19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49

50

52

Tiny Pointers

MICHAEL A. BENDER, Stony Brook University, USA
ALEX CONWAY, Cornell Tech, USA

MARTIN FARACH-COLTON, New York University, USA
WILLIAM KUSZMAUL, Carnegie Mellon University, USA
GUIDO TAGLIAVINI, Rutgers University, USA

This paper introduces a new data-structural object that we call the tiny pointer. In many applications, traditional log n-bit pointers can
be replaced with o(log n)-bit tiny pointers at the cost of only a constant-factor time overhead and a small probability of failure. We
develop a comprehensive theory of tiny pointers, and give optimal constructions for both fixed-size tiny pointers (i.e., settings in which
all of the tiny pointers must be the same size) and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must
be small, but some tiny pointers can be larger). If a tiny pointer references an item in an array filled to load factor 1 — &, then the optimal
tiny-pointer size is © (log log log n + log 5~1) bits in the fixed-size case, and © (log §~!) expected bits in the variable-size case.

Our tiny-pointer constructions also require us to revisit several classic problems having to do with balls and bins; these results may
be of independent interest.

Using tiny pointers, we apply tiny pointers to five classic data-structure problems. We show that:

o A data structure storing n v-bit values for n keys with constant-factor time modifications/queries can be implemented to take
space no+ O(n log(r) n) bits, for any constant r > 0, as long as the user stores a tiny pointer of expected size O(1) with each
key—here, log(r) n is the r-th iterated logarithm.

o Any binary search tree can be made succinct, meaning that it achieves (1 + 0(1)) times the optimal space, with constant-factor
time overhead, and can even be made to be within O(n) bits of optimal if we allow for O (log" n)-time modifications—this
holds even for rotation-based trees such as the splay tree and the red-black tree.

o Any fixed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted) with constant-factor time
overhead and (1 + 0(1))-factor space overhead.

o Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with constant-factor
time overhead and with an additional space consumption of log(r) n+ O(log j) bits per j-bit value for an arbitrary constant
r > 0 of our choice.

o Given an external-memory array A of size (1 + £)n containing a dynamic set of up to n key-value pairs, it is possible to maintain
an internal-memory stash of size O (nlog ¢~!) bits so that the location of any key-value pair in A can be computed in constant
time (and with no IOs).

In each case tiny pointers allow for us to take a natural space-inefficient solution that uses pointers and make it space-efficient for free.

Additional Key Words and Phrases: pointers, space-efficient, balanced allocation, balls and bins, hashing, load balancing, randomized

algorithms, retrieval

ACM Reference Format:
Michael A. Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, and Guido Tagliavini. 2018. Tiny Pointers. In . ACM, New
York, NY, USA, 42 pages. https://doi.org/XXXXXXX XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

https://doi.org/XXXXXXX.XXXXXXX

53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

1 INTRODUCTION

How many bits does it take to store a pointer? If we know nothing about the pointer except that it references an item
in an array of size n, then there is a lower bound of log n bits.

For many (and perhaps even most) uses of pointers, however, this information-theoretic lower bound does not apply.
As we shall see in this paper, even a small amount of prior information about a pointer (e.g., a node’s predecessor in a
linked list) can be used to defeat the log n lower bound.

This paper introduces a general-purpose tool, which we call the tiny pointer, for compressing pointers. In settings

where pointers are used, tiny pointers can often be used instead to eliminate almost all of the space overhead of pointers.

What is a tiny pointer? Suppose n or more users (i.e., Alice, Bob, etc.) are sharing an array A of size n. A user can request
alocation in A via a function ALLOCATE(), which returns a pointer p to a location that is now reserved exclusively for
that user, if there is an available location; the user can later relinquish the memory location by calling a function FREE(p).
Each user promises only to allocate at most one memory location at a time.! For example, if Alice calls ALLOCATE() to
get a pointer p, she must call FREE(p) before calling ALLOCATE() again.

How large do the pointers p need to be? The natural answer is that each pointer uses log n bits. However, the fact that each
pointer has a distinct owner makes it possible to compress the pointers to o(log n) bits. A critical insight is that the same
pointer p can mean different things to different users, via the following scheme in which ALLOCATE, DEREFERENCE, FREE
are given the user’s ID as an additional argument. A user k can call ALLOCATE(k) in order to get a tiny pointer p; they
can dereference the tiny pointer p by computing a function DEREFERENCE (k, p) whose value depends only on k, p, and
random bits; and they can free a tiny pointer p by calling a function FReE(k, p).

The reason that tiny pointers are not constrained by the information-theoretic lower bound of log n bits is that k and
p together encode the allocated location, rather than p alone. Thus this scheme provides a mechanism for how to use
information already available about a pointer (namely, who “owns” the pointer) to compress the pointer to size o(log n) bits.

We refer to the algorithms for the functions ALLocAaTE(k)/DEREFERENCE(k, p)/FREE(K, p), along with the array A and
any associated metadata M, as a dereference table. We will often refer to the users (i.e., the owners of tiny pointers) as
keys and to the data stored at the allocated locations pointed at by the tiny pointers as values. In practice, the “users”
will often be components of a data structure that have some ownership relationship to the allocation being performed.
A dereference table that stores g-bit values in an array of nq bits (and using O(n) bits of metadata) is said to support load
factor 1 — § if the table is capable of storing (1 — §)n values at a time.

An ideal dereference table would simultaneously support a load factor with § = 0(1), tiny-pointer sizes of o(log n),
and constant-time operations with high probability. As we shall discuss shortly, we prove a tradeoff curve between the
best achievable load factor 1 — § and the best achievable tiny-pointer size s. Constructing optimal dereference tables on

this tradeoff curve is one of the central questions of this paper.

Using tiny pointers to get tiny data structures. In addition to constructing dereference tables with tiny pointers,
we show that such dereference tables can be used to obtain improved solutions for a number of classic problems:

o A data structure storing n v-bit values for n keys with constant-time modifications and queries can be implemented
to take space nv + O(n log(r> n) bits, for any constant r > 0, as long as the user stores a tiny pointer of expected
size O(1) with each key—here, log") n is the r-th iterated logarithm.?

1A user k can request more than one location by creating a unique label ¢ for each of their allocations. In this case, we simply treat the “user” for the

allocation as the concatenation k o ¢, so the user k can have multiple allocations without violating the uniqueness requirement.
2That is, log" n := logn andlog™*" n := loglog'¥ n.

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

152
153
154
155

156

Tiny Pointers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

e Any binary search tree storing n sortable keys in n nodes can be made succinct, meaning that it achieves (1+0(1))
times the optimal spaceS, with constant-factor time overhead, with constant time overhead, and can be made
within O(n) bits of optimal with O(log™ n)-time modifications. This holds even for rotation-based trees such as
the splay tree, which is conjectured to be dynamically optimal.

o Any fixed-capacity, e.g. non-resizable, key-value dictionary storing v-bit values can be made stable (i.e., items
do not move once inserted) with constant time overhead an additive O(log v)-bit space overhead per value.

o Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with
constant time overhead and with an additional space consumption of log(r) n + O(log j) bits per j-bit value,
where r > 0 is an arbitrary constant.

e Given an external-memory array A of size (1 + ¢)n containing a dynamic set of up to n key-value pairs, it is
possible to maintain an internal-memory stash of size O(nlog e ~!) bits so that the location of any key-value pair
in A can be computed in constant time (and with no IOs).

What unifies these problems is that each is easy to solve space-inefficiently with pointers, and the difficulty in solving
them space-efficiently stems from the challenge of eliminating the pointer overhead.

A theme throughout our uses of tiny pointers is the importance of having access to the full tradeoff curve of optimal
tiny-pointer constructions. This is because of the need to balance two types of space overheads: that of storing the tiny
pointers themselves, and that of storing the dereference table. The former is determined by tiny-pointer size and the

latter is determined by load factor.

Relationship to dynamic perfect hashing. To understand what makes the tiny-pointer abstraction powerful, consider
the following alternative approach to removing pointer overhead in the setting where each value has a unique owner:
construct a dynamic perfect hash function that maps keys to slots in a densely packed array, and replace pointer derefer-
ences with queries to this hash function. Such an approach has a certain elegance because it removes the pointers entirely.
However, it also hits a fundamental bottleneck: any dynamic perfect hash function mapping n (1 + ©(1)) log n-bit keys
to (1 + 8)n slots must use @(nloglog n + nlog 571) bits of metadata [3, 26].

The nloglog n-bit term means that dynamic perfect hashing cannot be used to simulate pointers of size any smaller
than log log n bits. What makes our results on tiny pointers surprising is that, by reducing the lengths of pointers (rather
than attempting to eliminate them entirely), one can blast through the nloglog n lower bound, enabling both our bounds

on tiny pointers and the data-structural applications that we present in this paper.

This paper. In this paper, we first develop a comprehensive theory of tiny pointers. We consider both fixed-size tiny
pointers (where all of the tiny pointers have the same size in bits) and variable-size tiny pointers (where the tiny
pointers have sizes that are bounded in expectation, but different tiny pointers may have different sizes). For both types
of tiny pointers we determine the optimal tradeoff curve between load factor and tiny-pointer size in dereference tables.
We then go on to present the five applications of tiny pointers outlined above. As an ancillary result, we also reinterpret
our tiny-pointer constructions as balls-and-bins results. In doing so, we improve on the known bounds for dynamic load

balancing in some important parameter regimes.

3In this context, the optimal space to store a binary search tree is the space needed to (1) store the n nodes, each of which consists of a key and possibly
a value; and (2) store the binary-tree structure, which comprises 2n + o(n) bits of information. The reason that traditional pointer-based search trees
are not succinct is because they use ©(n log n) bits to store the binary-tree structure.

3

157
158
159
160
161
162
163

164

166
167
168
169
170
171
172

173

175

176

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

1.1 Results: Constructing Optimal Tiny Pointers

In Sections 4, 5, and 6 we develop tight asymptotic bounds for the best achievable tradeoff curve between tiny-pointer

size s and the dereference-table load factor 1 — 6.

Optimal tradeoffs for fixed and variable-size tiny pointers. For fixed-size tiny pointers, we show that for any load
factor 1-§ € Q(1), there is alower bound of Q(log log log n) on the tiny-pointer size s. On the other hand, parameterizing
by 8, we show that it is possible to achieve a fixed tiny-pointer size s = O(logloglog n +log §~1), and we give a lower
bound showing that this tradeoff curve is tight.

We show that the log log log n barrier can be eliminated by instead using variable-size tiny pointers. We prove that
for any load factor 1 — §, it is possible to achieve average tiny-pointer size s = O(1 + log 6 !), and again we prove that
this tradeoff curve is tight for all §.

For variable-size tiny pointers, our construction offers a remarkably strong concentration bound on each tiny pointer’s
size: if the expected size is k, then the probability of any given allocation returning a tiny pointer of size greater than
k + jfor any j > 0is doubly exponentially smallin j.

All of our dereference-table constructions guarantee constant-time operations with high probability, that is, with
probability 1 — 1/poly n. Thus, tiny pointers can be integrated into data structures while incurring only a constant-factor

time overhead.

Relationship to balls-and-bins games. In Section 8, we reinterpret our tiny-pointer results as balls-and-bins results.
Notably, we are able to apply our techniques to the dynamic load-balancing problem, a.k.a. balanced allocations [8],
where there are n bins and up to m = nh balls present at a time: for h > 1, we give a balls-and-bins scheme with d + 1
hash functions that achieves maximum load h + O(W)+ l;i}gi: , which significantly improves the state of the
art [59, 60] when hd = o(logn).

To understand the relationship between dereference tables and balls-and-bins schemes, think of keys as balls that must

be assigned to distinct bins. Each ball x has some probe sequence hq(x), h2(x), ... € [n] of bins where it can be placed.
Supporting tiny pointers of size O(s) is equivalent to maintaining a dynamic balls-to-bins assignment such that each
ball x is in some bin h;(x) satisfying i < 200,

What makes this balls-and-bins problem interesting is that the same ball can be inserted, removed, and subsequently
reinserted over time. The first time that a ball is inserted, its probe sequence hj(x), h2(x), ... is independent of the
dereference table’s state. But if the ball is removed and then later reinserted, then this is no longer the case: the state of
the dereference table has now been affected by (and is partially a function of) the probe sequence. The result is that, in
this fully dynamic setting, even the behavior of very simple balls-and-bins schemes (e.g., random probing [43] or linear
probing [42, 56]) have resisted theoretical analysis.*

A key insight in constructing small tiny pointers is that, by designing the probe sequence of each “ball” to have a
certain careful structure, we can achieve small probe complexity (and thus small tiny pointers) for an arbitrary sequence
of ball insertions and removals. The same techniques are also what allow us to revisit other related problems such as

dynamic load-balancing in bins with unbounded capacities.

4Work in this setting typically treats linear probing and random probing as techniques for building an open-addressed hash table. In the setting where
balls cannot be moved after being placed (or equivalently, where hash-table deletions are implemented with tombstones), the only known bound on either
random probing or linear probing is due to Larson [43], who analyzed random probing with random insertions/deletions.

4

209
210
211
212
213

214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

260

Tiny Pointers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Relationship to succinct hashing. At a technical level, our constructions for tiny pointers share an interesting
relationship to the constructions used in past works on succinct hashing [6, 10, 12, 26], where a common theme is the use of a
backyardto store a small fraction of items less space-efficiently than their peers. Our tiny-pointers construction (specifically,
in the variable-size case) reveals an alternative way to use backyards: now the items in the backyard have less space-efficient
tiny pointers than their peers, and rather than there being a single backyard, there is a cascading hierarchy of backyards that
must interact cleanly with one another. A key technical insight of this paper is that such a hierarchy of backyards can be
implemented (i) with constant-time operations, (ii) while supporting arbitrary sequences of both insertions and deletions,
(iii) without moving items once they are inserted, (iv), without having to store the keys corresponding to items in the data

structure, and (v) with sufficiently high-probability guarantees that each layer in the cascade behaves in a predictable way.

1.2 Results: Five Applications to Data Structures

We now describe our five applications of tiny pointers in more detail. The first application is to the classic data-structural
problem of storing a dynamic set of values associated with keys. The next three applications are each black-box transfor-
mations in which we show how to remove space inefficiency from large classes of data structures. And the final application

is a new data structure for a classic problem in external-memory storage.

Overcoming the Q (log log n)-bit lower bound for the cost of data retrieval. Our first application revisits the classic
data-retrieval problem 3, 26,27, 29],in which a data structure must store av-bit value for each of the k-bit keys in some set
S, and must answer queries that retrieve the value associated with a given key.” In the static case, where the keys/values are
given up front, it is possible to solve the retrieval problem with O(1)-time queries using nv + O(log n) bits of space [27, 29];
but in the dynamic case where keys/values are inserted/deleted over time, and there are up to n keys/value pairs present at
a time (with keys taken from some large polynomial-size universe), it is known that any solution to the retrieval problem
must use alower bound of nv + Q(n log log n) bits of space, even if super-constant-time operations are allowed [3, 26]. This
means that the number of metadata bits per value is Q(log log n) on average, even if the values are of size v = o(log log n).

We show that, by just slightly modifying the specification of the retrieval problem, we can completely dissolve the
Q(loglog n)-wasted-bits-per-item lower bound. Suppose, in particular, that whenever the user inserts a key/value pair
(x, y), they are given back a small hint h that they are responsible for storing. (We will guarantee that the hint has constant
expected size.) In the future, when the user wishes to recover the value y for x, they present both the key x and the hint
h to the retrieval data structure. We call this the relaxed retrieval problem and we refer to the hints as tiny retrievers.

The relaxed retrieval problem can also be viewed as a relaxation of the tiny-pointer problem: the tiny retriever h
is analogous to a tiny pointer, except that the pair (x, h) does not have to fully encode the position of y—instead, the
relaxed-retrieval data structure can make use of not just x and h, but can also make use of a small auxiliary data structure
whose purpose is to help recover y.

Given that we have already stated tight bounds for tiny pointers, it is tempting to assume that the same bounds should
hold for tiny retrievers. We find that this is not so. We show how to construct tiny retrievers of expected size O(1), while
supporting queries in constant time (with high probability), and allowing for the following tradeoff curve: using time
O(r) for insertions/deletions, the size of the data structure becomes no + O(n(1 + log(r) n)) bits. So, with constant-time
operations, we can achieve size, say, no + O(nlog log log log log n), and with O(log* n)-time operations, we can achieve
size nv + O(n). Moreover, in the special case where the value length v is sub-logarithmic, satisfying v < 101;(%, the space

consumption reduces to nv + O(n) bits, even for constant r.

Note that queries are required to be for akey x € S—the data structure is allowed to return an arbitrary value if x ¢ S.

5

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

Remarkably, our construction for tiny retrievers is itself a direct application of tiny pointers—in fact, tiny retrievers
are simply variable-length tiny pointers of O(1) expected size. This is because the ability to construct O(1)-length tiny
pointers into an array with ®(n) entries ends up allowing for us to reduce the relaxed retrieval problem to the dictionary
problem, for which highly space-efficient solutions are known [12].

We remark that the distinction between tiny pointers and tiny retrievers ends up being significant in several of our
applications below. In some cases, tiny retrievers offer a path to remarkable (and unexpected) space efficiency, while
in other cases, the smooth tradeoff curve and pointer-like behavior offered by tiny pointers makes them a better fit. The
advantage of tiny retrievers is that they offer a steep tradeoff between time and space; the advantage of tiny pointers is that
they offer indirection-less reference to items, as well as a flexible tradeoff between different types of space consumption

(pointer size and load factor).

Succinct rotation-based binary search trees. To describe our second application, we first take a digression into the
world of succinct binary trees. Since there are at most 4" ordered binary trees on n nodes, the pointer structure of a
binary tree can be encoded in O(n) bits. This observation has led to a great deal of work on optimal (and near-optimal)
encodings of binary trees [24, 25, 33, 35, 48, 49, 52, 55]. Apart from navigation, state-of-the-art trees also support a wide
variety of query operations (e.g., subtree size [24, 33, 48, 49, 55], depth [24, 49], lowest-common ancestor [24, 49], level
ancestor [24, 49], etc.), while also supporting basic dynamism (e.g., inserting/removing leaves [24, 33, 48, 49, 55], inserting
anode in the middle of an edge [24, 33, 48, 49, 55], compacting a path of length two [24, 33, 48, 49, 55], etc.).

One natural form of dynamic operation has proven elusive, however: the known succinct binary trees do not efficiently
support rotations. The lack of support for rotations is especially important for binary search trees, which store a set of
n sortable keys in n nodes. Almost all dynamic balanced binary search trees (e.g., AVL trees [2], red-black trees [38], splay
trees [58], treaps [57], etc.) rely on rotations when modifying the tree. None of these tree structures can be encoded with
the known succinct-tree techniques.

We give a randomized black-box approach for transforming dynamic binary search trees into succinct data structures.
If there are n keys in the succinct search tree, each of which is k bits long, then the size of the succinct search tree will be
nk +O(n log(r) n) bits. The transformation induces only a constant-factor time overhead on query operations, and only
an O(r)-factor time overhead on tree modifications. So, for example, if we set r = O(log" n), then edge traversals take
time O(1), edge insertions/deletions take time O(log” n), and the tree structure is encoded using O(n) bits. In contrast,
the previous state of the art [49] for implementing rotations in space-efficient binary search trees also encoded the tree
structure in O(n) bits (actually, 2n + o(n) bits) but required Q (log n) time to implement a single rotation. It is worth noting
that [49] is deterministic, while the new result succeeds with high probability.

When r is set to be O(1), the fact that running times are preserved means that other properties, such as dynamic opti-
mality, are as well. For example, if the splay tree [58] is dynamically optimal (as the widely believed Dynamic-Optimality

Conjecture [58] posits), then so is the succinct splay tree.

Space-efficient stable dictionaries. Our third application is a black-box approach for transforming any key-value
dictionary that storesits values in a fixed-capacity, e.g. non-resizeable, array into a stable dictionary with the same operation
set and with only a constant-factor time overhead. If the original dictionary stores v-bit values, then the new stable
dictionary also stores v-bit values, and uses space equal to the space of the orginal data structure plus O (log v) bits per value.

Formally, a key-value dictionary (e.g., a binary search tree, hash table, etc.) is stable if whenever a key-value pair is

inserted, the position in which the value is stored never changes. (This property is sometimes also referred to as referential

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

integrity [56] or value stability [10].) Stability ensures that users can maintain pointers into a data structure without those
pointers becoming invalidated by changes to the data structure [39, 56]. Stability is a strict requirement in many library
data structures [16-23] (and it is a core reason why high-performance languages such as C++ use chained hashing [18, 21],
which is stable, instead of more space-efficient alternatives, such as linear probing [41, 53] or cuckoo hashing [30, 34, 51]).

Empirical research on achieving stability in space-efficient hash tables dates back to the 1980s [39, 56] (see also the
discussion in Knuth’s Volume 3 [42, Chapter 6.4]) and the resulting techniques have been built into widely-used hash
tables released by Google [1] and Facebook [32]. On the theoretical side, if a data structure is storing k-bit keys and v-bit
values, where k, v = O(log n), it is known how to achieve stability at the cost of an extra ©(log log n) bits of space per value
[26], but it is not known whether Q(log log n) bits per value are necessary.® Our result shows that it is not—stability can
be achieved with O(log v) extra bits per value. This is especially noteworthy in cases where the value-size v is small’. Our

result applies to arbitrary fixed-capacity dictionaries, including, for example, the succinct splay tree constructed above.

Space-efficient dictionaries with variable-size values. Our fourth application is a black-box approach for transform-
ing any key-value dictionary (designed to store fixed-size values) into a dictionary that can store different-sized values for
different keys. The resulting data structure incurs a constant-factor time overhead and offers the following guarantee on
space efficiency. Let log(r) nbe the r-th iterated logarithm and set r to be a positive constant of our choice. The new data
structure incurs an additive space overhead of only O(Iog(r)n+ log |x|) bits for each value x, where |x| is the bit-length
of the string x. (Interestingly, the iterated logarithm log(r) n in this application comes from an entirely different source
than in our previous applications.)

The ability to store variable-length values also yields a simple solution to the multi-set problem, which is the problem of
how to design a space-efficient constant-time hash table that stores multi-sets of keys (rather than just sets). The multi-set
problem was first posed as an open question by Arbitman et al. [6], who gave a succinct constant-time hash table capable
of storing sets but not multi-sets. A series of subsequent works gave solutions to the multi-set problem, first in the case of
random multi-sets [15], and then very recently for arbitrary multi-sets [14]. The known solutions come with a drawback,
however: the bound on space is the same for duplicate keys as it is for non-duplicate keys. So, if there are m; copies of some
key, then they are permitted to take m; times as much space as a single copy would, even though, in principle, m; — 1 of the
copies could be encoded using an log m;-bit counter. Our transformation gives a simple alternative solution that avoids this
drawback and that can even be applied directly to the original hash table of Arbitman et al. [5]: by storing the multiplicity of
eachkeyasa (variable-length) value, one can support arbitrary multisets at an additional space cost of only lo g(r) n+lo g mi+
O(loglog m;) bits per key, where m; is the multiplicity of the key and r is a positive constant of our choice; this is remarkably
space efficient considering the fact that log m; bits are needed just to store the multiplicity. A nice feature of our solution is

that it also applies directly to other dictionaries such as, for example, the succinct splay tree discussed earlier in the section.

An optimal internal-memory stash. Our final application of tiny pointers revisits one of the oldest problems in
external-memory data structures: the problem of maintaining a small internal-memory stash that allows one to directly
locate where items reside in a large external-memory array.

In more detail, the problem can be described as follows [36]. We are given an (initially blank) external-memory array

with (1 + ¢)n slots, for some parameters ¢, n. We must maintain a dynamically changing set S of key-value pairs (where

®Interestingly, there are several specific approaches for which Q (log log n) bits per value are known to be necessary, for example if stability is achieved
via perfect hashing (see Theorem 2 of [26]).

7One especially remarkable consequence is the following: if we wish to store O (1) control bits associated with each key in a data structure, and we wish
for the positions of those bits to be stable so that a third party who does not have access to the data structure can still access/modify the control bits, then
we can accomplish this with only O(1) extra bits of space per item.

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

365 keys are distinct) in the array, such that each time a key-value pair (x, y) is inserted into S, the pair (x, y) is assigned some

366 permanent position where it resides in the external-memory array. We must then also maintain a small internal-memory
367
s data structure X, known as a stash, that can be used to recover, for each key x, precisely where its key-value pair (x, y)

369 is stored in the external-memory array. A stash enables queries to be performed in a single access to external memory.

370 Work on designing space-efficient and time-efficient stashes dates back to the late 1980s [36, 44, 45], and is also closely

7 related to the problem of designing space-efficient page tables in operating systems [4, 9, 40]. The best-known theoretical
:: results are due to Gonnet and Larson [36], who give a stash that uses only O(nlog ¢~ 1) bits of space. A consequence is

374 that, if e = ©(1), the stash uses only O(n) bits.

375 Gonnet and Larson’s result comes with several drawbacks, however [36]. First, the stash only offers provable guarantees

376 in the setting where insertions/deletions to S are random; in the case where S is modified by an arbitrary sequence of

377

. insertions/deletions/queries, the problem of designing a space-efficient stash remains open. Second, the internal-memory

379 operations on the stash of [36] are not constant-time in the RAM model (or even constant expected time, when ¢ = 0(1)).

380 By combining tiny pointers with modern techniques for constructing space-efficient filters, we show that it is possible

381 to construct a stash of size O(nloge™!) bits that supports constant-time operations in the RAM model (not just in

ij expectation, but even with high probability) and that supports arbitrary sequences of insertions/deletions/queries.
384
385 2 PRELIMINARIES

386 . . . P eps .
’ In this section, we give some preliminary definitions and notation.
387

388 Operations. A dereference table with g-bit-values is a data structure that supports the following operations:

389
390 e CREATE(n, ¢,): The procedure creates a new dereference table, and returns a pointer to an array with n slots,

391 each of size g bits. We call this array the store. The dereference table will be capable of supporting up to (1 — §)n

3% concurrent allocations at at time. We require that § = O(1/q).
393
201 e ALLOCATE(x): Given a key x, the procedure allocates a slot in the store to x, and returns a bit string p, which we

395 call a tiny pointer.

396 e DEREFERENCE(X, p): Given a key x and a tiny pointer p, the procedure returns the index of the slot allocated to

7 x in the store. If p is not a valid tiny pointer for x (i.e., p was not returned by a call to ALLOCATE(x)), then the
398
100 procedure may return an arbitrary index in the store.

400 e FREE(x, p): Given a key x and a tiny pointer p, the procedure deallocates slot DEREFERENCE(x, p) from x. The

401 user is only permitted to call this function on pairs (x, p) where p is a valid tiny pointer for x (i.e., p was returned
o by the most recent call to ALLOCATE(x)).

103

404 We say a key x is present or allocated if it has been allocated more recently than it has been freed; in this case the
405 tiny pointer p returned by the most recent call to ALLOCATE(x) is said to be x’s tiny pointer. The user is only permitted

12(7) to allocate at most one tiny pointer p to each key x. That is, each time that ALLoCcATE(x) is called to obtain some tiny

108 pointer p, the function FREE(x, p) must be called before ALLOCATE(x) can be called again.

409 We say that slot i in the store is occupied if there is a present key x with tiny pointer p such that DEREFERENCE(x, p) = i,

410 and otherwise we say it is free. We call occupied slots items. We typically refer to the parameter n (i.e., the number of

411 . 5 . .
s slots in the store) as the table’s size or capacity.
w Guarantees. Dereference tables provide the following guarantees:

414

415 e Foranytwopresentkeysx; # x withtiny pointers p1 and p2, respectively, DEREFERENCE(xX1, p1) # DEREFERENCE(X2, p2).

416 8

417
418
419
420
421
422
423
424

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

452
453

455
456

458
459
460
461
462
463
464
465
466
467

468

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

e DEREFERENCE(X, p) only depends on x, p, random bits, and the parameter n. One consequence is that, once a
key is allocated a slot in the store, the position of that slot cannot change until the key is subsequently freed and

reallocated.

The second property ensures that the act of dereferencing a tiny pointer is similar to the act of dereferencing a standard
pointer; in both cases, one does not need to access the data structure being pointed into in order to perform the dereference.
This ends up being important for several of our applications later. In particular, it ensures that in external-memory applica-
tions, each dereference incurs only a single I/O; and it ensures that in data-structure applications, the locations pointed at by

tiny pointers are stable (i.e., once a tiny pointer p is allocated to akey x, the location that is being pointed at does not change).

Space. The dereference table can support up to (1 — d)n allocations at a time—the quantity 1 — § is referred to as the
table’s load factor. If the ALLoCATE function is called when there are already (1 — §)n allocations performed that have
not been freed, then the dereference table is permitted to fail the allocation.?

The dereference table may store metadata in order to perform updates (allocations and frees) efficiently. Metadata
can either be stored as part of the store (in slots that are not allocated), or in an auxiliary data structure that is permitted
to consume up to O(n) bits. In other words, the dereference table is allowed to use O(n) bits (i.e., O(1) bits of overhead
per slot) of metadata for “free”, without that counting towards the space consumption of the store, but any additional
metadata must count towards the space consumption of the store. Note that the dereference table is not allowed to store
metadata in any slot of the store that is currently allocated.

We can now see why it is natural to require that § < O(1/q). Since dereference tables can use up to O(n) space for
metadata, the total amount of space consumed by a dereference table may be as large as ng+0O(n) = (1—-96)nq+dnq+0(n).
The first term (1 — §)nq is space that allocations can make use of, the second term dnq is space that is allocated but not
used, and the third term O(n) is metadata. The second and third terms dnq and O(n) cumulatively represent the total
amount of space not used by allocated objects. There is no point in the user specifying a value of §, g that results in
dng = o(n), because this does not reduce the total amount of extra space below O(n). Thus, we can assume without loss

of generality that the user is constrained to § < O(1/q).

Failure probability. We will permit allocations to have a small failure probability. That is, each allocation is permitted to
fail with probability 1/poly(n),? in which case the allocation simply returns a failure message rather than a tiny pointer.
In general, if a random event occurs with probability 1 — 1/poly(n), we say that it occurs with high probability (w.h.p.).
Note that here, and throughout the paper, we use poly(n) to mean n¢ for some large positive constant ¢ of our choice.
We remark that, when analyzing dereference tables, we shall always assume that the sequence of allocations, frees,
and dereferences are determined by an oblivious adversary (i.e., the sequence is determined ahead of time, rather than
adapting to the behavior of the dereference table). One consequence of this is that, if a given allocation fails, the only

effect on the operation sequence is that the corresponding call to FREE is removed.

Hashing and independence. Our dereference-table constructions will all make use of hash functions. For simplicity,
we shall treat hash functions in this paper as being uniform and fully independent. This assumption is without loss of
generality since there are already known families of hash functions [31, 50] that simulate n-independence with constant-

time evaluation and linear space, and there are already well understood techniques [6, 28, 46] for applying these families

8Note that, even though a dereference table only guarantees the ability to store up to (1 — §)n allocations at a time, we still use the terms “size” and
“capacity” of a dereference table to refer to n, rather than (1 — §)n, since n represents the total number of g-bit entries in the store.
9Specifically, this means that the dereference table depends on some constant ¢ > 0 and fails with probability at most 1/n¢.

9

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499

501
502

504
505

507
508

510

511

513
514

516
517

519

520

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

to data structures that require n®(1)-independence, while using space only O(n¢) bits to store the hash function.!? These
known techniques can easily be applied directly to all of our data structures; the only caveat is that the families of hash
functions being used [31, 50] introduce their own additional 1/poly(n) failure probability to the data structure. So, even
if a data structure offers sub-polynomial failure probability under the assumption of fully random hash functions, if we

wish to use an explicit family of hash functions, then we must allow for a 1/poly(n) failure probability.

3 WARMUP: A SIMPLE CONSTRUCTION AND A SIMPLE APPLICATION

To ease the reader into the notion of a tiny pointer, we we begin in this section with two simple but illustrative warmups.

A simple dereference table. Our first warmup is a tiny-pointer construction that supports g > logn and § = 1/logn.
This construction will not be sufficient for any of our applications in Section 7, but it does illustrate some of the basic
principles for how to design a dereference table. Additionally, it serves as a simple demonstration of how, once we have

the abstraction of a tiny pointer, it is actually relatively simple to get from there to a nontrivial result.

THEOREM 3.1 (WARMUP CONSTRUCTION). Letq > logn and § = 1/logn. There is a dereference table for q-bit values
that (i) succeeds on each allocation w.h.p., (ii) has load factor 1 — 6, (iii) has constant-time operations, and (iv) produces tiny

pointers of size O(log log n) bits.
Our construction will make use of the following basic fact:

CraiM 3.2. Suppose we throw (1 — &)n balls inton/b bins, where the throws are independent and uniformly random. If
8 = 1/logn and b = log* n, then we have w.h.p. in n that every bin contains fewer than b balls.

Proor. It suffices to show that, w.h.p., each individual bin contains fewer than b balls. For a given bin, the number
of balls that go to that bin is a sum X of i.i.d. indicator random variables with mean g = b - (1 —). By a Chernoff bound,
we have for any k € O(+/pi) that

Pr[X > pi+ky] < 2720,

Plugging in k = log n we can conclude that
Pr[X > p+logn - Vmu] < 27°0°8" < 1/poly(n).
Since pt +log ny/ii = (1 - 6)b +logn - \/(1——5)17 < (1—=38+1logn/Vb) - b = b, we can conclude that
Pr[X > b] < 1/poly(n),

as desired. O
We can make use of Claim 3.2 to prove Theorem 3.1 as follows.

PROOF OF THEOREM 3.1. We partition the store into n/b buckets, each of which has b = log? n slots. Each key x hashes
to a random bucket h(x) € [n/b]. Whenever a key x is allocated, it is allocated one of the b slots in bucket h(x). If the
key is allocated the p-th slot in the bucket, then the number p is returned as the tiny pointer for x. Not only does this
result in tiny pointers of length log b = O(log log n) bits, but it also makes the dereference function trivial to implement:
The function DEREFERENCE(x, p) simply returns a pointer to the p-th slot of bin h(x).

1The basic idea is to replace the data structure of capacity n with n!~¢ data structures of capacity n¢. Each item x in the full data structure gets hashed
at random to one of the n'~¢ data structures (using an O (1)-independent hash function), each of which only requires (n¢)°(!) = o(n) independence.

10

521
522
523
524
525
526
527
528

529

546

565
566
567
568
569
570
571
572

Tiny Pointers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

It’s important to emphasize the role that Claim 3.2 plays here. The claim tells us that, whenever a key x is allocated,
we have w.h.p. that bin h(x) contains at least one free slot that x can use. In the low-probability even that there is no such
free slot, we can afford to declare failure.

Finally, there is one nontrivial algorithmic question that we must tackle: How can the allocation function efficiently
find a free slot in bucket A(x)? Within each bucket, we store a free list, which is a linked list keeping track of the free
slots in the bucket. The internal nodes of the linked lists can be kept in the store, with the node that represents a given
free slot s being stored in that slot. Additionally, each bucket must store the head pointer for its linked list as external
metadata, but this takes very little space, coming out to O(log n) - n/b = o(n) bits. With a free list for each bin, it becomes
straightforward to implement allocations/deallocations in O(1) time.

In summary, whenever a key x is allocated, it is assigned to a free slot within bin A(x). If it is given the p-th slot of the
bin, then the number p acts as its tiny pointer. If the same key x is later dereferenced, then the function DEREFERENCE(x, p)
simply returns a pointer to the p-th slot of bin h(x). We know by Claim 3.2 that each allocation will succeed w.h.p., and

we can use a free list within each bin to implement both allocations and deallocations in time O(1). O

Although the above construction is quite a bit simpler than most of the constructions that will appear later on, it is
nonetheless a good starting place for how to think about constructing tiny pointers. It demonstrates the important role

that hash functions serve, and the relationship between tiny pointers and balls-and-bins games.

A simple application: binary search trees. As a simple application, let us consider the task of compressing a rotation-
based binary search tree. We will present this application in more detail (and with much better bounds) in Section 7, but
for now, we will use it a simple example of how to apply tiny pointers.

In a standard search tree, each node stores three things: a key k, a left-child pointer p1, and a right-child pointer ps.
We can replace p; and py with tiny pointers that are each dereferenced using key k. So, for example, to determine where
the node’s left child is stored, we simply calculate DEREFERENCE(k, p1).

Part of what is nice about this approach is that it allows for straightforward edits to the search tree. If we want
to perform a rotation, we just need to update O(1) tiny pointers, which, in turn, corresponds to performing O(1)
allocations/deallocations.

With abit of care, this approach can be used to reduce the space used per pointer to O(log log n) bits per node. This bound
is far from optimal (and can also be achieved with already-known data-retrieval techniques, see, e.g., [26]). Nonetheless, it
is a good example of how to use tiny pointers, and it is a demonstration of how even our warmup construction (Theorem

3.1) can be used to get results that, a priori, are nontrivial.

4 UPPER BOUND FOR FIXED-SIZE POINTERS

In this section, we give optimal constructions for fixed-size tiny pointers. We prove the following theorem:

THEOREM 4.1. Let§ € (0, 1) be a parameter. There is a dereference table for q-bit values, for any q, that (i) succeeds on
each allocation w.h.p., (ii) has load factor at least 1 — &, (iii) has constant-time dereferences and has constant-time updates

w.h.p., and (iv) has tiny pointers of size O(log loglog n + log §71).

In particular, for § = 1/loglog n, we get tiny pointers of size O(logloglog n). Thus, we can doubly-exponentially beat
raw log n-bit pointers, while still supporting a load factor of 1 — 0(1).
The proof is the simplest of our tiny-pointer constructions, and makes use of two algorithmic building blocks.

11

573
574
575
576
577
578
579
580

581

586

603

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

The first building block: load-balancing tables. A load-balancing table is a simple type of dereference table that
has a very specific internal representation, and that, unlike normal dereference tables, is permitted to fail on calls to
ArLocATE with a probability larger than 1/poly(n). Roughly speaking, if a load-balancing table has load factor 1 — J, then
the load-balancing table is permitted to fail on a §-fraction of allocations.

Load-balancing tables are implemented as follows. If the store is of some size m, then we partition it into m/b buckets of
size b = ©(572log 6~ 1), where the constant in the © notation is selected to be sufficiently large. To allocate a slot for key
x, we hash x into one of the buckets, using a hash function h. If bucket h(x) contains a free slot, then we allocate any free
slot i € [b] within that bucket, and we return i as the tiny pointer. Otherwise, all b slots in the bucket are occupied, and
the allocation fails. The function DEREFERENCE(x;, i) can then be implemented to simply return the i-th slot in bin h(x).

Load-balancing tables will serve as a building block in the dereference tables that we construct. The basic idea is
that we can use a load-balancing table to handle all but a §-fraction of allocations, and the remaining allocations can be
handled via some other mechanism. Thus, we will need the following lemma which bounds the total number of failed
allocations that are alive at any given moment (where we consider each allocation to be alive up until the time at which

the corresponding free occurs, even if the allocation fails).

LEMMA 4.2. Consider a load-balancing table with size m and load factor 1 — 5, where § < 1/2. Consider a sequence of
allocations and frees, where at most (1 — 8)m allocations are alive at a time. Then, at any moment, the number of allocations

that have failed and are still alive is Sm with probability at least 1 — exp(—5o(l)m).

We remark that in all of our applications of Lemma 4.2, we will have w.l.o.g. that log § 1= o(log m) (since, otherwise,
we would have log §~! = Q(log m) and so could just use standard O(log m)-bit pointers instead of dereference tables).
Thus the probability bound offered by the lemma will always be at least 1 — exp(—ml_"(l)) > 1—1/poly(m).

We defer the proof of Lemma 4.2 to Section 8.1, which establishes a more general version of the lemma. Although the
proofis nontrivial, due to interdependencies that form from the same key potentially being allocated/freed/reallocated
many times, we do not view it as one of the main technical contributions of this paper. This is because Lemma 4.2 follows
easily from a lemma established in our recent paper on space-efficient hash tables [10]. Still, we present an alternative
proofin Section 8.1 both for completeness, as well as because the proof takes a somewhat different (and more elegant)
approach than in our past work, and in order to cover a larger parameter regime.

To conclude our discussion of load-balancing tables, we must describe how to implement allocations and frees in
constant time. Here, there are two cases, depending on how b compares to the size n of the dereference table that the
load-balancing table is being used within.

If b < log n, then we can store a b-bit bitmap for each bucket indicating which slots in the bucket are free; and we can
use standard bit-manipulation on the bitmap to implement the allocation and free functions in constant time.

We take a differentapproachif b > log n.Inthis case, we claim that without loss of generality, ¢ = w(log b), where gis the
size in bits of each of the items being stored (we will prove this claim in a moment). This claim means that we can keep track
of which slots are free in each bucket of aload-balancing table as follows: we simply store a free list in each bucket, thatis, a
linked list consisting of all the free slots, where each free slot contains a pointer to the next free slot in the list. This is possible
since each free slot is g bits and each pointer in the linked list needs only log b = o(q) bits. The log b-bit base pointers of
the m/b linked lists can be stored in an auxiliary metadata array of size O((m/b) - logb) < O(m), where m is the size of

the load-balancing table. The free lists makes it possible to implement the allocation and free functions in constant time.!!

111t is tempting to try to store the metadata for the free list in the slots that are themselves free—however, a dereference table must be able to support
even the case where g is very small, meaning that the metadata per free slot could actually exceed the size of the slot.

12

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676

Tiny Pointers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

To prove that this free-list approach works, it remains to show that ¢ = w(log b) without loss of generality. Let 1 — é be
the load factor of the full dereference table (that the load-balancing table is part of) and let 1 — y be the load factor of the
load-balancing table. Since b > log n, we must have y~! = f)(\/loE). In all of our constructions of dereference tables (i.e.,
the constructions in both this section and in Section 5), if we use a load-balancing table with load factor 1 — y satisfying
y~1 = Q(+flogn) (or even y~! = w(loglogn)), we will always have log ~' > Q(logy~!). Recall that, if a dereference
table has load factor 1 — 8, then it is assumed that the dereference table is storing objects of size g > Q(5~!) bits. Thus,
we have that ¢ = w(log671) = w(logy™!) = w(logb), as desired.

The second building block: a power-of-two-choices dereference table. To compensate for the higher than desired
failure probability of load-balancing tables, we develop our second building block: a simple dereference table that supports
O(logloglog n)-bit tiny pointers and has a lower failure probability than a load-balancing table. The downside of this

second building block is that it only supports a very small load factor.

LEMMA 4.3. There exists ad satisfying 1 — § = ©(1/loglogn), such that there is a dereference table that (i) succeeds on
each allocation w.h.p., (ii) has load factor at least 1 — &, (iii) has constant-time updates w.h.p., and (iv) has tiny pointers of

size O(logloglogn).

The proof of Lemma 4.3 will make use of a celebrated balls-and-bins result [59, 60]—for more background on this result,

see also Section 8.

ProoF. We partition the store into buckets of size b = ©(log log n). When ALLOCATE(x) is called, the key x is hashed
to two buckets hq(x), ha(x) € [1,n/b]. The key x is allocated a slot in whichever of the two buckets contains the most free
slots. The tiny pointer p is 1 +log b = O(log log log n) bits long , and indicates which slot in the two buckets was allocated.

We can think of the allocations as balls that are inserted into bins using the power-of-two-choices rule [59, 60], with
the same ball possibly being inserted/deleted/reinserted over time. Since the load factor is ©(1/log log n), the expected
number of balls in each bin is O(1). In this setting, it is known that, w.h.p., the number of balls in the fullest bin is
O(loglogn) [59, 60]. Thus allocations succeed w.h.p.

Finally, to implement allocations and frees in constant time, we can just use a bitmap to keep track of which slots in
each bucket are free; since each bucket is only O(log log n) slots, the bitmaps are each only O(log log n) bits, and thus
each bitmap fits into a machine word. Using standard bit manipulation, the bitmaps can be used to keep track of which
slots are free in constant time per allocation/free (and to find a free slot for a given allocation also in constant time). The

bitmaps consume a total of O(n) bits of space. O

Putting the pieces together. Of course, power-of-two-choices dereference tables are not very useful on their own,
because they only support 0(1) load factors, whereas load-balancing tables have too high a probability of failure on

allocation. We now show how to combine the two data structures in order to prove Theorem 4.1.

PROOF OF THEOREM 4.1. Since we are willing to have tiny pointers of size ©(log loglog n + log §~1), we can assume
without loss of generality that § = o (m).

We store a 1 — §2 fraction of the allocations in a load-balancing table of size m = (1 — §/2)n slots that supports load
factor 1 — 82 /¢ for some sufficiently large positive constant c; we call this the primary table. Allocations that fail in the
primary table are handled in a secondary table implemented with Lemma 4.3 to have size n’ := §n/2 slots and support

load factor 1 — §” := ©(1/loglogn’). If an allocation fails in the secondary table, or if the load factor of the secondary
13

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

b=0(6"*logs 1)

" O(loglogn)
—
Total size overflow Total size
=(1-6/2)n — n' = n/2
Primary table Secondary table
(load-balancing table) (power-of-two-choices table)

Fig. 1. A pictoral representation of the layouts of the primary and secondary tables. The primary table is implemented to support
load factor 1 — ©(8?), so that only §?n allocations overflow to the secondary table at a time. The secondary table is implemented
to have size n’ = 6n/2 and to support a (much sparser) load factor of ©(1/loglogn’) = w(J), so that it can successfully store all of
the overflowed allocations from the primary table.

table ever exceeds ©(1/loglogn’), then the allocation fails in the full dereference table as well. Note that the total size
(in terms of slots) of the primary and secondary tables is n. See Figure 1 for a picture of the layouts of the two tables.

Since both the primary and secondary tables have constant-time operations, so does the full dereference table. Ad-
ditionally, each allocation can return a tiny pointer that is either in the primary table or in the secondary table (plus 1
bit of information indicating which table it is being pointed into). Since the primary and secondary tables both have tiny
pointers of size O(log log log n + log §~1), the claim about tiny-pointer size is also proven.

Our final task is to bound the probability of a given allocation failing. Lemma 4.2 tells us that the number of keys
allocated in the secondary table will be a most %n at any given moment w.h.p. Since the secondary table has n’ = ©(8n/2)

slots, and since § = o () it follows that the number of allocations in the secondary table at any given moment

1
loglogn
is o(n’ /loglogn) = o(n’/loglogn’) with high probability. We therefore get from Lemma 4.3 that the allocations in
the secondary table each succeed with high probability in n’. Without loss of generality, n’ > +/n (since otherwise
8 < O(1/+/n), and we can just use standard log n-bit pointers). Thus the allocations in the secondary table each succeed

with high probability in n. O

5 UPPER BOUNDS FOR VARIABLE-SIZE POINTERS

In this section, we give optimal constructions for variable-size tiny pointers. We prove the following theorem:

THEOREM 5.1. Let S € (0, 1) be a parameter. There exists a dereference table that (i) succeeds on each allocation w.h.p., (ii)
has load factor at least 1 — &, (iii) has constant-time updates w.h.p., and (iv) has tiny pointer size O(P +log 6~ 1), where P is

a random variable such thatPr [P > i] < 2% for alli. In particular, the tiny pointer size is O(1 +log §~) in expectation.

We can assume without loss of generality that § < a for some sufficiently small positive constant & of our choice (if
d > a, we canreset § = a = ©(1) without changing the guarantee of the theorem).
Observe that, using the same primary/secondary-table construction as in the proof of Theorem 4.1, we can immediately

reduce to the case where the load factor is a positive constant of our choice. Indeed, suppose that we could implement
14

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

b=0(1)
-
s =clogn | | | i <—— load-balancing tables
L 1 1 Annp
T 1] [Y
| | | i <—— overflow tables
s =clogn | | | !

level 0 level 1 level 2 level 3 o o o

Fig. 2. A pictoral representation of the layout used to implement each container of size ©(log /). When an allocation fails in the i-th
load-balancing table, it either proceeds to the (i + 1)-th load-balancing table (if Lj+1 < si+1) or it proceeds to the i-th overflow table
(which is deterministically guaranteed to have a free slot).

a dereference table T with load factor « for some positive constant & > 0 and average tiny pointer size O(1). Then we
can use T as the secondary table in the construction: if the entire dereference table supports load factor 1 — §, then the
requirement for the secondary table is that it must be able to support §?n items using dn/2 slots. So as long as § < a/2
(which can be assumed without loss of generality), then T suffices.

Thus our task of proving Theorem 5.1 reduces to the task of proving the following proposition.

PROPOSITION 5.2. There exists a dereference table that (i) succeeds w.h.p. on each allocation, (ii) has load factor Q(1), (iii) has
constant-time updates w.h.p. inn, and (iv) has tiny pointer size P, where P is a random variable satisfyingPr [P > i] < o2

foralli.

Let 71 be the maximum number of keys that can be allocated in the dereference table. We will construct a dereference
table with n = O(#) slots. Because 7t and n are only a constant factor away from one another, we may use O(#) bits of

metadata, and allow failures with probability 1/poly (7).

Constructing the dereference table. We now describe our construction for the dereference table that we use to prove
Proposition 5.2. The dereference table hashes every allocated key into one of 7i/log i containers, so that, at all times, each
container has log 7 items in expectation. We deterministically limit the number of items in each container to s = clog 1,
for some large enough constant ¢ > 1 to be determined later. When a key is hashed into a container that already has
clog fi items, the allocation fails.

Each container is managed independently, and its allocations/frees are performed using a scheme with log, s levels,
as follows. For every 0 < i < log, s, the ith level is a load-balancing table with s; := s/2! buckets, each with b slots, for

some large enough constant b > 2 to be determined.

781
782
783
784
785
786
787
788
789
790
791
792
793
794

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

The basic idea is that, when an allocation in level i fails due to a bucket being full, we recursively attempt the allocation
in the next level i + 1 (which uses a different hash function than does level i). Intuitively, as long as b is a sufficiently large
constant, then each level should succeed on at least 1/2 of its allocations, which is why we can afford to let the next level
i + 1 have half the size of the previous one.

The problem with this basic construction is that if even just a few consecutive levels behave badly, resulting in w(s;)
items being sent to some level i, then there may not be room for those items in all of the levels i, . . ., log, s combined. On
the other hand, our construction must be able to handle such bad scenarios, because most of the levels are so small that
we cannot offer high-probability guarantees on their behavior. Thus, we must modify the construction so that, when
alevel behaves badly, the effects of that bad behavior are isolated.

To do this, we add a fallback structure to each level, which we call overflow array, to prevent excessive occupancy.
The overflow array in each level i has s; slots (the same number of slots as the load-balancing table at that level). Let L; be
the random variable denoting the number of values currently stored in levels i or larger, including their overflow arrays.
Whenever an allocation at some level i fails (because the bucket is full), we recursively allocate in the next level only
if Lit1 < si+1, otherwise we place the value in any available slot in the overflow array of level i. The result of this is that
we deterministically guarantee L; < s; for every level i (including level 0, for which this is trivial, since sy = s).

Importantly, no overflow array can ever run out of space: since L; < s; (deterministically), the total number of items
in the overflow array for level i is also a guaranteed to be a most s;, which is precisely the capacity of the overflow array.

We are now ready to describe the full allocation algorithm. See Figure 2 for a picture of the layout used to implement

each container.

ALLOCATE(x):

(1) Hash x into one of the 7i/log i containers.
(2) Ifthe selected container is already at full capacity s, fail.
(3) Else, allocate x in the selected container:
(@) Foreachi=0,1,...,logy(s) —1:
(i) IncrementL;.
(if) Try to allocate x in the ith load-balancing table.
(iii) If the allocation succeeds:
e Let j be the chosen slot within the chosen bucket.
e Return (level i, load-balancing table, bucket slot j).
(iv) fLi+1 = sivr:
o Pick any free slot in the i-th overflow array.
o Let j be the chosen slot in the array.

e Return (level from the back log,(s) —1—1i, overflow array, slot j).

Notice that if an allocation ends up using a slot j in some bucket in the i-th level’s load-balancing table, then the tiny
pointer encodes: the quantity i, which is O(log i) bits; the fact that the allocation used the load-balancing table rather
than the overflow array, which is O(1) bits; and the quantity j, which is O(log b) = O(1) bits. The total length of the tiny
pointer is O(log i) in this case.!?

12We follow the convention that log i = Q(1) for all i, so log 0 and log 1 are set to 1.
16

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

849

851
852
853
854
855
856
857
858
859
860
861
862
863
864

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

Tiny Pointers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

On the other hand, if an allocation ends up using the j-th slot in the i-th level’s overflow array, then the tiny pointer
encodes: the quantity log, (s) — 1 — i, which is O(log(log, (s) — 1 — i)) bits; the fact that the allocation used the overflow
array rather than the load-balancing table, which is O(1) bits; and the quantity j, which is O(log s;) bits. Importantly,
in this case, we elect to encode log, (s) — 1 — i, rather than the equivalent quantity i. This allows us to bound the total

size of the tiny pointer by
O(log(log,(s) —1—1)) + O(1) + O(log s;) = O(log Iog(s/zi) +logsi) = O(loglogs; +logs;) = O(logs;).
Thus, when an allocation uses the overflow array in level i, we can bound the tiny-pointer size by O(logs;).

Implementing operations in constant time. The information in the tiny pointers enables dereferences to easily be
performed in time O(1). Performing allocations and frees in time O(1) is slightly more difficult, however.

Let us start by considering the naive approach to implementing allocations and see why this is too slow. We must first
identify which container to use (this just requires us to evaluate a hash function, taking constant time). We must then
determine which level we will be using; if we end up using level i, then this takes time © (i), which is too slow when i = w(1).

We solve this problem as follows. Let d to be some sufficiently large positive constant. We will implement levels
0,1,...,d — 1 using the naive approach, and then we will implement the levels d, . . ., log, s using the Method of Four
Russians (i.e., the “lookup-table approach”). Notice that, since d is at least a sufficiently large positive constant, the total
number of slots in the levels d, . . ., log, s is at most 4s;/ 24 < (log 71)/10. Thus the entire state of which slots are free in
those levels can be encoded in (log i) /10 bits; we store this quantity as metadata for each container, totaling to O(#) bits
of metadata across all 7i/log i containers. Moreover, the hash values h; (x), h2(x), .. ., g, s (x) that are used to select a
bucket in each level together represent only O((log log 11)?) bits (and can be implemented to just be the first O((log log #)?)
bits of a single hash function). Thus, the entire state of levels d, . . ., log, s, plus all of the information about the hash values
hi(x), ho(x),..., hlog2 s(x), can be encoded in an integer ¢ of (log 1) /2 bits that can be constructed in time O(1). This
means that we can pre-construct a lookup table of size 2(087)/2 — \/fi that we can use to determine, for any given value
of ¢, which level the allocation should use. The lookup table takes a negligible amount of metadata space, allows for
allocations to be performed in time O(1), and can be constructed in time O(Vh) during the dereference table’s creation.

Now that we have specified how to implement allocations, frees are simple to implement, since they just update the
metadata to reflect that the slot has been freed (this just flips a single bit in the metadata).

We have now fully specified the construction and implementation of our dereference table. It remains to analyze its

properties, namely the probability of failure, the load factor, and the tiny-pointer sizes.

Probability of failure. The only way that an allocation can fail is if there is no room in the container that it hashes to,
i.e., the container has c log 1 items already. Otherwise, if the container has fewer than c log 7 items, then the allocation
is guaranteed to succeed (but, of course, it is not guaranteed to result in a small tiny pointer).

On average, log 71 keys hash to any particular container, so by a Chernoff bound the maximum size across all containers
is at most ¢ log i w.h.p. in i for some positive constant c. By the union bound, this holds for all of the 7i/log 7 containers
simultaneously, w.h.p. in 7i. Thus, if we pick s = ¢ log 7i for some large enough constant c, at any point in time, all containers

will be below capacity w.h.p. in 7.

Load factor. Next, we verify that the total number of slots is O(71). The dereference table for each container uses space
O(X;si) = O(so) = O(s) = O(log 1) slots, and there are 71/log 7 containers. Hence, the total space is O(#1), so the load
factor is Q(1), as desired.

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

Tiny pointer size. To conclude the proof of Proposition 5.2, we analyze the tiny pointer size of a given allocation,
conditioned on the event that the allocation doesn’t fail. The size of the tiny pointer depends on which level the key ends

up allocated in. Specifically, as we have seen above:

e O(logi) if the key is allocated in the ith load-balancing table;
e O(logs;) if the key is allocated in the ith overflow array.

Fix an arbitrary container to be the one where the allocation takes place, and consider the following events:

e B;:the key is allocated in the ith load-balancing table;
e O;:the key is allocated in the ith overflow array;
o [i:L; <s;.

We will condition on two events: (i) that the item picks the container we fixed, and (ii) that the container contains fewer
than clog 71 items (i.e., the allocation doesn’t fail). We will drop the conditioning notation for clarity. Let P be the size

of the output tiny pointer. Then, by the law of total expectation,
E[P] < ZPr [Bi] - O(log i) +ZPr [0:] - O(log s;). 1)
i i
We bound each term separately. On the one hand,
Pr[8B;] < Pr [EJLE, . ..,Li—b@]
<Pr [?@] -Pr [E | E,L1] -+ Pr [K | 3#0,.51,..4,%,.&_1] . (2)

In the last product, for every j € {1,...,i — 1}, the load factor of the load-balancing table in level j is at most 1/b,
because there are Lj < s; items, s; buckets, and each bucket has capacity b. This means that at most 1/b of the bins are
full, deterministically, so the probability that a full bucket is chosen is Firat most 1/b. Hence, every term in Equation (2)
is bounded by 1/b, and

Pr(8;] < 1/b < 1/2%

On the other hand,

Pr[O;] < Pr[Li1].

We can bound the latter probability using Lemma 4.2. By construction, the load-balancing table in level i always has at
most s; allocations made to it (including the failed ones, since L; < s; and L; counts both the items in level i and the items
inlevelsi+ 1,i+ 2,...); moreover, the allocations and frees performed on the load-balancing table (which may differ
from those performed on the overall dereference table) are independent of the randomness used in the load-balancing
table. Assuming that the bucket size b is a sufficiently large constant, it follows that we can apply Lemma 4.2 (where the
value of m being used in the lemma is s; and the value of § being used in the lemma is a small positive constant) to deduce
that, with probability at least 1 — exp(—Q(s;)), the number of failed allocations at level i at any given moment is less than

si/2 = si4+1. This, in turn, implies that £;,1 holds. Thus we can conclude that
Pr[O;] < 1/2909).

Putting the pieces together,

E[P=)) O(lzoig D, Z Oz(g’(is)i) - 0(1).

i
18

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

Notice that these calculations show that a tiny pointer of size O(log ¢) has probability 272 o, equivalently, a tiny

Q
pointer of size O(f) has probability 272 “ This suggests that the tiny pointer size decays at a doubly-exponential rate.
We prove this next. For any ¢, in order for P > ¢ to occur, there must exist a positive constant y such that at least one

oflogi orlogs; is at least y¢. It follows that

Pr[P > ?]

IA

DB+ Y Pr(o)]
i>2rt s;i>2r¢
1 1
= Z — + Z —_—.
i Q(s;
i>avt 2 s;>2ve 29(s)
Both sums are dominated by their first terms, and are thus 1/ 220(” . Therefore,

1

Pr[P > f] SW,

which completes the proof of Proposition 5.2. As discussed earlier, Proposition 5.2, in turn, implies Theorem 5.1.

Bounding sums of tiny-pointer sizes. In our applications of tiny pointers, a common way of using variable-size

pointers will be to pack © (101;%

on the total number of bits consumed by a set S of O(log n/log §~!) tiny pointers.

) of them into ©(log n) bits. Therefore, we conclude this section by proving a bound

logn
log 671!

PROPOSITION 5.3. Using the construction in Theorem 5.1, for any set S of O () tiny pointers, the sum of their sizes

will be O(log n) bits w.h.p.

Proor. With high probability, all of the allocations for S succeed. This means that we can ignore the case where
allocations fail, so when an allocation fails, we shall treat it as contributing a tiny pointer of size 0.

Let K be the set of keys corresponding to the tiny pointers in S. The easy case is if every key x € K hashes to a
different container; in this case, we can analyze each container separately to conclude that each tiny pointer ALLOCATE(x)
independently has length O(log §~! + Py) bits, where Pr[Py > £] < 920

independent geometric random variables, we can conclude that)}, cx Px < O(logn) w.h.p., and thus that the total

. Applying a Chernoff bound for sums of

number of bits consumed by S is O(log n).

What if some of the keys x € K hash to the same container as other keys from K? Then we can no longer analyze
the lengths of the resulting tiny pointers independently. Let X denote the set of such keys x. Since each tiny pointer is
deterministically at most O(log n) bits, we can complete the proof by establishing that, with w.h.p., | X| = O(1).

Let x1, x2, . .. denote the keys in K, and let X; be the indicator random variable for the event that x; hashes to the
same container as one of x1, x, . . ., x;—1. Then | X| < 2 }}; X;. On the other hand, each X satisfies E [X;] < (i—1)/n <
IS|/n < O((logn)/n). Thus ¥; X; is a sum of independent indicator random variables with total mean O((log? n)/n).
Applying a Chernoff bound, we will conclude that }}; X; = O(1) w.h.p., which completes the proof. Specifically, if we
set i = E[X] = O(log® n/n) and § = yu~! for some large positive constant y, then

9)'u o 0(1)

= 1/poly(n).

Pr[X = w(1)] < Pr[|X —E[X] > (1+d)p] < ((1+5)1+5 < (170)0n < T+0)7

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

6 LOWERBOUNDS

In this section we prove that the bounds in Theorems 4.1 and 5.1 are tight. We begin by proving a lower bound for
variable-size tiny pointers, since it is then used as part of the proof for the fixed size case.

What makes the lower bound for variably sized tiny pointer tricky is that any single tiny pointer might be very small.
For example, the dereference table could have a single special slot that corresponds to the tiny pointer 0 (for every key),
and then if the dereference table ever wanted to make a single tiny pointer small, it could allocate the special slot. Thus,
our proof treats different types of slots differently: for each slot j, we define a potential function ¢(j) indicating how
“useful” that slot is to a random insertion. The idea is that insertions that use slots j with small potentials ¢(j) must,
on average, have relatively large tiny pointers; but insertions that use slots j with large potentials ¢(j) must be rare,
since only a relatively small fraction of the slots can have large potentials, and the number of insertions into them can

be bounded by the number of deletions out of them.

THEOREM 6.1. Consider a universe U of keys, where U is assumed to have a sufficiently large polynomial size. If a

dereference table supports variable-size tiny pointers of expected size s and load factor 1 — § = Q(1), thens = Q(log671).

PrOOF. Let U be a universe of size n® where c is a sufficiently large constant. Let § < 1/4. Let T be a dereference table
with n slots and load factor 1 — & (i.e., it is capable of allocating up to (1 — §)n slots to keys from U at a time). Moreover,

suppose that T guarantees an expected tiny-pointer length of at most y. Then we wish to show that
u > Qlogé™h).

To simplify our discussion, we shall think of a key x € U as residing in the location that is allocated to it. Thus
allocations correspond to insertions, and frees correspond to deletions.
Consider a workload in which the table is initialized to contain (1 — §)n arbitrary items, and then we alternate between

insertions and deletions for n¢/2

steps. Each insertion selects a random item of U (with high probability in n, we never
insert an item that is already present), and each deletion selects a random item out of those present.
We treat tiny pointers as taking values in N. If the tiny pointer takes value i, then it uses Q(log i) bits. For each item
x € U, let hi(x) denote the position where x would reside in T if x had a tiny pointer with value i. Set £ = §~1/32. For
each position j € [n] in the table, define the potential $(j) to be
{0 [x e U ie[t] hi(u) = j}
[U| '

Call an insertion safe if the item x that is inserted is inserted into one of positions A1 (x), ..., h¢(x). Call an insertion

P() =

resource efficient if the item x that is inserted is inserted into a position j satisfying ¢(j) < 7.
We begin by bounding the probability that a given insertion is both safe and resource efficient. Consider some point

in the operation sequence, with some set X of keys present in the table. Now consider the insertion of some key x ¢ X.

20

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

The probability that the insertion is both safe and resource efficient is at most

4

)y 2. P hix) =]

empty position je[n] i=1

PN
_ 5 Z":|{x|xeﬂ\xm<x>=j}|
empty position je[n] i=1 [UAX|
Py
3
[{x|x € U A hi(x) = j}
<2
SR YRS D
empty position je[n] i=1
O
=2 > $(J)
empty position je[n]
(<Y
4¢
<2 =
< Z .
empty position je[n]
= 25ng
n

1
T
It follows that the expected number of insertions that are safe and resource efficient is at most nt/2/4.

Next we bound the expected number of insertions A that are safe but not resource efficient. Rather than bound A directly,
we instead examine the number of deletions B where the deleted item is deleted from a position j satisfying ¢(j) > %.

With the exception of the up to n insertions that have not yet been deleted, every insertion counted by A is counted by B, so
A<B+n.

By the definition of ¢(j), we have that Z;.l:l ¢(j) = ¢. Tt follows that [{j € [n] | ¢(j) > 47‘)}| < n/4.Each random
deletion therefore has probability at most (1?454)” < 1/2 of removing an item in a position j satisfying ¢(j) > %. Thus
E[B] < n/?/2 which means that

E[A] < n®/?/2+n < (1+0(1)n/?)2.

The expected number of safe insertions is therefore at most (1+0(1)) %nc/ 2 which implies that the expected number of
unsafe insertions is at least Q (nc/ 2). Each unsafe insertion results in a tiny pointer of length at least Q(log £) = Q(log §~1)
bits. Since a constant fraction of the insertions are expected to result in a tiny pointer of length at least Q(log §71), we

must have y > Q(log §71). o
Next we prove a lower bound for fixed-sized tiny pointers, which shows that the bound in Theorem 4.1 is tight.

THEOREM 6.2. Consider a universe U of keys, where U is assumed to have a sufficiently large polynomial size. If a

dereference table supports fixed-sized tiny pointers of size s and load factor1— & = Q(1), thens = Q(logloglogn +log §1).

It suffices to prove that s = Q(log log log n), since we have already shown that s = Q(log §71).
The proof re-purposes a classic balls-and-bins lower bound. Say that a ball-placement rule is sequential if balls are

placed sequentially, without knowledge of future ball arrivals, and if balls are never moved after being placed.
21

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

1093 THEOREM 6.3 (THEOREM 2 IN [59]). Suppose that m balls are placed sequentially into m bins using an arbitrary sequential

194 pall placement rule, where each ball chooses between d bins that are selected independently at random according to an arbitrary

probability distribution on [m]9. Then the number of balls in the fullest bin is (loglog m)/d + O(1) w.h.p.

1095
1096
1097

10%% We now prove Theorem 6.2.

1099
1100
1101

1102 PRrOOF OF THEOREM 6.2. Assume for contradiction that there exists a dereference table with load factor 1 — § = Q(1)
1103
o that supports fixed-size tiny pointers of size s = o(log log log n) bits. Let n be the number of slots in the dereference table,

105 andletm = (1 — d)n be the maximum number of allocations that the dereference table can support at a time; assume

1106 without loss of generality that 1/(1 — §) € N, so n is a multiple of m. Finally, let S = 2%, and observe that, by assumption,
1107

S = o(loglog n)—and since m = ©(n), S = o(loglog m).
o Recall that U is the universe from which the keysare taken. For eachkey x € U, define the sequence hy (x), ha(x), ..., hs(x) €

1109
uo |m] sothat hj(x) = | PDEREFERENCE(x, i) |. Note that, by the definition of the DEREFERENCE function, the sequence

1111 hi(x), ha(x), ..., hs(x) is a function of only x, i, n, and the random bits of the dereference table—therefore, the sequence
12 js predetermined by the coin flips, and is independent of the sequence of allocations/deallocations that are performed.
P LetRe [m]® be a random variable obtained by selecting x € U at random and setting R = (hy(x), b2 (x), ..., hs(x));

1114

115 andlet R be the probability distribution for R.

1116 We will now construct a sequential ball-placement rule for mapping m balls to m bins. Our rule independently assigns

M7 each ball arandom bin sequence (h1, h, ..., hs) ~ R of S bins. Equivalently, we can think of the m balls as being m keys

1118

o X1, X2, - - ., Xm, where each x; is selected uniformly and independently at random from U, and each x; has a bin sequence
o of (hi(x), ha(x), ..., hs(x)) € [m]S.
1121 Since |U| is at least a sufficiently large polynomial in n, we have that with high probability in n, the x;’s are distinct.

1122 Qur ball placement rule runs the dereference table on the side and uses the tiny pointers that it produces to decide where
1123
e fO place balls. To place ball x; into a bin, we compute p; = ALLOCATE(x;), and we place x; into the p;-th bin in x;’s bin

1125 sequence, which is given by bin

1126 hp, (xi) = l%DEREFERENCE(xi,pi)J € [m].
15; In summary, we have constructed a sequential ball placement rule that places m balls sequentially into m bins and
1120 that chooses a set of d = S bins for each ball according to a probability distribution R over [m] d By Theorem 6.3, we

1130 can deduce that the fullest bin contains at least

1131

1132 Q ((loglogm)/d) = Q ((loglogm)/S) = w(1)
1133

balls with high probability in m.

1134
1135 On the other hand, the dereference table guarantees that DEREFERENCE(x;, p;) € [n] is unique for each i € [m]. The

1136 pumber of balls x; satisfying
1137 m .

{—DEREFERENCE(xi,p,-)J =j
1138 n

s foragiven j is therefore at most 7o = O(1). This means that the number of balls in any given bin is also O(1). Since the

1140 dereference table succeeds with high probability in n, we can deduce that there are O(1) balls in the fullest bin with high

e probability in n. This contradicts the fact that the number of balls in the fullest bin is w (1), thereby completing the proof
1142
L3 by contradiction. O

1144 22

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

Tiny Pointers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

7 APPLYING TINY POINTERS TO FIVE PROBLEMS IN DATA STRUCTURES

In this section we present several applications of tiny pointers to classical problems in data structures:

o Relaxed Retrieval: we show that a slight modification to the classic retrieval problem eliminates the classical
lower bound of Q(log log n) wasted bits per item (Section 7.2).

e Succinct binary search trees: we give an approach for transforming arbitrary dynamic binary search trees into
succinct data structures (Section 7.3).

e Space-efficient stable dictionaries: we transform any fixed-capacity key-value dictionary into a key-value stable
dictionary (Section 7.4).

o Space-efficient dictionaries: we transform any dictionary with fixed-size values into one which can space-efficiently
store variably sized values (Section 7.5).

e An optimal internal-memory stash: we construct a constant-time stash that space-efficiently stores the locations

of items residing in a large external-memory data structure (Section 7.6).

7.1 Some General-Purpose Techniques for Using Tiny Pointers

Before diving into specific applications, we discuss several preliminary definitions and techniques that will be useful

in several of the applications.

Key-value dictionaries. Several of our applications will perform black-box transformations in order to add new features
(namely, stability and variable-size values) to key-value dictionaries. Formally, a key-value dictionary (often just called
a dictionary) is any data structure that stores key-value pairs (e.g., a hash table or a tree), where each key appears at
most once. Typically, a key-value dictionary supports insertions, deletions, and queries, where queries, in particular,
return the value associated to some key. Depending on the data structure, additional operations may also be supported,
for example successor queries, which return the successor to some key.

We say that a key-value dictionary uses a value array if it designates some contiguous chunk of memory (that can be
extended or shrunk over time) whose purpose is to store the values corresponding to keys. When performing a query on
a key, the dictionary uses the key to determine where in the value array the corresponding value is currently stored. Thus,
even dictionary implementations that don’t seem to use value arrays — e.g. red-black trees — can be directly modified
to use them. If values are k bits long, then the value array can be viewed as a array of k-bit objects.

In our applications, we will restrict ourselves to dictionaries that store their values in value arrays. For simplicity,
we will assume that the dictionary uses a single value array, although all of our results can also easily be applied to a
dictionary that makes use of many separately-allocated value arrays (as long as each individual value array is at least
Q(log n) bits). The reason that we assume a single value array is because, to the best of our knowledge, all of the known
space-efficient key-value dictionaries can easily be implemented in this format, so we choose to avoid introducing

unnecessary complication to the results.

How to store value arrays of tiny pointers. A theme in several of our applications will be to modify a value array so
that, rather than storing values directly, we instead store tiny pointers of some size k. Recall, however, that tiny pointers of
size k = o(loglog log n) bits are not fixed-size, meaning that some tiny pointers may require more than k bits. Nonetheless,
if we are willing to use a value-array that is a constant-factor larger, then there is a simple trick, which we call chunked
pointer storage, that lets us interact with these variable-length tiny pointers in the same way that we would interact
with fixed-length tiny pointers.

23

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

Break the value array into contiguous chunks of O((log n)/k) tiny pointers. By Proposition 5.3, the total number of
bits used by the tiny pointers in each chunk is O(log n) with high probability in n. Thus each chunk can be stored in
O(log n) bits, meaning that the entire value array can be stored in O(nk) bits.

There is, however, the remaining issue of how to efficiently access and modify the j-th tiny pointer in a given chunk. For
each chunk, we can store an additional O (log n)-bit bitmap where the bits that are set to 1 indicate the positions in the chunk
where tiny pointers begin and end. To efficiently find the j-th tiny pointer, it suffices to find the j-th and j + 1-th 1sin the
bitmap. (The tiny pointer can then be extracted, modified, and reinserted, in constant time using standard bit manipulation
on the bitmap and the chunk.) The problem of finding the j-th 1 in a O(log n)-bit bitmap is easily solved with the method
of four Russians [7]: simply store an auxiliary lookup table of size v/n that allows for such queries to be answered in a

(log n)/2-bit bitmap in a single lookup, and then perform O(1) lookups to perform such a query in an O(log n)-bit bitmap.

How to dynamically resize a data structure using tiny pointers. Several of our applications will also encounter
the problem of using tiny pointers in a data structure whose size dynamically changes over time. Of course, this means
that we must also dynamically resize dereference tables. Our applications will take the following approach, which we
call zone-aggregated resizing.

Consider a value array storing tiny pointers to k-bit items in a dereference table (and assume k bits fit in O(1) machine
words). Suppose that we wish to maintain the dereference table at a load factor of 1 — ®(1/k), that way the number of
bits wasted per item stored is O(1); note that this means that the tiny pointers in the value array are ©(log k) bits on
average. Further suppose, however, that the value array dynamically changes size over time (meaning that items must
be added and removed from the dereference table). For our discussion here, we will assume that the value array itself
is dynamically resized to always be at a load factor of at least Q(1).

How can we update the dereference table to maintain a load factor of 1 — ©(1/k) while the number of items changes
over time? Rather than just using a single dereference table, we use k dereference tables, and add ®(log k) bits to each
tiny pointer in order to indicate which dereference table is being pointed into (this doesn’t change the asymptotic size
of the tiny pointers). We can grow and shrink the capacity (i.e., number of slots) of the dereference tables by either (a)
rebuilding the smallest dereference table to double its size, or (b) rebuilding the largest dereference table to halve its
size. If we assume for the moment that rebuilding a dereference table takes time proportional to the table’s size, then
the rebuilds can be de-amortized to take time O(1) per operation (i.e., per modification to the dereference tables), while
maintaining the desired load factor of 1 — ©(1/k).

The problem with rebuilding a dereference table is that all of the tiny pointers into that dereference table become invali-
dated. The actual construction of the new dereference table can easily be performed in linear time, but how do we update the
tiny pointers in the value array? If the value array has size n, then the dereference table being rebuilt consists of only ©(n/k)
items. We want to identify where the tiny pointers to those items are in the value array in time ©(n/k) rather than time ©(n).

The solution to this issue is very simple: break the value array into contiguous zones each of which consists of k values.
Within each zone, maintain k linked lists, where the i-th linked list contains the tiny pointers that point into the i-th
dereference table. Importantly, because these linked lists are within a zone of size k, the pointers within each linked list
only require ©(log k) bits each; thus the linked lists do not asymptotically increase the size of the value array. On the
other hand, in order to find all of the tiny pointers for a given dereference table, one can simply look at one linked list
in each of the ®(n/k) zones, allowing for all ®(n/k) of the tiny pointers to be identified in time ©(n/k).

For reasons that we shall see later, one of our applications will also require us to use larger zones of size poly(k)

rather than just of size k. For now, we simply remark that using larger zones of size poly (k) still allows for the linked-list

24

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

overhead of each tiny pointer to be bounded by ©(log k) bits, and that the time needed to identify the tiny pointers to
a dereference table of size j is only
O(j +n/poly(k)), ®)

since the number of linked lists that must be examined is only O(n/poly(k)).

7.2 Overcoming the Q(loglogn)-Bit Lower Bound for Data Retrieval

Our first application revisits the classic retrieval problem [3, 26, 27, 29], in which a data structure must store a v-bit value
for each of the k-bit keys in some set S, and must answer queries that retrieve the value associated with a given key. Here,
we address the dynamic version of the problem, where the data structure must support the functions INSERT(x, y) (which
inserts anew x € [2¥] into S and associates it with value y € [2°]), DELETE(x) (which removes some x € S from S), and
QUERY(x) (which returns the value y corresponding to x for some x € S, or returns an arbitrary value of x ¢ S), allowing
for the set S to grow up to some maximum size n. Note that in the retrieval problem it is the user’s responsibility to ensure
that every invocation of INSERT is on a key x ¢ S and every invocation of DELETE ison a key x € S.

It is known that, if k = (1 + Q(1)) log n bits, then any solution to the dynamic retrieval problem must use at least
no + Q(nloglogn) bits of space [3], regardless of the time complexity, and even if v = 1. It is further known that,
if k = ©(logn) and v = O(logn), then the nv + ®(nloglogn) space bound can be accomplished by a randomized
constant-time data structure [26].

We will now show that, by slightly relaxing the retrieval problem, we can use tiny pointers to obtain significantly
better space bounds. In the relaxed retrieval problem, the insertion/deletion/query operations are modified to work
as follows. The operation INSERT (x, y) now returns a tiny retriever r which the user must remember. In the future, if
the user wishes to query x (and they have not yet deleted x), they call QUERY(x, r) to obtain the value y. Finally, if the
user ever wishes to remove x from the set S, then they call DELETE(x, r).

The role of the tiny retriever is similar to that of a tiny pointer—it acts as a hint to assist the data structure. Unlike for tiny
pointers, however, the pair (x,) does not have to fully encode the position of y; instead, query operations QUERY(x, r)
can use auxiliary metadata, beyond just x and r, to determine the value y. We shall now see that this distinction is very
important, allowing for us to do better than both the lower bound for the retrieval problem [3] and our lower bound for
the tiny-pointer problem (Theorem 6.1). At the same time (almost paradoxically), it is our construction for variable-size
tiny pointers that allows for us to get around both of these lower bounds. In the following, let log(r Jn= loglog---logn

denote the r-th iterated logarithm of n.

THEOREM 7.1. Consider the relaxed retrieval problem with k-bit keys, v-bit values, and a maximum capacity of n key/value
pairs. Letr € [log* n] be a parameter. There is a solution to the relaxed retrieval problem that uses tiny retrievers of expected
size O(1), and that with high probability in n: takes constant time per query, takes O(r) time per insertion/deletion, and uses
total space no + O(nlog") n) bits.

Furthermore, iflog'”) n = (1) ando < logn

log™ n’

then the space consumption becomes nv + O(n) bits.

The above theorem comes with an interesting tradeoff curve: constant-time insertions/deletions can achieve a space
consumption of, for example, no + O(nlogloglogloglogn) bits, and O(log™ n)-time insertion/deletions can achieve
space consumption nov + O(n) bits. Moreover, if v is slightly sub-logarithmic, then one can even achieve constant-time
insertions/deletions with only no + O(n) bits of space.

25

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

We remark that the tiny retrievers in Theorem 7.1 are, in fact, variable-size tiny pointers as constructed in Theorem
5.1. They therefore satisfy the doubly-exponential tail inequality given by Theorem 5.1, as well as the concentration

inequality given by Proposition 5.3.

Proor. We shall make use of Theorem 5.1 to construct a dereference table T with 2n slots. What makes our application
of Theorem 5.1 unusual, however, is that we will not store anything in the store (if fact, we need not even allocate space for
it). Instead, we will take advantage of the fact that DEREFERENCE(X, p) is a (1 + log n)-bit number that has been uniquely
allocated to x.

To implement the operation INSERT(x, y), we call ALLOCATE(x) to obtain a tiny pointer p of expected size O(1) (note
that p will also be our tiny retriever). Define sy = DEREFERENCE(x, p) to be the slot number in [2n] allocated to x. The
main property that we will exploit is that sy # sy for all other x” € S. To complete the INSERT operation, we insert the
key/value pair (syx, y) into a succinct hash table H (whose specifications we will describe later). Queries and deletes are then
implemented as follows: QUERY(x, p) returns H[DEREFERENCE(x, p)]; and DELETE(x, p) deletes key DEREFERENCE(x, p)
from H and calls FREE(x, p) on the dereference table T.

The correctness of the data structure follows from the fact that, for each x € S with tiny retriever p, DEREFERENCE(x, p)
is unique. The dereference table uses space only O(n) bits and supports constant-time operations (with high probability).
Thus, to prove the theorem, it remains to analyze the hash table H.

We construct H using the most space-efficient known construction for a hash table [12]. If H is storing up to n keys
from a universe U and values are v bits, then it supports the following guarantees with high probability: queries are

constant-time, insertions/deletions take time O(r), and the total space consumption is
U
log (' |) +nv +0(nlog'”) n)
n

bits. If, in addition, log(r) n=ow(l)ando < 101;(%, then the space becomes log (lgl) + no + O(n) bits.

Our use of tiny pointers ensures that the keys in H are from the very small universe U = [2n]. So

log ('Z') =log (2:) =0(n)

by Stirling’s formula. This completes the proof of the theorem. O

A remark on resizing. In Subsection 7.3, we shall see an application of tiny retrievers to the problem of constructing
succinct binary search trees. In this application, we will want to have two relaxed-retrieval data structures whose sizes sum
to at most n. Here, we can take advantage of the fact that the hash table H used above actually offers a dynamically-resizing

guarantee: if, at any given moment, the hash table has size m, then it uses space at most
2n
Vn +log () +mo +0(mlog) n),
m

with high probability in n. The full retrieval data structure (consisting of the hash table H and the dereference table T)

therefore uses space at most
2
log (n) +mo+0(n+mlog™ n).
m

26

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

By Stirling’s formula, this is at most
mlogn — mlogm+mo+O(n+mlog"™ n).
Thus, if we have two relaxed-retrieval data structures, one of size m; < nand one of size my < n,andm = m;+my = 0(n),
then their total space consumption will be at most
(m1 +mg) logn — my log my — mg log my + (my + ma)v + O((my + mz) log"™) n)
=mlogn — mjlogmy — mplogmy + mo + O(mlog(r) n).

By Jensen’s inequality, m log m; + ma logmy > (mq + my) log m‘;mz = mlog % = mlogn — O(n). Thus the total space

is at most
mlogn — (mlogn — O(n)) + mo + O(mlog"™) n)
=mo + O(mlog(r) n)

=mo + O(mlog(r) m)

This, of course, is the same bound that we get for a single relaxed-retrieval data structure of size m.

The reason that this matters is that it allows for a simple way to perform dynamic resizing: every time that the size
m of a data structure changes by a factor of two, we move all of the items in the current relaxed-retrieval data structure
Dj into a new relaxed-retrieval data structure Dy (parameterized as having capacity n = ©(m) based on the new value
of m). As we move items from D1 to Do, the total space consumption of D1 and D, will continue to be mov + O(m log(r) m)
bits. Note that, to move an item from D to Dy, we will need to generate a new tiny retriever for that item (since we are
deleting the item from D; and inserting it into Dy). In our binary-search-tree application, this will be easy to do by simply
running through all of the items and relocating them one by one. Furthermore, since the work of constructing D, can

be spread across ©(n) operations, it can be achieved at a cost of O(r) per insertion/deletion.

7.3 Succinct Binary Search Trees

Our second application is a black-box approach for transforming dynamic binary search trees into succinct data structures.
If there are n items in the succinct search tree, each of which is k bits long, then the size of the succinct search tree will
be at most nk + O(n+n log(r) n) bits, where r > 0 is an arbitrary parameter. Path traversals in the tree incur only a
constant-factor overhead, and modifications to the tree incur only an O(r)-factor overhead.

An advantage of our approach is that it can be applied to rotation-based search trees. This includes, for example,
red-black trees [38], splay trees [58], etc. If the dynamic-optimality conjecture [58] is true, meaning that the splay tree

is dynamically optimal, then our succinct splay tree is also dynamically optimal when r = O(1).

THEOREM 7.2. Consider any binary search tree storing a-bit keys and b-bit values, where every node is associated with a
distinct key, and where each node has pointers to its children. For anyr > 0, the tree can be implemented to offer the following
guarantees with high probability in the tree size n: the tree takes spacena+nb+O(n+n log(r) n) bits, traversals from parents

to children take time O(1), and modifications to the tree (i.e., adding or removing an edge) take time O(r).

We remark that, information theoretically, the tree uses at least n(a + b) bits of space. And since the keys are distinct,
na = Q(nlogn). Thus, for any r > 1, the search tree above is succinct.
27

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

1456

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

Proor. To avoid ambiguity between different types of ‘keys’ and ‘values’ in our discussion, we will sometimes refer
to the a-bit keys and b-bit values stored by the user as user keys and user values.

We will make use of our solution to the relaxed retrieval problem (Theorem 7.1). The retrieval keys/values will be
different from the user keys/values. Each retrieval key x will correspond to a user key with an additional bit appended
to it (more on this later), and each retrieval value y will store an (a + b)1-bit user key/value pair (for that node in the
tree), along with two tiny retrievers r1 and rp (which can be used to retrieve the children of that node). Since r1 and ry are
themselves variable-length tiny pointers of expected size O(1), this means that the retrieval value is also variable-length.
On the other hand, the relaxed-retrieval data structure is designed for fixed-length values. Fortunately, we can store the
tiny retrievers rq and r, with the following method. Recall that, in our construction for the relaxed retrieval problem,
we create a dereference table with 2n slots, but we do not actually store anything in the dereference table’s store. We
now change this so that the store is a value array with 2n slots that stores the tiny retrievers r; and ry for each item in
the dereference table (so, if p is the tiny pointer for x, then rq, ry are in the DEREFERENCE(x, p)-th position of the value
array). Using the chunked-pointer-storage technique, we can ensure that the total size of the value array is O(n) bits,
even though the pointers that it stores are variable length.

We now describe our encoding of the binary search tree: Each node in the search tree stores a user key-value pair (u, v)
corresponding to that node, along with two tiny retrievers r; and r,. The tiny retriever ry is for the left child and uses
x o 0 as its retrieval key (so QUERY(x o 0, r1) returns the left child of x), and the tiny retriever r; is for the right child and
uses x o 1 as its retrieval key (so QUERY(x o 1,r;) returns the right child of x).'> Note that, if the left child (resp. right
child) does not exist, then we simply set r1 (resp. r2) to null.

Let us begin by assuming that our binary search tree has a fixed capacity of n user keys/values, so we can use a
relaxed-retrieval data structure with capacity n. Then our relaxed-retrieval data structure uses na+nb+O(n+n log(r) n)
bits. Navigating from a node to its child takes time O(1) (since it requires a single query to the relaxed-retrieval data
structure) and adding/removing an edge (x, z) from a node x to a child z takes time O(r), with high probability, since it
requires only a single insert/delete to the relaxed-retrieval data structure; importantly, if z is the root of some subtree, the
act of setting z to be x’s child does not require any nodes besides z to inserted/deleted in the relaxed-retrieval data structure.

Finally, let us modify our data structure so that it dynamically resizes as a function of the current number n of user key/-
value pairs. For this, we can simply use the resizing approach outlined in Section 7.2. Every time that n changes by a constant
factor, we rebuild the relaxed-retrieval data structure to have capacity ©(n) for the new value of n. (Note that this does not
require us to rebuild the tree; it just requires us to update the tiny retrievers used in each node.) For each tiny retriever in
the binary search tree, we can store an extra bit indicating which of the two relaxed-retrieval data structures it uses—this
preserves correctness. As observed in Section 7.2 the act of moving items from the old relaxed-retrieval data structure to
the new one does not violate our desired space guarantee: the total number of bits used by our search tree remains na+nb +
O(n+n log(r) n) at all times. And, by spreading the work of rebuilding the relaxed-retrieval data structure across ©(n)

operations, we maintain the property that each edge insertion/deletion takes time O(r). Thus the theorem is proven. O

7.4 Space-Efficient Stable Dictionaries

Using tiny pointers, we give a black-box approach for transforming any fixed-capacity key-value dictionary into a stable

dictionary, meaning that the position in which a value is stored never changes after the value is inserted. If the original

13 An important distinction here is that we are using the user key x to construct the keys for the two tiny retrievers, rather than using the position in memory
where x is stored—this means that, when we move an item x around in memory, we do not invalidate the tiny retrievers of nodes in the subtree rooted at x.

28

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

1500

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

dictionary stored v-bit values, then the new dictionary also stores v-bit values, and uses at most O (log v) more extra bits

of space per value than the original data structure.

THEOREM 7.3. Consider a fixed-capacity key-value dictionary data structure T that stores its values in a value array of
some size m. Let v denote the size of each value in bits.

It is possible to construct a new data structure T’ with the same operations and asymptotics (with high probability) as T, but
with the additional property that T’ is stable. Moreover, the total space consumed by T’ is guaranteed (with high probability

inm) to be at most O(mlogv) more bits thanT.

Proor. To construct T’, we simply replace the value array for T with an array of m tiny pointers, each of size ©(log v)
bits. (If logv < logloglog n, then the chunked-pointer-storage technique can be used to handle the situation where
different tiny pointers have different sizes.) The tiny pointers point into a dereference table of size (1 + 1/v)m that stores
the m v-bit values. (So the load factor is 1 — ©(1/v).) If a tiny pointer points at the value y corresponding to a key x, then
the tiny pointer uses x as its key. This ensures stability, since even if the location in which the tiny pointer is stored
changes, the tiny pointer does not have to change (and the value y does not have to move).

The array of tiny pointers consumes O(m log v) space. Whereas the value array in T consumes mo bits, the dereference
table in T’ consumes (1 + 1/v)mo bits, which is only O(m) more bits than used in T. Thus the claim on space efficiency
is proven. Since tiny pointers only add constant time per access/modification of the value, the asymptotics are (with high

probability in m) the same for both T and T”. O

By applying our result to the data structure from [13], which is anon-stable hash table with redundancy O (n log(o(l)) n)

bits, we obtain the following corollary for hash tables.

COROLLARY 7.4. Letr be a large positive constant, let n, v be parameters, let U be a universe of keys, and suppose that the
machine word size is at least max(log |U|, v). It is possible to construct a stable hash table that stores up ton key-value pairs,

where the keys are from U and the values arev bits, and that uses space log (lgl) +O(nlogov) +O(n log(r) n) bits.

7.5 Space-Efficient Dictionaries with Variable-Size Values

Our fourth application is a black-box approach for transforming any key-value dictionary (designed to store fixed-size
values) into a dictionary that can store different-sized values for different keys. The resulting data structure offers the
following remarkable guarantee on space efficiency. Let r be a positive constant of our choice, and let m be the number
of entries in the value array used by the original dictionary (at some given moment). The new dictionary, which allows
for values to be arbitrary lengths, replaces the value array for T with a data structure that consumes at most

m

O(mlog(r) m) + Z(U,- +O(logv;))

i=1

bits, where v1, vy, . . ., vy, denote the lengths in bits of the values being stored.

THEOREM 7.5. Consider a key-value dictionary data structure T that stores its values in a value array, and that is designed
to store fixed-length keys. Let r be a positive constant of our choice. It is possible to construct a new data structure T’ with
the same operations and asymptotics (with high probability) as T, but with the additional property that T’ can store values
of arbitrary lengths (up to O(1) machine words).

29

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545

1546

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

At any given moment, if T were using a value array of size m bits, and the machine word size w satisfiesw < m°() then

the total space consumed by T’ to implement the value array is guaranteed (with high probability in m) to be at most

O(mlog") m) +Z(u,~ +0(logv;)) @
i=1

bits, wherevy, vy, . . .,vm are the lengths of the values.

We remark that the limitation on value size to be O(1) machine words is simply so that each value can be written/read
in constant time, since then it is easy to discuss how the asymptotics of T and T’ compare. The same techniques work
for even larger values without modification, as long as one is willing to spend the necessary time to read/write values

that are of super-constant size.

ProoF oF THEOREM 7.5. Valuesin T’ are stored with up to r levels of indirection. If a value is v bits, then it is pointed at
by a tiny pointer p; of size O(log n) bits. The tiny pointer p; is, in turn, pointed at by a tiny pointer p; of size O(log log n)
bits, and so on, with pointers of size O(log log log n), O(loglogloglogn),.. ., O(log(r) n). That is, every value is stored
at the end of a linked list of length O(1), where the base pointer of the linked list is O(log(r) n) bits, and each subsequent
pointer is exponentially larger than the previous one.

For each tiny pointer of some size j in the data structure, we must also store O() extra bits of information indicating
(a) whether the tiny pointer is pointing at another tiny pointer or at a final value, and (b) what the size is of the tiny-
pointer/value being pointed at. Throughout the rest of the proof, we will count these O(j) extra bits as being part of the
size of the tiny pointer.

With this in mind, we can now formally define what we mean by the “levels of indirection” discussed earlier. Recall
that, when we dereference a tiny pointer, we obtain a slot in a dereference table. This slot will either contain another
tiny pointer (including the auxillary information from he previous paragraph) or a final value (i.e., the value for some
key). This is how we can have tiny pointers pointing at tiny pointers, etc., with multiple layers of indirection until we
get to the actual value associated with a key.

Since there are both values and tiny pointers of many different sizes, we must use a different dereference table for
each size-class of tiny-pointer and the different dereference table for each size-class of values being stored. (Note that the
dereference tables storing tiny pointers may need to use the chunked-pointer-storage technique to handle variable-size
tiny pointers, so the same dereference table should not be used to store both tiny pointers and values.)

The problem of dynamically resizing all of the dereference tables simultaneously is slightly tricky. Consider a deref-
erence table A (to A could also be the value array) that stores j-bit tiny pointers for some j. There are K = 290) different
dereference tables By, By, . . ., Bk that these tiny pointers can point into (depending on the size of the object being pointed
at, and whether the object is a tiny pointer or a value). Each B; must individually be dynamically resized. We will maintain
what we call the dynamic-sizing invariant, which guarantees that each B; is either (a) at a load factor 1 — O(1/j”),
where j’ is the size of the objects stored in B;, or (b) is at most a 0(1/(K j))-fraction the size (in bits) of A.

To implement the dynamic-sizing invariant, we dynamically resize each B; using zone-aggregated resizing (recall from
Section 7.1 that this means B; is broken into multiple components, and each component is occasionally rebuilt so that
its size either doubles or halves). To allow for components of each B; to be rebuilt efficiently, we break A into zones of size

poly(K), meaning by (3) from Section 7.1 that a given component (of some B;) consisting of s entries can be rebuilt in time

|Al/poly(K) +s,
30

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1612

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

where |A] is the number of entries in A. We perform dynamic resizing on B; differently depending on whether it is very

small (its components contain fewer than |A|/poly(K) items each) or not:

o If'the components contain s = Q(|A|/poly(K)) items each, then we perform zone-aggregated resizing (exactly
as in Section 7.1) to keep B; at a load factor 1 — O(1/j’), where j is the size of the objects stored in B;. In this
case, the time needed to rebuild a component of size s is ©(s), so the dynamic resizing of B; can be deamortized
to take O(1) time per operation (on B;). Note that, here, B; is in case (a) of the dynamic-resizing invariant.

o Ifthe components contain fewer than |A|/poly(K) items each, then we perform zone-aggregated resizing to keep
each component of B; at a capacity of ©(]A|/poly(K)) (even as |A| changes over time, and regardless of whether
the number of items per component may be significantly smaller than |A|/poly(K)). Note that, here, B; is in case
(b) of the dynamic-resizing invariant.

When B; is in this regime, we cannot amortize the work spent rebuilding B; to the operations that are performed
on B;. Instead, we spread out the work spent rebuilding components of B; in the following way: for every ©(K)
work that is spent on A we also spend O(1) time on resizing B;. Since B; is more than a factor of K smaller than
A, this is sufficient time to keep B; in a state where each component has capacity @(|A|/poly(K)).

From the perspective of A, every time that we spend constant time on insertions/deletions/rebuilding A, we also
may spend constant time performing rebuild-work on one of the B;s (which, in turn, may recursively lead us to
spend constant time on rebuilding one of the dereference tables pointed at by B;, etc.). Importantly, since chains
of tiny pointers are at most r < O(1) long, the time spent on rebuilds only introduces a constant-factor overhead

on running time per operation.

The resizing approach described above guarantees the dynamic-sizing invariant while incurring only a constant-factor
time overhead per operation. Next we use the invariant to bound the space consumption of T’. The dereference tables B;
in case (a) are implemented space-efficiently enough that the empty slots in them take negligible space compared to the
actual objects stored in them (i.e., the empty slots add O(1) bits per object), and the dereference tables B; in case (b) are
small enough that they take negligible space compared to the size of the parent dereference table A (i.e., they cumulatively
add o(1) bits per slot in A). It follows that the total space consumed by dereference tables will be at most the sum of the
sizes of the objects being stored in the dereference tables, plus O(1) bits per object; this, in turn, means that the space
used by T’ to store values/tiny pointers is given by (4).

Next, we bound the time-overhead of T” when compared to T. We have already shown that the time-overhead of
performing dynamic-resizing on dereference tables is O(1) per operation. Since values are stored with at most r = O(1)
levels of indirection, the time needed to access/modify a value is also O(1). Thus T’ has the same time asymptotics as T.

Finally, we argue that the dereference tables used by T’ succeed at their allocations with high probability.'* There
are several approaches that we could take to doing this; the simplest is to just add one more modification to how we
perform dereference-table resizing: whenever a dereference table gets down to size ®(y/m), we do not ever resize it to
be any smaller.'® This means that some dereference tables could be very sparse, containing v/m slots, but containing far
fewer items. Since there are only O(w) = m°() different dereference tables (recall that w is the machine-word size), the
net space consumption of the dereference tables of size ®(+/m) is o(m) bits. The fact that every dereference table has

size at least Q(+/m) means that all of the dereference tables offer high probability guarantees, as desired. O

4There are many different ways that one could handle allocation failures, including, for example, performing batch-rebuilds of the data structure.
SHowever, since m may dynamically change over time, we do need to spend constant time per operation resizing dereference tables of size © (/)
so that they stay size © (y/m) as m changes.

31

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

1664

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

By applying our result to the data structure from [13], which is a hash table with redundancy O(n log(o(l)) n) bits,

we obtain the following corollary for hash tables.

COROLLARY 7.6. Let r be a positive constant of our choice. It is possible to construct a dynamically-resized hash table that
stores keys from a universe U and that stores dynamic-sized value (up to O(1) machine words) with the following guarantees.
At any given moment, if n keys are present, then with high probability in n, the time spent on the next operation is O(1)

and the overall space usage is

log (|Z|) +0(nlog) n) + Z(Ui +0(logv;)) ©

i=1
bits, where vy, vy, . .. are the sizes of the values.

7.6 An Optimal Internal-Memory Stash

Our final application of tiny pointers revisits one of the oldest problems in external-memory data structures: the problem
of maintaining a small internal-memory stash that allows for one to locate where items reside in a large external-memory
data structure.

The problem can be formalized as follows. We must store a dynamically changing set S of up to n key-value pairs, where
each key-value pair can be stored in one machine word, and where each key is unique. We are given an external memory
consisting of (1 + ¢)n machine words, where the key-value pairs S are to be stored. In addition to storing key-value pairs
in external memory, we must maintain a small internal-memory data structure X, which we will refer to as the stash,

that supports the following operations:

e Query(k): Using only information in the stash data structure, returns the position in external memory where
the key k and its corresponding value v are stored.

o Insert(k,v): Inserts the key-value pair (k, v), placing the pair somewhere in external memory, and updating the
stash.

e Delete(k, v): Removes the key/value pair (k, v) from the external-memory array, and updates the stash.

The important feature of a stash is that queries can be completed with a single access to external memory. On the other

hand, in order for a stash to be useful, several other objectives must be achieved:

e Compactness: The stash X needs to be as small as possible, that way it can fit into an internal memory with
limited size.

o Efficient inserts and deletes: Although a stash prioritizes queries, insertions and deletions should ideally also
require only O(1) accesses/modifications to external memory.

o RAM efficiency: Finally, so that computational overhead does not become a bottleneck, the operations on a
stash should be as efficient as possible in the RAM model, ideally taking time O(1).

A concrete example of a stash that is used in real-world systems is the page table [4,9, 40], which is an operating-system-
level dictionary that maps virtual page addresses to where their corresponding physical pages reside in memory. The
page table is accessed for every address translation, so it is performance critical and thus highly optimized. Additionally,
it is important that the page table be space-efficient, so that it may be effectively cached in the processor cache hierarchy.
Note that, although page tables get to select where physical pages reside in memory, they do not get to move physical
pages that have already been placed; thus any stash that is used as a page table must also be stable. For this reason, past
work [36, 44, 45] has typically included stability as an additional criterion for a stash.

32

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

Work on designing space-efficient and time-efficient stashes dates back to the late 1980s [36, 44, 45]. The best-known
theoretical results are due to Gonnet and Larson [36], who give a stable stash that uses only O(n log ¢ 1) bits. A remarkable
consequence of this is that, when ¢ = ©(1), it is possible to construct a stash using only O(n) bits.

Gonnet and Larson’s result comes with several significant drawbacks, however [36], which have proven difficult to fix.
First, due to its reliance on stable uniform probing [43] as a mechanism for determining where keys/values should reside,
the stash only offers provable guarantees in the setting where insertions/deletions are performed randomly. Second, the
data structure is not constant-time in the RAM model, instead taking expected time ©(e~1).

Using tiny pointers, we show that modern techniques for constructing filters can easily be adapted in order to construct
a stable stash of size O(nlog e 1) bits that supports constant-time operations in the RAM model (with high probability)

and that supports arbitrary sequences of insertions/deletions/queries.

THEOREM 7.7. It is possible to construct a stable stash that supports constant-time operations in the RAM model, that stores
up to m keys/values in an external-memory array of size (1 + £)m, and that uses only O(mlog ¢~1) bits of internal-memory

space. All of the guarantees for the stash hold with high probability in m.

Proor. The starting point for our design is the adaptive filter of Bender et al. [11]. Like a stash, their filter is a
space-efficient internal-memory data structure that summarizes the state of an external-memory key-value dictionary.
Unlike a stash, their filter does not indicate where in external memory each key/value is stored. Instead, the filter answers
containment queries with the following guarantee: each positive query is guaranteed to return true, and each negative
query is guaranteed to return false with probability at least 1 — ¢ (for some parameter ¢). The size of their internal-memory
data structure is only (1 + 0(1))mloge™! = O(mloge™!) bits, where m is the capacity of the filter.!®

The basic idea behind the adaptive filter of [11] is to store a fingerprint for each key x, where each fingerprint is
taken to be some prefix of the hash h(x). Different keys have different-length fingerprints, and the invariant maintained
by the filter is that no fingerprint is a prefix of any other fingerprint. To maintain this invariant while also keeping the
fingerprints as small as possible, the filter will sometimes change the lengths of O(1) different fingerprints during a given
insertion/deletion; to change the length of a fingerprint, the key corresponding to that fingerprint must first be fetched
from external memory, that way the hash h(x) of that key can be recomputed.'’

The fingerprints in the filter are stored as follows. The first Ig n bits of each fingerprint are called the quotient, and
these bits are used to assign the key to one of n bins; importantly, the fact that the bin-choice encodes the quotient of each
of the keys in the bin means that the data structure does not have to explicitly store the quotients of the fingerprints. The
next log e~ ! bits of each fingerprint are called the baseline bits, and these bits are included for every fingerprint in the data
structure. Finally, any subsequent bits in a fingerprint are called the adaptivity bits, and these bits are added/removed
in order to maintain the prefix-freeness invariant. A central piece of [11]’s analysis is to show that there are only O(m)
adaptivity bits in total, and that these bits can be stored efficiently.

We now describe how to modify the filter to be a stash. In addition to storing a fingerprint for each key, we now also
store a tiny pointer with expected size ©(log ¢~ !). These tiny pointers are easy to store, since the filter has already made
room for log e ™! baseline bits for each key. Of course, different tiny pointers may have different lengths, but this issue
can easily be resolved by either using the chunked-pointer-storage technique described in Section 7.1 (or by adapting

the techniques already used in [11] to handle variable-length fingerprints).

161n fact, their data structures also dynamically resizable, but for our application that will not be necessary.
The original data structure also sometimes updates the lengths of fingerprints during negative queries, but such updates are not needed for the purposes
of our data structure.

33

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

One minor difficulty is that the filter assumes access to an external-memory dictionary (rather than just a dereference
table) so that it can look up keys in order to modify their fingerprints. In the case of our stash, however, these lookups can
easily be performed using the tiny pointers that are already stored, so one does not need a full dictionary in external memory.

The fact that the tiny pointers have size ©(log ¢~!) means that external memory can be implemented as a dereference
table with load factor 1—¢. The fact that the original adaptive filter supported constant-time operations (with high probabil-
ity in m) translates to the stash also supporting constant-time operations. And the fact that the original adaptive filter used
space O(mlog ¢~1) bits in internal memory also translates the same guarantee for the stash. Thus the theorem is proven.

O

8 DYNAMIC BALLS AND BINS

In this section, we reinterpret our tiny-pointer constructions as balls-and-bins schemes in order to improve the state
of the art for the classic dynamic load balancing problem.

In the dynamic load-balancing problem, there is a system of n bins and a large universe U of balls. Balls are inserted
and deleted (and sometimes reinserted) over time by an oblivious adversary, so that the total number of balls in the system
never exceeds m = hn for some parameter h. Whenever a ball x is inserted, it must be placed in one of d bins from among
hi(x),..., hg(x), where h;() is some hash function from balls to bins. Once a ball is placed in a bin, it cannot be moved
until it is deleted. The goal of the dynamic load-balancing problem is to assign balls to bins in order to achieve the
smallest maximum load possible (i.e., to minimize the number of balls in the fullest bins). We refer to the special case
where balls can be inserted and deleted but not reinserted as the semi-dynamic load-balancing problem.

There are two classic solutions to the problem. The first is SINGLE balls-to-bins assignment: we set d = 1 and just place
each x in hy (x). The second is LEFT[d] balls-to-bins assignment: divide the bins into d groups so that each h; is uniform
into the i-th group; when inserting x, pick the bin h; (x) with the smallest load, and break ties by minimizing i.

SINGLE’s behavior is history independent, in that the maximum load at any time only depends on which balls are present,
and not the history of their arrival. The maximum load is then completely characterized by standard Chernoff bounds [54].

LerT[d], on the other hand, is history dependent. The first time that a ball x is inserted, the hashes hy (x), ..., hg(x)
are independent of the system state, but if a ball x is ever deleted and then later reinserted, then the past insertion of x can
have long-term side effects on the system state meaning that the state is not necessarily independent of a1 (x), .. ., hg(x).

In the insertion-only setting (i.e., balls are not deleted), LEFT[d] offers a celebrated bound [59] of

loglogn

on maximum load, where ¢ is the generalized golden ratio. In the dynamic setting, LEFT[d] has proven to be significantly
more difficult to analyze. The original analysis of LEFT[d] by V6cking [59] can be used to achieve a bound of

loglogn

O(h) + dlog pg

™

34

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

1820

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

for the semi-dynamic setting, but as Woelfel observed [60], the same argument does not apply directly to the fully dynamic

setting.'® He shows how to modify Vécking’s proof to achieve a bound of

loglogn
o) + —— 8
@+ oot ®)
in the setting where h = 1. In general, when h > 0, Woelfel’s argument yields a bound of
loglogn
O(1+hd) + dlogdy’ 9)

which has remained the state of the art.

The bound (9) is most interesting in the case where his relatively small, thatis, h = o(log n). Here, (9) can be significantly
better than the ©(log n/log log n) bound that would be achieved by SINGLE. Of course, the question remains as to whether
there exists a balls-to-bins scheme that achieves a better bound. We answer this question in the affirmative, by giving
a bin-selection rule with d + 1 hash functions that achieves maximum load

log
he 88 o (Jhlog(hd)). (10)
dlog ¢y

We remark that, even when h is a constant, this bound improves the dependence on d from O(d) to O(\/@).

Our rule, which we call IcCEBERG[d] is ahybrid of SINGLE and LEFT[d]. This rule is closely related to the rule that we used
in Section 4 for constructing fixed-size tiny pointers. This rule was analyzed in our paper on iceberg hashing [10], hence
the name. As noted above, here we present an alternative proof, both for completeness, as well as because the proof takes
a somewhat different (and more elegant) approach than in our past work, and in order to cover a larger parameter regime.

The rest of the section proceeds as follows. We begin in Subsection 8.1 by proving a useful technical lemma. In
Subsection 8.2, we present and analyze ICEBERG|[d]. Finally, in Subsection 8.3, we reinterpret our variable-size tiny-pointer
construction as a result about probe-complexity of balls-and-bins schemes with bins of capacity 1; in particular, we give
the first dynamic ball-allocation scheme to offer § -0 average probe complexity in the setting where there are up to

(1 — &)n balls present in the system at a time.

8.1 A Useful Lemma

This section proves a generalization of a technical lemma introduced in recent work on space-efficient hash tables [10].
The new lemma extends the original one to a wider parameter regime. We also take a different combinatorial approach,
resulting in a simpler proof that reveals an interesting relationship between the lemma and Talagrand’s inequality. We
remark that, earlier in the paper, we have already made use of the results from this section in order to obtain Lemma 4.2.

Consider a dynamic balls-and-bins game with n bins and at most m = hn balls at all times that are placed with the
SINGLE rule. Whenever a ball is thrown into a bin, if the bin contains h + 7 or more balls, then the ball is labeled as 7-exposed

(and the label persists until the ball is next deleted). We will simply say that the ball is exposed when 7 is clear from context.

LEMMA 8.1. Supposel < t < h. At any fixed point in time, the number of T-exposed balls is poly (h) - ne=71Gh) \ith
probability 1 — exp(—Q(me_Tz/@h))),

Our proof of the Lemma 8.1 will make use of a variant of Talagrand’s inequality [47, Chapter 10]:

18The difficulty has to do with the analysis of the leaves in the witness tree, and is easy to describe in the case where h = 1. To analyze a leaf ball x, the original
analysis uses Markov’s inequality to deduce that each of x’s d bins has at most a 1/3 probability of having 3 or more balls, and the analysis concludes that the
probability of all d bins containing 3 or more balls is at most 1/ 34 This same analysis does not apply in the fully dynamic setting since it would need the state
of the system of to be independent of x’s hash functions h; (x), .. ., hg (x), which is not the case due to subtle history dependencies in the system’s state.

35

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

THEOREM 8.2 (TALAGRAND’S INEQUALITY). Let Xy, ..., Xy ben independent random variables from an arbitrary domain.
LetF be a non-negative function of X1, . . ., Xp, not identically0. Suppose that for somec, r > 0, F isc-Lipschitz andr-certifiable,
defined as follows:

o Fisc-Lipschitz if changing the outcome of any single X; changes F by at most c.
o Fisr-certifiable if, for anys, if F(X1,...,Xn) = s, then there is a certifying set of at most rs X;’s whose outcomes

serve as a witness that F > s, that is, F > s no matter the outcome of the other X not in the certifying set.
Then, forany0 < t < E [F],
Pr [|F —E[F]|>t+ 600\/@] < 4dexp (—L) .
8c2rE [F]

The proof of the Lemma 8.1 proceeds by bounding the expected number of exposed balls, then using Talagrand’s
inequality to achieve a concentration bound.

Consider any fixed point in time. In what follows, we refer to the balls that at the end are present at that time as
ai, ..., a and we refer to the remaining balls in the universe as a1, . . ., ap. We denote by «; the bin choice for a;. For
i € [k], we define t; to be the last time at which g; is inserted, we define X; to be the random variable indicating if g; is

an exposed ball at the end of the game, and we define X = Zf:l X;i to be the total number of exposed balls.
Craim 8.3. The expected number of exposed balls satisfiesE [X] = O(me_fz/(%)).

Proor. Recall that X = }}; X; where X indicates whether q; is exposed. By linearity of expectation, it suffices to show
that E [X;] = O(e~""/ ") for each i € [k].

Fix i € [k]. Consider the final time ¢; at which ball a; is inserted. The ball g; is exposed if and only if the number of
balls in bin q; is at least h + 7. If we set Y to be the number of balls in bin «;, and we set ¢ = 7/h, then we can bound the

probability of Y > h + 7 using a Chernoff bound:
Pr[Y>h+7]=Pr[Y > (1+¢)h] < e €3 = g7t (3h),
Thus E[X;] = Pr [X;] < e~7/GM). o
Cram 8.4. The random variable X is (h + 7 + 1)-Lipschitz and (h + © + 1)-certifiable as a function of{a,-}le.

ProoF. Changing the value of a single ¢; to & can only affect the number of exposed balls in bin ¢; (which may
decrease) and in bin & (which may increase). The number of unexposed balls in a bin is deterministically at most h + 7.
This means that moving ball a; out of bin ; can increase the number of unexposed balls in the bin by at most & + 7, and
thus can decrease the number of exposed balls by at most h + 7 + 1 (where the +1 accounts for the removal of g; itself).
Similarly, moving ball a; into bin @] can decrease the number of unexposed balls in the bin by at most & + 7, and thus
can increase the number of exposed balls by at most A + 7 + 1. This establishes that X is (h + 7 + 1)-Lipschitz.

To certify that X > s, let J with |J| = s be a set of values j € [k] such that a; is exposed at the end of the game. For
each j € J,let R; be a selection of h + 7 balls a; such that ball a; was present at the last time ¢; that a; was inserted and
such that @; = aj. The set of random variables {a; | i € Rj} U {a;} acts as a certificate that a; is exposed. Thus the set

| J{ai i e R} U {a;}
JjeJ
acts as a certificate that X > s. This certificate consists of no more than s(h + 7 + 1) random variables, hence X is

(h+ 7+ 1)-certifiable. O
36

1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

1924

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

PRrROOF OF LEMMA 8.1. Set Q = mexp (—72/(3h)). By Claim 8.3, we know that E [X] < Q. By Claim 8.4, we can ap-
ply Talagrand’s inequality (Theorem 8.2) to X withc¢ = r = h+ 7+ 1 = O(h). Applying Talagrand’s inequality with
t = ©(cVrQ), and using Q as an upper bound on E[X], we can deduce that

X = 0(cVrQ)
with probability at least

1—exp(-Q(Q)).
It follows that X < poly(h) - O(ne_rz/@h)) with probability 1 — exp(—Q(me_Tz/(3h))). O

Finally, we complete the section by using Lemma 8.1 to prove Lemma 4.2 from Section 4.

PRrROOF OF LEMMA 4.2. We can prove Lemma 4.2 by applying Lemma 8.1 and setting the parameters h = (1 — §)b and
7 = 8b. The r-exposed balls correspond to allocations in Lemma 4.2 that have failed and are still alive.
Note that, in this setting,
7*/(3h) = ©(7*/b) = ©(6°b) = ¢’ log 5!
for some large positive constant ¢/, where the last step uses the fact that b = ¢§~2 log ! for some large positive constant c.

Therefore, Lemma 8.1 bounds the number of such balls to be at most

poly(h) - ne™™/ M < poly(s71) - e 1084™

< én
with probability
1 - exp(-Q(me™" /1)) = 1 — exp(-Q(me¢'18%™))
= exp(-ma® V),
as desired. -

8.2 IcEBERG[d]

We now present the ICEBERG|[d] balls-in-bins rule. Let n be the number of bins, let hn be the maximum number of balls
allowed to be present at any given moment, and letd > 1 be a parameter. Partition the bins into d equal-size sets Sy, . . ., S4.
Let g be a hash function mapping balls uniformly at random to bins, and let Ay, . . ., bz be hash functions such that each
h; maps balls uniformly at random to a random bin in S;.

We shall have three types of balls: level-one balls, level-two balls, and level-three balls. Each level-one ball x will reside
in bin g(x), each level-two ball x will reside in one of bins A1 (x), . . ., hg(x), and each level-three ball x will reside in bin
1 (but, at any given moment, the number of level-three balls will be zero w.h.p.).

Setr = C\/W for some sufficiently large positive constant c. We shall also keep track of a variable g counting
the number of level-two balls present at any given moment.

The procedure for inserting a ball x is as follows. If bin g(x) contains less than h + 7 level-one balls, then we place x
in bin g(x), and we classify x as a level-one ball. Otherwise, we check whether ¢ < n/d.If ¢ < n/d, then we examine bins
hi(x), ..., hg(x),and we place x as a level-two ball into whichever bin k; (x) contains the fewest level-two balls (breaking

ties towards the smallest i). Finally, if ¢ > n/d, then we place x as a level-three ball into bin 1.

37

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

1976

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

THEOREM 8.5. Supposel < h <n°() and1 <d < ne(), Suppose balls are inserted/deleted/reinserted into n bins over
time (by an oblivious adversary) according to ICEBERG|d] rule, with no more than hn balls present at a time. Then, w.h.p. in

n, at any given moment, the number of balls in the fullest bin is h + l;ilgi: + O(+/hlog(hd)).

Proor. Each bin deterministically contains at most h + = h + O(y/hlog(hd)) level-one balls. Thus, it suffices to
loglogn +0(1)

dlog ¢g :

The number g of level-two balls in the entire system is deterministically at most n/d at any given moment. In other

bound the number of level-two and level-three balls in each bin by

words, the level-two balls are placed according to the LEFT[d] rule with h’n balls, where ' = 1/d. Thus we can apply
(9) to deduce that, w.h.p., the maximum number of such balls per bin is

loglogn loglogn
dlog¢y dlogg¢y

Note that, in this application of (9), we are using Woelfel’s analysis [60] of LEFT[d] in a somewhat unusual parameter

O(1+Hd)+

+0(1),

regime; that is, the analysis is intended primarily to be used in the regime b’ > 1 (and Woelfel’s result was only explicitly
stated for h” = 1), but we are taking advantage of the fact that the analysis also holds for b’ = 0(1) without modification.

We complete the proof by showing that, w.h.p. The number of level-three bins is zero. By Lemma 8.1, the number g
of level-two balls satisfies ¢ < n/h (at any given moment) with probability at least 1 — exp(—n/ (hd)°W), which by the
assumption h,d < n°!) is at least 1 — 1/poly(n). It follows that each individual ball insertion has probability at most
1/poly(n) of being level-three. Taking a union bound over all of the balls in the system, the probability that any of them

are level-three is 1/poly(n), as desired.]

8.3 Assigning Balls to Capacity-1 Bins with Low Average Probe Complexity

Our final result of the section considers a dynamic balls-and-bins game in which there are n bins each with capacity 1, and at
most (1 — §)n balls are present at a time. Each ball x has a predetermined (infinite) sequence 1 (x), h2(x), . . . of bins where
it can reside, and we wish to minimize the probe complexity of each ball x, which is defined to be the smallest i such that
ball x is in bin h; (x). Since we are in the dynamic setting, the same ball may be inserted, deleted, and reinserted many times.

First note that, in the insertion-only setting, it is easy to achieve probe average complexity O(5~1) by simply using
uniform probing, which sets each h;(x) to be random, and places each ball x into the first available slot in the sequence
hi(x), h2(x),Inthe dynamic setting, however, there is not yet any known bin-assignment scheme that achieves average
probe complexity § -0 (for example, uniform probing has only successfully been analyzed in the random-deletions
setting [43], and the analysis of linear probing without moving items around remains an open problem [56]).

We now construct a bin-assignment scheme that achieves average probe complexity § -o),

THEOREM 8.6. Suppose § = 1/n°M) There exists a bin-assignment scheme that supports arbitrary ball insertions/dele-

tions/reinsertions, and guarantees an expected probe complexity ofO5_O(1) for each ball in the system.

Proor. Consider a variable-size-tiny-pointer dereference table with n slots and load factor 1 — 8. For each ball x and
eachi € N, define h;(x) = DEREFERENCE(X, i). To assign a ball x to a bin, we call the function i = ALLOCATE(x), and place
x into bin h; (x) = DEREFERENCE(X, i). To delete a ball x, we call FREE(x, i) in order to deallocate the appropriate slot in
the dereference table.

Let ¢ > 0 be a sufficiently small positive constant. By Theorem 5.1, each ball x gets assigned to a bin h;(x) where i

(which is the tiny pointer returned by ALLOCATE(x)) is

O(log 6™ +P)
38

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027

2028

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

bits for some random variable P satisfying Pr[P > j] < O (Z_ZCJ) It follows that i < 5~k with probability at least

Zcbgk

1-0(27) = 1 —0(2%%), and hence that the expected probe complexity of each ball x is 50, O

9 CONCLUSION

This paper introduces a new data-structural object that we call the tiny pointer. We use tiny pointers to produce several
space-efficient data structures.

Our work suggests several open problems. Top among these is: can tiny pointers be used to make data structures space
efficient in practice? Our related work [9, 37] on address translation in virtual-memory systems uses ideas closely related
to tiny pointers to compress pointers to where a page is located in cache. This can be shown to improve the performance
of address translation hardware. The natural question is if tiny pointer techniques can be used elsewhere in practice.

The other open problem relates to pointers in graphs. In the tiny pointer setup, each item is pointed to by a single user.
Thus, trees are easily encoded because each node has one parent. It is probably too much to hope to extend these ideas

to general graphs. Are there classes of graphs for which tiny pointers can be generalized?

ACKNOWLEDGMENTS

We would like to thank Sepehr Assadi for helpful comments that led to the proof of Lemma 8.1.

This research was supported in part by NSF grants CSR-1938180, CCF-2106999, CCF-2118620, CCF-2118832, CCF-
2106827, CCF-1725543, CSR-1763680, CCF-1716252 and CNS-1938709, as well as an NSF GRFP fellowship and a Fannie
and John Hertz Fellowship.

This research was also partially sponsored by the United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-
2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any

copyright notation herein.

REFERENCES

[1] Abseil. 2024. Google’s Abseil C++ Library. https://abseil.io/. Accessed: 2024-07-18.

[2] George Adel’son-Vel’skii and Evgenii Landis. 1962. An algorithm for organization of information. In Doklady Akademii Nauk, Vol. 146. Russian
Academy of Sciences, 263-266.

[3] Stephen Alstrup, Gerth Stelting Brodal, and Theis Rauhe. 2001. Optimal static range reporting in one dimension. In Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis (Eds.).
ACM, 476-482. https://doi.org/10.1145/380752.380842

[4] AMDManual. 2024. AMD64 Architecture Programmer’s Manual Volume 2: System Programming. https://www.amd.com/content/dam/amd/en/
documents/processor-tech-docs/programmer-references/24593.pdf. Accessed: 2024-07-18.

[5] Yuriy Arbitman, Moni Naor, and Gil Segev. 2009. De-amortized Cuckoo Hashing: Provable Worst-Case Performance and Experimental Results.
In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 5555), Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas
(Eds.). Springer, 107-118. https://doi.org/10.1007/978-3-642-02927-1_11

[6] Yuriy Arbitman, Moni Naor, and Gil Segev. 2010. Backyard Cuckoo Hashing: Constant Worst-Case Operations with a Succinct Representation.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society,
787-796. https://doi.org/10.1109/FOCS.2010.80

[7] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and IgorAleksandrovich Faradzhev. 1970. On economical construction of the transitive
closure of an oriented graph. In Doklady Akademii Nauk, Vol. 194. Russian Academy of Sciences, 487-488.

39

https://abseil.io/
https://doi.org/10.1145/380752.380842
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://doi.org/10.1007/978-3-642-02927-1_11
https://doi.org/10.1109/FOCS.2010.80

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079

2080

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

(8]

(9]

[10]

(1]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27

[28]

[29]

[30]

[31]

Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. 1999. Balanced Allocations. SIAM J. Comput. 29, 1 (Sept. 1999), 180-200.
https://doi.org/10.1137/S0097539795288490

Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Rob Johnson, Sudarsun Kannan, William Kuszmaul, Nirjhar
Mukherjee, Donald E. Porter, Guido Tagliavini, Janet Vorobyeva, and Evan West. 2021. Paging and the Address-Translation Problem. In SPAA °21:
33rd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021, Kunal Agrawal and Yossi Azar (Eds.). ACM,
105-117. https://doi.org/10.1145/3409964.3461814

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, and Guido Tagliavini. 2023. Iceberg Hashing: Optimizing Many
Hash-Table Criteria at Once. J. ACM 70, 6 (2023), 40:1-40:51. https://doi.org/10.1145/3625817

Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley, and Shikha Singh. 2018. Bloom Filters, Adaptivity,
and the Dictionary Problem. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, Mikkel
Thorup (Ed.). IEEE Computer Society, 182-193. https://doi.org/10.1109/FOCS.2018.00026

Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou Liu. 2022. On the optimal time/space tradeoff for hash
tables. In STOC °22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam
Gupta (Eds.). ACM, 1284-1297. https://doi.org/10.1145/3519935.3519969

Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou Liu. 2022. On the optimal time/space tradeoff for hash
tables. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam
Gupta (Eds.). ACM, 1284-1297. https://doi.org/10.1145/3519935.3519969

Toana Oriana Bercea and Guy Even. 2020. A Space-Efficient Dynamic Dictionary for Multisets with Constant Time Operations. CoRR abs/2005.02143
(2020). arXiv:2005.02143 https://arxiv.org/abs/2005.02143

Ioana O. Bercea and Guy Even. 2023. Dynamic Dictionaries for Multisets and Counting Filters with Constant Time Operations. Algorithmica 85,
6(2023), 1786-1804. https://doi.org/10.1007/S00453-022-01057-0

c++ std::map. 2023. cpppreference std::map. https://en.cppreference.com/w/cpp/container/map. Accessed: 2024-07-18.

c++ std::set. 2024. cpppreference std::set. https://en.cppreference.com/w/cpp/container/set. Accessed: 2024-07-18.

c++ std::unordered_map. 2024. cpppreference std::unordered_map. https://en.cppreference.com/w/cpp/container/unordered_map. Accessed:
2024-07-18.

c++ stl_set.h. 2024. gce-mirror/gec libstde++-v3 stl_set.h. https://github.com/gcc-mirror/gec/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h.
Accessed: 2024-07-18.

c++ sty_map.h. 2024. gce-mirror/gec libstde++-v3 stl_map.h. https://github.com/gcc-mirror/gec/blob/master/libstdc%2B%2B-v3/include/bits/stl_
map.h. Accessed: 2024-07-18.

c++ unordered_map.h. 2024. gcc-mirror/gec libstdc++-v3 unordered_map.h. https://github.com/gcc-mirror/gec/blob/master/libstdc%2B%2B-
v3/include/bits/unordered_map.h. Accessed: 2024-07-18.

c++ unordered_set. 2024. cpppreference std::unordered_set. https://en.cppreference.com/w/cpp/container/unordered_set. Accessed: 2024-07-18.
c++ unordered_seth. 2024. gcc-mirror/gee libstdc++-v3 unordered_set.h. https://github.com/gcc-mirror/gee/blob/master/libstdc%2B%2B-
v3/include/bits/unordered_set.h. Accessed: 2024-07-18.

Joshimar Cordova and Gonzalo Navarro. 2016. Simple and efficient fully-functional succinct trees. Theor. Comput. Sci. 656 (2016), 135-145.
https://doi.org/10.1016/].TCS.2016.04.031

Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. 2017. On Succinct Representations of Binary Trees. Math. Comput. Sci. 11, 2, 177-189.
https://doi.org/10.1007/S11786-017-0294-4

Erik D. Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai Puatracscu. 2006. De Dictionariis Dynamicis Pauco Spatio Utentibus
(lat. On Dynamic Dictionaries Using Little Space). In LATIN 2006: Theoretical Informatics, 7th Latin American Symposium, Valdivia, Chile, March
20-24, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3887), José R. Correa, Alejandro Hevia, and Marcos A. Kiwi (Eds.). Springer, 349-361.
https://doi.org/10.1007/11682462_34

Martin Dietzfelbinger and Rasmus Pagh. 2008. Succinct Data Structures for Retrieval and Approximate Membership (Extended Abstract). In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Track A: Algorithms,
Automata, Complexity, and Games (Lecture Notes in Computer Science, Vol. 5125), Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnis M.
Halldérsson, Anna Ingolfsdoéttir, and Igor Walukiewicz (Eds.). Springer, 385-396. https://doi.org/10.1007/978-3-540-70575-8_32

Martin Dietzfelbinger and Michael Rink. 2009. Applications of a Splitting Trick. In Automata, Languages and Programming, 36th International Colloquium,
ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 5555), Susanne Albers, Alberto Marchetti-
Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas (Eds.). Springer, 354-365. https://doi.org/10.1007/978-3-642-02927-1_30
Martin Dietzfelbinger and Stefan Walzer. 2019. Constant-Time Retrieval with O(log m) Extra Bits. In 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany (LIPIcs, Vol. 126), Rolf Niedermeier and Christophe Paul (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 24:1-24:16. https://doi.org/10.4230/LIPICS.STACS.2019.24

Martin Dietzfelbinger and Christoph Weidling. 2007. Balanced allocation and dictionaries with tightly packed constant size bins. Theor. Comput.
Sci. 380, 1-2, 47-68. https://doi.org/10.1016/].TCS.2007.02.054

Martin Dietzfelbinger and Philipp Woelfel. 2003. Almost random graphs with simple hash functions. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, Lawrence L. Larmore and Michel X. Goemans (Eds.). ACM, 629-638.

40

https://doi.org/10.1137/S0097539795288490
https://doi.org/10.1145/3409964.3461814
https://doi.org/10.1145/3625817
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1145/3519935.3519969
https://doi.org/10.1145/3519935.3519969
https://arxiv.org/abs/2005.02143
https://arxiv.org/abs/2005.02143
https://doi.org/10.1007/S00453-022-01057-0
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://en.cppreference.com/w/cpp/container/unordered_set
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://doi.org/10.1016/J.TCS.2016.04.031
https://doi.org/10.1007/S11786-017-0294-4
https://doi.org/10.1007/11682462_34
https://doi.org/10.1007/978-3-540-70575-8_32
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.4230/LIPICS.STACS.2019.24
https://doi.org/10.1016/J.TCS.2007.02.054

2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131

2132

Tiny Pointers Conference acronym XX, June 03-05, 2018, Woodstock, NY

[32]
[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

(53]

[54]

[55]

[56]

(571
[58]

https://doi.org/10.1145/780542.780634

F14 [n. d.]. Facebook’s F14 Hash Table. https://engineering.fb.com/2019/04/25/developer-tools/f14/. Accessed: 2024-07-18.

Arash Farzan and J. Jan Munro. 2011. Succinct representation of dynamic trees. Theor. Comput. Sci. 412, 24 (2011), 2668-2678.
https://doi.org/10.1016/J.TCS.2010.10.030

Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. 2005. Space Efficient Hash Tables with Worst Case Constant Access Time. Theory
Comput. Syst. 38, 2 (2005), 229-248. https://doi.org/10.1007/S00224-004-1195-X

Gianni Franceschini and Roberto Grossi. 2003. Optimal Worst-Case Operations for Implicit Cache-Oblivious Search Trees. In Algorithms and Data
Structures, 8th International Workshop, WADS 2003, Ottawa, Ontario, Canada, July 30 - August 1, 2003, Proceedings (Lecture Notes in Computer Science,
Vol. 2748), Frank K. H. A. Dehne, Jérg-Riidiger Sack, and Michiel H. M. Smid (Eds.). Springer, 114-126. https://doi.org/10.1007/978-3-540-45078-8 11
Gaston H. Gonnet and Per-Ake Larson. 1988. External hashing with limited internal storage. J. ACM 35, 1 (1988), 161-184.
https://doi.org/10.1145/42267.42274

Krishnan Gosakan, Jachyun Han, William Kuszmaul, Ibrahim N. Mubarek, Nirjhar Mukherjee, Karthik Sriram, Guido Tagliavini, Evan West, Michael A.
Bender, Abhishek Bhattacharjee, Alex Conway, Martin Farach-Colton, Jayneel Gandhi, Rob Johnson, Sudarsun Kannan, and Donald E. Porter. 2023.
Mosaic Pages: Big TLB Reach with Small Pages. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt, Natalie D. Enright Jerger,
and Michael M. Swift (Eds.). ACM, 433-448. https://doi.org/10.1145/3582016.3582021

Leonidas J. Guibas and Robert Sedgewick. 1978. A Dichromatic Framework for Balanced Trees. In 19th Annual Symposium on Foundations of Computer
Science, Ann Arbor, Michigan, USA, 16-18 October 1978. IEEE Computer Society, 8-21. https://doi.org/10.1109/SFCS.1978.3

Takao Gunji and E Goto. 1980. Studies on hashing part-1: A comparison of hashing algorithms with key deletion. J. Information Processing 3, 1
(1980), 1-12.

Intel. 2024. Intel®64 and IA-32 Architectures Software Developer’s Manual Combined Volumes 3A, 3B, 3C, and 3D: System Programming Guide.
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-
system-programming-guide.html. Accessed: 2024-07-18.

Don E. Knuth. 1963. Notes on “Open” Addressing.

Donald E. Knuth. 1973. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley.

Per-Ake Larson. 1983. Analysis of Uniform Hashing. J. ACM 30, 4 (1983), 805-819. https://doi.org/10.1145/2157.322407

Per-Ake Larson. 1988. Linear Hashing with Separators - A Dynamic Hashing Scheme Achieving One-Access Retrieval. ACM Trans. Database Syst.
13,3 (1988), 366-388. https://doi.org/10.1145/44498.44500

Per-Ake Larson and Ajay Kajla. 1984. File Organization: Implementation of a Method Guaranteeing Retrieval in One Access. Commun. ACM 27,
7(1984), 670-677. https://doi.org/10.1145/358105.358193

Mingmou Liu, Yitong Yin, and Huacheng Yu. 2020. Succinct Filters for Sets of Unknown Sizes. In 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbriicken, Germany (Virtual Conference) (LIPIcs, Vol. 168), Artur Czumaj, Anuj Dawar,
and Emanuela Merelli (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 79:1-79:19. https://doi.org/10.4230/LIPICS ICALP.2020.79

M. Molloy and B. Reed. 2013. Graph Colouring and the Probabilistic Method. Springer Berlin Heidelberg. https://books.google.com/books?id=
gU3xCAAAQBA]

J. Tan Munro, Venkatesh Raman, and Adam J. Storm. 2001. Representing dynamic binary trees succinctly. In Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, S. Rao Kosaraju (Ed.). ACM/SIAM, 529-536.
http://dl.acm.org/citation.cfm?id=365411.365526

Gonzalo Navarro and Kunihiko Sadakane. 2014. Fully Functional Static and Dynamic Succinct Trees. ACM Trans. Algorithms 10, 3 (2014), 16:1-16:39.
https://doi.org/10.1145/2601073

Anna Pagh and Rasmus Pagh. 2008. Uniform Hashing in Constant Time and Optimal Space. SIAM J. Comput. 38, 1 (2008), 85-96.
https://doi.org/10.1137/060658400

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. 7. Algorithms 51, 2 (2004), 122-144. https://doi.org/10.1016/JJALGOR.2003.12.002
Mihai Patragcu. 2008. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA. IEEE Computer Society, 305-313. https://doi.org/10.1109/FOCS.2008.83

W. Wesley Peterson. 1957. Addressing for Random-Access Storage. IBM . Res. Dev. 1, 2 (1957), 130-146. https://doi.org/10.1147/RD.12.0130

Martin Raab and Angelika Steger. 1998. "Balls into Bins" - A Simple and Tight Analysis. In Randomization and Approximation Techniques in Computer
Science, Second International Workshop, RANDOM 98, Barcelona, Spain, October 8-10, 1998, Proceedings (Lecture Notes in Computer Science, Vol. 1518),
Michael Luby, José D. P. Rolim, and Maria J. Serna (Eds.). Springer, 159-170. https://doi.org/10.1007/3-540-49543-6_13

Rajeev Raman and S. Srinivasa Rao. 2003. Succinct Dynamic Dictionaries and Trees. In Automata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings (Lecture Notes in Computer Science, Vol. 2719), Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger (Eds.). Springer, 357-368. https://doi.org/10.1007/3-540-45061-0_30

Peter Sanders. 2018. Hashing with Linear Probing and Referential Integrity. CoRR abs/1808.04602 (2018). arXiv:1808.04602
http://arxiv.org/abs/1808.04602

Raimund Seidel and Cecilia R. Aragon. 1996. Randomized Search Trees. Algorithmica 16, 4/5 (1996), 464-497. https://doi.org/10.1007/BF01940876
Daniel Sleator and Robert Tarjan. 1985. Self-Adjusting Binary Search Trees. J. ACM 32, 3 (1985), 652-686. https://doi.org/10.1145/3828.3835

41

https://doi.org/10.1145/780542.780634
https://engineering.fb.com/2019/04/25/developer-tools/f14/
https://doi.org/10.1016/J.TCS.2010.10.030
https://doi.org/10.1007/S00224-004-1195-X
https://doi.org/10.1007/978-3-540-45078-8_11
https://doi.org/10.1145/42267.42274
https://doi.org/10.1145/3582016.3582021
https://doi.org/10.1109/SFCS.1978.3
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://doi.org/10.1145/2157.322407
https://doi.org/10.1145/44498.44500
https://doi.org/10.1145/358105.358193
https://doi.org/10.4230/LIPICS.ICALP.2020.79
https://books.google.com/books?id=gU3xCAAAQBAJ
https://books.google.com/books?id=gU3xCAAAQBAJ
http://dl.acm.org/citation.cfm?id=365411.365526
https://doi.org/10.1145/2601073
https://doi.org/10.1137/060658400
https://doi.org/10.1016/J.JALGOR.2003.12.002
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1147/RD.12.0130
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1007/3-540-45061-0_30
https://arxiv.org/abs/1808.04602
http://arxiv.org/abs/1808.04602
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/3828.3835

2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183

2184

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Bender et al.

[59] Berthold Vécking. 2003. How asymmetry helps load balancing. . ACM 50, 4 (2003), 568-589. https://doi.org/10.1145/792538.792546
[60] Philipp Woelfel. 2006. Asymmetric balanced allocation with simple hash functions. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006. ACM Press, 424-433. http://dl.acm.org/citation.cfm?id=1109557.1109605

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

42

https://doi.org/10.1145/792538.792546
http://dl.acm.org/citation.cfm?id=1109557.1109605

	Abstract
	1 Introduction
	1.1 Results: Constructing Optimal Tiny Pointers
	1.2 Results: Five Applications to Data Structures

	2 Preliminaries
	3 Warmup: A Simple Construction and a Simple Application
	4 Upper Bound for Fixed-Size Pointers
	5 Upper Bounds for Variable-Size Pointers
	6 Lower Bounds
	7 Applying Tiny Pointers to Five Problems in Data Structures
	7.1 Some General-Purpose Techniques for Using Tiny Pointers
	7.2 Overcoming the (n)-Bit Lower Bound for Data Retrieval
	7.3 Succinct Binary Search Trees
	7.4 Space-Efficient Stable Dictionaries
	7.5 Space-Efficient Dictionaries with Variable-Size Values
	7.6 An Optimal Internal-Memory Stash

	8 Dynamic Balls and Bins
	8.1 A Useful Lemma
	8.2 Iceberg[d]
	8.3 Assigning Balls to Capacity-1 Bins with Low Average Probe Complexity

	9 Conclusion
	Acknowledgments
	References

