
Towards Affordable Reproducibility
Using Scalable Capture and Comparison

of Intermediate Multi-Run Results
Nigel Tan∗

University of Tennessee Knoxville

Knoxville, TN, USA

ntan1@vols.utk.edu

Kevin Assogba∗

Rochester Institute of Technology

Rochester, NY, USA

kta7930@cs.rit.edu

Walter J. Ashworth
University of Tennessee Knoxville

Knoxville, TN, USA

washwor1@vols.utk.edu

Befikir Bogale
University of Tennessee Knoxville

Knoxville, TN, USA

bbogale@vols.utk.edu

Franck Cappello
Argonne National Laboratory

Lemont, IL, USA

cappello@anl.gov

M. Mustafa Rafique
Rochester Institute of Technology

Rochester, NY, USA

mrafique@cs.rit.edu

Michela Taufer
University of Tennessee Knoxville

Knoxville, TN, USA

taufer@acm.org

Bogdan Nicolae
Argonne National Laboratory

Lemont, IL, USA

bnicolae@anl.gov

ABSTRACT

Ensuring reproducibility in high-performance computing (HPC)

applications is a significant challenge, particularly when nondeter-

ministic execution can lead to untrustworthy results. Traditional

methods that compare final results from multiple runs often fail

because they provide sources of discrepancies only a posteriori

and require substantial resources, making them impractical and

unfeasible. This paper introduces an innovative method to address

this issue by using scalable capture and comparing intermediate

multi-run results. By capitalizing on intermediate checkpoints and

hash-based techniques with user-defined error bounds, our method

identifies divergences early in the execution paths. We employ

Merkle trees for checkpoint data to reduce the I/O overhead asso-

ciated with loading historical data. Our evaluations on the nonde-

terministic HACC cosmology simulation show that our method

effectively captures differences above a predefined error bound

and significantly reduces I/O overhead. Our solution provides a

robust and scalable method for improving reproducibility, ensuring

that scientific applications on HPC systems yield trustworthy and

reliable results.

CCS CONCEPTS

· Computing methodologies→ Distributed algorithms.

∗These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0623-3/24/12
https://doi.org/10.1145/3652892.3700780

KEYWORDS

Results reproducibility, Checkpoint analysis, High-performance

computing, Error-bounded hashing

ACM Reference Format:

Nigel Tan, Kevin Assogba, Walter J. Ashworth, Befikir Bogale, Franck Cap-

pello, M. Mustafa Rafique, Michela Taufer, and Bogdan Nicolae. 2024. To-

wards Affordable Reproducibility Using Scalable Capture and Comparison

of Intermediate Multi-Run Results. In 24th International Middleware Confer-

ence (MIDDLEWARE ’24), December 2ś6, 2024, Hong Kong, Hong Kong. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3652892.3700780

1 INTRODUCTION

The increasing complexity of scientific applications and the extreme

heterogeneity they face from all perspectives (different types of

tasks, patterns, accelerators, job scheduling decisions, interleav-

ing and competition for resources, etc.) makes it challenging to

reason about reproducibility [11, 18]. For example, numerous stud-

ies [23, 39, 40] have shown that concurrency in HPC applications

can negatively affect the reproducibility of simulation results. Con-

sequently, prominent HPC publication venues have begun requiring

reproducibility assessments for submitted research [6, 44], and ma-

jor HPC laboratories have increased investments in software tools

aimed at characterizing, quantifying, and managing concurrency

to enhance computational reproducibility [36, 37].

A naive solution that simply compares the end results of two dif-

ferent application runs that start with the same input data does not

enable enough insight. For example, if the end results are different,

then there is no information available about what went wrong and

when this happened during the runtime. Similarly, if there is a sin-

gle valid path to reach the end result (which is often the case of HPC

simulations), then obtaining a correct end result does not guarantee

it was obtained through the valid path that produced correct inter-

mediate results. For example, a study by Stodden and co-workers in

Figure 1 compares the outcomes of two runs of a galaxy formation

simulation using the Enzo adaptive mesh refinement code [8]. In

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong Tan et al.
Y

 (
M

p
c)

X (Mpc)

P
ro

je
ct

e
d

 D
e

n
si

ty
 (

g
/c

m
2
)

Run 1: Galactic halo #49 detected Run 2: Galactic halo #49 not detected

Y
 (

M
p

c)
X (Mpc)

P
ro

je
ct

e
d

 D
e

n
si

ty
 (

g
/c

m
2
)

Figure 1: Discrepancy between two runs of galaxy formation

simulation using the Enzo adaptivemesh refinement code [8]

due to concurrency. Documented by Stodden et al. in [39].

Run 1, a specific galactic halo (49) formed, whereas in Run 2, it did

not. Thus, it is important to devise scalable techniques that capture

and analyze intermediate results in addition to the end results.

Limitations of State-of-the-Art. In a quest to ensure the re-

producibility of scientific simulations, various strategies have been

developed to either control the execution or examine the outcome

of the simulations. Techniques to control determinism in scien-

tific applications have been proposed to support reproducibility.

For example, a sequential implementation of an application such

that arithmetic operations follow a pre-defined order ensures that

the same result is obtained across multiple runs [5]. However, this

approach requires intimate knowledge of the application and can

introduce additional costs to refactor legacy systems. An alterna-

tive to avoid the computational and storage overhead measures the

statistical significance of the end results using derived quantities

such as the variance and standard deviation [7]. An element-wise

comparison and the computation of a derived quantity have simi-

lar complexities, but statistical analyses involve fewer operations,

reducing computational overhead. However, the lack of detailed

insights into the evolution of the simulation makes it impossible to

identify the root cause of non-determinism in the end results.

This objective requires a complete history of intermediate results

captured during the simulation. This can be done using checkpoint-

ing [14, 19, 26], a technique widely used in scientific applications

for various tasks, e.g., suspend-resume of long-running jobs, re-

silience, fault tolerance, etc., to collect critical data needed to study

reproducibility at runtime. Specifically, the intermediate results can

be captured into a checkpoint history at key moments during the

runtime. State-of-the-art checkpointing techniques use asynchro-

nous multi-level techniques to this end. The principle is to write

the intermediate results into a checkpoint file on node-local storage

such as NVMe, then flush the file in the background to durable

shared storage (e.g., a parallel file system such as Lustre) while the

application continues in the foreground. Unfortunately, state-of-

the-art checkpointing solutions are not optimized to read back the

checkpointing data, which is needed to perform element-wise com-

parisons. This read-intensive pattern may introduce a significant

I/O bottleneck, because the history of checkpoints may grow to

massive sizes (many distributed processes, each of which needs

to capture a large checkpoint frequently during runtime). More-

over, in addition to I/O bottlenecks, the computational overhead of

element-wise comparisons can be significant.

Problem Formulation. In this paper, we study the problem

of how to compare the history of checkpoints produced during

two runs in order to identify if there are any differences and what

variables were affected. Specifically, given a history of checkpoints

𝐴
𝑗
𝑖 generated by 0 < 𝑖 < 𝑁 distributed processes over 0 < 𝑗 < 𝑀

iterations during Run 1, and a corresponding history of checkpoints

𝐵
𝑗
𝑖 during Run 2, we aim to design and implement a runtime that

compares 𝐴
𝑗
𝑖 with 𝐵

𝑗
𝑖 and lists all intermediate data (and the corre-

sponding indices if the data are multi-dimensional) that are different

between two runs. Since most modern scientific applications are

a mix of HPC simulations, ML, and Big Data analytics workloads,

they operate with floating-point values. Hence, we assume the in-

termediate data between two runs is different if | 𝑉1 − 𝑉2 |> 𝜖 ,

where 𝜖 is user-defined. At scale, the amount of data captured as

checkpoints is massive. Therefore, our goal is to design and imple-

ment scalable techniques that maximize the throughput of comparing

the checkpoint history of the two runs.

Contributions. The key idea of our approach is to reduce the

number of element-wise comparisons performed between the check-

points of two runs by splitting the checkpoints into chunks, hashing

the chunks, and storing additional metadata with each checkpoint.

Then, if the hashes of the chunks match, we consider the content of

the chunks to match as well with high probability, thereby reducing

the number of chunks for which a full element-wise comparison is

needed, which ultimately reduces the I/O bottlenecks and computa-

tional overheads. While this principle is widely used for verification

purposes, we are not aware of any work that explored its appli-

cability in the context of reproducibility. This introduces several

opportunities for innovation, as summarized below:

(1) We propose a series of design principles: (1) novel GPU-

optimized hashing techniques for groups of floating point

values organized into chunks that need to match within

a given error bound; (2) novel hierarchic organization of

hashes using GPU-optimized data structures to accelerate

the comparison of identical contiguous regions; (3) multi-

level I/O pipelining of data transfers and overlapping with

GPU computations to maximize parallelization and enable

scalability (Section 2.1).

(2) We implement these design principles into a practical run-

time that leverages modern performance portable frame-

works, e.g., Kokkos, advanced data structures, e.g., GPU-

aware Merkle trees, and efficient I/O libraries, e.g., io_uring,

for offline (using a command line tool) or online (using a

library API) scalable capture and comparison of intermedi-

ate results to enhance reproducibility in HPC applications

(Section 2.5).

(3) We evaluate our method using checkpoints captured from a

real-life large-scale HPC application (the HACC cosmology

simulation). These experiments demonstrate the effective-

ness of our method at capturing differences between check-

points frommultiple runs at a higher comparison throughput

compared with popular and state-of-the-art approaches (Sec-

tion 3.4).

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong

2 SYSTEM DESIGN

2.1 Design Principles

The design of our solution to manage reproducibility disruptions

due to concurrency in large-scale scientific applications on HPC

systems must address several complex challenges. These challenges

include handling massive datasets, optimizing I/O operations, and

effectively leveraging HPC resources. We have strategically defined

a series of principles that govern the design of ourmethod to address

such challenges.

GPU-Aware Error-Bounded Parallelized Comparison of

Checkpoints. To address the reproducibility challenge in scientific

simulations, we introduce a GPU-accelerated approach for preci-

sion floating-point comparisons within predefined error bounds.

Our method starts by aligning initial checkpoints from two differ-

ent simulation runs and segmenting them into smaller, manage-

able chunks. These segments are then distributed and processed

in parallel across multiple GPUs, enabling simultaneous data com-

parison. Our method not only leverages GPUs’ parallel processing

capabilities to enhance computational efficiency but also ensures

the required precision for scientific accuracy. By parallelizing the

data comparison process, our method substantially decreases the

time needed to detect discrepancies between simulation runs, thus

improving the reliability of scientific conclusions in large-scale

computational simulations.

Multi-Level Overlapping I/O Pipelining from Persistent

Storage to GPU Memory. To address the challenges associated

with I/O bottlenecks in GPU-based systems, we have developed

a multi-level overlapping I/O pipelining technique that efficiently

transfers data from persistent storage, e.g., a parallel file system

(PFS), directly to GPU memory. Traditional methods involve send-

ing data in a blocking manner, but they severely constrain through-

put due to I/O operations. Our method bypasses this constraint

by establishing a seamless pipeline that reads data chunks from

the parallel file system into the host memory. Concurrently, these

chunks are transferred to GPU memory, and comparison opera-

tions on the GPUs start without delay. This overlapping of reading,

transferring, and processing not only mitigates the I/O bottleneck

but also fully leverages the parallelism capabilities of GPUs. By effi-

ciently aligning the data flow across multiple system architecture

levels, we can significantly enhance the throughput and efficiency

of data-intensive applications.

Reduction of I/O andComparisonsCosts using Error-Bounded

Hash-Based Techniques. To address the efficiency challenge of

large-scale data operations, we have implemented a novel error-

bounded hash-based method to reduce both I/O operations and the

number of necessary comparisons. In environments where storage

repositories are shared across multiple compute nodes, I/O band-

width can become a significant bottleneck, especially when dealing

with extensive data sizes that require frequent comparisons. Our

method involves hashing the data chunks before comparison and

using these hash values as a preliminary filter. We proceed with a

full data comparison only when hashes do not match. Our hashing

method is designed to be fast and capable of generating consistent

hash values for floating-point numbers within a specified error

bound, using a conservative truncation technique to manage varia-

tions in data. By limiting the number of full comparisons needed,

our method significantly reduces unnecessary I/O, thus reducing

resource utilization in large-scale processing environments.

Compact Hash Metadata using GPU-Aware Parallelized

Merkle Trees. To address the challenges of managing extensive

metadata generated from hashing large data chunks, we utilize a

compact representation based on Merkle trees optimized for GPU

acceleration. Merkle trees are effective data structures for summa-

rizing and verifying data integrity. Each data chunk is hashed and

serves as the leaves of the tree. These leaf hashes are then com-

bined and rehashed progressively up the tree until a singular hash

at the root represents the entire dataset. We effectively minimize

the overhead of comparing vast datasets by employing this hier-

archical hashing structure. During the checkpoint writing phase,

we implement a bottom-up process to construct the Merkle tree,

encapsulating all data chunks within this structured format. For

comparisons, instead of beginning at the root, we start from the

intermediate levels of the tree to optimize the comparison process.

This method not only accelerates the detection of discrepancies by

focusing on levels where mismatches are likely but also reduces the

depth of tree traversal, leveraging GPU capabilities for enhanced

parallel processing. By distributing these operations across multiple

GPU cores, our method rapidly processes large volumes of data,

far outpacing traditional CPU-based methods. The parallelization

extends to the comparison phase, where GPUs efficiently identify

matching regions through a single high-level hash comparison,

avoiding redundant checks of identical sections. We streamline

our method, and in doing so, we not only enhance computational

efficiency but also reduce the storage requirements by eliminating

unnecessary metadata. Large-scale applications that demand fre-

quent data integrity checks and comparisons are the most beneficial

of our solution.

Low-Latency Optimizations for Scattered I/O. To address

the complexities introduced by Merkle tree hashing in our system,

particularly the challenging I/O patterns resulting frommany small,

scattered data chunks, we have developed a set of low-latency opti-

mizations tailored for such scenarios. While Merkle tree hashing

significantly reduces the volume of I/O and the number of compar-

isons by identifying identical chunks across runs, it disrupts the

typical I/O pattern optimized for large, contiguous operations com-

monly supported by PFS. The resulting scattered I/O can degrade

performance due to increased latency and reduced throughput. To

counter these effects, we implement an advanced I/O strategy lever-

aging the io_uring library [4], a modern kernel feature allowing

asynchronous enqueuing of I/O operations within a single sys-

tem call. Our method minimizes the latency of numerous context

switches in traditional read operations. Additionally, the asynchro-

nous nature of io_uring optimizes I/O throughput by efficiently

managing scattered reads without the overhead of synchronous

I/O blocking. By effectively managing the scattered I/O patterns

without compromising the benefits of reduced I/O operations in

the multi-level pipeline, we enhance the system’s overall efficiency

and reduce I/O and comparison operations.

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong Tan et al.

...

Parallel
Filesystem

...

RAM

CPU Local
StorageNode

Checkpoint A
Run 1

Checkpoint A
Run 2

GPU0

Checkpoint D
Run 1

Checkpoint D
Run 2

GPU3 ...

RAM

CPU Local
StorageNode

Checkpoint X
Run 1

Checkpoint X
Run 2

GPU0

Checkpoint Z
Run 1

Checkpoint Z
Run 2

GPU3

Figure 2: Architecture of a GPU-aware parallel checkpoint

comparison runtime that integrates our design principles.

2.2 Architecture and High-level Overview

Our method for a scalable capture and comparison of intermedi-

ate results integrates two main components: (1) the compaction

of large simulation checkpoints into metadata with a low storage

footprint and (2) the comparison of two distinct checkpoint meta-

data to identify discrepancies. We use a series of design principles,

as outlined in Section 2.1 to efficiently analyze the large number

of checkpoints captured during scientific simulations. The general

architecture of our method integrates the pair-wise comparison of

two checkpoints (one per simulation run) on dedicated GPUs, as

depicted in Figure 2, to benefit from the GPU’s multi-processing ca-

pabilities. This enables the comparison of a large number of files at

scale. We reduce the I/O overhead of processing large checkpoints

using a hierarchical Merkle tree-based compact representation that

only stores hashes of the checkpoint data. This enables low over-

head tree comparison where we only need to match hash values

at the same index in the trees. However, we use a conservative

hashing approach leading to a few misclassifications that require

accessing potentially non-contiguous regions of the original check-

points. This type of data access patterns pressure the I/O subsystem.

We mitigate the resulting I/O overhead using a multi-level stream-

ing technique, depicted in Figure 3 to overlap I/O operations with

checkpoint comparison.

2.3 Merkle-tree Compact Checkpoint Metadata

We propose using Merkle trees as metadata for representing check-

points and an efficient parallel algorithm for identifying differences

between checkpoints. Using Merkle trees, we minimize the amount

of checkpoint data read from the PFS while also identifying the

amount and location of data that differs between checkpoints.

The algorithm works as follows: During application execution,

we construct the Merkle tree at checkpoint time on the GPU, as

described in Algorithm 1, and save the metadata to the PFS. The

metadata size depends on the checkpoint data length, the user-

defined chunk size, and the size of a hash digest. For example,

given data length 𝑁 , chunk size 𝐶 , and digest size 𝐷 , the metadata

size can be computed as 2 ∗ 𝐷 ∗ ((𝑁 /𝐶) − 1). A larger chunk size

results in a smaller number of leaves and vice-versa. Merkle trees

for large checkpoints can have thousands or millions of nodes.

Tree construction can leverage the GPU’s massive parallelism by

calculating all hashes within a level of the tree in parallel. Once

:I/O Threads :Compute Kernels

Pre-allocate
buffers

Transfer chunk offsets
from GPU to Host
Prepare first chunk

Get chunk

End
stream

Parallel
Compare

Parallel
Compare

Parallel
Compare

Get chunk (async)

Queue
Reads

Queue
Reads

Queue
Reads

Return

Get chunk (async)

Figure 3: Asynchronous data streaming sequence diagram.

Algorithm 1 Compact Checkpoint Metadata Creation

function create_tree(Tree, Chunks, Leaves)

𝑛 = |𝐶ℎ𝑢𝑛𝑘𝑠 |

for 𝑖 ← 0 : 𝑛 do ⊲ do in parallel

𝐶 = 𝐶ℎ𝑢𝑛𝑘𝑠 [𝑖]

𝑠𝑒𝑒𝑑 = 0

for all 𝑏𝑙𝑜𝑐𝑘 ∈ 𝐶 do

for all 𝑓 𝑙𝑜𝑎𝑡 ∈ 𝑏𝑙𝑜𝑐𝑘 do

𝑛𝑒𝑤_𝑓 𝑙𝑜𝑎𝑡 ← 𝑟𝑜𝑢𝑛𝑑 (𝑓 𝑙𝑜𝑎𝑡)

end for

𝑑𝑖𝑔𝑒𝑠𝑡 ← ℎ𝑎𝑠ℎ(𝑏𝑙𝑜𝑐𝑘, 𝑠𝑒𝑒𝑑)

𝑠𝑒𝑒𝑑 ← 𝑑𝑖𝑔𝑒𝑠𝑡

end for

𝐿𝑒𝑎𝑣𝑒𝑠 [𝑖] ← 𝑑𝑖𝑔𝑒𝑠𝑡

end for

𝑙𝑒𝑣𝑒𝑙 = 1

for all 𝑙𝑒𝑣𝑒𝑙 ∈ 𝑇𝑟𝑒𝑒 do ⊲ do in parallel

if 𝑙𝑒𝑣𝑒𝑙 is not 𝐿𝑒𝑎𝑣𝑒𝑠 then

for all 𝑛𝑜𝑑𝑒 ∈ 𝑙𝑒𝑣𝑒𝑙 do

𝑡𝑚𝑝 = {𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒, 𝑙𝑒 𝑓 𝑡),𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒, 𝑟𝑖𝑔ℎ𝑡)}

𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ← ℎ𝑎𝑠ℎ(𝑡𝑚𝑝)

end for

end if

end for

end function

the checkpoints for two runs are available, we start the comparison

algorithm.

The comparison algorithm is broken up into two stages. The first

stage reads the previously generated metadata and uses the Merkle

trees to identify any chunks that may have differences between the

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong

Figure 4: Identifying differences between checkpoints using

Merkle trees and breadth-first search with pruning.

two runs. We use a parallel breadth-first search (BFS) to compare

individual hashes and identify which chunks of data may have

differences. Figure 4 shows an example of the tree comparison.

Starting in the middle of the tree, we compare the corresponding

nodes between the two trees and see if the hashes match. If the

hashes are identical, we know all hashes within the subtree rooted

at the node are identical. We then prune the subtree from the search.

If the hashes differ, we know that at least one leaf in the subtree does

not match, so we add the child nodes to the search. This process

repeats until we run out of nodes to visit or reach the leaves. Any

leaves that do not match are then added to the list of potentially

changed chunks and moved on to the second stage.

The second stage takes the list of chunks and verifies whether

there are any differences within each chunk. We asynchronously

read and stream data chunks to overlap I/O with the comparison

kernel. Figure 3 shows the comparison pipeline. A team of I/O

threads reads data from the PFS into a buffer. An asynchronous

transfer is initiated once the buffer is filled or all chunks have been

read. The main thread retrieves the slice and signals that the buffer

is free so that the I/O threads can continue reading data. The main

thread then launches the kernel that compares each pair of floats

to see if their difference exceeds the error bound. This continues

until all chunks in the list have been compared.

2.4 Error-Bounded Checkpoint Data Hashing

We generate hash values for the leaves in our Merkle tree using

an error-bounded hashing technique, highly parallelized for GPUs

at two levels: (1) the entire checkpoint data is divided into chunks,

and our hashing algorithm is concurrently applied on independent

chunks; (2) within each chunk, we introduce a conservative round-

ing method, parallelized at the granularity of individual floating

points. We apply the 128-bit Murmur3F hashing algorithm to com-

pute hashes at the granularity of 128 bits. The Murmur3F algorithm

offers high collision resistance according to SMHasher 1 quality

tests.

We employ a conservative rounding method to ensure that each

floating-point number within a chunk is accurately transformed in

alignment with a predetermined error bound.We use an application-

supplied absolute error that can be tolerated to assume equality

and is typically known by domain experts. The rounding process

involves three key steps: normalizing the numbers to a standard

range, rounding them to reduce precision while maintaining neces-

sary accuracy, and then rescaling them back to their original scale.

This method effectively captures and represents variations within

the specified error bound.

Next, we utilize a block-based hashing method to process the

rounded data.Weminimize the size of theMerkle tree by computing

one hash for each chunk of the checkpoint data. To that end, the

hashing of a chunk is serialized at the granularity of 128-bit blocks,

where the current block is hashed using the digest of the previous

block as seed. This iterative procedure continues until all data

within a chunk is hashed. By leveraging the digest of one block as

the seed for the next, the final hash value reflects floating-point

variations within the entire chunk. Additionally, the block-based

approach allows integration with any hashing algorithm, as the

block size is variable and can be adjusted to fit specific application

requirements.

Our method seamlessly integrates with the structured frame-

work of a Merkle tree, enabling parallel and non-blocking updates

of the tree with computed hash values. Our GPU-aware rounding

and hashing methods ensure efficient utilization of GPU resources,

improve the hashing throughput and enable processing large vol-

umes of data with reduced overhead.

2.5 Implementation

Our implementation builds on flattened tree structures that enable

efficient massive parallelization and io_uring for efficient asynchro-

nous I/O. We integrate Kokkos, a performance portable runtime

that can generate parallel code for both CPUs and GPUs, to sup-

port cross-platform deployment and ensure that no modification is

necessary to run on CPUs.

2.5.1 Efficient Merkle Tree Creation and Traversal. We store Merkle

trees as a flattened array. Merkle trees are binary trees that have

clear formulas for identifying the parent and children of a node.

A pointer-based tree structure is more flexible, but our use case

does not dynamically change the tree. Using pointers also leads

to inefficient random access patterns. Our BFS implementation is

parallelized such that all nodes within the same level of the tree are

processed in parallel. The only synchronization is when moving

between levels. To improve performance we start the BFS in the

middle of the tree where the number of the nodes in the level is

greater than the number of concurrent GPU threads. Starting in the

middle ensures that more threads are active rather than having them

idle for the levels of the tree near the root. Using GPUs ensures

that the cost of creating the Merkle tree is minimal. The small

storage and creation cost of Merkle trees make it easy to add to

1https://github.com/aappleby/smhasher

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong Tan et al.

GPU applications where we want to minimize the interruptions to

the application.

2.5.2 Asynchronous Data Streaming with io_uring. Streaming the

data from the PFS to the GPU allows us to run the parallel compar-

ison kernel while the next slice of data is prepared. Working with

slices of data is necessary for large checkpoints that may not fit

both checkpoints in memory. We implement data streaming using

the io_uring interface for asynchronous I/O and C++ threads for

managing and transferring data. io_uring is a Linux kernel inter-

face for fast asynchronous I/O. io_uring uses a submission queue

and completion queue that are shared between the kernel and the

application. This removes the overhead of copying data between

kernel and user space. This is particularly useful for our method

which issues small reads rather than reading the full file at once.

We launch several I/O threads to handle issuing the read requests

to io_uring. We also spawn a task that waits until all the data has

been read into the slice and then asynchronously transfers the data

to the device.

3 PERFORMANCE EVALUATION

3.1 Evaluation Setup

We evaluate our approach on the Polaris system at the Argonne

Leadership Computing Facility (ALCF) [13], a multi-GPU comput-

ing environment with 560 compute nodes. Each node has 4 NVIDIA

A100 GPUs (total of 160 GB HBM2 memory), one 2.8 GHz AMD

EPYCMilan CPU (32-cores), and 512 GiB DDR4 memory. The nodes

are connected using the Slingshot 11 network and can access an

external 10 TB POSIX-mounted Lustre parallel file system.

3.2 Compared Approaches

3.2.1 Python-based Floating-Point Number Comparison (AllClose).

We use allclose as a naive baseline that represents how a domain

scientist may compare results. This method analyzes the results’

reproducibility using the in-built allclose function of the NumPy

package. This function takes two vectors of floating-point numbers

and returns true if all the numbers are within an error bound.

allclose, by default, checks if two arrays (a and b) are element-wise

within an error tolerance. The error tolerance is calculated as the

sum of the absolute (atol) and relative differences (rtol * abs(b)).

However, this paper focuses on comparisons with the absolute error

bound. Therefore, we define the relative error value as zero in all

our experiments. allclose only detects any differences that exceed

the error bound and is not optimized for asynchronous IO. This

form of change detection is not useful for locating where changes

exceed the bound. The following methods identify where in the

checkpoint the different values are and use optimized IO strategies.

3.2.2 Pair-wise Floating-Point Number Comparison (Direct). This

method is the most common comparison approach for reproducibil-

ity analytics that verifies whether critical data in checkpoint his-

tories of two application runs are within an error bound defined

by scientists. We refer to this baseline as Direct, and identify two

floating-point numbers, 𝑎 from any checkpoint of the first run and 𝑏

from the same position in the same checkpoint of the second appli-

cation run, as different if their absolute difference exceeds the error

bound, i.e., |𝑎 − 𝑏 | > 𝜖 . For best performance, we implement Direct

in C++ using Kokkos for parallelization and use io-uring, a kernel

I/O interface that provides efficient asynchronous I/O operations

and bypasses much of the system call overhead.

3.2.3 Our Method. We compare the aforementioned numerical

reproducibility analysis methods with our proposed hierarchical

hashing-based solution described in Section 2.

3.3 Evaluation Methodology

3.3.1 Application Checkpoints. We consider the Hardware/Hybrid

Accelerated Cosmology Code (HACC) [15] as a practical HPC appli-

cation for our evaluation. HACC is an extreme-scale cosmological

simulation suite originally developed for the heterogeneous archi-

tecture of the first petascale supercomputer, Roadrunner [16], and

later adjusted for deployment at scale on more recent supercom-

puters, including Polaris. For our evaluation, we simulated direct

particle-particle interactions using the particle-particle-particle-

mesh method, i.e., 𝑃3𝑀 algorithm [17] over 50 iterations. We asyn-

chronously capture particle data (coordinates, velocity, and gravita-

tional potential described in Table 1) using the VELOC checkpoint-

ing library [33] at iterations 10, 20, 30, and 40 of each simulation.

The simulations are conducted using varying numbers of particles

yielding different checkpoint sizes, as summarized in Table 1.

Table 1: Content of HACC checkpoints.

Field Type Description

X F32 x coordinate

Y F32 y coordinate

Z F32 z coordinate

VX F32 x velocity

VY F32 y velocity

VZ F32 z velocity

𝜙 F32 grav. potential

#Particles #Nodes Chkpt Size

0.5 B 2 14 GB

1 B 2 28 GB

2 B 2 56 GB

17 B 128 563 GB

3.3.2 Performance Metrics. We measure the effectiveness of our

approach using three key metrics. We design the metrics to assess

our method’s accuracy, efficiency, and performance compared to

the traditional direct approach. Below, we detail each metric:

• Effectiveness: We assess the accuracy of our method by com-

paring it to reference results from the direct approach. This

metric focuses on the number of differences identified across

an entire dataset during a checkpoint comparison.

• Time: We analyze the efficiency of using hashing for repro-

ducibility by comparing the time it takes for our method to

analyze hashes and floating-point numbers (as outlined in

Section 2) against the time taken by the direct approach.

• Throughput: We measure the total volume of data analyzed

per second over the analysis duration. This metric is the ratio

between the size of the compared data and the time taken to

read checkpoint data from the parallel file system (PFS), the

data streaming process to the GPU, and the comparison of

hashes and floating-point numbers.

3.3.3 Testing Setting. To comprehensively evaluate our method,

we varied several experimental parameters to test its robustness

and performance across different conditions. The setting used in

our experiments is detailed in Table 2 and includes:

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong

• Number of Nodes: To understand how our method scales

with increasing nodes, we use a variable number of nodes

ranging from 1 to 32.

• Error Bounds: Error bound defines the acceptable difference

threshold between two checkpoints. Lower error bounds

provide stricter criteria for identifying differences, while

higher bounds allow for more variation. We test with error

bounds set to 10
−3, 10−4, 10−5, 10−6, and 10

−7.

• Chunk Sizes: The size of the data chunks used for hash-

ing and comparison affects the precision and overhead of

identifying differences. Smaller chunk sizes provide more

precise identification but may increase overhead due to read-

ing unnecessary data. We consider chunk sizes ranging from

4 KB to 512 KB. Therefore, with 4 KB chunks and 16-byte

hash digests, the metadata size for a 7 GB checkpoint (size

of the aggregated checkpoint on one node for the HACC

experiment with 0.5 × 109 particles) is ≈ 55𝑀𝐵.

Table 2: Setup used to evaluate performance and scalability.

Description Values

Number of Nodes 1, 2, 4, 8, 16, 32

Error bounds 10
−3, 10−4, 10−5, 10−6, 10−7

Chunk sizes 4 KB - 512 KB

3.3.4 Experimental Scenarios. We present two scenarios that ex-

amine the impact of different parameters on our method in contrast

with existingmethods. The first scenario studies how chunk size and

the error bound affect the comparison throughput of our method.

We use the 0.5, 1, and 2 billion particle checkpoints and use two

nodes to compare all pairs of checkpoints in parallel. The second

scenario is a strong scaling study comparing our method with the

optimized direct method. We use the checkpoints generated by the

17 billion particle simulation and vary the number of nodes from 4

to 32 nodes with 4 processes per node. For each node configuration,

we compare all 128 pairs of checkpoints. For both scenarios, we use

"vmtouch -e" to evict the pages corresponding to the input files from

the file system cache in order to enable a fair comparison where

each approach starts with a cold cache. Internally, vmtouch uses

POSIX_FADV_DONTNEED to clear the cache. This is necessary to

ensure that the page cache does not skew our performance metrics.

3.4 Performance Results

3.4.1 Comparison Throughput. We summarize the comparison

throughput for the AllClose baseline, optimized direct compari-

son, and our Merkle tree-based method, across three problem sizes

in Figure 5. The baseline method throughput is at most 2.67 GB/s

regardless of the error bound. The direct method uses io_uring for

more efficient I/O which increases the throughput to at most 5.24

GB/s. We note that varying the error bound does not impact either

the baseline or the direct comparison throughput, as all data must

be compared regardless of the error bound. Thanks to our design

principles and optimization, our method consistently outperforms

the baseline and direct comparison methods for all tested chunk

sizes and error bounds.

The choice of the chunk size poses an interesting trade-off for

our method. Smaller chunks can more accurately determine where

differences are located. This reduces the amount of unnecessary

I/O, which is why using 4 KB chunks yields the best performance

with high error bounds. However, we cannot select the smallest

chunk size for all situations. Choosing small chunks for small error

bounds such as 10−7 significantly lowers throughput. Reading small

chunks that are scattered randomly across the file is an extremely

challenging I/O pattern that degrades performance. The small error

bound increases the number of changed chunks which worsens the

impact of the poor I/O pattern. For situations where large amounts

of data could exceed the error bound, it is better to improve the

I/O pattern by reading larger chunks of data. Increasing the chunk

size from 4 KB to 512 KB almost doubles the throughput for all

checkpoint sizes. Even so, the chunk size cannot be too large or

the performance may degrade from reading too much unnecessary

data. This is shown in Figure 5a where for an error bound of 10−7,

increasing the chunk size from 256 KB to 512 KB lowers throughput

from 11.3GB/s to 11.04GB/s.

As the error bound grows, the throughput increases for all chunk

sizes across the three simulation sizes. Larger error bounds lead to

fewer changes that exceed the threshold, reducing the amount of

data read from the PFS. Our comparison method is up to 11 times

faster than the direct comparison method. This is especially true

for larger checkpoints and error bounds. The throughput for larger

error bounds such as 0.001 nearly doubles as the checkpoint size

increases. This indicates that the runtime stays nearly constant as

the size of checkpoints increases.

The trade-offs between I/O patterns and reducing the amount

of data read from the PFS make chunk size selection vital for high

performance. Throughput behavior is consistent between the three

checkpoint sizes. This suggests that the optimal choice of error

bound and chunk size for checkpoints from a small-scale problem

will also achieve high throughput for larger simulations.

3.4.2 Comparison Cost Breakdown. To identify the main bottle-

neck and better understand the I/O pattern and data size trade-off,

we look at a breakdown of the comparison runtime for two cases.

Figure 6 shows the individual timers for the comparison process.

The first case shown in Figure 6a, is when the error bound is low

and the second case is when the error bound is high. Of the five

timers, the time spent on deserializing and comparing the Merkle

trees is negligible compared to the rest of the timers. The setup

section is for allocating buffers and data structures which is why

the time spent is very consistent. Reading the Merkle-tree metadata

is very cheap for reasonable chunk sizes. The time spent in the

verification phase (Compare direct time) identifying changes in

the data is the most important. For small error bounds, we need to

load more data which is why the verification time is dominant. The

verification time decreases as chunk size increases due to the better

I/O pattern. However, the performance improvements level off as

the chunks approach 1 MB.

Reducing the amount of data read can overcome the poor random

small reads I/O pattern. Figure 6b shows that the setup time is

similar to when the small error bound case. The total runtime is

shorter and does not change as much when the chunk size varies.

This indicates that the number of identified chunks is very small.

As the chunk size grows, the verification phase runtime increases

due to reading more unnecessary data. The read time also decreases

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong Tan et al.

(a) 500 Million particles (7GB per checkpoint)

(b) 1 Billion particles (14GB per checkpoint)

(c) 2 Billion particles (28GB per checkpoint)

Figure 5: Comparison of our approach vs. value-by-value comparison. The direct approach streams data from the PFS to the

GPU. Throughput is measured as the amount of checkpoint data over the total runtime.

since larger chunks result in fewer hashes and smaller trees. For

small error bounds with many changes, it is best to choose a large

chunk size. Small chunk sizes are best in cases where there are

fewer changes. This is emphasized in Figure 6a vs. Figure 6b. The

trade-off between the number of identified chunks, error bound,

and the amount of data is complex, which is why we study it next

in greater detail.

3.4.3 Effectiveness of Error-Bounded Data Hashing. To evaluate

our error-bounded hash function, we measure the percentage of

checkpoint data loaded for further comparison vs. the false positive

rate of the error-bounded hash function. Figure 7 summarizes the

impact of error bound and chunk size on the effectiveness of the

error-bounded hash function. Figure 7a shows that increasing the

chunk size also increases the percentage of data that must be read.

The percentage increase does not scale linearly with the chunk size.

Using 8 KB chunks instead of 4 KB chunks increases the percent-

age by less than 5%. The nonlinear increase is because of how the

changes are distributed. If two contiguous 4 KB chunks are marked

as changed then increasing the chunk size to 8 KB will result in the

same amount of data being marked. As the chunk size continues

to grow, the percentage increase also grows as more unnecessary

data is marked as changed. Increasing the error bound has a larger

impact on the percentage of data read from the PFS. Increasing the

error bound from 10
−5 to 10

−4 results in a 9.7% increase which has

more impact than the 9% increase when going from 128 KB to 4 KB

chunks. This pattern is also shown in Figure 5c where the through-

put increases by 13.96 GB/s and 9.67 GB/s respectively. Figure 7b

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong

(a) Runtime breakdown with an error bound of 10−7

(b) Runtime breakdown with an error bound of 10−3

Figure 6: Impact of error bound and chunk size on the com-

parison runtime. Total runtime is split into separate timers

for each part of the comparison process. Error bounds of 10−7

and 10
−3. Chunk size varies from 4 KB to 512 KB.

presents the false positive rate for the conservative error-bounded

hash function. The hash function correctly identifies all chunks

that contain changes that exceed the error bound. However, the

hash also has false positives which result in more unnecessary data

being streamed from the PFS. Except for the error bound of 10−7,

increasing the chunk size leads to more false positives. The false

positive rate drop for larger chunks with an error bound of 10−7

has surprisingly little effect on the percentage of data changed. This

is because rate drop has less of an effect on the total percentage of

data compared to the doubling of the chunk size. These results show

that the error-bounded hash function is most effective with small

chunk sizes. Unfortunately, the poor I/O access pattern negates the

benefits.

The ideal case for our method is when there are no changes. In

this situation, we can use the metadata to verify that there are no

(a) Percentage of the checkpoint datamarked as potentially changed.

(b) False positive rate

Figure 7: Effectiveness of the error-bounded hash function.

Checkpoints are from the 2 billion particle simulation.

changes that exceed the threshold without needing to read any

checkpoint data. This property makes our method particularly well-

suited for studying reproducibility. Reproducible applications will

have a clearly defined error bound such that there are no run-to-run

differences that exceed the threshold. This makes our checkpoint

comparison method an excellent tool for enhancing reproducibility

in HPC applications thanks to the low storage costs for metadata

and the high comparison throughput.

3.4.4 Cost of Constructing Merkle Trees. Our Merkle tree imple-

mentation uses Kokkos for parallelization on multiple architectures

and is optimized for GPUs. We evaluate the benefits of our GPU-

optimized Merkle tree implementation by comparing the tree con-

struction time on the CPU and GPU in Figure 8. Tree construction

on GPUs is four orders of magnitude faster than the CPU thanks to

the higher bandwidth and computing resources. Chunk size does

not affect runtime because the same amount of data is being hashed

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong Tan et al.

Figure 8: Tree construction cost (500 million particles) using

the CPU or GPU. Error tolerance is 10−7. Y-axis is log-scale.

Figure 9: Comparison of I/O backends for scattered I/O (500

million particles). Error tolerance is 10−7.

regardless of chunk size. Our GPU-optimized Merkle tree construc-

tion algorithm has minimal overhead and can be easily integrated

with checkpointing runtimes and data analysis tools. The low cost

of tree construction can potentially be used to determine when to

take checkpoints or perform more costly analyses.

3.4.5 Enhancing Scattered I/O. The choice of I/O backend is im-

portant for efficient comparisons. We compare the runtime per-

formance between the mmap and io_uring backends in Figure 9

using eight processes. Using io_uring is over three times faster than

mmap and demonstrates less variance. io_uring is an asynchronous

API that allows queuing and submitting multiple independent read

operations with very few kernel calls. mmap performance suffers

because the I/O operations are synchronous and trigger numerous

expensive page faults. The mmap backend scales with the amount

of data that is being read. io_uring is less affected by the quantity of

data and even shows improvements when the chunk size increases.

3.4.6 Scalability Study. Our last set of experiments is a strong scal-

ing study of our method and the direct comparison approach. We

(a) Error Bound = 10
−7

(b) Error Bound = 10
−3

Figure 10: Throughput of comparing 1024 checkpoints for

an increasing number of processes (four per node). Higher is

better. Both approaches shownear-perfect scalability and our

method maintains its higher throughput and lower runtime

across all settings.

analyze HACC checkpoints captured on 128 nodes (a total of 512

checkpoints per simulation run) and experiment with low (10−7)

and high (10−3) error bounds to evaluate the performance of our

method at scale in two scenarios: (1) using a low error bound to

illustrate a worst-case scenario with more I/O operation during the

second phase of our method; (2) using a high error bound to capture

the best-case scenario with a minimum number of I/O requests.

Figure 10 presents the per-process comparison throughput for an

increasing number of processes (four processes per node). As can

be observed, both approaches scale with the number of processes

maintaining an average speedup of 1.9× for every increment in the

number of processes. Our method maintains a higher throughput

than the direct comparison for both scenarios. This is an important

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong

observation that highlights the benefits of our low-latency opti-

mization for scattered I/O. As a result, with 50% less value-by-value

comparisons than the direct comparison approach, our method

maintains a minimum throughput and runtime speedup of 1.6×

at scale when the error bound is 10−7. Despite performing more

value-by-value comparisons compared to when the error tolerance

is higher, our method maintains better performance than the direct

comparison approach, as depicted in Figure 10a. This performance

shows that our optimizations efficiently manage scattered I/O, mini-

mizing the overhead of reading chunks from non-contiguous offsets

of checkpoint files located on a PFS. A similar trend is visible for

a higher error bound with a smaller I/O overhead, yielding up to

4.6× speedup compared to the direct comparison approach.

4 RELATED WORK

The scientific integrity and transparency of HPC workflows are de-

fined by the ability of scientists to reproduce the results and perfor-

mance of an application when executed multiple times on the same

computational platform using the same code, input parameters, and

datasets [27, 35, 42]. Several recent studies highlight the importance

of reproducibility in computational workflows [25, 32, 39], identify-

ing various sources of performance and results variations including

shared memory bandwidth contention [3], non-associative floating-

point operations [22], dynamic scheduling of parallel processes [1],

variability in network bandwidth [43], etc. Preemptive solutions,

e.g., packaging experiments [20], sandbox computational environ-

ments [9, 28] and workflow management systems [12] improve

reproducibility by preventing interference from external processes

and enabling workflow replication. Post-simulation analysis frame-

works further reinforce the state of practice in performance re-

producibility through queryable systems for performance metrics

and workflow provenance analysis [34]. Although these solutions

contribute to stability in computational experiments, the increas-

ing scale of HPC workflows and existing non-determinism sources

within a single workflow highlight the importance of further inves-

tigating the reproducibility of computational results.

Existing studies on results reproducibility explore strategies to

improve numerical correctness and convergence by reducing nu-

merical roundoff errors introduced with floating-point arithmetic,

e.g., error-free transformation for reproducible summation [24, 29].

These solutions focus on ensuring bitwise identical floating-point

results but do not account for errors induced by runtime variations

due to I/O patterns (common I/O operations of flushing large files

to the PFS may create interleaves that introduce varying errors in

intermediate results) or silent errors occurring during execution.

Error detection techniques, e.g., checksums, mitigate such issues

but can also become a source for non-determinism if obtained using

non-associative operations. Scientific workflows primarily operate

on floating-point numbers and results are often validated if the

difference between two simulation runs is within an acceptable

error bound. However, critical applications, e.g., drug or nuclear

reactor design, may require bitwise reproducibility achievable at

the cost of computational performance using sequential execution

and fixed-order arithmetic operations [5]. To mitigate the waste

of computational resources by waiting until the final outputs of

two distinct runs are captured, a detailed analysis of intermediate

results can identify the exact process or simulation stage where

results start diverging [2]. Hash-based de-duplication techniques

for binary data have been used in a variety of storage scenarios to

save space [21, 30, 31]. Furthermore, Merkle trees are commonly

used to check integrity in protocols such as BitTorrent or databases

such as Cassandra [10], Dynamo[38], and Riak [41]. Our approach

is unique in that it focuses on reproducibility, the goal being to

be able to compare two scientific datasets (usually consisting of

floating point numbers) very fast.

5 CONCLUSIONS

This paper presents a scalable method for capturing and comparing

intermediatemulti-run results for enhancing reproducibility in HPC

applications. To this end, we useMerkle trees as a compact metadata

representation of checkpoints and use the tree structure in addition

to I/O pipelining, error-bounded hash techniques, and optimized

low-latency scattered I/O to accelerate checkpoint comparison. We

use these key ideas to improve comparison throughput by up to an

order of magnitude over the optimized direct comparison method.

We highlight the trade-off between the I/O volume from the PFS and

the efficiency of the I/O pattern. Our method shows near-perfect

strong scaling and achieves 300 GB/s comparison throughput.

We plan to investigate multi-node parallel online checkpoint

compaction and comparison. Our method reduces the I/O overhead

from loading all checkpoints from the PFS. Online checkpoint com-

parison can further reduce the I/O overhead since only the previous

checkpoint history needs to be read from the PFS. We can also com-

pact the checkpoints online to reduce the I/O overhead and storage

costs for the checkpoint history. Our method also shows promise as

a potential continuous integration tool. Applications with a defined

error bound can save a Merkle tree for the expected results of a test.

If the method detects any differences then the developers know

that the code change may introduce a reproducibility issue.

6 ACKNOWLEDGMENTS

This material is based uponwork supported by: the U.S. Department

of Energy (DOE), Office of Science, Office of Advanced Scientific

Computing Research, under Contract DE-AC02-06CH11357; the

National Science Foundation under Grants #1900888, #1900765,

#2223704, #2331152, #2411386, #2411387, #2106635.

REFERENCES
[1] Peter Ahrens, James Demmel, and Hong Diep Nguyen. 2020. Algorithms for

Efficient Reproducible Floating Point Summation. TOMS’20: ACM Transactions
on Mathematical Software 46, 3 (2020), 1ś49.

[2] Kevin Assogba, Bogdan Nicolae, Hubertus Van Dam, and M. Mustafa Rafique.
2023. Asynchronous Multi-Level Checkpointing: An Enabler of Reproducibility
using Checkpoint History Analytics. In SC’23: Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing, Network, Stor-
age, and Analysis. Association for Computing Machinery, New York, NY, USA,
1748ś1756.

[3] Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus J. Leung, Manuel Egele,
and Ayse K. Coskun. 2019. HPAS: An HPC Performance Anomaly Suite for
Reproducing Performance Variations. In ICPP’19: The Proceedings of the 48th
International Conference on Parallel Processing (Kyoto, Japan). Association for
Computing Machinery, New York, NY, USA, Article 40, 10 pages.

[4] Jens Axboe. 2019. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf
[5] Pavan Balaji and Dries Kimpe. 2013. On the Reproducibility of MPI Reduction

Operations. In HPCC’13: The IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International Conference on

MIDDLEWARE ’24, December 2ś6, 2024, Hong Kong, Hong Kong Tan et al.

Embedded and Ubiquitous Computing. IEEE, IEEE Computer Society, Los Alamitos,
CA, USA, 407ś414.

[6] Marek Baranowski, Braden Caywood, Hannah Eyre, Janaan Lake, Kevin Parker,
Kincaid Savoie, Hari Sundar, and Mary Hall. 2017. Reproducing ParConnect for
SC16. Parallel Computing 70 (2017), 18ś21.

[7] Magnus Borga, André Ahlgren, Thobias Romu, PerWidholm, Olof Dahlqvist Lein-
hard, and Janne West. 2020. Reproducibility and Repeatability of MRI-based Body
Composition Analysis. Magnetic Resonance in Medicine 84, 6 (2020), 3146ś3156.

[8] Greg L Bryan, Michael L Norman, Brian W O’Shea, Tom Abel, John H Wise,
Matthew J Turk, Daniel R Reynolds, David C Collins, Peng Wang, Samuel W
Skillman, et al. 2014. Enzo: An Adaptive Mesh Refinement Code for Astrophysics.
The Astrophysical Journal Supplement Series 211, 2 (2014), 19.

[9] R. Shane Canon. 2020. The Role of Containers in Reproducibility. In CANOPIE-
HPC’20: The Proceedings of the 2020 2nd International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC. IEEE Computer
Society, Los Alamitos, CA, USA, 19ś25.

[10] Artem Chebotko, Andrey Kashlev, and Shiyong Lu. 2015. A Big Data Model-
ing Methodology for Apache Cassandra. In BigData’15: 2015 IEEE International
Congress on Big Data. IEEE, IEEE Computer Society, Los Alamitos, CA, USA,
238ś245.

[11] Peter V Coveney, Derek Groen, and Alfons G Hoekstra. 2021. Reliability and
Reproducibility in Computational Science: Implementing Validation, Verification
and Uncertainty Quantification in silico. Philosophical Transactions of the Royal
Society A 379, 2197 (2021), 20200409.

[12] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow Enables Reproducible Compu-
tational Workflows. Nature Biotechnology 35, 4 (2017), 316ś319.

[13] Argonne Leadership Computing Facility. n.d.. Polaris. https://www.alcf.anl.gov/
polaris. Accessed: May 24, 2024.

[14] Mikaila J. Gossman, Bogdan Nicolae, and Jon C. Calhoun. 2024. Scalable I/O
Aggregation for Asynchronous Multi-level Checkpointing. Future Generation
Computer Systems 160 (2024), 420ś432.

[15] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, Katrin
Heitmann, Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joe Insley,
David Daniel, Patricia Fasel, and Zarija Lukić. 2016. HACC: Extreme Scaling and
Performance Across Diverse Architectures. Communications of the ACM 60, 1
(dec 2016), 97ś104.

[16] Salman Habib, Adrian Pope, Zarija Lukić, David Daniel, Patricia Fasel, Nehal
Desai, Katrin Heitmann, Chung-Hsing Hsu, Lee Ankeny, Graham Mark, Suman
Bhattacharya, and James Ahrens. 2009. Hybrid Petacomputing Meets Cosmology:
The Roadrunner Universe Project. Journal of Physics: Conference Series 180, 1 (jul
2009), 012019.

[17] R. W. Hockney and J. W. Eastwood. 1988. Computer Simulation Using Particles.
Taylor & Francis Group, New York, NY, USA.

[18] Bin Hu, Shane Canon, Emiley A Eloe-Fadrosh, Michal Babinski, Yuri Corilo, Karen
Davenport, William D Duncan, Kjiersten Fagnan, Mark Flynn, Brian Foster, et al.
2022. Challenges in Bioinformatics Workflows for Processing Microbiome Omics
Data at Scale. Frontiers in Bioinformatics 1 (2022), 826370.

[19] Jie Jia, Yi Liu, Yanke Liu, Yifan Chen, and Fang Lin. 2024. AdapCK: Optimizing
I/O for Checkpointing on Large-Scale High Performance Computing Systems.
In Euro-Par’24: Parallel Processing: 30th European Conference on Parallel and
Distributed Processing, Madrid, Spain, August 26ś30, 2024, Proceedings, Part III
(Madrid, Spain). Springer-Verlag, Berlin, Heidelberg, 342ś355.

[20] Kate Keahey, Jason Anderson, Mark Powers, and Adam Cooper. 2023. Three
Pillars of Practical Reproducibility. In eScience’23: The IEEE 19th International
Conference on e-Science. IEEE Computer Society, Los Alamitos, CA, USA, 1ś6.

[21] Andrzej Kochut, Alexei Karve, and Bogdan Nicolae. 2015. Towards Efficient On-
demand VM Provisioning: Study of VM Runtime I/O Access Patterns to Shared
Image Content. In IM’15: 13th IFIP/IEEE International Symposium on Integrated
Network Management. Ottawa, Canada, 321ś329.

[22] Ignacio Laguna. 2020. Varity: Quantifying Floating-Point Variations in HPC
Systems Through Randomized Testing. In IPDPS’20: The IEEE International Parallel
and Distributed Processing Symposium. IEEE Computer Society, Los Alamitos, CA,
USA, 622ś633.

[23] Philippe Langlois, Rafife Nheili, and Christophe Denis. 2016. Recovering Numer-
ical Reproducibility in Hydrodynamic Simulations. In ARITH’16: The IEEE 23nd
Symposium on Computer Arithmetic. IEEE, IEEE Computer Society, Los Alamitos,
CA, USA, 63ś70.

[24] Kuan Li, Kang He, Stef Graillat, Hao Jiang, Tongxiang Gu, and Jie Liu. 2023. Multi-
level Parallel Multi-layer Block Reproducible Summation Algorithm. Parallel
Computing 115 (2023), 102996.

[25] Xin Liu, JD Emberson, Michael Buehlmann, Nicholas Frontiere, and Salman
Habib. 2023. Numerical Discreteness Errors in Multispecies Cosmological N-
body Simulations. Monthly Notices of the Royal Astronomical Society 522, 3 (2023),
3631ś3647.

[26] Avinash Maurya, M. Mustafa Rafique, Thierry Tonellot, Hussain J. AlSalem,
Franck Cappello, and Bogdan Nicolae. 2023. GPU-Enabled Asynchronous Multi-
level Checkpoint Caching and Prefetching. In HPDC’23: The Proceedings of the
32nd International Symposium on High-Performance Parallel and Distributed Com-
puting (Orlando, FL, USA). Association for Computing Machinery, New York, NY,
USA, 73ś85.

[27] Robert D. McIntosh and Christopher D. Chambers. 2020. The Three R’s of
Scientific Integrity: Replicability, Reproducibility, and Robustness. Cortex 129
(2020), A4śA7.

[28] David Moreau, Kristina Wiebels, and Carl Boettiger. 2023. Containers for Com-
putational Reproducibility. Nature Reviews Methods Primers 3, 1 (2023), 50.

[29] Ingo Müller, Andrea Arteaga, Torsten Hoefler, and Gustavo Alonso. 2018. Re-
producible Floating-Point Aggregation in RDBMSs. In ICDE’18: Proceedings of
the 2018 IEEE 34th International Conference on Data Engineering. IEEE Computer
Society, Los Alamitos, CA, USA, 1049ś1060.

[30] Bogdan Nicolae. 2013. Towards Scalable Checkpoint Restart: A Collective Inline
Memory Contents Deduplication Proposal. In IPDPS’13: The 27th IEEE Interna-
tional Parallel and Distributed Processing Symposium. Boston, USA, 19ś28.

[31] Bogdan Nicolae. 2015. Leveraging Naturally Distributed Data Redundancy to
Reduce Collective I/O Replication Overhead. In IPDPS’15: 29th IEEE International
Parallel and Distributed Processing Symposium. Hyderabad, India, 1023ś1032.

[32] Bogdan Nicolae, Tanzima Z. Islam, Robert Ross, Huub Van Dam, Kevin As-
sogba, Polina Shpilker, Mikhail Titov, Matteo Turilli, Tianle Wang, Ozgur O. Kilic,
Shantenu Jha, and Line C. Pouchard. 2023. Building the I (Interoperability) of
FAIR for Performance Reproducibility of Large-Scale Composable Workflows in
RECUP. In eScience’23: The IEEE 19th International Conference on e-Science. IEEE
Computer Society, Los Alamitos, CA, USA, 1ś7.

[33] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In IPDPS’19: The Proceedings of the 2019 IEEE
International Parallel and Distributed Processing Symposium. IEEE Computer
Society, Los Alamitos, CA, USA, 911ś920.

[34] Line Pouchard, Sterling Baldwin, Todd Elsethagen, Shantenu Jha, Bibi Raju, Eric
Stephan, Li Tang, and Kerstin Kleese Van Dam. 2019. Computational Repro-
ducibility of Scientific Workflows at Extreme Scales. IJHPCA’19: The International
Journal of High Performance Computing Applications 33, 5 (2019), 763ś776.

[35] Jan Provazník, Radim Filip, and Petr Marek. 2022. Taming Numerical Errors in
Simulations of Continuous Variable Non-Gaussian State Preparation. Scientific
Reports 12, 1 (2022), 16574.

[36] Kento Sato, Ignacio Laguna, Gregory L Lee, Martin Schulz, Christopher M Cham-
breau, Simone Atzeni, Michael Bentley, Ganesh Gopalakrishnan, Zvonimir Raka-
maric, Geof Sawaya, et al. 2019. PRUNERS: Providing Reproducibility for Un-
covering Non-deterministic Errors in Runs on Supercomputers. IJHPCA’19: The
International Journal of High Performance Computing Applications 33, 5 (2019),
777ś783.

[37] Geof Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, and Dong H
Ahn. 2017. FLiT: Cross-platform Floating-point Result-consistency Tester and
Workload. In IISWC’17: The IEEE International Symposium on Workload Charac-
terization. IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 229ś238.

[38] Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: A Seamlessly Scalable
Non-relational Database Service. In SIGMOD/PODS’12: International Conference
on Management of Data (Scottsdale, Arizona, USA). Association for Computing
Machinery, New York, NY, USA, 729ś730.

[39] Victoria Stodden and Matthew S Krafczyk. 2018. Assessing Reproducibility:
An Astrophysical Example of Computational Uncertainty in the HPC Context.
ResCuE-HPC’18: The 1st Workshop on Reproducible, Customizable and Portable
Workflows for HPC at SC’18.

[40] Michela Taufer, Omar Padron, Philip Saponaro, and Sandeep Patel. 2010. Improv-
ing Numerical Reproducibility and Stability in Large-scale Numerical Simulations
on GPUs. In IPDPS’10: The IEEE International Symposium on Parallel & Distributed
Processing. IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 1ś9.

[41] Basho Technologies. 2009. Riak. https://www.riak.com/.
[42] Krishna Tiwari, Sarubini Kananathan, Matthew G Roberts, Johannes P Meyer,

Mohammad Umer Sharif Shohan, Ashley Xavier, Matthieu Maire, Ahmad Zyoud,
Jinghao Men, Szeyi Ng, et al. 2021. Reproducibility in Systems Biology Modelling.
Molecular Systems Biology 17, 2 (2021), e9982.

[43] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data Per-
formance Reproducible in Modern Cloud Networks?. In NSDI’20: The Proceedings
of the 17th Usenix Conference on Networked Systems Design and Implementation
(Santa Clara, CA, USA). USENIX Association, USA, 513ś528.

[44] GR Williams, GP Behm, T Nguyen, A Esparza, VG Haka, A Ramos, B Wright,
JC Otto, CP Paolini, and MP Thomas. 2017. SC16 Student Cluster Competi-
tion Challenge: Investigating the Reproducibility of Results for the ParConnect
Application. Parallel Computing 70 (2017), 27ś34.

	Abstract
	1 Introduction
	2 System Design
	2.1 Design Principles
	2.2 Architecture and High-level Overview
	2.3 Merkle-tree Compact Checkpoint Metadata
	2.4 Error-Bounded Checkpoint Data Hashing
	2.5 Implementation

	3 Performance Evaluation
	3.1 Evaluation Setup
	3.2 Compared Approaches
	3.3 Evaluation Methodology
	3.4 Performance Results

	4 Related Work
	5 Conclusions
	6 Acknowledgments
	References

