make use of our solution to the relaxed retrieval problem (Theorem 7.1). The retrieval keys/values will be
di#erent from the user keys/values. Each retrieval key 𝑐 will correspond to a user key with an additional bit appended
to it (more on this later), and each retrieval value 𝑓 will store an (𝛥 + 𝑖)1-bit user key/value pair (for that node in the
tree), along with two tiny retrievers 𝑊1 and 𝑊2 (which can be used to retrieve the children of that node). Since 𝑊1 and 𝑊2 are
themselves variable-length tiny pointers of expected size𝑆 (1), this means that the retrieval value is also variable-length.
On the other hand, the relaxed-retrieval data structure is designed for "xed-length values. Fortunately, we can store the
tiny retrievers 𝑊1 and 𝑊2 with the following method. Recall that, in our construction for the relaxed retrieval problem,
we create a dereference table with 2𝐿 slots, but we do not actually store anything in the dereference table’s store. We
now change this so that the store is a value array with 2𝐿 slots that stores the tiny retrievers 𝑊1 and 𝑊2 for each item in
the dereference table (so, if 𝑁 is the tiny pointer for 𝑐 , then 𝑊1, 𝑊2 are in theD&’&(&’&)#&(𝑐, 𝑁)-th position of the value
array). Using the chunked-pointer-storage technique, we can ensure that the total size of the value array is𝑆 (𝐿) bits,
even though the pointers that it stores are variable length.

We now describe our encoding of the binary search tree: Each node in the search tree stores a user key-value pair (𝑘, 𝑉)
corresponding to that node, along with two tiny retrievers 𝑊1 and 𝑊2. The tiny retriever 𝑊1 is for the left child and uses
𝑐 ↓ 0 as its retrieval key (so0&’1(𝑐 ↓ 0, 𝑊1) returns the left child of 𝑐), and the tiny retriever 𝑊2 is for the right child and
uses 𝑐 ↓ 1 as its retrieval key (so0&’1(𝑐 ↓ 1, 𝑊1) returns the right child of 𝑐).13 Note that, if the left child (resp. right
child) does not exist, then we simply set 𝑊1 (resp. 𝑊2) to null.

Let us begin by assuming that our binary search tree has a !xed capacity of 𝐿 user keys/values, so we can use a
relaxed-retrieval data structure with capacity𝐿. Then our relaxed-retrieval data structure uses𝐿𝛥 +𝐿𝑖 +𝑆 (𝐿 +𝐿 log(𝑄) 𝐿)
bits. Navigating from a node to its child takes time𝑆 (1) (since it requires a single query to the relaxed-retrieval data
structure) and adding/removing an edge (𝑐, 𝛩) from a node 𝑐 to a child 𝛩 takes time𝑆 (𝑊), with high probability, since it
requires only a single insert/delete to the relaxed-retrieval data structure; importantly, if 𝛩 is the root of some subtree, the
act of setting𝛩 to be𝑐 ’s child does not require any nodes besides𝛩 to inserted/deleted in the relaxed-retrieval data structure.

Finally, let us modify our data structure so that it dynamically resizes as a function of the current number𝐿 of user key/-
valuepairs. For this,we can simplyuse the resizingapproachoutlined inSection7.2. Every time that𝐿 changesbya constant
factor, we rebuild the relaxed-retrieval data structure to have capacityω(𝐿) for the new value of𝐿. (Note that this does not
require us to rebuild the tree; it just requires us to update the tiny retrievers used in each node.) For each tiny retriever in
the binary search tree, we can store an extra bit indicating which of the two relaxed-retrieval data structures it uses—this
preserves correctness. As observed in Section 7.2 the act of moving items from the old relaxed-retrieval data structure to
the newone does not violate our desired space guarantee: the total number of bits used by our search tree remains𝐿𝛥+𝐿𝑖 +
𝑆 (𝐿 + 𝐿 log(𝑄) 𝐿) at all times. And, by spreading the work of rebuilding the relaxed-retrieval data structure acrossω(𝐿)

operations, we maintain the property that each edge insertion/deletion takes time𝑆 (𝑊). Thus the theorem is proven. ⊋

7.4 Space-E!icient Stable Dictionaries

Using tiny pointers, we give a black-box approach for transforming any !xed-capacity key-value dictionary into a stable
dictionary, meaning that the position in which a value is stored never changes after the value is inserted. If the original

13An important distinction here is that we are using the user key 𝑎 to construct the keys for the two tiny retrievers, rather than using the position in memory
where 𝑎 is stored—this means that, when we move an item 𝑎 around in memory, we do not invalidate the tiny retrievers of nodes in the subtree rooted at 𝑎 .

28

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

dictionary stored 𝑉-bit values, then the new dictionary also stores 𝑉-bit values, and uses at most𝑆 (log 𝑉) more extra bits
of space per value than the original data structure.

T*&"’&+ 7.3. Consider a "xed-capacity key-value dictionary data structure𝑝 that stores its values in a value array of
some size𝑍. Let 𝑉 denote the size of each value in bits.

It is possible to construct a new data structure𝑝 ⇐ with the same operations and asymptotics (with high probability) as𝑝 , but
with the additional property that𝑝 ⇐ is stable. Moreover, the total space consumed by𝑝 ⇐ is guaranteed (with high probability
in𝑍) to be at most𝑆 (𝑍 log 𝑉) more bits than𝑝 .

P’""(. To construct𝑝 ⇐, we simply replace the value array for𝑝 with an array of𝑍 tiny pointers, each of sizeω(log 𝑉)
bits. (If log 𝑉 < log log log𝐿, then the chunked-pointer-storage technique can be used to handle the situation where
di#erent tiny pointers have di#erent sizes.) The tiny pointers point into a dereference table of size (1 + 1/𝑉)𝑍 that stores
the𝑍 𝑉-bit values. (So the load factor is 1 → ω(1/𝑉).) If a tiny pointer points at the value𝑓 corresponding to a key 𝑐 , then
the tiny pointer uses 𝑐 as its key. This ensures stability, since even if the location in which the tiny pointer is stored
changes, the tiny pointer does not have to change (and the value𝑓 does not have to move).

The array of tiny pointers consumes𝑆 (𝑍 log 𝑉) space. Whereas the value array in𝑝 consumes𝑍𝑉 bits, the dereference
table in𝑝 ⇐ consumes (1 + 1/𝑉)𝑍𝑉 bits, which is only𝑆 (𝑍) more bits than used in𝑝 . Thus the claim on space e"ciency
is proven. Since tiny pointers only add constant time per access/modi!cation of the value, the asymptotics are (with high
probability in𝑍) the same for both𝑝 and𝑝 ⇐. ⊋

Byapplyingour result to thedata structure from[13],which is anon-stablehash tablewith redundancy𝑆 (𝐿 log(𝑃 (1)) 𝐿)

bits, we obtain the following corollary for hash tables.

C"’"!!$’1 7.4. Let 𝑊 be a large positive constant, let 𝐿, 𝑉 be parameters, let𝑦 be a universe of keys, and suppose that the
machine word size is at leastmax(log |𝑦 |, 𝑉). It is possible to construct a stable hash table that stores up to 𝐿 key-value pairs,
where the keys are from𝑦 and the values are 𝑉 bits, and that uses space log

(
|𝑙 |

𝐿

)
+𝑆 (𝐿 log 𝑉) +𝑆 (𝐿 log(𝑄) 𝐿) bits.

7.5 Space-E!icient Dictionaries with Variable-Size Values

Our fourth application is a black-box approach for transforming any key-value dictionary (designed to store !xed-size
values) into a dictionary that can store di#erent-sized values for di#erent keys. The resulting data structure o#ers the
following remarkable guarantee on space e"ciency. Let 𝑊 be a positive constant of our choice, and let𝑍 be the number
of entries in the value array used by the original dictionary (at some given moment). The new dictionary, which allows
for values to be arbitrary lengths, replaces the value array for𝑝 with a data structure that consumes at most

𝑆 (𝑍 log(𝑄)𝑍) +

𝑗∑
𝑌=1

(𝑉𝑌 +𝑆 (log 𝑉𝑌))

bits, where 𝑉1, 𝑉2, . . . , 𝑉𝑗 denote the lengths in bits of the values being stored.

T*&"’&+ 7.5. Consider a key-value dictionary data structure𝑝 that stores its values in a value array, and that is designed
to store "xed-length keys. Let 𝑊 be a positive constant of our choice. It is possible to construct a new data structure𝑝 ⇐ with
the same operations and asymptotics (with high probability) as𝑝 , but with the additional property that𝑝 ⇐ can store values
of arbitrary lengths (up to𝑆 (1) machine words).

29

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

At any given moment, if𝑝 were using a value array of size𝑍 bits, and the machine word size𝛬 satis"es𝛬 ↘ 𝑍𝑀 (1) , then
the total space consumed by𝑝 ⇐ to implement the value array is guaranteed (with high probability in𝑍) to be at most

𝑆 (𝑍 log(𝑄)𝑍) +

𝑗∑
𝑌=1

(𝑉𝑌 +𝑆 (log 𝑉𝑌)) (4)

bits, where 𝑉1, 𝑉2, . . . , 𝑉𝑗 are the lengths of the values.

We remark that the limitation on value size to be𝑆 (1) machine words is simply so that each value can be written/read
in constant time, since then it is easy to discuss how the asymptotics of𝑝 and𝑝 ⇐ compare. The same techniques work
for even larger values without modi!cation, as long as one is willing to spend the necessary time to read/write values
that are of super-constant size.

P’""("(T*&"’&+ 7.5. Values in𝑝 ⇐ are stored with up to 𝑊 levels of indirection. If a value is 𝑉 bits, then it is pointed at
by a tiny pointer 𝑁1 of size𝑆 (log𝐿) bits. The tiny pointer 𝑁1 is, in turn, pointed at by a tiny pointer 𝑁2 of size𝑆 (log log𝐿)
bits, and so on, with pointers of size𝑆 (log log log𝐿),𝑆 (log log log log𝐿), . . . ,𝑆 (log(𝑄) 𝐿). That is, every value is stored
at the end of a linked list of length𝑆 (1), where the base pointer of the linked list is𝑆 (log(𝑄) 𝐿) bits, and each subsequent
pointer is exponentially larger than the previous one.

For each tiny pointer of some size 𝑋 in the data structure, we must also store𝑆 (𝑋) extra bits of information indicating
(a) whether the tiny pointer is pointing at another tiny pointer or at a !nal value, and (b) what the size is of the tiny-
pointer/value being pointed at. Throughout the rest of the proof, we will count these𝑆 (𝑋) extra bits as being part of the
size of the tiny pointer.

With this in mind, we can now formally de!ne what we mean by the “levels of indirection” discussed earlier. Recall
that, when we dereference a tiny pointer, we obtain a slot in a dereference table. This slot will either contain another
tiny pointer (including the auxillary information from he previous paragraph) or a !nal value (i.e., the value for some
key). This is howwe can have tiny pointers pointing at tiny pointers, etc., with multiple layers of indirection until we
get to the actual value associated with a key.

Since there are both values and tiny pointers of many di#erent sizes, we must use a di#erent dereference table for
each size-class of tiny-pointer and the di#erent dereference table for each size-class of values being stored. (Note that the
dereference tables storing tiny pointers may need to use the chunked-pointer-storage technique to handle variable-size
tiny pointers, so the same dereference table should not be used to store both tiny pointers and values.)

The problem of dynamically resizing all of the dereference tables simultaneously is slightly tricky. Consider a deref-
erence table𝑀 (to𝑀 could also be the value array) that stores 𝑋-bit tiny pointers for some 𝑋 . There are𝑡 = 2ω(𝑅) di#erent
dereference tables 𝑣1,𝑣2, . . . ,𝑣𝑔 that these tiny pointers can point into (depending on the size of the object being pointed
at, and whether the object is a tiny pointer or a value). Each 𝑣𝑌 must individually be dynamically resized.Wewill maintain
what we call the dynamic-sizing invariant, which guarantees that each 𝑣𝑌 is either (a) at a load factor 1 →𝑆 (1/ 𝑋 ⇐),
where 𝑋 ⇐ is the size of the objects stored in 𝑣𝑌 , or (b) is at most a 𝑂 (1/(𝑡 𝑋))-fraction the size (in bits) of𝑀.

To implement the dynamic-sizing invariant, we dynamically resize each 𝑣𝑌 using zone-aggregated resizing (recall from
Section 7.1 that this means 𝑣𝑌 is broken into multiple components, and each component is occasionally rebuilt so that
its size either doubles or halves). To allow for components of each 𝑣𝑌 to be rebuilt e"ciently, we break𝑀 into zones of size
poly(𝑡), meaning by (3) from Section 7.1 that a given component (of some 𝑣𝑌) consisting of 𝑈 entries can be rebuilt in time

|𝑀|/poly(𝑡) + 𝑈,
30

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

where |𝑀| is the number of entries in𝑀. We perform dynamic resizing on 𝑣𝑌 di#erently depending on whether it is very
small (its components contain fewer than |𝑀|/poly(𝑡) items each) or not:

• If the components contain 𝑈 = ε(|𝑀|/poly(𝑡)) items each, then we perform zone-aggregated resizing (exactly
as in Section 7.1) to keep 𝑣𝑌 at a load factor 1 →𝑆 (1/ 𝑋 ⇐), where 𝑋 ⇐ is the size of the objects stored in 𝑣𝑌 . In this
case, the time needed to rebuild a component of size 𝑈 isω(𝑈), so the dynamic resizing of 𝑣𝑌 can be deamortized
to take𝑆 (1) time per operation (on 𝑣𝑌). Note that, here, 𝑣𝑌 is in case (a) of the dynamic-resizing invariant.

• If the components contain fewer than |𝑀|/poly(𝑡) items each, then we perform zone-aggregated resizing to keep
each component of 𝑣𝑌 at a capacity ofω(|𝑀|/poly(𝑡)) (even as |𝑀| changes over time, and regardless of whether
the number of items per component may be signi!cantly smaller than |𝑀|/poly(𝑡)). Note that, here, 𝑣𝑌 is in case
(b) of the dynamic-resizing invariant.
When 𝑣𝑌 is in this regime, we cannot amortize the work spent rebuilding 𝑣𝑌 to the operations that are performed
on 𝑣𝑌 . Instead, we spread out the work spent rebuilding components of 𝑣𝑌 in the following way: for everyω(𝑡)

work that is spent on𝑀we also spend𝑆 (1) time on resizing 𝑣𝑌 . Since 𝑣𝑌 is more than a factor of𝑡 smaller than
𝑀, this is su"cient time to keep 𝑣𝑌 in a state where each component has capacityω(|𝑀|/poly(𝑡)).
From the perspective of𝑀, every time that we spend constant time on insertions/deletions/rebuilding𝑀, we also
may spend constant time performing rebuild-work on one of the 𝑣𝑌s (which, in turn, may recursively lead us to
spend constant time on rebuilding one of the dereference tables pointed at by 𝑣𝑌 , etc.). Importantly, since chains
of tiny pointers are at most 𝑊 ↘ 𝑆 (1) long, the time spent on rebuilds only introduces a constant-factor overhead
on running time per operation.

The resizing approach described above guarantees the dynamic-sizing invariant while incurring only a constant-factor
time overhead per operation. Next we use the invariant to bound the space consumption of𝑝 ⇐. The dereference tables 𝑣𝑌
in case (a) are implemented space-e"ciently enough that the empty slots in them take negligible space compared to the
actual objects stored in them (i.e., the empty slots add𝑆 (1) bits per object), and the dereference tables 𝑣𝑌 in case (b) are
small enough that they take negligible space compared to the size of the parent dereference table𝑀 (i.e., they cumulatively
add 𝑂 (1) bits per slot in𝑀). It follows that the total space consumed by dereference tables will be at most the sum of the
sizes of the objects being stored in the dereference tables, plus𝑆 (1) bits per object; this, in turn, means that the space
used by𝑝 ⇐ to store values/tiny pointers is given by (4).

Next, we bound the time-overhead of 𝑝 ⇐ when compared to 𝑝 . We have already shown that the time-overhead of
performing dynamic-resizing on dereference tables is𝑆 (1) per operation. Since values are stored with at most 𝑊 = 𝑆 (1)
levels of indirection, the time needed to access/modify a value is also𝑆 (1). Thus𝑝 ⇐ has the same time asymptotics as𝑝 .

Finally, we argue that the dereference tables used by𝑝 ⇐ succeed at their allocations with high probability.14 There
are several approaches that we could take to doing this; the simplest is to just add one more modi!cation to how we
perform dereference-table resizing: whenever a dereference table gets down to sizeω(

≃
𝑍), we do not ever resize it to

be any smaller.15 This means that some dereference tables could be very sparse, containing
≃
𝑍 slots, but containing far

fewer items. Since there are only𝑆 (𝛬) =𝑍𝑀 (1) di#erent dereference tables (recall that𝛬 is the machine-word size), the
net space consumption of the dereference tables of size ω(

≃
𝑍) is 𝑂 (𝑍) bits. The fact that every dereference table has

size at least ε(
≃
𝑍) means that all of the dereference tables o#er high probability guarantees, as desired. ⊋

14There are many di#erent ways that one could handle allocation failures, including, for example, performing batch-rebuilds of the data structure.
15However, since𝑗 may dynamically change over time, we do need to spend constant time per operation resizing dereference tables of size ω(

≃
𝑗)

so that they stay sizeω(
≃
𝑗) as𝑗 changes.

31

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

By applying our result to the data structure from [13], which is a hash table with redundancy𝑆 (𝐿 log(𝑃 (1)) 𝐿) bits,
we obtain the following corollary for hash tables.

C"’"!!$’1 7.6. Let 𝑊 be a positive constant of our choice. It is possible to construct a dynamically-resized hash table that
stores keys from a universe𝑦 and that stores dynamic-sized value (up to𝑆 (1) machine words) with the following guarantees.

At any given moment, if 𝐿 keys are present, then with high probability in 𝐿, the time spent on the next operation is𝑆 (1)
and the overall space usage is

log
(
|𝑦 |

𝐿

)
+𝑆 (𝐿 log(𝑄) 𝐿) +

𝑗∑
𝑌=1

(𝑉𝑌 +𝑆 (log 𝑉𝑌)) (5)

bits, where 𝑉1, 𝑉2, . . . are the sizes of the values.

7.6 AnOptimal Internal-Memory Stash

Our !nal application of tiny pointers revisits one of the oldest problems in external-memory data structures: the problem
ofmaintaining a small internal-memory stash that allows for one to locate where items reside in a large external-memory
data structure.

The problem can be formalized as follows.Wemust store a dynamically changing set 𝑒 of up to𝐿 key-value pairs, where
each key-value pair can be stored in one machine word, and where each key is unique. We are given an externalmemory
consisting of (1 + 𝑌)𝐿machine words, where the key-value pairs 𝑒 are to be stored. In addition to storing key-value pairs
in external memory, we must maintain a small internal-memory data structure𝑔 , which we will refer to as the stash,
that supports the following operations:

• Query(𝑃):Using only information in the stash data structure, returns the position in external memory where
the key 𝑃 and its corresponding value 𝑉 are stored.

• Insert(𝑃, 𝑉): Inserts the key-value pair (𝑃, 𝑉), placing the pair somewhere in external memory, and updating the
stash.

• Delete(𝑃, 𝑉): Removes the key/value pair (𝑃, 𝑉) from the external-memory array, and updates the stash.

The important feature of a stash is that queries can be completed with a single access to external memory. On the other
hand, in order for a stash to be useful, several other objectives must be achieved:

• Compactness: The stash𝑔 needs to be as small as possible, that way it can !t into an internal memory with
limited size.

• E#cient inserts and deletes:Although a stash prioritizes queries, insertions and deletions should ideally also
require only𝑆 (1) accesses/modi!cations to external memory.

• RAM e#ciency: Finally, so that computational overhead does not become a bottleneck, the operations on a
stash should be as e"cient as possible in the RAMmodel, ideally taking time𝑆 (1).

A concrete example of a stash that is used in real-world systems is thepage table [4, 9, 40],which is an operating-system-
level dictionary that maps virtual page addresses to where their corresponding physical pages reside in memory. The
page table is accessed for every address translation, so it is performance critical and thus highly optimized. Additionally,
it is important that the page table be space-e"cient, so that it may be e#ectively cached in the processor cache hierarchy.
Note that, although page tables get to select where physical pages reside in memory, they do not get to move physical
pages that have already been placed; thus any stash that is used as a page table must also be stable. For this reason, past
work [36, 44, 45] has typically included stability as an additional criterion for a stash.

32

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Work on designing space-e"cient and time-e"cient stashes dates back to the late 1980s [36, 44, 45]. The best-known
theoretical results are due toGonnet and Larson [36],who give a stable stash that uses only𝑆 (𝐿 log 𝑌→1) bits. A remarkable
consequence of this is that, when 𝑌 = ω(1), it is possible to construct a stash using only𝑆 (𝐿) bits.

Gonnet and Larson’s result comes with several signi!cant drawbacks, however [36], which have proven di"cult to !x.
First, due to its reliance on stable uniform probing [43] as a mechanism for determining where keys/values should reside,
the stash only o#ers provable guarantees in the setting where insertions/deletions are performed randomly. Second, the
data structure is not constant-time in the RAMmodel, instead taking expected timeω(𝑌→1).

Using tiny pointers, we show thatmodern techniques for constructing !lters can easily be adapted in order to construct
a stable stash of size𝑆 (𝐿 log 𝑌→1) bits that supports constant-time operations in the RAMmodel (with high probability)
and that supports arbitrary sequences of insertions/deletions/queries.

T*&"’&+ 7.7. It is possible to construct a stable stash that supports constant-time operations in the RAMmodel, that stores
up to𝑍 keys/values in an external-memory array of size (1 + 𝑌)𝑍, and that uses only𝑆 (𝑍 log 𝑌→1) bits of internal-memory
space. All of the guarantees for the stash hold with high probability in𝑍.

P’""(. The starting point for our design is the adaptive !lter of Bender et al. [11]. Like a stash, their !lter is a
space-e"cient internal-memory data structure that summarizes the state of an external-memory key-value dictionary.
Unlike a stash, their !lter does not indicate where in external memory each key/value is stored. Instead, the !lter answers
containment queries with the following guarantee: each positive query is guaranteed to return true, and each negative
query is guaranteed to return false with probability at least 1→ 𝑌 (for some parameter 𝑌). The size of their internal-memory
data structure is only (1 + 𝑂 (1))𝑍 log 𝑌→1 = 𝑆 (𝑍 log 𝑌→1) bits, where𝑍 is the capacity of the !lter.16

The basic idea behind the adaptive !lter of [11] is to store a !ngerprint for each key 𝑐 , where each !ngerprint is
taken to be some pre!x of the hash𝑎(𝑐). Di#erent keys have di#erent-length !ngerprints, and the invariant maintained
by the !lter is that no !ngerprint is a pre!x of any other !ngerprint. To maintain this invariant while also keeping the
!ngerprints as small as possible, the !lter will sometimes change the lengths of𝑆 (1) di#erent !ngerprints during a given
insertion/deletion; to change the length of a !ngerprint, the key corresponding to that !ngerprint must !rst be fetched
from external memory, that way the hash𝑎(𝑐) of that key can be recomputed.17

The !ngerprints in the !lter are stored as follows. The !rst lg𝐿 bits of each !ngerprint are called the quotient, and
these bits are used to assign the key to one of𝐿 bins; importantly, the fact that the bin-choice encodes the quotient of each
of the keys in the bin means that the data structure does not have to explicitly store the quotients of the !ngerprints. The
next log 𝑌→1 bits of each!ngerprint are called the baseline bits, and these bits are included for every!ngerprint in the data
structure. Finally, any subsequent bits in a !ngerprint are called the adaptivity bits, and these bits are added/removed
in order to maintain the pre!x-freeness invariant. A central piece of [11]’s analysis is to show that there are only𝑆 (𝑍)

adaptivity bits in total, and that these bits can be stored e"ciently.
We now describe how to modify the !lter to be a stash. In addition to storing a !ngerprint for each key, we now also

store a tiny pointer with expected sizeω(log 𝑌→1). These tiny pointers are easy to store, since the !lter has already made
room for log 𝑌→1 baseline bits for each key. Of course, di#erent tiny pointers may have di#erent lengths, but this issue
can easily be resolved by either using the chunked-pointer-storage technique described in Section 7.1 (or by adapting
the techniques already used in [11] to handle variable-length !ngerprints).

16In fact, their data structures also dynamically resizable, but for our application that will not be necessary.
17The original data structure also sometimes updates the lengths of !ngerprints during negative queries, but such updates are not needed for the purposes
of our data structure.

33

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

One minor di"culty is that the !lter assumes access to an external-memory dictionary (rather than just a dereference
table) so that it can look up keys in order to modify their !ngerprints. In the case of our stash, however, these lookups can
easilybeperformedusing the tinypointers that are already stored, soonedoesnotneeda full dictionary inexternalmemory.

The fact that the tiny pointers have sizeω(log 𝑌→1) means that external memory can be implemented as a dereference
tablewith load factor 1→𝑌. The fact that the original adaptive!lter supported constant-time operations (with high probabil-
ity in𝑍) translates to the stash also supporting constant-time operations. And the fact that the original adaptive !lter used
space𝑆 (𝑍 log 𝑌→1) bits in internal memory also translates the same guarantee for the stash. Thus the theorem is proven.

⊋

8 DYNAMIC BALLS ANDBINS

In this section, we reinterpret our tiny-pointer constructions as balls-and-bins schemes in order to improve the state
of the art for the classic dynamic load balancing problem.

In the dynamic load-balancing problem, there is a system of 𝐿 bins and a large universe𝑦 of balls. Balls are inserted
and deleted (and sometimes reinserted) over time by an oblivious adversary, so that the total number of balls in the system
never exceeds𝑍 = 𝑎𝐿 for some parameter𝑎. Whenever a ball 𝑐 is inserted, it must be placed in one of 𝑏 bins from among
𝑎1 (𝑐), . . . ,𝑎𝑊 (𝑐), where𝑎𝑌 () is some hash function from balls to bins. Once a ball is placed in a bin, it cannot be moved
until it is deleted. The goal of the dynamic load-balancing problem is to assign balls to bins in order to achieve the
smallest maximum load possible (i.e., to minimize the number of balls in the fullest bins). We refer to the special case
where balls can be inserted and deleted but not reinserted as the semi-dynamic load-balancing problem.

There are two classic solutions to the problem. The !rst is S/)2!& balls-to-bins assignment: we set 𝑏 = 1 and just place
each 𝑐 in𝑎1 (𝑐). The second is L&(%[𝑏] balls-to-bins assignment: divide the bins into 𝑏 groups so that each𝑎𝑌 is uniform
into the 𝑑-th group; when inserting 𝑐 , pick the bin𝑎𝑌 (𝑐) with the smallest load, and break ties by minimizing 𝑑 .

S/)2!&’s behavior is history independent, in that themaximum load at any timeonly depends onwhich balls are present,
and not the history of their arrival. Themaximum load is then completely characterized by standard Cherno# bounds [54].

L&(%[𝑏], on the other hand, is history dependent. The !rst time that a ball 𝑐 is inserted, the hashes𝑎1 (𝑐), . . . ,𝑎𝑊 (𝑐)
are independent of the system state, but if a ball 𝑐 is ever deleted and then later reinserted, then the past insertion of 𝑐 can
have long-term side e#ects on the system state meaning that the state is not necessarily independent of𝑎1 (𝑐), . . . ,𝑎𝑊 (𝑐).

In the insertion-only setting (i.e., balls are not deleted), L&(%[𝑏] o#ers a celebrated bound [59] of

𝑎 +
log log𝐿
𝑏 log𝑟𝑊

+𝑆 (1) (6)

onmaximum load, where𝑟𝑊 is the generalized golden ratio. In the dynamic setting, L&(%[𝑏] has proven to be signi!cantly
more di"cult to analyze. The original analysis of L&(%[𝑏] by Vöcking [59] can be used to achieve a bound of

𝑆 (𝑎) +
log log𝐿
𝑏 log𝑟𝑊

(7)

34

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

for the semi-dynamic setting, but asWoelfel observed [60], the same argument does not apply directly to the fully dynamic
setting.18 He shows how to modify Vöcking’s proof to achieve a bound of

𝑆 (𝑏) +
log log𝐿
𝑏 log𝑟𝑊

(8)

in the setting where𝑎 = 1. In general, when𝑎 > 0, Woelfel’s argument yields a bound of

𝑆 (1 + 𝑎𝑏) +
log log𝐿
𝑏 log𝑟𝑊

, (9)

which has remained the state of the art.
The bound (9) ismost interesting in the casewhere𝑎 is relatively small, that is,𝑎 = 𝑂 (log𝐿). Here, (9) can be signi!cantly

better than theω(log𝐿/log log𝐿) bound that would be achieved by S/)2!&. Of course, the question remains as to whether
there exists a balls-to-bins scheme that achieves a better bound.We answer this question in the a"rmative, by giving
a bin-selection rule with 𝑏 + 1 hash functions that achieves maximum load

𝑎 +
log log𝐿
𝑏 log𝑟𝑊

+𝑆 (

√
𝑎 log(𝑎𝑏)) . (10)

We remark that, even when𝑎 is a constant, this bound improves the dependence on 𝑏 from𝑆 (𝑏) to𝑆 (
√
log𝑏).

Our rule,whichwecall I!"#"$%[𝑏] is ahybridofS/)2!&andL&(%[𝑏]. This rule is closely related to the rule thatweused
in Section 4 for constructing !xed-size tiny pointers. This rule was analyzed in our paper on iceberg hashing [10], hence
the name. As noted above, here we present an alternative proof, both for completeness, as well as because the proof takes
a somewhat di#erent (and more elegant) approach than in our past work, and in order to cover a larger parameter regime.

The rest of the section proceeds as follows. We begin in Subsection 8.1 by proving a useful technical lemma. In
Subsection 8.2, we present and analyze I#&3&’2[𝑏]. Finally, in Subsection 8.3, we reinterpret our variable-size tiny-pointer
construction as a result about probe-complexity of balls-and-bins schemes with bins of capacity 1; in particular, we give
the !rst dynamic ball-allocation scheme to o#er 𝑇→𝑃 (1) average probe complexity in the setting where there are up to
(1 → 𝑇)𝐿 balls present in the system at a time.

8.1 A Useful Lemma

This section proves a generalization of a technical lemma introduced in recent work on space-e"cient hash tables [10].
The new lemma extends the original one to a wider parameter regime. We also take a di#erent combinatorial approach,
resulting in a simpler proof that reveals an interesting relationship between the lemma and Talagrand’s inequality. We
remark that, earlier in the paper, we have already made use of the results from this section in order to obtain Lemma 4.2.

Consider a dynamic balls-and-bins game with 𝐿 bins and at most𝑍 = 𝑎𝐿 balls at all times that are placed with the
S/)2!& rule.Whenever a ball is thrown into a bin, if the bin contains𝑎+𝛯 ormore balls, then the ball is labeled as𝛯-exposed
(and the label persists until the ball is next deleted).Wewill simply say that the ball is exposedwhen 𝛯 is clear from context.

L&++$ 8.1. Suppose 1 ↘ 𝛯 ↘ 𝑎. At any "xed point in time, the number of 𝛯-exposed balls is poly(𝑎) · 𝐿𝑢→𝑚
2
/(3𝑛) with

probability 1 → exp(→ε(𝑍𝑢→𝑚
2
/(3𝑛)

)).

Our proof of the Lemma 8.1 will make use of a variant of Talagrand’s inequality [47, Chapter 10]:

18The di"culty has to dowith the analysis of the leaves in thewitness tree, and is easy to describe in the casewhere𝑛 = 1. To analyze a leaf ball𝑎 , the original
analysis usesMarkov’s inequality to deduce that each of𝑎 ’s𝑊 bins has at most a 1/3 probability of having 3 ormore balls, and the analysis concludes that the
probability of all𝑊 bins containing 3 ormore balls is at most 1/3𝑁 . This same analysis does not apply in the fully dynamic setting since it would need the state
of the system of to be independent of 𝑎 ’s hash functions𝑛1 (𝑎), . . . ,𝑛𝑁 (𝑎) , which is not the case due to subtle history dependencies in the system’s state.

35

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

T*&"’&+ 8.2 (T$!$2’$)4’. /)&5$!/%1). Let𝑔1, . . . ,𝑔𝐿 be 𝐿 independent random variables from an arbitrary domain.
Let 𝛱 be anon-negative function of𝑔1, . . . ,𝑔𝐿 , not identically 0. Suppose that for some𝑕, 𝑊 > 0, 𝛱 is𝑕-Lipschitz and𝑊 -certi"able,
de"ned as follows:

• 𝛱 is 𝑕-Lipschitz if changing the outcome of any single𝑔𝑌 changes 𝛱 by at most 𝑕 .
• 𝛱 is 𝑊 -certi"able if, for any 𝑈 , if 𝛱 (𝑔1, . . . ,𝑔𝐿) ↗ 𝑈 , then there is a certifying set of at most 𝑊𝑈 𝑔𝑌 ’s whose outcomes

serve as a witness that 𝛱 ↗ 𝑈 , that is, 𝛱 ↗ 𝑈 no matter the outcome of the other𝑔 𝑅 not in the certifying set.

Then, for any 0 ↘ 𝛴 ↘ E [𝛱],

Pr
[
|𝛱 → E [𝛱] | > 𝛴 + 60𝑕

√
𝑊 E [𝛱]

]
↘ 4 exp

(
→

𝛴2

8𝑕2𝑊 E [𝛱]

)
.

The proof of the Lemma 8.1 proceeds by bounding the expected number of exposed balls, then using Talagrand’s
inequality to achieve a concentration bound.

Consider any !xed point in time. In what follows, we refer to the balls that at the end are present at that time as
𝛥1, . . . ,𝛥𝑈 and we refer to the remaining balls in the universe as 𝛥𝑈+1, . . . ,𝛥𝑉 . We denote by 𝑜𝑌 the bin choice for 𝛥𝑌 . For
𝑑 ↔ [𝑃], we de!ne 𝛴𝑌 to be the last time at which 𝛥𝑌 is inserted, we de!ne𝑔𝑌 to be the random variable indicating if 𝛥𝑌 is
an exposed ball at the end of the game, and we de!ne𝑔 =

∑𝑈
𝑌=1 𝑔𝑌 to be the total number of exposed balls.

C!$/+ 8.3. The expected number of exposed balls satis"es E [𝑔] = 𝑆 (𝑍𝑢→𝑚
2
/(3𝑛)

).

P’""(. Recall that𝑔 =
∑
𝑌 𝑔𝑌 where𝑔𝑌 indicates whether 𝛥𝑌 is exposed. By linearity of expectation, it su"ces to show

that E [𝑔𝑌] = 𝑆 (𝑢→𝑚
2
/(3𝑛)

) for each 𝑑 ↔ [𝑃].
Fix 𝑑 ↔ [𝑃]. Consider the !nal time 𝛴𝑌 at which ball 𝛥𝑌 is inserted. The ball 𝛥𝑌 is exposed if and only if the number of

balls in bin 𝑜𝑌 is at least𝑎 + 𝛯 . If we set𝛶 to be the number of balls in bin 𝑜𝑌 , and we set 𝑌 = 𝛯/𝑎, then we can bound the
probability of𝛶 ↗ 𝑎 + 𝛯 using a Cherno# bound:

Pr [𝛶 ↗ 𝑎 + 𝛯] = Pr [𝛶 ↗ (1 + 𝑌)𝑎] ↘ 𝑢→𝑇
2𝑛/3 = 𝑢→𝑚

2
/(3𝑛) .

Thus E[𝑔𝑌] = Pr [𝑔𝑌] ↘ 𝑢→𝑚
2
/(3𝑛) . ⊋

C!$/+ 8.4. The random variable𝑔 is (𝑎 + 𝛯 + 1)-Lipschitz and (𝑎 + 𝛯 + 1)-certi"able as a function of {𝑜𝑌 }𝑉𝑌=1.

P’""(. Changing the value of a single 𝑜𝑌 to 𝑜 ⇐𝑌 can only a#ect the number of exposed balls in bin 𝑜𝑌 (which may
decrease) and in bin 𝑜 ⇐𝑌 (which may increase). The number of unexposed balls in a bin is deterministically at most𝑎 + 𝛯 .
This means that moving ball 𝛥𝑌 out of bin 𝑜𝑌 can increase the number of unexposed balls in the bin by at most𝑎 + 𝛯 , and
thus can decrease the number of exposed balls by at most 𝑎 + 𝛯 + 1 (where the +1 accounts for the removal of 𝛥𝑌 itself).
Similarly, moving ball 𝛥𝑌 into bin 𝑜 ⇐𝑌 can decrease the number of unexposed balls in the bin by at most 𝑎 + 𝛯 , and thus
can increase the number of exposed balls by at most𝑎 + 𝛯 + 1. This establishes that𝑔 is (𝑎 + 𝛯 + 1)-Lipschitz.

To certify that𝑔 ↗ 𝑈 , let 𝛷 with |𝛷 | = 𝑈 be a set of values 𝑋 ↔ [𝑃] such that 𝛥 𝑅 is exposed at the end of the game. For
each 𝑋 ↔ 𝛷 , let 𝑤 𝑅 be a selection of 𝑎 + 𝛯 balls 𝛥𝑌 such that ball 𝛥𝑌 was present at the last time 𝛴 𝑅 that 𝛥 𝑅 was inserted and
such that 𝑜𝑌 = 𝑜 𝑅 . The set of random variables {𝑜𝑌 | 𝑑 ↔ 𝑤 𝑅 } ∝ {𝑜 𝑅 } acts as a certi!cate that 𝛥 𝑅 is exposed. Thus the set

𝑅↔ 𝑜

{𝑜𝑌 | 𝑑 ↔ 𝑤 𝑅 } ∝ {𝑜 𝑅 }

acts as a certi!cate that 𝑔 ↗ 𝑈 . This certi!cate consists of no more than 𝑈 (𝑎 + 𝛯 + 1) random variables, hence 𝑔 is
(𝑎 + 𝛯 + 1)-certi!able. ⊋

36

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

P’""("(L&++$ 8.1. Set𝛹 = 𝑍 exp (→𝛯2/(3𝑎)). By Claim 8.3, we know that E [𝑔] ↘ 𝛹 . By Claim 8.4, we can ap-
ply Talagrand’s inequality (Theorem 8.2) to 𝑔 with 𝑕 = 𝑊 = 𝑎 + 𝛯 + 1 = 𝑆 (𝑎). Applying Talagrand’s inequality with
𝛴 = ω(𝑕

≃
𝑊𝛹), and using𝛹 as an upper bound on E[𝑔], we can deduce that

𝑔 = 𝑆 (𝑕
≃
𝑊𝛹)

with probability at least
1 → exp(→ε(𝛹)) .

It follows that𝑔 ↘ poly(𝑎) ·𝑆 (𝐿𝑢→𝑚
2
/(3𝑛)

) with probability 1 → exp(→ε(𝑍𝑢→𝑚
2
/(3𝑛)

)). ⊋

Finally, we complete the section by using Lemma 8.1 to prove Lemma 4.2 from Section 4.

P’""("(L&++$ 4.2. We can prove Lemma 4.2 by applying Lemma 8.1 and setting the parameters𝑎 = (1 → 𝑇)𝑖 and
𝛯 = 𝑇𝑖. The 𝛯-exposed balls correspond to allocations in Lemma 4.2 that have failed and are still alive.

Note that, in this setting,
𝛯2/(3𝑎) = ω(𝛯2/𝑖) = ω(𝑇2𝑖) = 𝑕⇐ log𝑇→1

for some large positive constant𝑕⇐, where the last step uses the fact that𝑖 = 𝑕𝑇→2 log𝑇→1 for some large positive constant𝑕 .
Therefore, Lemma 8.1 bounds the number of such balls to be at most

poly(𝑎) · 𝐿𝑢→𝑚
2
/(3𝑛)

↘ poly(𝑇→1) · 𝐿𝑢→𝑐
⇐ log𝑁→1

↘ 𝑇𝐿

with probability

1 → exp(→ε(𝑍𝑢→𝑚
2
/(3𝑛)

)) = 1 → exp(→ε(𝑍𝑢→𝑐
⇐ log𝑁→1

))

= exp(→𝑍𝑇𝑃 (1)
),

as desired. ⊋

8.2 I!"#"$%[𝑏]

We now present the I#&3&’2[𝑏] balls-in-bins rule. Let 𝐿 be the number of bins, let𝑎𝐿 be the maximum number of balls
allowed to be present at any givenmoment, and let𝑏 > 1 be a parameter. Partition the bins into𝑏 equal-size sets 𝑒1, . . . , 𝑒𝑊 .
Let𝛺 be a hash function mapping balls uniformly at random to bins, and let𝑎1, . . . ,𝑎𝑊 be hash functions such that each
𝑎𝑌 maps balls uniformly at random to a random bin in 𝑒𝑌 .

We shall have three types of balls: level-one balls, level-two balls, and level-three balls. Each level-one ball 𝑐 will reside
in bin 𝛺(𝑐), each level-two ball 𝑐 will reside in one of bins𝑎1 (𝑐), . . . ,𝑎𝑊 (𝑐), and each level-three ball 𝑐 will reside in bin
1 (but, at any given moment, the number of level-three balls will be zero w.h.p.).

Set 𝛯 = 𝑕
√
𝑎 log(𝑎𝑏) for some su"ciently large positive constant 𝑕 . We shall also keep track of a variable 𝑅 counting

the number of level-two balls present at any given moment.
The procedure for inserting a ball 𝑐 is as follows. If bin 𝛺(𝑐) contains less than𝑎 + 𝛯 level-one balls, then we place 𝑐

in bin 𝛺(𝑐), and we classify 𝑐 as a level-one ball. Otherwise, we check whether 𝑅 < 𝐿/𝑏 . If 𝑅 < 𝐿/𝑏 , then we examine bins
𝑎1 (𝑐), . . . ,𝑎𝑊 (𝑐), and we place 𝑐 as a level-two ball into whichever bin𝑎𝑌 (𝑐) contains the fewest level-two balls (breaking
ties towards the smallest 𝑑). Finally, if 𝑅 ↗ 𝐿/𝑏 , then we place 𝑐 as a level-three ball into bin 1.

37

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

T*&"’&+ 8.5. Suppose 1 ↘ 𝑎 ↘ 𝐿𝑀 (1) and 1 < 𝑏 ↘ 𝐿𝑀 (1) . Suppose balls are inserted/deleted/reinserted into 𝐿 bins over
time (by an oblivious adversary) according to I!"#"$%[𝑏] rule, with no more than𝑎𝐿 balls present at a time. Then, w.h.p. in
𝐿, at any given moment, the number of balls in the fullest bin is𝑎 +

log log𝐿
𝑊 log𝑋𝑁

+𝑆 (
√
𝑎 log(𝑎𝑏)).

P’""(. Each bin deterministically contains at most 𝑎 + 𝛯 = 𝑎 + 𝑆 (
√
𝑎 log(𝑎𝑏)) level-one balls. Thus, it su"ces to

bound the number of level-two and level-three balls in each bin by log log𝐿
𝑊 log𝑋𝑁

+𝑆 (1).
The number 𝑅 of level-two balls in the entire system is deterministically at most 𝐿/𝑏 at any given moment. In other

words, the level-two balls are placed according to the L&(%[𝑏] rule with 𝑎⇐𝐿 balls, where 𝑎⇐ = 1/𝑏 . Thus we can apply
(9) to deduce that, w.h.p., the maximum number of such balls per bin is

𝑆 (1 + 𝑎⇐𝑏) +
log log𝐿
𝑏 log𝑟𝑊

=
log log𝐿
𝑏 log𝑟𝑊

+𝑆 (1),

Note that, in this application of (9), we are usingWoelfel’s analysis [60] of L&(%[𝑏] in a somewhat unusual parameter
regime; that is, the analysis is intended primarily to be used in the regime𝑎⇐ ↗ 1 (andWoelfel’s result was only explicitly
stated for𝑎⇐ = 1), but we are taking advantage of the fact that the analysis also holds for𝑎⇐ = 𝑂 (1) without modi!cation.

We complete the proof by showing that, w.h.p. The number of level-three bins is zero. By Lemma 8.1, the number 𝑅
of level-two balls satis!es 𝑅 < 𝐿/𝑎 (at any given moment) with probability at least 1 → exp(→𝐿/(𝑎𝑏)𝑃 (1)

), which by the
assumption 𝑎,𝑏 ↘ 𝐿𝑀 (1) is at least 1 → 1/poly(𝐿). It follows that each individual ball insertion has probability at most
1/poly(𝐿) of being level-three. Taking a union bound over all of the balls in the system, the probability that any of them
are level-three is 1/poly(𝐿), as desired. ⊋

8.3 Assigning Balls to Capacity-1 Bins with LowAverage Probe Complexity

Our!nal result of the section considers a dynamic balls-and-bins game inwhich there are𝐿 bins eachwith capacity 1, and at
most (1→𝑇)𝐿 balls are present at a time. Each ball 𝑐 has a predetermined (in!nite) sequence𝑎1 (𝑐),𝑎2 (𝑐), . . . of bins where
it can reside, and we wish to minimize the probe complexity of each ball 𝑐 , which is de!ned to be the smallest 𝑑 such that
ball𝑐 is in bin𝑎𝑌 (𝑐). Sincewe are in the dynamic setting, the same ballmay be inserted, deleted, and reinsertedmany times.

First note that, in the insertion-only setting, it is easy to achieve probe average complexity𝑆 (𝑇→1) by simply using
uniform probing, which sets each𝑎𝑌 (𝑐) to be random, and places each ball 𝑐 into the !rst available slot in the sequence
𝑎1 (𝑐),𝑎2 (𝑐), In the dynamic setting, however, there is not yet anyknownbin-assignment scheme that achieves average
probe complexity 𝑇→𝑃 (1) (for example, uniform probing has only successfully been analyzed in the random-deletions
setting [43], and the analysis of linear probing without moving items around remains an open problem [56]).

We now construct a bin-assignment scheme that achieves average probe complexity 𝑇→𝑃 (1) .

T*&"’&+ 8.6. Suppose 𝑇 = 1/𝐿𝑀 (1) . There exists a bin-assignment scheme that supports arbitrary ball insertions/dele-
tions/reinsertions, and guarantees an expected probe complexity of𝑆𝑇→𝑃 (1) for each ball in the system.

P’""(. Consider a variable-size-tiny-pointer dereference table with 𝐿 slots and load factor 1 → 𝑇 . For each ball 𝑐 and
each 𝑑 ↔ N, de!ne𝑎𝑌 (𝑐) = D&’&(&’&)#&(𝑐, 𝑑). To assign a ball 𝑐 to a bin, we call the function 𝑑 = A!!"#$%&(𝑐), and place
𝑐 into bin𝑎𝑌 (𝑐) = D&’&(&’&)#&(𝑐, 𝑑). To delete a ball 𝑐 , we call F’&&(𝑐, 𝑑) in order to deallocate the appropriate slot in
the dereference table.

Let 𝑕 > 0 be a su"ciently small positive constant. By Theorem 5.1, each ball 𝑐 gets assigned to a bin 𝑎𝑌 (𝑐) where 𝑑
(which is the tiny pointer returned byA!!"#$%&(𝑐)) is

𝑆 (log𝑇→1 + 𝑛)
38

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

bits for some random variable 𝑛 satisfying Pr[𝑛 ↗ 𝑋] ↘ 𝑆
(
2→2

𝑂 𝑈
)
. It follows that 𝑑 ↘ 𝑇→𝑃 (1)𝑃 with probability at least

1 →𝑆 (2→2
𝑂 log𝑉

) = 1 →𝑆 (2𝑈
𝑂
), and hence that the expected probe complexity of each ball 𝑐 is 𝑇→𝑃 (1) . ⊋

9 CONCLUSION

This paper introduces a new data-structural object that we call the tiny pointer. We use tiny pointers to produce several
space-e"cient data structures.

Our work suggests several open problems. Top among these is: can tiny pointers be used to make data structures space
e"cient in practice? Our related work [9, 37] on address translation in virtual-memory systems uses ideas closely related
to tiny pointers to compress pointers to where a page is located in cache. This can be shown to improve the performance
of address translation hardware. The natural question is if tiny pointer techniques can be used elsewhere in practice.

The other open problem relates to pointers in graphs. In the tiny pointer setup, each item is pointed to by a single user.
Thus, trees are easily encoded because each node has one parent. It is probably too much to hope to extend these ideas
to general graphs. Are there classes of graphs for which tiny pointers can be generalized?

ACKNOWLEDGMENTS

Wewould like to thank Sepehr Assadi for helpful comments that led to the proof of Lemma 8.1.
This research was supported in part by NSF grants CSR-1938180, CCF-2106999, CCF-2118620, CCF-2118832, CCF-

2106827, CCF-1725543, CSR-1763680, CCF-1716252 and CNS-1938709, as well as an NSF GRFP fellowship and a Fannie
and John Hertz Fellowship.

This research was also partially sponsored by the United States Air Force Research Laboratory and the United States
Air Force Arti!cial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-
2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the o"cial policies, either expressed or implied, of the United States Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

REFERENCES
[1] Abseil. 2024. Google’s Abseil C++ Library. https://abseil.io/. Accessed: 2024-07-18.
[2] George Adel’son-Vel’skii and Evgenii Landis. 1962. An algorithm for organization of information. In Doklady Akademii Nauk, Vol. 146. Russian

Academy of Sciences, 263–266.
[3] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. 2001. Optimal static range reporting in one dimension. In Proceedings on 33rd Annual

ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, Je#rey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis (Eds.).
ACM, 476–482. https://doi.org/10.1145/380752.380842

[4] AMDManual. 2024. AMD64 Architecture Programmer’s Manual Volume 2: System Programming. https://www.amd.com/content/dam/amd/en/
documents/processor-tech-docs/programmer-references/24593.pdf. Accessed: 2024-07-18.

[5] Yuriy Arbitman, Moni Naor, and Gil Segev. 2009. De-amortized Cuckoo Hashing: Provable Worst-Case Performance and Experimental Results.
In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 5555), Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, andWolfgang Thomas
(Eds.). Springer, 107–118. https://doi.org/10.1007/978-3-642-02927-1_11

[6] Yuriy Arbitman, Moni Naor, and Gil Segev. 2010. Backyard Cuckoo Hashing: Constant Worst-Case Operations with a Succinct Representation.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society,
787–796. https://doi.org/10.1109/FOCS.2010.80

[7] Vladimir L’vovich Arlazarov, Ye!mADinitz, MA Kronrod, and IgorAleksandrovich Faradzhev. 1970. On economical construction of the transitive
closure of an oriented graph. InDoklady Akademii Nauk, Vol. 194. Russian Academy of Sciences, 487–488.

39

https://abseil.io/
https://doi.org/10.1145/380752.380842
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://doi.org/10.1007/978-3-642-02927-1_11
https://doi.org/10.1109/FOCS.2010.80

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

[8] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. 1999. Balanced Allocations. SIAM J. Comput. 29, 1 (Sept. 1999), 180–200.
https://doi.org/10.1137/S0097539795288490

[9] Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Nirjhar
Mukherjee, Donald E. Porter, Guido Tagliavini, Janet Vorobyeva, and EvanWest. 2021. Paging and the Address-Translation Problem. In SPAA ’21:
33rd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021, Kunal Agrawal and Yossi Azar (Eds.). ACM,
105–117. https://doi.org/10.1145/3409964.3461814

[10] Michael A. Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, and Guido Tagliavini. 2023. Iceberg Hashing: Optimizing Many
Hash-Table Criteria at Once. J. ACM 70, 6 (2023), 40:1–40:51. https://doi.org/10.1145/3625817

[11] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley, and Shikha Singh. 2018. Bloom Filters, Adaptivity,
and the Dictionary Problem. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, Mikkel
Thorup (Ed.). IEEE Computer Society, 182–193. https://doi.org/10.1109/FOCS.2018.00026

[12] Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou Liu. 2022. On the optimal time/space tradeo# for hash
tables. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam
Gupta (Eds.). ACM, 1284–1297. https://doi.org/10.1145/3519935.3519969

[13] Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou Liu. 2022. On the optimal time/space tradeo# for hash
tables. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam
Gupta (Eds.). ACM, 1284–1297. https://doi.org/10.1145/3519935.3519969

[14] Ioana Oriana Bercea and Guy Even. 2020. A Space-E"cient Dynamic Dictionary for Multisets with Constant Time Operations. CoRR abs/2005.02143
(2020). arXiv:2005.02143 https://arxiv.org/abs/2005.02143

[15] Ioana O. Bercea and Guy Even. 2023. Dynamic Dictionaries for Multisets and Counting Filters with Constant Time Operations. Algorithmica 85,
6 (2023), 1786–1804. https://doi.org/10.1007/S00453-022-01057-0

[16] c++ std::map. 2023. cpppreference std::map. https://en.cppreference.com/w/cpp/container/map. Accessed: 2024-07-18.
[17] c++ std::set. 2024. cpppreference std::set. https://en.cppreference.com/w/cpp/container/set. Accessed: 2024-07-18.
[18] c++ std::unordered_map. 2024. cpppreference std::unordered_map. https://en.cppreference.com/w/cpp/container/unordered_map. Accessed:

2024-07-18.
[19] c++ stl_set.h. 2024. gcc-mirror/gcc libstdc++-v3 stl_set.h. https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h.

Accessed: 2024-07-18.
[20] c++ sty_map.h. 2024. gcc-mirror/gcc libstdc++-v3 stl_map.h. https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_

map.h. Accessed: 2024-07-18.
[21] c++ unordered_map.h. 2024. gcc-mirror/gcc libstdc++-v3 unordered_map.h. https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-

v3/include/bits/unordered_map.h. Accessed: 2024-07-18.
[22] c++ unordered_set. 2024. cpppreference std::unordered_set. https://en.cppreference.com/w/cpp/container/unordered_set. Accessed: 2024-07-18.
[23] c++ unordered_set.h. 2024. gcc-mirror/gcc libstdc++-v3 unordered_set.h. https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-

v3/include/bits/unordered_set.h. Accessed: 2024-07-18.
[24] Joshimar Cordova and Gonzalo Navarro. 2016. Simple and e"cient fully-functional succinct trees. Theor. Comput. Sci. 656 (2016), 135–145.

https://doi.org/10.1016/J.TCS.2016.04.031
[25] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. 2017. On Succinct Representations of Binary Trees. Math. Comput. Sci. 11, 2, 177–189.

https://doi.org/10.1007/S11786-017-0294-4
[26] Erik D. Demaine, FriedhelmMeyer auf der Heide, Rasmus Pagh, and Mihai Puatracscu. 2006. De Dictionariis Dynamicis Pauco Spatio Utentibus

(lat. On Dynamic Dictionaries Using Little Space). In LATIN 2006: Theoretical Informatics, 7th Latin American Symposium, Valdivia, Chile, March
20-24, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3887), José R. Correa, Alejandro Hevia, and Marcos A. Kiwi (Eds.). Springer, 349–361.
https://doi.org/10.1007/11682462_34

[27] Martin Dietzfelbinger and Rasmus Pagh. 2008. Succinct Data Structures for Retrieval and ApproximateMembership (Extended Abstract). InAutomata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Track A: Algorithms,
Automata, Complexity, and Games (Lecture Notes in Computer Science, Vol. 5125), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and IgorWalukiewicz (Eds.). Springer, 385–396. https://doi.org/10.1007/978-3-540-70575-8_32

[28] MartinDietzfelbingerandMichaelRink. 2009. Applicationsof aSplittingTrick. InAutomata,LanguagesandProgramming, 36th InternationalColloquium,
ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 5555), Susanne Albers, Alberto Marchetti-
Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, andWolfgang Thomas (Eds.). Springer, 354–365. https://doi.org/10.1007/978-3-642-02927-1_30

[29] Martin Dietzfelbinger and StefanWalzer. 2019. Constant-Time Retrieval with O(log m) Extra Bits. In 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany (LIPIcs, Vol. 126), Rolf Niedermeier and Christophe Paul (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 24:1–24:16. https://doi.org/10.4230/LIPICS.STACS.2019.24

[30] Martin Dietzfelbinger and ChristophWeidling. 2007. Balanced allocation and dictionaries with tightly packed constant size bins. Theor. Comput.
Sci. 380, 1-2, 47–68. https://doi.org/10.1016/J.TCS.2007.02.054

[31] Martin Dietzfelbinger and Philipp Woelfel. 2003. Almost random graphs with simple hash functions. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, Lawrence L. Larmore and Michel X. Goemans (Eds.). ACM, 629–638.

40

https://doi.org/10.1137/S0097539795288490
https://doi.org/10.1145/3409964.3461814
https://doi.org/10.1145/3625817
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1145/3519935.3519969
https://doi.org/10.1145/3519935.3519969
https://arxiv.org/abs/2005.02143
https://arxiv.org/abs/2005.02143
https://doi.org/10.1007/S00453-022-01057-0
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://en.cppreference.com/w/cpp/container/unordered_set
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://doi.org/10.1016/J.TCS.2016.04.031
https://doi.org/10.1007/S11786-017-0294-4
https://doi.org/10.1007/11682462_34
https://doi.org/10.1007/978-3-540-70575-8_32
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.4230/LIPICS.STACS.2019.24
https://doi.org/10.1016/J.TCS.2007.02.054

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Tiny Pointers Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

https://doi.org/10.1145/780542.780634
[32] F14 [n. d.]. Facebook’s F14 Hash Table. https://engineering.fb.com/2019/04/25/developer-tools/f14/. Accessed: 2024-07-18.
[33] Arash Farzan and J. Ian Munro. 2011. Succinct representation of dynamic trees. Theor. Comput. Sci. 412, 24 (2011), 2668–2678.

https://doi.org/10.1016/J.TCS.2010.10.030
[34] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. 2005. Space E"cient Hash Tables withWorst Case Constant Access Time. Theory

Comput. Syst. 38, 2 (2005), 229–248. https://doi.org/10.1007/S00224-004-1195-X
[35] Gianni Franceschini and Roberto Grossi. 2003. OptimalWorst-Case Operations for Implicit Cache-Oblivious Search Trees. InAlgorithms and Data

Structures, 8th International Workshop, WADS 2003, Ottawa, Ontario, Canada, July 30 - August 1, 2003, Proceedings (Lecture Notes in Computer Science,
Vol. 2748), Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Michiel H. M. Smid (Eds.). Springer, 114–126. https://doi.org/10.1007/978-3-540-45078-8_11

[36] Gaston H. Gonnet and Per-Åke Larson. 1988. External hashing with limited internal storage. J. ACM 35, 1 (1988), 161–184.
https://doi.org/10.1145/42267.42274

[37] KrishnanGosakan, JaehyunHan,WilliamKuszmaul, IbrahimN.Mubarek, NirjharMukherjee, Karthik Sriram, Guido Tagliavini, EvanWest, Michael A.
Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Jayneel Gandhi, Rob Johnson, Sudarsun Kannan, and Donald E. Porter. 2023.
Mosaic Pages: Big TLB Reach with Small Pages. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt, Natalie D. Enright Jerger,
and Michael M. Swift (Eds.). ACM, 433–448. https://doi.org/10.1145/3582016.3582021

[38] Leonidas J. Guibas and Robert Sedgewick. 1978. A Dichromatic Framework for Balanced Trees. In 19th Annual Symposium on Foundations of Computer
Science, Ann Arbor, Michigan, USA, 16-18 October 1978. IEEE Computer Society, 8–21. https://doi.org/10.1109/SFCS.1978.3

[39] Takao Gunji and E Goto. 1980. Studies on hashing part-1: A comparison of hashing algorithms with key deletion. J. Information Processing 3, 1
(1980), 1–12.

[40] Intel. 2024. Intel®64 and IA-32 Architectures Software Developer’s Manual Combined Volumes 3A, 3B, 3C, and 3D: System Programming Guide.
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-
system-programming-guide.html. Accessed: 2024-07-18.

[41] Don E. Knuth. 1963. Notes on “Open” Addressing.
[42] Donald E. Knuth. 1973. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley.
[43] Per-Åke Larson. 1983. Analysis of Uniform Hashing. J. ACM 30, 4 (1983), 805–819. https://doi.org/10.1145/2157.322407
[44] Per-Åke Larson. 1988. Linear Hashing with Separators - A Dynamic Hashing Scheme Achieving One-Access Retrieval. ACM Trans. Database Syst.

13, 3 (1988), 366–388. https://doi.org/10.1145/44498.44500
[45] Per-Åke Larson and Ajay Kajla. 1984. File Organization: Implementation of a Method Guaranteeing Retrieval in One Access. Commun. ACM 27,

7 (1984), 670–677. https://doi.org/10.1145/358105.358193
[46] Mingmou Liu, Yitong Yin, and Huacheng Yu. 2020. Succinct Filters for Sets of Unknown Sizes. In 47th International Colloquium on Automata,

Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference) (LIPIcs, Vol. 168), Artur Czumaj, Anuj Dawar,
and Emanuela Merelli (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 79:1–79:19. https://doi.org/10.4230/LIPICS.ICALP.2020.79

[47] M. Molloy and B. Reed. 2013. Graph Colouring and the Probabilistic Method. Springer Berlin Heidelberg. https://books.google.com/books?id=
gU3xCAAAQBAJ

[48] J. Ian Munro, Venkatesh Raman, and Adam J. Storm. 2001. Representing dynamic binary trees succinctly. In Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, S. Rao Kosaraju (Ed.). ACM/SIAM, 529–536.
http://dl.acm.org/citation.cfm?id=365411.365526

[49] Gonzalo Navarro and Kunihiko Sadakane. 2014. Fully Functional Static and Dynamic Succinct Trees. ACM Trans. Algorithms 10, 3 (2014), 16:1–16:39.
https://doi.org/10.1145/2601073

[50] Anna Pagh and Rasmus Pagh. 2008. Uniform Hashing in Constant Time and Optimal Space. SIAM J. Comput. 38, 1 (2008), 85–96.
https://doi.org/10.1137/060658400

[51] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms 51, 2 (2004), 122–144. https://doi.org/10.1016/J.JALGOR.2003.12.002
[52] Mihai P%tra&cu. 2008. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,

PA, USA. IEEE Computer Society, 305–313. https://doi.org/10.1109/FOCS.2008.83
[53] W.Wesley Peterson. 1957. Addressing for Random-Access Storage. IBM J. Res. Dev. 1, 2 (1957), 130–146. https://doi.org/10.1147/RD.12.0130
[54] Martin Raab and Angelika Steger. 1998. "Balls into Bins" - A Simple and Tight Analysis. In Randomization and Approximation Techniques in Computer

Science, Second International Workshop, RANDOM’98, Barcelona, Spain, October 8-10, 1998, Proceedings (Lecture Notes in Computer Science, Vol. 1518),
Michael Luby, José D. P. Rolim, and Maria J. Serna (Eds.). Springer, 159–170. https://doi.org/10.1007/3-540-49543-6_13

[55] Rajeev Raman and S. Srinivasa Rao. 2003. Succinct Dynamic Dictionaries and Trees. InAutomata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings (Lecture Notes in Computer Science, Vol. 2719), Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger (Eds.). Springer, 357–368. https://doi.org/10.1007/3-540-45061-0_30

[56] Peter Sanders. 2018. Hashing with Linear Probing and Referential Integrity. CoRR abs/1808.04602 (2018). arXiv:1808.04602
http://arxiv.org/abs/1808.04602

[57] Raimund Seidel and Cecilia R. Aragon. 1996. Randomized Search Trees. Algorithmica 16, 4/5 (1996), 464–497. https://doi.org/10.1007/BF01940876
[58] Daniel Sleator and Robert Tarjan. 1985. Self-Adjusting Binary Search Trees. J. ACM 32, 3 (1985), 652–686. https://doi.org/10.1145/3828.3835

41

https://doi.org/10.1145/780542.780634
https://engineering.fb.com/2019/04/25/developer-tools/f14/
https://doi.org/10.1016/J.TCS.2010.10.030
https://doi.org/10.1007/S00224-004-1195-X
https://doi.org/10.1007/978-3-540-45078-8_11
https://doi.org/10.1145/42267.42274
https://doi.org/10.1145/3582016.3582021
https://doi.org/10.1109/SFCS.1978.3
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://doi.org/10.1145/2157.322407
https://doi.org/10.1145/44498.44500
https://doi.org/10.1145/358105.358193
https://doi.org/10.4230/LIPICS.ICALP.2020.79
https://books.google.com/books?id=gU3xCAAAQBAJ
https://books.google.com/books?id=gU3xCAAAQBAJ
http://dl.acm.org/citation.cfm?id=365411.365526
https://doi.org/10.1145/2601073
https://doi.org/10.1137/060658400
https://doi.org/10.1016/J.JALGOR.2003.12.002
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1147/RD.12.0130
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1007/3-540-45061-0_30
https://arxiv.org/abs/1808.04602
http://arxiv.org/abs/1808.04602
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/3828.3835

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bender et al.

[59] Berthold Vöcking. 2003. How asymmetry helps load balancing. J. ACM 50, 4 (2003), 568–589. https://doi.org/10.1145/792538.792546
[60] PhilippWoelfel. 2006. Asymmetric balanced allocation with simple hash functions. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006. ACM Press, 424–433. http://dl.acm.org/citation.cfm?id=1109557.1109605

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

42

https://doi.org/10.1145/792538.792546
http://dl.acm.org/citation.cfm?id=1109557.1109605

	Abstract
	1 Introduction
	1.1 Results: Constructing Optimal Tiny Pointers
	1.2 Results: Five Applications to Data Structures

	2 Preliminaries
	3 Warmup: A Simple Construction and a Simple Application
	4 Upper Bound for Fixed-Size Pointers
	5 Upper Bounds for Variable-Size Pointers
	6 Lower Bounds
	7 Applying Tiny Pointers to Five Problems in Data Structures
	7.1 Some General-Purpose Techniques for Using Tiny Pointers
	7.2 Overcoming the (n)-Bit Lower Bound for Data Retrieval
	7.3 Succinct Binary Search Trees
	7.4 Space-Efficient Stable Dictionaries
	7.5 Space-Efficient Dictionaries with Variable-Size Values
	7.6 An Optimal Internal-Memory Stash

	8 Dynamic Balls and Bins
	8.1 A Useful Lemma
	8.2 Iceberg[d]
	8.3 Assigning Balls to Capacity-1 Bins with Low Average Probe Complexity

	9 Conclusion
	Acknowledgments
	References

