Towards Affordable Reproducibility
Using Scalable Capture and Comparison
of Intermediate Multi-Run Results

Nigel Tan
University of Tennessee Knoxville
Knoxville, TN, USA
ntanl@vols.utk.edu

Befikir Bogale
University of Tennessee Knoxville
Knoxville, TN, USA
bbogale@vols.utk.edu

Michela Taufer
University of Tennessee Knoxville
Knoxville, TN, USA
taufer@acm.org

ABSTRACT

Ensuring reproducibility in high-performance computing (HPC)
applications is a significant challenge, particularly when nondeter-
ministic execution can lead to untrustworthy results. Traditional
methods that compare final results from multiple runs often fail
because they provide sources of discrepancies only a posteriori
and require substantial resources, making them impractical and
unfeasible. This paper introduces an innovative method to address
this issue by using scalable capture and comparing intermediate
multi-run results. By capitalizing on intermediate checkpoints and
hash-based techniques with user-defined error bounds, our method
identifies divergences early in the execution paths. We employ
Merkle trees for checkpoint data to reduce the I/O overhead asso-
ciated with loading historical data. Our evaluations on the nonde-
terministic HACC cosmology simulation show that our method
effectively captures differences above a predefined error bound
and significantly reduces I/O overhead. Our solution provides a
robust and scalable method for improving reproducibility, ensuring
that scientific applications on HPC systems yield trustworthy and
reliable results.

CCS CONCEPTS
« Computing methodologies — Distributed algorithms.

“These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MIDDLEWARE °24, December 2—6, 2024, Hong Kong, Hong Kong

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0623-3/24/12

https://doi.org/10.1145/3652892.3700780

Kevin Assogba®
Rochester Institute of Technology
Rochester, NY, USA
kta7930@cs.rit.edu

Franck Cappello
Argonne National Laboratory
Lemont, IL, USA
cappello@anl.gov

Walter J. Ashworth
University of Tennessee Knoxville
Knoxville, TN, USA
washworl@vols.utk.edu

M. Mustafa Rafique
Rochester Institute of Technology
Rochester, NY, USA
mrafique@cs.rit.edu

Bogdan Nicolae
Argonne National Laboratory
Lemont, IL, USA
bnicolae@anl.gov

KEYWORDS

Results reproducibility, Checkpoint analysis, High-performance
computing, Error-bounded hashing

ACM Reference Format:

Nigel Tan, Kevin Assogba, Walter J. Ashworth, Befikir Bogale, Franck Cap-
pello, M. Mustafa Rafique, Michela Taufer, and Bogdan Nicolae. 2024. To-
wards Affordable Reproducibility Using Scalable Capture and Comparison
of Intermediate Multi-Run Results. In 24th International Middleware Confer-
ence (MIDDLEWARE °24), December 2—6, 2024, Hong Kong, Hong Kong. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3652892.3700780

1 INTRODUCTION

The increasing complexity of scientific applications and the extreme
heterogeneity they face from all perspectives (different types of
tasks, patterns, accelerators, job scheduling decisions, interleav-
ing and competition for resources, etc.) makes it challenging to
reason about reproducibility [11, 18]. For example, numerous stud-
ies [23, 39, 40] have shown that concurrency in HPC applications
can negatively affect the reproducibility of simulation results. Con-
sequently, prominent HPC publication venues have begun requiring
reproducibility assessments for submitted research [6, 44], and ma-
jor HPC laboratories have increased investments in software tools
aimed at characterizing, quantifying, and managing concurrency
to enhance computational reproducibility [36, 37].

A naive solution that simply compares the end results of two dif-
ferent application runs that start with the same input data does not
enable enough insight. For example, if the end results are different,
then there is no information available about what went wrong and
when this happened during the runtime. Similarly, if there is a sin-
gle valid path to reach the end result (which is often the case of HPC
simulations), then obtaining a correct end result does not guarantee
it was obtained through the valid path that produced correct inter-
mediate results. For example, a study by Stodden and co-workers in
Figure 1 compares the outcomes of two runs of a galaxy formation
simulation using the Enzo adaptive mesh refinement code [8]. In

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

Run 1: Galactic halo #49 detected Run 2: Galactic halo #49 not detected

@8

D748 S
31 Rk
! 43
3 &

el |
i & g @)

&2
S a@@
e

104

Projected Density (g/cm?)
Y (Mpc)
Projected Density (g/cm?)

= =4 =2 0 2 4 6 = =4 =20 2 4 6

X (Mpc) X (Mpc)

Figure 1: Discrepancy between two runs of galaxy formation
simulation using the Enzo adaptive mesh refinement code [8]
due to concurrency. Documented by Stodden et al. in [39].

Run 1, a specific galactic halo (49) formed, whereas in Run 2, it did
not. Thus, it is important to devise scalable techniques that capture
and analyze intermediate results in addition to the end results.

Limitations of State-of-the-Art. In a quest to ensure the re-
producibility of scientific simulations, various strategies have been
developed to either control the execution or examine the outcome
of the simulations. Techniques to control determinism in scien-
tific applications have been proposed to support reproducibility.
For example, a sequential implementation of an application such
that arithmetic operations follow a pre-defined order ensures that
the same result is obtained across multiple runs [5]. However, this
approach requires intimate knowledge of the application and can
introduce additional costs to refactor legacy systems. An alterna-
tive to avoid the computational and storage overhead measures the
statistical significance of the end results using derived quantities
such as the variance and standard deviation [7]. An element-wise
comparison and the computation of a derived quantity have simi-
lar complexities, but statistical analyses involve fewer operations,
reducing computational overhead. However, the lack of detailed
insights into the evolution of the simulation makes it impossible to
identify the root cause of non-determinism in the end results.

This objective requires a complete history of intermediate results
captured during the simulation. This can be done using checkpoint-
ing [14, 19, 26], a technique widely used in scientific applications
for various tasks, e.g., suspend-resume of long-running jobs, re-
silience, fault tolerance, etc., to collect critical data needed to study
reproducibility at runtime. Specifically, the intermediate results can
be captured into a checkpoint history at key moments during the
runtime. State-of-the-art checkpointing techniques use asynchro-
nous multi-level techniques to this end. The principle is to write
the intermediate results into a checkpoint file on node-local storage
such as NVMe, then flush the file in the background to durable
shared storage (e.g., a parallel file system such as Lustre) while the
application continues in the foreground. Unfortunately, state-of-
the-art checkpointing solutions are not optimized to read back the
checkpointing data, which is needed to perform element-wise com-
parisons. This read-intensive pattern may introduce a significant
I/O bottleneck, because the history of checkpoints may grow to
massive sizes (many distributed processes, each of which needs
to capture a large checkpoint frequently during runtime). More-
over, in addition to I/O bottlenecks, the computational overhead of
element-wise comparisons can be significant.

Tan et al.

Problem Formulation. In this paper, we study the problem
of how to compare the history of checkpoints produced during
two runs in order to identify if there are any differences and what
variables were affected. Specifically, given a history of checkpoints
A{ generated by 0 < i < N distributed processes over 0 < j < M
iterations during Run 1, and a corresponding history of checkpoints
B{ during Run 2, we aim to design and implement a runtime that

compares A{ with BlJ. and lists all intermediate data (and the corre-
sponding indices if the data are multi-dimensional) that are different
between two runs. Since most modern scientific applications are
a mix of HPC simulations, ML, and Big Data analytics workloads,
they operate with floating-point values. Hence, we assume the in-
termediate data between two runs is different if | V3 — V5 |> e,
where € is user-defined. At scale, the amount of data captured as
checkpoints is massive. Therefore, our goal is to design and imple-
ment scalable techniques that maximize the throughput of comparing
the checkpoint history of the two runs.

Contributions. The key idea of our approach is to reduce the
number of element-wise comparisons performed between the check-
points of two runs by splitting the checkpoints into chunks, hashing
the chunks, and storing additional metadata with each checkpoint.
Then, if the hashes of the chunks match, we consider the content of
the chunks to match as well with high probability, thereby reducing
the number of chunks for which a full element-wise comparison is
needed, which ultimately reduces the I/O bottlenecks and computa-
tional overheads. While this principle is widely used for verification
purposes, we are not aware of any work that explored its appli-
cability in the context of reproducibility. This introduces several
opportunities for innovation, as summarized below:

(1) We propose a series of design principles: (1) novel GPU-
optimized hashing techniques for groups of floating point
values organized into chunks that need to match within
a given error bound; (2) novel hierarchic organization of
hashes using GPU-optimized data structures to accelerate
the comparison of identical contiguous regions; (3) multi-
level I/O pipelining of data transfers and overlapping with
GPU computations to maximize parallelization and enable
scalability (Section 2.1).

(2) We implement these design principles into a practical run-
time that leverages modern performance portable frame-
works, e.g., Kokkos, advanced data structures, e.g., GPU-
aware Merkle trees, and efficient I/O libraries, e.g., io_uring,
for offline (using a command line tool) or online (using a
library API) scalable capture and comparison of intermedi-
ate results to enhance reproducibility in HPC applications
(Section 2.5).

(3) We evaluate our method using checkpoints captured from a
real-life large-scale HPC application (the HACC cosmology
simulation). These experiments demonstrate the effective-
ness of our method at capturing differences between check-
points from multiple runs at a higher comparison throughput
compared with popular and state-of-the-art approaches (Sec-
tion 3.4).

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results

2 SYSTEM DESIGN
2.1 Design Principles

The design of our solution to manage reproducibility disruptions
due to concurrency in large-scale scientific applications on HPC
systems must address several complex challenges. These challenges
include handling massive datasets, optimizing I/O operations, and
effectively leveraging HPC resources. We have strategically defined
a series of principles that govern the design of our method to address
such challenges.

GPU-Aware Error-Bounded Parallelized Comparison of
Checkpoints. To address the reproducibility challenge in scientific
simulations, we introduce a GPU-accelerated approach for preci-
sion floating-point comparisons within predefined error bounds.
Our method starts by aligning initial checkpoints from two differ-
ent simulation runs and segmenting them into smaller, manage-
able chunks. These segments are then distributed and processed
in parallel across multiple GPUs, enabling simultaneous data com-
parison. Our method not only leverages GPUs’ parallel processing
capabilities to enhance computational efficiency but also ensures
the required precision for scientific accuracy. By parallelizing the
data comparison process, our method substantially decreases the
time needed to detect discrepancies between simulation runs, thus
improving the reliability of scientific conclusions in large-scale
computational simulations.

Multi-Level Overlapping I/O Pipelining from Persistent
Storage to GPU Memory. To address the challenges associated
with I/O bottlenecks in GPU-based systems, we have developed
a multi-level overlapping I/O pipelining technique that efficiently
transfers data from persistent storage, e.g., a parallel file system
(PFS), directly to GPU memory. Traditional methods involve send-
ing data in a blocking manner, but they severely constrain through-
put due to I/O operations. Our method bypasses this constraint
by establishing a seamless pipeline that reads data chunks from
the parallel file system into the host memory. Concurrently, these
chunks are transferred to GPU memory, and comparison opera-
tions on the GPUs start without delay. This overlapping of reading,
transferring, and processing not only mitigates the I/O bottleneck
but also fully leverages the parallelism capabilities of GPUs. By effi-
ciently aligning the data flow across multiple system architecture
levels, we can significantly enhance the throughput and efficiency
of data-intensive applications.

Reduction of I/0O and Comparisons Costs using Error-Bounded

Hash-Based Techniques. To address the efficiency challenge of
large-scale data operations, we have implemented a novel error-
bounded hash-based method to reduce both I/O operations and the
number of necessary comparisons. In environments where storage
repositories are shared across multiple compute nodes, I/O band-
width can become a significant bottleneck, especially when dealing
with extensive data sizes that require frequent comparisons. Our
method involves hashing the data chunks before comparison and
using these hash values as a preliminary filter. We proceed with a
full data comparison only when hashes do not match. Our hashing
method is designed to be fast and capable of generating consistent
hash values for floating-point numbers within a specified error

MIDDLEWARE ’24, December 2-6, 2024, Hong Kong, Hong Kong

bound, using a conservative truncation technique to manage varia-
tions in data. By limiting the number of full comparisons needed,
our method significantly reduces unnecessary /O, thus reducing
resource utilization in large-scale processing environments.

Compact Hash Metadata using GPU-Aware Parallelized
Merkle Trees. To address the challenges of managing extensive
metadata generated from hashing large data chunks, we utilize a
compact representation based on Merkle trees optimized for GPU
acceleration. Merkle trees are effective data structures for summa-
rizing and verifying data integrity. Each data chunk is hashed and
serves as the leaves of the tree. These leaf hashes are then com-
bined and rehashed progressively up the tree until a singular hash
at the root represents the entire dataset. We effectively minimize
the overhead of comparing vast datasets by employing this hier-
archical hashing structure. During the checkpoint writing phase,
we implement a bottom-up process to construct the Merkle tree,
encapsulating all data chunks within this structured format. For
comparisons, instead of beginning at the root, we start from the
intermediate levels of the tree to optimize the comparison process.
This method not only accelerates the detection of discrepancies by
focusing on levels where mismatches are likely but also reduces the
depth of tree traversal, leveraging GPU capabilities for enhanced
parallel processing. By distributing these operations across multiple
GPU cores, our method rapidly processes large volumes of data,
far outpacing traditional CPU-based methods. The parallelization
extends to the comparison phase, where GPUs efficiently identify
matching regions through a single high-level hash comparison,
avoiding redundant checks of identical sections. We streamline
our method, and in doing so, we not only enhance computational
efficiency but also reduce the storage requirements by eliminating
unnecessary metadata. Large-scale applications that demand fre-
quent data integrity checks and comparisons are the most beneficial
of our solution.

Low-Latency Optimizations for Scattered I/0. To address
the complexities introduced by Merkle tree hashing in our system,
particularly the challenging I/O patterns resulting from many small,
scattered data chunks, we have developed a set of low-latency opti-
mizations tailored for such scenarios. While Merkle tree hashing
significantly reduces the volume of I/O and the number of compar-
isons by identifying identical chunks across runs, it disrupts the
typical I/O pattern optimized for large, contiguous operations com-
monly supported by PFS. The resulting scattered I/O can degrade
performance due to increased latency and reduced throughput. To
counter these effects, we implement an advanced I/O strategy lever-
aging the io_uring library [4], a modern kernel feature allowing
asynchronous enqueuing of I/O operations within a single sys-
tem call. Our method minimizes the latency of numerous context
switches in traditional read operations. Additionally, the asynchro-
nous nature of io_uring optimizes I/O throughput by efficiently
managing scattered reads without the overhead of synchronous
1/0O blocking. By effectively managing the scattered I/O patterns
without compromising the benefits of reduced I/O operations in
the multi-level pipeline, we enhance the system’s overall efficiency
and reduce I/O and comparison operations.

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

[Checkpumt x]

Checkpoint Z
Run 1
] GPUO

Run 1
] PU3’

Checkpoint D
Run 1

GPU3

Checkpoint A
Run 1
== GPUO|... -
Checkpoint A Checkpoint D Checkpoint X
Run 2 Run2 [Run 2

I I I
| RAM | | RAM

“ Node Local CPU Node Local
Storage Storage

I I
Parallel
Filesystem

Figure 2: Architecture of a GPU-aware parallel checkpoint
comparison runtime that integrates our design principles.

*I[checkpoint z
Run 2

2.2 Architecture and High-level Overview

Our method for a scalable capture and comparison of intermedi-
ate results integrates two main components: (1) the compaction
of large simulation checkpoints into metadata with a low storage
footprint and (2) the comparison of two distinct checkpoint meta-
data to identify discrepancies. We use a series of design principles,
as outlined in Section 2.1 to efficiently analyze the large number
of checkpoints captured during scientific simulations. The general
architecture of our method integrates the pair-wise comparison of
two checkpoints (one per simulation run) on dedicated GPUs, as
depicted in Figure 2, to benefit from the GPU’s multi-processing ca-
pabilities. This enables the comparison of a large number of files at
scale. We reduce the I/O overhead of processing large checkpoints
using a hierarchical Merkle tree-based compact representation that
only stores hashes of the checkpoint data. This enables low over-
head tree comparison where we only need to match hash values
at the same index in the trees. However, we use a conservative
hashing approach leading to a few misclassifications that require
accessing potentially non-contiguous regions of the original check-
points. This type of data access patterns pressure the I/O subsystem.
We mitigate the resulting I/O overhead using a multi-level stream-
ing technique, depicted in Figure 3 to overlap I/O operations with
checkpoint comparison.

2.3 Merkle-tree Compact Checkpoint Metadata

We propose using Merkle trees as metadata for representing check-
points and an efficient parallel algorithm for identifying differences
between checkpoints. Using Merkle trees, we minimize the amount
of checkpoint data read from the PFS while also identifying the
amount and location of data that differs between checkpoints.
The algorithm works as follows: During application execution,
we construct the Merkle tree at checkpoint time on the GPU, as
described in Algorithm 1, and save the metadata to the PFS. The
metadata size depends on the checkpoint data length, the user-
defined chunk size, and the size of a hash digest. For example,
given data length N, chunk size C, and digest size D, the metadata
size can be computed as 2 * D * ((N/C) — 1). A larger chunk size
results in a smaller number of leaves and vice-versa. Merkle trees
for large checkpoints can have thousands or millions of nodes.
Tree construction can leverage the GPU’s massive parallelism by
calculating all hashes within a level of the tree in parallel. Once

Tan et al.
:1/0O Threads :Compute Kernels
' Pre-allocate :
i | buffers ;
|: Transfer chunk offsets ;
from GPU to Host .
. Prepare first chunk :
Queue Get chunk -
Reads ”]
Parallel
Queue Get chunk (async) Compare
Reads :
! Parallel
Queue Compare
Reads Get chunk (async)
! Parallel
H Compare
End []
stream Return

Figure 3: Asynchronous data streaming sequence diagram.

Algorithm 1 Compact Checkpoint Metadata Creation

function cREATE_TREE(Tree, Chunks, Leaves)
n = |Chunks|
fori < 0:ndo
C = Chunks|i]
seed =0
for all block € C do
for all float € block do
new_float < round(float)
end for
digest « hash(block, seed)
seed « digest
end for
Leaves[i] « digest
end for
level =1
for all level € Tree do
if level is not Leaves then
for all node € level do
tmp = {Tree(node, left), Tree(node, right)}
Tree(node) < hash(tmp)
end for
end if
end for
end function

> do in parallel

> do in parallel

the checkpoints for two runs are available, we start the comparison
algorithm.

The comparison algorithm is broken up into two stages. The first
stage reads the previously generated metadata and uses the Merkle
trees to identify any chunks that may have differences between the

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results

Run 1 Run 2
Mismatch at node 1.

@ Prune node 2 from
the search

Mismatch at node 3.
Compare chunk A
and A’ to find exact
differences o a

(] (] [e] [o] [«] [&] [c] [o]

Figure 4: Identifying differences between checkpoints using
Merkle trees and breadth-first search with pruning.

two runs. We use a parallel breadth-first search (BFS) to compare
individual hashes and identify which chunks of data may have
differences. Figure 4 shows an example of the tree comparison.
Starting in the middle of the tree, we compare the corresponding
nodes between the two trees and see if the hashes match. If the
hashes are identical, we know all hashes within the subtree rooted
at the node are identical. We then prune the subtree from the search.
If the hashes differ, we know that at least one leaf in the subtree does
not match, so we add the child nodes to the search. This process
repeats until we run out of nodes to visit or reach the leaves. Any
leaves that do not match are then added to the list of potentially
changed chunks and moved on to the second stage.

The second stage takes the list of chunks and verifies whether
there are any differences within each chunk. We asynchronously
read and stream data chunks to overlap I/O with the comparison
kernel. Figure 3 shows the comparison pipeline. A team of I/O
threads reads data from the PFS into a buffer. An asynchronous
transfer is initiated once the buffer is filled or all chunks have been
read. The main thread retrieves the slice and signals that the buffer
is free so that the I/O threads can continue reading data. The main
thread then launches the kernel that compares each pair of floats
to see if their difference exceeds the error bound. This continues
until all chunks in the list have been compared.

2.4 Error-Bounded Checkpoint Data Hashing

We generate hash values for the leaves in our Merkle tree using
an error-bounded hashing technique, highly parallelized for GPUs
at two levels: (1) the entire checkpoint data is divided into chunks,
and our hashing algorithm is concurrently applied on independent
chunks; (2) within each chunk, we introduce a conservative round-
ing method, parallelized at the granularity of individual floating
points. We apply the 128-bit Murmur3F hashing algorithm to com-
pute hashes at the granularity of 128 bits. The Murmur3F algorithm

MIDDLEWARE ’24, December 2-6, 2024, Hong Kong, Hong Kong

offers high collision resistance according to SMHasher ! quality
tests.

We employ a conservative rounding method to ensure that each
floating-point number within a chunk is accurately transformed in
alignment with a predetermined error bound. We use an application-
supplied absolute error that can be tolerated to assume equality
and is typically known by domain experts. The rounding process
involves three key steps: normalizing the numbers to a standard
range, rounding them to reduce precision while maintaining neces-
sary accuracy, and then rescaling them back to their original scale.
This method effectively captures and represents variations within
the specified error bound.

Next, we utilize a block-based hashing method to process the
rounded data. We minimize the size of the Merkle tree by computing
one hash for each chunk of the checkpoint data. To that end, the
hashing of a chunk is serialized at the granularity of 128-bit blocks,
where the current block is hashed using the digest of the previous
block as seed. This iterative procedure continues until all data
within a chunk is hashed. By leveraging the digest of one block as
the seed for the next, the final hash value reflects floating-point
variations within the entire chunk. Additionally, the block-based
approach allows integration with any hashing algorithm, as the
block size is variable and can be adjusted to fit specific application
requirements.

Our method seamlessly integrates with the structured frame-
work of a Merkle tree, enabling parallel and non-blocking updates
of the tree with computed hash values. Our GPU-aware rounding
and hashing methods ensure efficient utilization of GPU resources,
improve the hashing throughput and enable processing large vol-
umes of data with reduced overhead.

2.5 Implementation

Our implementation builds on flattened tree structures that enable
efficient massive parallelization and io_uring for efficient asynchro-
nous I/0. We integrate Kokkos, a performance portable runtime
that can generate parallel code for both CPUs and GPUs, to sup-
port cross-platform deployment and ensure that no modification is
necessary to run on CPUs.

2.5.1 Efficient Merkle Tree Creation and Traversal. We store Merkle
trees as a flattened array. Merkle trees are binary trees that have
clear formulas for identifying the parent and children of a node.
A pointer-based tree structure is more flexible, but our use case
does not dynamically change the tree. Using pointers also leads
to inefficient random access patterns. Our BFS implementation is
parallelized such that all nodes within the same level of the tree are
processed in parallel. The only synchronization is when moving
between levels. To improve performance we start the BFS in the
middle of the tree where the number of the nodes in the level is
greater than the number of concurrent GPU threads. Starting in the
middle ensures that more threads are active rather than having them
idle for the levels of the tree near the root. Using GPUs ensures
that the cost of creating the Merkle tree is minimal. The small
storage and creation cost of Merkle trees make it easy to add to

!https://github.com/aappleby/smhasher

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

GPU applications where we want to minimize the interruptions to
the application.

2.5.2 Asynchronous Data Streaming with io_uring. Streaming the
data from the PFS to the GPU allows us to run the parallel compar-
ison kernel while the next slice of data is prepared. Working with
slices of data is necessary for large checkpoints that may not fit
both checkpoints in memory. We implement data streaming using
the io_uring interface for asynchronous I/O and C++ threads for
managing and transferring data. io_uring is a Linux kernel inter-
face for fast asynchronous I/0. io_uring uses a submission queue
and completion queue that are shared between the kernel and the
application. This removes the overhead of copying data between
kernel and user space. This is particularly useful for our method
which issues small reads rather than reading the full file at once.
We launch several I/O threads to handle issuing the read requests
to io_uring. We also spawn a task that waits until all the data has
been read into the slice and then asynchronously transfers the data
to the device.

3 PERFORMANCE EVALUATION
3.1 Evaluation Setup

We evaluate our approach on the Polaris system at the Argonne
Leadership Computing Facility (ALCF) [13], a multi-GPU comput-
ing environment with 560 compute nodes. Each node has 4 NVIDIA
A100 GPUs (total of 160 GB HBM2 memory), one 2.8 GHz AMD
EPYC Milan CPU (32-cores), and 512 GiB DDR4 memory. The nodes
are connected using the Slingshot 11 network and can access an
external 10 TB POSIX-mounted Lustre parallel file system.

3.2 Compared Approaches

3.2.1 Python-based Floating-Point Number Comparison (AllClose).
We use allclose as a naive baseline that represents how a domain
scientist may compare results. This method analyzes the results’
reproducibility using the in-built allclose function of the NumPy
package. This function takes two vectors of floating-point numbers
and returns true if all the numbers are within an error bound.
allclose, by default, checks if two arrays (a and b) are element-wise
within an error tolerance. The error tolerance is calculated as the
sum of the absolute (atol) and relative differences (rtol * abs(b)).
However, this paper focuses on comparisons with the absolute error
bound. Therefore, we define the relative error value as zero in all
our experiments. allclose only detects any differences that exceed
the error bound and is not optimized for asynchronous IO. This
form of change detection is not useful for locating where changes
exceed the bound. The following methods identify where in the
checkpoint the different values are and use optimized IO strategies.

3.2.2 Pair-wise Floating-Point Number Comparison (Direct). This
method is the most common comparison approach for reproducibil-
ity analytics that verifies whether critical data in checkpoint his-
tories of two application runs are within an error bound defined
by scientists. We refer to this baseline as Direct, and identify two
floating-point numbers, a from any checkpoint of the first run and b
from the same position in the same checkpoint of the second appli-
cation run, as different if their absolute difference exceeds the error
bound, i.e., |a — b| > €. For best performance, we implement Direct

Tan et al.

in C++ using Kokkos for parallelization and use io-uring, a kernel
I/O interface that provides efficient asynchronous I/O operations
and bypasses much of the system call overhead.

3.2.3 Our Method. We compare the aforementioned numerical
reproducibility analysis methods with our proposed hierarchical
hashing-based solution described in Section 2.

3.3 Evaluation Methodology

3.3.1 Application Checkpoints. We consider the Hardware/Hybrid
Accelerated Cosmology Code (HACC) [15] as a practical HPC appli-
cation for our evaluation. HACC is an extreme-scale cosmological
simulation suite originally developed for the heterogeneous archi-
tecture of the first petascale supercomputer, Roadrunner [16], and
later adjusted for deployment at scale on more recent supercom-
puters, including Polaris. For our evaluation, we simulated direct
particle-particle interactions using the particle-particle-particle-
mesh method, i.e., P>M algorithm [17] over 50 iterations. We asyn-
chronously capture particle data (coordinates, velocity, and gravita-
tional potential described in Table 1) using the VELOC checkpoint-
ing library [33] at iterations 10, 20, 30, and 40 of each simulation.
The simulations are conducted using varying numbers of particles
yielding different checkpoint sizes, as summarized in Table 1.

Table 1: Content of HACC checkpoints.

Field Type Description

X F32 x coordinate #Particles #Nodes Chkpt Size

Y F32 vy coord‘mate 05D . e

Z F32 zcoordinate

i 1B 2 28 GB

VX F32 xvelocity
VY P32 yvelocity ZB 2 56 GB
VZ F32 zvelocity 178 128 563 GB

¢ F32 grav. potential

3.3.2 Performance Metrics. We measure the effectiveness of our
approach using three key metrics. We design the metrics to assess
our method’s accuracy, efficiency, and performance compared to
the traditional direct approach. Below, we detail each metric:

o Effectiveness: We assess the accuracy of our method by com-
paring it to reference results from the direct approach. This
metric focuses on the number of differences identified across
an entire dataset during a checkpoint comparison.

e Time: We analyze the efficiency of using hashing for repro-
ducibility by comparing the time it takes for our method to
analyze hashes and floating-point numbers (as outlined in
Section 2) against the time taken by the direct approach.

o Throughput: We measure the total volume of data analyzed
per second over the analysis duration. This metric is the ratio
between the size of the compared data and the time taken to
read checkpoint data from the parallel file system (PFS), the
data streaming process to the GPU, and the comparison of
hashes and floating-point numbers.

3.3.3 Testing Setting. To comprehensively evaluate our method,
we varied several experimental parameters to test its robustness
and performance across different conditions. The setting used in
our experiments is detailed in Table 2 and includes:

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results

e Number of Nodes: To understand how our method scales
with increasing nodes, we use a variable number of nodes
ranging from 1 to 32.

o Error Bounds: Error bound defines the acceptable difference
threshold between two checkpoints. Lower error bounds
provide stricter criteria for identifying differences, while
higher bounds allow for more variation. We test with error
bounds set to 1073, 104,107, 107, and 1077.

e Chunk Sizes: The size of the data chunks used for hash-
ing and comparison affects the precision and overhead of
identifying differences. Smaller chunk sizes provide more
precise identification but may increase overhead due to read-
ing unnecessary data. We consider chunk sizes ranging from
4 KB to 512 KB. Therefore, with 4 KB chunks and 16-byte
hash digests, the metadata size for a 7 GB checkpoint (size
of the aggregated checkpoint on one node for the HACC
experiment with 0.5 x 10° particles) is ~ 55MB.

Table 2: Setup used to evaluate performance and scalability.

Description Values

Number of Nodes 1, 2, 4, 8, 16, 32
Error bounds 1073,1074, 107>, 1076, 1077
Chunk sizes 4KB-512KB

3.34 Experimental Scenarios. We present two scenarios that ex-
amine the impact of different parameters on our method in contrast
with existing methods. The first scenario studies how chunk size and
the error bound affect the comparison throughput of our method.
We use the 0.5, 1, and 2 billion particle checkpoints and use two
nodes to compare all pairs of checkpoints in parallel. The second
scenario is a strong scaling study comparing our method with the
optimized direct method. We use the checkpoints generated by the
17 billion particle simulation and vary the number of nodes from 4
to 32 nodes with 4 processes per node. For each node configuration,
we compare all 128 pairs of checkpoints. For both scenarios, we use
"vmtouch -e" to evict the pages corresponding to the input files from
the file system cache in order to enable a fair comparison where
each approach starts with a cold cache. Internally, vmtouch uses
POSIX_FADV_DONTNEED to clear the cache. This is necessary to
ensure that the page cache does not skew our performance metrics.

3.4 Performance Results

3.4.1 Comparison Throughput. We summarize the comparison
throughput for the AllClose baseline, optimized direct compari-
son, and our Merkle tree-based method, across three problem sizes
in Figure 5. The baseline method throughput is at most 2.67 GB/s
regardless of the error bound. The direct method uses io_uring for
more efficient I/O which increases the throughput to at most 5.24
GB/s. We note that varying the error bound does not impact either
the baseline or the direct comparison throughput, as all data must
be compared regardless of the error bound. Thanks to our design
principles and optimization, our method consistently outperforms
the baseline and direct comparison methods for all tested chunk
sizes and error bounds.

The choice of the chunk size poses an interesting trade-off for
our method. Smaller chunks can more accurately determine where

MIDDLEWARE ’24, December 2-6, 2024, Hong Kong, Hong Kong

differences are located. This reduces the amount of unnecessary
1/0, which is why using 4 KB chunks yields the best performance
with high error bounds. However, we cannot select the smallest
chunk size for all situations. Choosing small chunks for small error
bounds such as 1077 significantly lowers throughput. Reading small
chunks that are scattered randomly across the file is an extremely
challenging I/O pattern that degrades performance. The small error
bound increases the number of changed chunks which worsens the
impact of the poor I/O pattern. For situations where large amounts
of data could exceed the error bound, it is better to improve the
/O pattern by reading larger chunks of data. Increasing the chunk
size from 4 KB to 512 KB almost doubles the throughput for all
checkpoint sizes. Even so, the chunk size cannot be too large or
the performance may degrade from reading too much unnecessary
data. This is shown in Figure 5a where for an error bound of 1077,
increasing the chunk size from 256 KB to 512 KB lowers throughput
from 11.3GB/s to 11.04GB/s.

As the error bound grows, the throughput increases for all chunk
sizes across the three simulation sizes. Larger error bounds lead to
fewer changes that exceed the threshold, reducing the amount of
data read from the PFS. Our comparison method is up to 11 times
faster than the direct comparison method. This is especially true
for larger checkpoints and error bounds. The throughput for larger
error bounds such as 0.001 nearly doubles as the checkpoint size
increases. This indicates that the runtime stays nearly constant as
the size of checkpoints increases.

The trade-offs between I/O patterns and reducing the amount
of data read from the PFS make chunk size selection vital for high
performance. Throughput behavior is consistent between the three
checkpoint sizes. This suggests that the optimal choice of error
bound and chunk size for checkpoints from a small-scale problem
will also achieve high throughput for larger simulations.

3.4.2 Comparison Cost Breakdown. To identify the main bottle-
neck and better understand the I/O pattern and data size trade-off,
we look at a breakdown of the comparison runtime for two cases.
Figure 6 shows the individual timers for the comparison process.
The first case shown in Figure 6a, is when the error bound is low
and the second case is when the error bound is high. Of the five
timers, the time spent on deserializing and comparing the Merkle
trees is negligible compared to the rest of the timers. The setup
section is for allocating buffers and data structures which is why
the time spent is very consistent. Reading the Merkle-tree metadata
is very cheap for reasonable chunk sizes. The time spent in the
verification phase (Compare direct time) identifying changes in
the data is the most important. For small error bounds, we need to
load more data which is why the verification time is dominant. The
verification time decreases as chunk size increases due to the better
1/O pattern. However, the performance improvements level off as
the chunks approach 1 MB.

Reducing the amount of data read can overcome the poor random
small reads I/O pattern. Figure 6b shows that the setup time is
similar to when the small error bound case. The total runtime is
shorter and does not change as much when the chunk size varies.
This indicates that the number of identified chunks is very small.
As the chunk size grows, the verification phase runtime increases
due to reading more unnecessary data. The read time also decreases

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

AllClose Direct

0.001

- 18.06 16.79

0.0001

le-05

Error bound

le-06

le-07

& @

(a) 500 Million particles (7GB per checkpoint)

AllClose Direct
0.001 - 32.68 31.96
- 0.0001
=
3
o le-05
P
5
i 1e-06
le-07
o 2>
b:{- ‘b{_

(b) 1 Billion particles (14GB per checkpoint)

AllClose Direct
0.001 - 58.55 58.58
- 0.0001
c
3
o le-05
1
o
i le-06
le-07
A >
&{— Q;l-

Tan et al.
Our Method
1820 1811 17.71 17.62 17.29 16.10 172
-15.0
125
10.0
7.5
5.0
® > > > > >
\’b(— o,"l}_ bh"{_ 'L'b* o,@;L_ \:‘:L—
~ v “
Chunk size
Our Method
B32.12 R2.:04¢ 31.99 31.59 29.82 27.10 -30
25
20
15
10
5
> 2 2> Q> 2 Kg
\5’{_ ";"{_ bb'{_ '»‘b‘l- %b‘% w’”*_
~ Vv 2)
Chunk size
Our Method
57.44 57.49 58.86 58.37 54.54 48.72 -
40
30
20
10
> Al > ko) v K
o5 /’),Li— bb'{_ '1?’+ (Ob{— 'O:l—
N o 9
Chunk size

(c) 2 Billion particles (28GB per checkpoint)

Figure 5: Comparison of our approach vs. value-by-value comparison. The direct approach streams data from the PFS to the
GPU. Throughput is measured as the amount of checkpoint data over the total runtime.

since larger chunks result in fewer hashes and smaller trees. For
small error bounds with many changes, it is best to choose a large
chunk size. Small chunk sizes are best in cases where there are
fewer changes. This is emphasized in Figure 6a vs. Figure 6b. The
trade-off between the number of identified chunks, error bound,
and the amount of data is complex, which is why we study it next
in greater detail.

3.4.3 Effectiveness of Error-Bounded Data Hashing. To evaluate
our error-bounded hash function, we measure the percentage of
checkpoint data loaded for further comparison vs. the false positive
rate of the error-bounded hash function. Figure 7 summarizes the
impact of error bound and chunk size on the effectiveness of the
error-bounded hash function. Figure 7a shows that increasing the

chunk size also increases the percentage of data that must be read.
The percentage increase does not scale linearly with the chunk size.
Using 8 KB chunks instead of 4 KB chunks increases the percent-
age by less than 5%. The nonlinear increase is because of how the
changes are distributed. If two contiguous 4 KB chunks are marked
as changed then increasing the chunk size to 8 KB will result in the
same amount of data being marked. As the chunk size continues
to grow, the percentage increase also grows as more unnecessary
data is marked as changed. Increasing the error bound has a larger
impact on the percentage of data read from the PFS. Increasing the
error bound from 107> to 10~* results in a 9.7% increase which has
more impact than the 9% increase when going from 128 KB to 4 KB
chunks. This pattern is also shown in Figure 5¢ where the through-
put increases by 13.96 GB/s and 9.67 GB/s respectively. Figure 7b

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results

50
404
2 30
1]
E
=
c
S 20 H o= =
= Setup time
Read time
101 Deserialization time
Compare tree time
Compare direct time
0 o
& ° ®
A P
% Vv be)
Chunk size
(a) Runtime breakdown with an error bound of 1077
10 A
0
1]
E
=
c
2
Setup time
Read time
Deserialization time
Compare tree time
Compare direct time

2@ B ®
S 8

o
Chunk size

& ©
& &
&F g

(b) Runtime breakdown with an error bound of 1073

Figure 6: Impact of error bound and chunk size on the com-
parison runtime. Total runtime is split into separate timers
for each part of the comparison process. Error bounds of 10~/
and 1073, Chunk size varies from 4 KB to 512 KB.

presents the false positive rate for the conservative error-bounded
hash function. The hash function correctly identifies all chunks
that contain changes that exceed the error bound. However, the
hash also has false positives which result in more unnecessary data
being streamed from the PFS. Except for the error bound of 1077,
increasing the chunk size leads to more false positives. The false
positive rate drop for larger chunks with an error bound of 1077
has surprisingly little effect on the percentage of data changed. This
is because rate drop has less of an effect on the total percentage of
data compared to the doubling of the chunk size. These results show
that the error-bounded hash function is most effective with small
chunk sizes. Unfortunately, the poor I/O access pattern negates the
benefits.

The ideal case for our method is when there are no changes. In
this situation, we can use the metadata to verify that there are no

MIDDLEWARE ’24, December 2-6, 2024, Hong Kong, Hong Kong

Té‘mo
= Error bound
= —e— le-7
o 4
> 80| . 1e6
._E FOREEE =
g 60 - le-4
2 —en 1e-3
i
o 40
-
o
&
g3 e
z RS
& 0
5 B
o
K 2
SO

Chunk size

(a) Percentage of the checkpoint data marked as potentially changed.

0.1751
Error bound
0.1504{ —e— le-7
] le-6
e 0.125 £ e
¢ 0.100- - le-4
= le-3
3
2 0.075 -
&
© 00501 - .
0025 T et
,—--"*'
.
0.000{ *+——— pmimt

Chunk size

(b) False positive rate

Figure 7: Effectiveness of the error-bounded hash function.
Checkpoints are from the 2 billion particle simulation.

changes that exceed the threshold without needing to read any
checkpoint data. This property makes our method particularly well-
suited for studying reproducibility. Reproducible applications will
have a clearly defined error bound such that there are no run-to-run
differences that exceed the threshold. This makes our checkpoint
comparison method an excellent tool for enhancing reproducibility
in HPC applications thanks to the low storage costs for metadata
and the high comparison throughput.

3.4.4 Cost of Constructing Merkle Trees. Our Merkle tree imple-
mentation uses Kokkos for parallelization on multiple architectures
and is optimized for GPUs. We evaluate the benefits of our GPU-
optimized Merkle tree implementation by comparing the tree con-
struction time on the CPU and GPU in Figure 8. Tree construction
on GPUs is four orders of magnitude faster than the CPU thanks to
the higher bandwidth and computing resources. Chunk size does
not affect runtime because the same amount of data is being hashed

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

100,
)
o 10714
E
=
g
'-E 1024 mm CPU
2 s GPU
@
c
o
O 10734
()
2
=

1044

4KB 8KB 16KB 32KB

Chunk size

Figure 8: Tree construction cost (500 million particles) using
the CPU or GPU. Error tolerance is 1077, Y-axis is log-scale.

30 1
251
9
g

201
= 10 Backend
§ B mmap
= 2 mmm o uring
a
£ 10
Q

8KB 16KB
Chunk size

Figure 9: Comparison of I/O backends for scattered I/0 (500
million particles). Error tolerance is 1077,

regardless of chunk size. Our GPU-optimized Merkle tree construc-
tion algorithm has minimal overhead and can be easily integrated
with checkpointing runtimes and data analysis tools. The low cost
of tree construction can potentially be used to determine when to
take checkpoints or perform more costly analyses.

3.4.5 Enhancing Scattered I/O. The choice of I/O backend is im-
portant for efficient comparisons. We compare the runtime per-
formance between the mmap and io_uring backends in Figure 9
using eight processes. Using io_uring is over three times faster than
mmap and demonstrates less variance. io_uring is an asynchronous
API that allows queuing and submitting multiple independent read
operations with very few kernel calls. mmap performance suffers
because the I/O operations are synchronous and trigger numerous
expensive page faults. The mmap backend scales with the amount
of data that is being read. io_uring is less affected by the quantity of
data and even shows improvements when the chunk size increases.

3.4.6 Scalability Study. Our last set of experiments is a strong scal-
ing study of our method and the direct comparison approach. We

Tan et al.

Bl Direct Throughput
. Our Throughput

—— Direct Runtime
=®~- Our Runtime

160 560
498
—_ (<] —_
9] bt 8
41204 420 &
G g
= 294 £
5 god & 1 ~ L 280 F
Qo ~ =3 C
c ~ © o
2 N ~ 5
2 40 Wk F140 g
= 9 3 - w
o
16 32 64 128
Number of Processes
(a) Error Bound = 1077
B Direct Throughput —@— Direct Runtime
. Our Throughput ~®- Our Runtime
360 560
499 S
mMm
))
2701 420 3
@)
2 o £
- 1 L F
3 180 1 4 280 °C
<]
S o 5
£ 901 10, ® ~ F140 @
(== I~ (’; [WN]
~Q
o — -
0- -0

16 32 64 128
Number of Processes

(b) Error Bound = 1073

Figure 10: Throughput of comparing 1024 checkpoints for
an increasing number of processes (four per node). Higher is
better. Both approaches show near-perfect scalability and our
method maintains its higher throughput and lower runtime
across all settings.

analyze HACC checkpoints captured on 128 nodes (a total of 512
checkpoints per simulation run) and experiment with low (10~7)
and high (1073) error bounds to evaluate the performance of our
method at scale in two scenarios: (1) using a low error bound to
illustrate a worst-case scenario with more I/O operation during the
second phase of our method; (2) using a high error bound to capture
the best-case scenario with a minimum number of I/O requests.
Figure 10 presents the per-process comparison throughput for an
increasing number of processes (four processes per node). As can
be observed, both approaches scale with the number of processes
maintaining an average speedup of 1.9% for every increment in the
number of processes. Our method maintains a higher throughput
than the direct comparison for both scenarios. This is an important

Towards Affordable Reproducibility Using Capture and Comparison of Intermediate Results

observation that highlights the benefits of our low-latency opti-
mization for scattered I/O. As a result, with 50% less value-by-value
comparisons than the direct comparison approach, our method
maintains a minimum throughput and runtime speedup of 1.6x
at scale when the error bound is 10~7. Despite performing more
value-by-value comparisons compared to when the error tolerance
is higher, our method maintains better performance than the direct
comparison approach, as depicted in Figure 10a. This performance
shows that our optimizations efficiently manage scattered I/O, mini-
mizing the overhead of reading chunks from non-contiguous offsets
of checkpoint files located on a PFS. A similar trend is visible for
a higher error bound with a smaller I/O overhead, yielding up to
4.6X speedup compared to the direct comparison approach.

4 RELATED WORK

The scientific integrity and transparency of HPC workflows are de-
fined by the ability of scientists to reproduce the results and perfor-
mance of an application when executed multiple times on the same
computational platform using the same code, input parameters, and
datasets [27, 35, 42]. Several recent studies highlight the importance
of reproducibility in computational workflows [25, 32, 39], identify-
ing various sources of performance and results variations including
shared memory bandwidth contention [3], non-associative floating-
point operations [22], dynamic scheduling of parallel processes [1],
variability in network bandwidth [43], etc. Preemptive solutions,
e.g., packaging experiments [20], sandbox computational environ-
ments [9, 28] and workflow management systems [12] improve
reproducibility by preventing interference from external processes
and enabling workflow replication. Post-simulation analysis frame-
works further reinforce the state of practice in performance re-
producibility through queryable systems for performance metrics
and workflow provenance analysis [34]. Although these solutions
contribute to stability in computational experiments, the increas-
ing scale of HPC workflows and existing non-determinism sources
within a single workflow highlight the importance of further inves-
tigating the reproducibility of computational results.

Existing studies on results reproducibility explore strategies to
improve numerical correctness and convergence by reducing nu-
merical roundoff errors introduced with floating-point arithmetic,
e.g., error-free transformation for reproducible summation [24, 29].
These solutions focus on ensuring bitwise identical floating-point
results but do not account for errors induced by runtime variations
due to I/O patterns (common I/O operations of flushing large files
to the PFS may create interleaves that introduce varying errors in
intermediate results) or silent errors occurring during execution.
Error detection techniques, e.g., checksums, mitigate such issues
but can also become a source for non-determinism if obtained using
non-associative operations. Scientific workflows primarily operate
on floating-point numbers and results are often validated if the
difference between two simulation runs is within an acceptable
error bound. However, critical applications, e.g., drug or nuclear
reactor design, may require bitwise reproducibility achievable at
the cost of computational performance using sequential execution
and fixed-order arithmetic operations [5]. To mitigate the waste
of computational resources by waiting until the final outputs of
two distinct runs are captured, a detailed analysis of intermediate

MIDDLEWARE ’24, December 2-6, 2024, Hong Kong, Hong Kong

results can identify the exact process or simulation stage where
results start diverging [2]. Hash-based de-duplication techniques
for binary data have been used in a variety of storage scenarios to
save space [21, 30, 31]. Furthermore, Merkle trees are commonly
used to check integrity in protocols such as BitTorrent or databases
such as Cassandra [10], Dynamo[38], and Riak [41]. Our approach
is unique in that it focuses on reproducibility, the goal being to
be able to compare two scientific datasets (usually consisting of
floating point numbers) very fast.

5 CONCLUSIONS

This paper presents a scalable method for capturing and comparing
intermediate multi-run results for enhancing reproducibility in HPC
applications. To this end, we use Merkle trees as a compact metadata
representation of checkpoints and use the tree structure in addition
to I/O pipelining, error-bounded hash techniques, and optimized
low-latency scattered I/O to accelerate checkpoint comparison. We
use these key ideas to improve comparison throughput by up to an
order of magnitude over the optimized direct comparison method.
We highlight the trade-off between the I/O volume from the PFS and
the efficiency of the I/O pattern. Our method shows near-perfect
strong scaling and achieves 300 GB/s comparison throughput.

We plan to investigate multi-node parallel online checkpoint
compaction and comparison. Our method reduces the I/O overhead
from loading all checkpoints from the PFS. Online checkpoint com-
parison can further reduce the I/O overhead since only the previous
checkpoint history needs to be read from the PFS. We can also com-
pact the checkpoints online to reduce the I/O overhead and storage
costs for the checkpoint history. Our method also shows promise as
a potential continuous integration tool. Applications with a defined
error bound can save a Merkle tree for the expected results of a test.
If the method detects any differences then the developers know
that the code change may introduce a reproducibility issue.

6 ACKNOWLEDGMENTS

This material is based upon work supported by: the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357; the
National Science Foundation under Grants #1900888, #1900765,
#2223704, #2331152, #2411386, #2411387, #2106635.

REFERENCES

[1] Peter Ahrens, James Demmel, and Hong Diep Nguyen. 2020. Algorithms for
Efficient Reproducible Floating Point Summation. TOMS’20: ACM Transactions
on Mathematical Software 46, 3 (2020), 1-49.

[2] Kevin Assogba, Bogdan Nicolae, Hubertus Van Dam, and M. Mustafa Rafique.

2023. Asynchronous Multi-Level Checkpointing: An Enabler of Reproducibility

using Checkpoint History Analytics. In SC’23: Proceedings of the SC’23 Workshops

of The International Conference on High Performance Computing, Network, Stor-

age, and Analysis. Association for Computing Machinery, New York, NY, USA,

1748-1756.

Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus J. Leung, Manuel Egele,

and Ayse K. Coskun. 2019. HPAS: An HPC Performance Anomaly Suite for

Reproducing Performance Variations. In ICPP’19: The Proceedings of the 48th

International Conference on Parallel Processing (Kyoto, Japan). Association for

Computing Machinery, New York, NY, USA, Article 40, 10 pages.

[4] Jens Axboe. 2019. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf

[5] Pavan Balaji and Dries Kimpe. 2013. On the Reproducibility of MPI Reduction
Operations. In HPCC’13: The IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International Conference on

B3

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

(6]

[7

[

[10]

(1]

[12]

[13

[14]

[15

[16

[17]

[18]

[19]

[20]

[21

[22

[23]

[24]

[25

Embedded and Ubiquitous Computing. IEEE, IEEE Computer Society, Los Alamitos,
CA, USA, 407-414.

Marek Baranowski, Braden Caywood, Hannah Eyre, Janaan Lake, Kevin Parker,
Kincaid Savoie, Hari Sundar, and Mary Hall. 2017. Reproducing ParConnect for
SC16. Parallel Computing 70 (2017), 18-21.

Magnus Borga, André Ahlgren, Thobias Romu, Per Widholm, Olof Dahlqvist Lein-
hard, and Janne West. 2020. Reproducibility and Repeatability of MRI-based Body
Composition Analysis. Magnetic Resonance in Medicine 84, 6 (2020), 3146-3156.
Greg L Bryan, Michael L Norman, Brian W O’Shea, Tom Abel, John H Wise,
Matthew J Turk, Daniel R Reynolds, David C Collins, Peng Wang, Samuel W
Skillman, et al. 2014. Enzo: An Adaptive Mesh Refinement Code for Astrophysics.
The Astrophysical Journal Supplement Series 211, 2 (2014), 19.

R. Shane Canon. 2020. The Role of Containers in Reproducibility. In CANOPIE-
HPC’20: The Proceedings of the 2020 2nd International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC. IEEE Computer
Society, Los Alamitos, CA, USA, 19-25.

Artem Chebotko, Andrey Kashlev, and Shiyong Lu. 2015. A Big Data Model-
ing Methodology for Apache Cassandra. In BigData’15: 2015 IEEE International
Congress on Big Data. IEEE, IEEE Computer Society, Los Alamitos, CA, USA,
238-245.

Peter V Coveney, Derek Groen, and Alfons G Hoekstra. 2021. Reliability and
Reproducibility in Computational Science: Implementing Validation, Verification
and Uncertainty Quantification in silico. Philosophical Transactions of the Royal
Society A 379, 2197 (2021), 20200409.

Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow Enables Reproducible Compu-
tational Workflows. Nature Biotechnology 35, 4 (2017), 316-319.

Argonne Leadership Computing Facility. n.d.. Polaris. https://www.alcf.anl.gov/
polaris. Accessed: May 24, 2024.

Mikaila J. Gossman, Bogdan Nicolae, and Jon C. Calhoun. 2024. Scalable I/O
Aggregation for Asynchronous Multi-level Checkpointing. Future Generation
Computer Systems 160 (2024), 420-432.

Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, Katrin
Heitmann, Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joe Insley,
David Daniel, Patricia Fasel, and Zarija Luki¢. 2016. HACC: Extreme Scaling and
Performance Across Diverse Architectures. Communications of the ACM 60, 1
(dec 2016), 97-104.

Salman Habib, Adrian Pope, Zarija Luki¢, David Daniel, Patricia Fasel, Nehal
Desai, Katrin Heitmann, Chung-Hsing Hsu, Lee Ankeny, Graham Mark, Suman
Bhattacharya, and James Ahrens. 2009. Hybrid Petacomputing Meets Cosmology:
The Roadrunner Universe Project. Journal of Physics: Conference Series 180, 1 (jul
2009), 012019.

R. W. Hockney and J. W. Eastwood. 1988. Computer Simulation Using Particles.
Taylor & Francis Group, New York, NY, USA.

Bin Hu, Shane Canon, Emiley A Eloe-Fadrosh, Michal Babinski, Yuri Corilo, Karen
Davenport, William D Duncan, Kjiersten Fagnan, Mark Flynn, Brian Foster, et al.
2022. Challenges in Bioinformatics Workflows for Processing Microbiome Omics
Data at Scale. Frontiers in Bioinformatics 1 (2022), 826370.

Jie Jia, Yi Liu, Yanke Liu, Yifan Chen, and Fang Lin. 2024. AdapCK: Optimizing
1/0O for Checkpointing on Large-Scale High Performance Computing Systems.
In Euro-Par’24: Parallel Processing: 30th European Conference on Parallel and
Distributed Processing, Madrid, Spain, August 26—30, 2024, Proceedings, Part III
(Madrid, Spain). Springer-Verlag, Berlin, Heidelberg, 342-355.

Kate Keahey, Jason Anderson, Mark Powers, and Adam Cooper. 2023. Three
Pillars of Practical Reproducibility. In eScience’23: The IEEE 19th International
Conference on e-Science. IEEE Computer Society, Los Alamitos, CA, USA, 1-6.
Andrzej Kochut, Alexei Karve, and Bogdan Nicolae. 2015. Towards Efficient On-
demand VM Provisioning: Study of VM Runtime I/O Access Patterns to Shared
Image Content. In IM’15: 13th IFIP/IEEE International Symposium on Integrated
Network Management. Ottawa, Canada, 321-329.

Ignacio Laguna. 2020. Varity: Quantifying Floating-Point Variations in HPC
Systems Through Randomized Testing. In IPDPS’20: The IEEE International Parallel
and Distributed Processing Symposium. IEEE Computer Society, Los Alamitos, CA,
USA, 622-633.

Philippe Langlois, Rafife Nheili, and Christophe Denis. 2016. Recovering Numer-
ical Reproducibility in Hydrodynamic Simulations. In ARITH’16: The IEEE 23nd
Symposium on Computer Arithmetic. IEEE, IEEE Computer Society, Los Alamitos,
CA, USA, 63-70.

Kuan Li, Kang He, Stef Graillat, Hao Jiang, Tongxiang Gu, and Jie Liu. 2023. Multi-
level Parallel Multi-layer Block Reproducible Summation Algorithm. Parallel
Computing 115 (2023), 102996.

Xin Liu, JD Emberson, Michael Buehlmann, Nicholas Frontiere, and Salman
Habib. 2023. Numerical Discreteness Errors in Multispecies Cosmological N-
body Simulations. Monthly Notices of the Royal Astronomical Society 522, 3 (2023),
3631-3647.

[26

[27

(28]

[29

@
=

[31

[32

[33

[34

[35

[36

@
=)

[38

[39

~
&

[44]

Tan et al.

Avinash Maurya, M. Mustafa Rafique, Thierry Tonellot, Hussain J. AlSalem,
Franck Cappello, and Bogdan Nicolae. 2023. GPU-Enabled Asynchronous Multi-

level Checkpoint Caching and Prefetching. In HPDC23: The Proceedings of the
32nd International Symposium on HighfPerJ%rmance Parallel and Distributed Com-

puting (Orlando, FL, USA). Association for Computing Machinery, New York, NY,
USA, 73-85.

Robert D. McIntosh and Christopher D. Chambers. 2020. The Three R’s of
Scientific Integrity: Replicability, Reproducibility, and Robustness. Cortex 129
(2020), Ad-A7.

David Moreau, Kristina Wiebels, and Carl Boettiger. 2023. Containers for Com-
putational Reproducibility. Nature Reviews Methods Primers 3, 1 (2023), 50.

Ingo Miiller, Andrea Arteaga, Torsten Hoefler, and Gustavo Alonso. 2018. Re-
producible Floating-Point Aggregation in RDBMSs. In ICDE’18: Proceedings of
the 2018 IEEE 34th International Conference on Data Engineering. IEEE Computer
Society, Los Alamitos, CA, USA, 1049-1060.

Bogdan Nicolae. 2013. Towards Scalable Checkpoint Restart: A Collective Inline
Memory Contents Deduplication Proposal. In IPDPS’13: The 27th IEEE Interna-
tional Parallel and Distributed Processing Symposium. Boston, USA, 19-28.
Bogdan Nicolae. 2015. Leveraging Naturally Distributed Data Redundancy to
Reduce Collective I/O Replication Overhead. In IPDPS’15: 29th IEEE International
Parallel and Distributed Processing Symposium. Hyderabad, India, 1023-1032.
Bogdan Nicolae, Tanzima Z. Islam, Robert Ross, Huub Van Dam, Kevin As-
sogba, Polina Shpilker, Mikhail Titov, Matteo Turilli, Tianle Wang, Ozgur O. Kilic,
Shantenu Jha, and Line C. Pouchard. 2023. Building the I (Interoperability) of
FAIR for Performance Reproducibility of Large-Scale Composable Workflows in
RECUP. In eScience’23: The IEEE 19th International Conference on e-Science. IEEE
Computer Society, Los Alamitos, CA, USA, 1-7.

Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In IPDPS’19: The Proceedings of the 2019 IEEE
International Parallel and Distributed Processing Symposium. IEEE Computer
Society, Los Alamitos, CA, USA, 911-920.

Line Pouchard, Sterling Baldwin, Todd Elsethagen, Shantenu Jha, Bibi Raju, Eric
Stephan, Li Tang, and Kerstin Kleese Van Dam. 2019. Computational Repro-
ducibility of Scientific Workflows at Extreme Scales. I[JHPCA’19: The International
Journal of High Performance Computing Applications 33, 5 (2019), 763-776.

Jan Provaznik, Radim Filip, and Petr Marek. 2022. Taming Numerical Errors in
Simulations of Continuous Variable Non-Gaussian State Preparation. Scientific
Reports 12,1 (2022), 16574.

Kento Sato, Ignacio Laguna, Gregory L Lee, Martin Schulz, Christopher M Cham-
breau, Simone Atzeni, Michael Bentley, Ganesh Gopalakrishnan, Zvonimir Raka-
maric, Geof Sawaya, et al. 2019. PRUNERS: Providing Reproducibility for Un-
covering Non-deterministic Errors in Runs on Supercomputers. IJHPCA’19: The
International Journal of High Performance Computing Applications 33, 5 (2019),
777-1783.

Geof Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, and Dong H
Ahn. 2017. FLiT: Cross-platform Floating-point Result-consistency Tester and
Workload. In IISWC’17: The IEEE International Symposium on Workload Charac-
terization. IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 229-238.
Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: A Seamlessly Scalable
Non-relational Database Service. In SIGMOD/PODS’12: International Conference
on Management of Data (Scottsdale, Arizona, USA). Association for Computing
Machinery, New York, NY, USA, 729-730.

Victoria Stodden and Matthew S Krafczyk. 2018. Assessing Reproducibility:
An Astrophysical Example of Computational Uncertainty in the HPC Context.
ResCuE-HPC’18: The 1st Workshop on Reproducible, Customizable and Portable
Workflows for HPC at SC’18.

Michela Taufer, Omar Padron, Philip Saponaro, and Sandeep Patel. 2010. Improv-
ing Numerical Reproducibility and Stability in Large-scale Numerical Simulations
on GPUs. In IPDPS’10: The IEEE International Symposium on Parallel & Distributed
Processing. IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 1-9.

Basho Technologies. 2009. Riak. https://www.riak.com/.

Krishna Tiwari, Sarubini Kananathan, Matthew G Roberts, Johannes P Meyer,
Mohammad Umer Sharif Shohan, Ashley Xavier, Matthieu Maire, Ahmad Zyoud,
Jinghao Men, Szeyi Ng, et al. 2021. Reproducibility in Systems Biology Modelling.
Molecular Systems Biology 17, 2 (2021), €9982.

Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data Per-
formance Reproducible in Modern Cloud Networks?. In NSDI'20: The Proceedings
of the 17th Usenix Conference on Networked Systems Design and Implementation
(Santa Clara, CA, USA). USENIX Association, USA, 513-528.

GR Williams, GP Behm, T Nguyen, A Esparza, VG Haka, A Ramos, B Wright,
JC Otto, CP Paolini, and MP Thomas. 2017. SC16 Student Cluster Competi-
tion Challenge: Investigating the Reproducibility of Results for the ParConnect
Application. Parallel Computing 70 (2017), 27-34.

	Abstract
	1 Introduction
	2 System Design
	2.1 Design Principles
	2.2 Architecture and High-level Overview
	2.3 Merkle-tree Compact Checkpoint Metadata
	2.4 Error-Bounded Checkpoint Data Hashing
	2.5 Implementation

	3 Performance Evaluation
	3.1 Evaluation Setup
	3.2 Compared Approaches
	3.3 Evaluation Methodology
	3.4 Performance Results

	4 Related Work
	5 Conclusions
	6 Acknowledgments
	References

