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Commnenicated by Boumediens Hamzi

We present a data-driven approach to propagate uncertainty in initisl conditions through the dynamics of
an unlnown system in a reprodudng kernel Hilbert space (REHS). The uncertainty in initial conditions is

Iqwr:::ﬂ represented through its kernel mean embedding (KME) in the REHS. For a discrete-time Markovian dynamical

mmﬂyﬁm system, we utilize the conditonal mesn embedding (CME) operator to encode the underlying dynamics.

REHS Learning in REHS often incurs prohibitive data storage requirements. To circumvent said limitation, we propose

Sparse approimation an slgorithm to propagate uncertainty via a learned sparse CME opemtor, and provide theoretical guarantees
on the approcimation error for the embedded distribution with time. We empirically study our algorithm over
illustrative dynamical systems and power systems.

1. Introduction in practice. One must account for these deviations in designing relay

A dynamical system describes how states of a system evolve over
time. When the initial point of the system is uncertain, one can repre-
sent this uncertainty through a probability distribution or its support.
Uncertainty propagation entails tracking the evolution of the probabil-
ity distribution or the support of the states over time under the action
of the system dynamics. A study of this distribution of states over
time naturally has important applications in the analysis of stability
and robusmess of the system. For example, perception errors of LIDAR
sensors in autonomous vehicles affect accuracy of state estimation.
Said estimation errors in initial points will lead to deviations of actual
trajectories from the planned trajectory. In tum, such deviations can
impact the safety of the whicle. To aveid such possibilities, one must
consider and quantify the impact of erroneous sensor readings by study-
ing the range of potential trajectories to design a sound motion plan,
Another potential application for uncertainty propagation is transient
stability analysis in power system operations. When a fault occurs in
a power system, one must clear that fault to isolate its effects before
the on-fault trajectory of the system leaves the region of attraction of
a stable equilibrium point of the post-fault dynamics. Such analysis is
often done offline and is used to set settings for relays/circuit-breakers
to clear the fault. The nitial point for the onfault rajectory used
for the study may not coincide with the point where the fault occurs

* Corresponding author.

setings.

Methods for uncertainty propagation often require an explicit model
of the system dynamics, often represented as ordinary differential
equations (ODEs) or differential-algebraic equations (DAES) (see Chod
et al. [1], Chen and Dominguez-Garcia [2], Pico et al. [3], Jiang and
Dominguez-Gareia [4]). For complex systems, a succinct mathematical
description of the dynamical system can be difficult to obtain. Monte
Carlo-based methods in Halton [5], Hanson [6], Helton [7] circum-
vent that difficulty and only rely on a simulator that can generate
trajectories, given initial points. These methods have been known o
be data-intensive and often computatonally prohibitive, per Mezic and
Runolfsson [£], Xu et al. [9], Matavalam et al. [10]. A viable alternative
to Monte Carlo simulations is polynomial choos advocated in Ghanem
and Red-Horse [11], Ghanem and Spanos [12], Xu et al. [9]. While
it is computationally more efficient than Monte Carlo methods, its
major drawback is that the whole computation needs to be restarted
every dme one needs to study the propagation of different probabil ity
distributions for the uncertainty in the initial condition. To circumvent
this limitation, one must suitably learn a representation of the system
dynamics. Recently, Matavalam et al. [10], Matavalam et al. [13]
proposed a mechanism to propagate the moments of the distributions
of the states through tme using a data-driven approdmation to the

Koopman operator,
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Transfer operators such as the Koopman and the Perron-Frobenius
operators (see Lasota and Mackey [14]) essentially describe how dis-
tributions and functions of states of a system evolve through time.
These infinite-dimensional yet linear operators have a long history in
the study of dynamical systems (see Mezi¢ and Banaszuk [15], Mezi¢
[16], Mauroy and Mezi¢ [17]). They have gained in popularity recently
as they naturally lend themselves to approximations from data collected
from trajectories of the system. Such data-driven analysis requires one
to study the action of these operators with suitable function spaces. The
extended dynamic mode decomposition (EDMD) method in Williams
et al. [18], Klus et al. [19] is a data-driven algorithm that seeks
to learn these operators via their actions on parameterized function
spaces. See Korda and Mezi¢ [20] for asymptotic convergence results
for the EDMD method. Other approaches such as (deep) neural net-
works (Li et al. [21], Yeung et al. [22], Takeishi et al. [23], Lusch
et al. [24], Wehmeyer and Noé [25], Otto and Rowley [26]) have also
been utilized to parameterize these function spaces. In Matavalam et al.
[10], the authors pre-select a basis for this function space, use this space
to learn an approximate Koopman operator, and finally leverage the
learned approximation to propagate moments of the distributions that
describe the uncertainties in the system states through time. Given the
challenges of selecting a pre-defined basis for the function spaces, we
take the non-parametric route advocated in Williams et al. [27], Klus
et al. [28], Klus et al. [29], Hou et al. [30], Kostic et al. [31], Meanti
et al. [32] to learn the transfer operators from data in the reproducing
kernel Hilbert space (RKHS). Along a similar line, we propose a non-
parametric data-driven approach to represent and propagate uncertainty
in initial conditions. We rely on the actions of these operators in RKHS.
Specifically, we embed the probability distribution of initial uncertainty
sets into an RKHS. Given sampled snapshot pairs of initial points and
their next state propagated through the dynamics, we build a model
of the underlying dynamical system as the so-called conditional mean
embedding (CME) operator that acts on an RKHS. CMEs capture the
transition dynamics without resorting to explicit mathematical repre-
sentation of the system dynamics such as those via ordinary/stochastic
differential or differential-algebraic equations. RKHS theory is mature
and it has found widespread applications in statistical learning the-
ory (see Steinwart and Christmann [33], Berlinet and Thomas-Agnan
[34]); the CME framework that builds on properties of the RKHS has
also found several applications (see Song et al. [35], Muandet et al.
[36], Hou et al. [37] that include our own prior works). In a nutshell,
this representation is fully data-oriented and reduces computations of
high-dimensional integrations required for uncertainty propagation to
simple inner products, calculations of which are independent of the
dimension of the state. Moreover, convergence guarantees on data-
driven estimates of the various embeddings are available, see Song
et al. [35], Hou et al. [38]. Representations in the RKHS, however,
become prohibitive as the dataset grows without bounds. In order to
improve the scalability of the kernel method, Engel et al. [39], Kivinen
et al. [40], Wu et al. [41], Rahimi and Recht [42], Koppel et al.
[43], Chatalic et al. [44] propose a variety of sparsification procedures
to reduce redundancy in the dataset. In this paper, we control the model
complexity via the coherence condition introduced by Richard et al.
[45] and build a sparse model of the underlying dynamics via sparse
CME based on our prior work in Hou et al. [30].

Our key contributions are as follows: (1) We present a non-parametric
algorithm to propagate uncertainty in initial conditions through un-
known nonlinear dynamics. In particular, we control the complexity
of the learned model and use such a sparse model to propagate the
embedded probability distribution of initial states. (2) We bound the
error in propagating the embedded uncertainty. Such non-asymptotic
error analysis indicates that the control of model complexity comes
at the price of accuracy, and cannot be avoided simply with more
samples.

Closest in spirit to our algorithm is the paper by Zhu et al. [46].
One important aspect in which we differ from Zhu et al. [46] is that we
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learn a sparse CME operator for uncertainty propagation. The process
of sparsification is essential since computations with kernels become
increasingly burdensome with the number of samples used for learning.
Another aspect that distinguishes our work from Zhu et al. [46] is
that we provide an explicit non-asymptotic error analysis. Specifically,
leveraging the theoretical results in Hou et al. [30], we provide theoret-
ical guarantees on the approximation errors for propagated embedded
probability distributions. Our result illustrates the relationship between
the number of samples and the level of sparsification on the resulting
error performance.

The rest of the paper is organized as follows. Section 2.1, 2.2 and
3.1 serve as prerequisites for learning dynamical systems in RKHS. The
main algorithm is presented in Section 3.2, followed by theoretical
analysis. Our approach proceeds in two stages: given sampled snapshot
pairs, we start by constructing a sparse CME estimator offline. After
receiving initial samples, we compute an embedding of the initial state
distribution and then evolve that through the learned CME operator. By
doing so, uncertainty propagation reduces to computationally efficient
matrix multiplications. Finally, we demonstrate the efficacy of our
algorithm for simple dynamical systems in Section 4 and specifically
for example power systems in Section 5.

2. Preliminaries
2.1. RKHS and conditional mean embedding

We first briefly review some definitions and properties regarding
RKHS and embeddings of probability distributions. Consider a Eu-
clidean space X C R". Let ¥ : X x X — R be a symmetric positive
semi-definite kernel function with feature map ¢(x) := x(x, -). k defines
an RKHS (H. ||-|l;;) as the closure of span {¢(x) := x(x,-) : x € X} with
respect to the inner product (x(x, -), k(y, -))3; = k(x, ). In particular, the
(-, )3 has the reproducing property, given by

(f k(X Ny =fx), VxeX, feH. 1)

Let (£2, F,P) be a probability space and consider a X-valued random
variable X : (Q,F,P) — (X, x, ]P’X), where ¥ is the Borel o-algebra on
X and Py is a distribution on X. One can then embed the marginal
probability distribution Py into H. To be precise, if x is X x X-
measurable, and Ey m < oo, then there exists a kernel mean
embedding (KME) u : Py — Hp, € H such that

Hp, = Ex [k(X,)]. (2)

Throughout this paper, we suppose that « is continuous and bounded
as sup,ex kK(x,x) < B, < oo for some B, € R, so that the KME is
well-defined as an element in H, per Muandet et al. [36, Lemma 3.1].

Let Y : (@, F.P') > (Y, Zy,Py) be a Y-valued random variable
and H,,H, be two RKHSs on X and Y with kernel functions «;, «»,
respectively. One can define a tensor product Hilbert space H;, ® H,
with kernel function

Kg ((xl’Jﬁ)a(Xz’yz)) = K1 (x1,%3) K2(¥1, ¥2)s 3
for all x;,x, € X, y;,», € Y and (joint) feature map

@ (xi.31) =1 (x;) ® b (i) = r1 (xi27) K2 (37) - “)
A joint distribution Py} can be embedded into H; ® H, as

Cxy = Exyl[¢(X) ® ¢,(Y)], (5)

where Cyy is the (uncentered) cross-covariance operator. Alternatively,
Cyy can also be viewed as a Hilbert-Schmidt (HS) operator Cyy
H, — H, that satisfies

Exylf(X)g()] =(Cxy8. /)y, VfEH,gE€H,, (6)
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per Berlinet and Thomas-Agnan [34]. Likewise, one can embed the
marginal distribution Py into H; ® H, as

Cxx = Exl[$1(X) ® ¢ (X)]. )

With a slight abuse of notion, we denote the joint feature map of
Hi @ Hy as ¢ (x;,x;) =y (x;) ® by (x;) =k (xi-) &y (i)

Yet embeddings of marginal distribution cannot capture the depen-
dency between random variables. To this end, the conditional mean
embedding embeds conditional probability distributions into RKHS and
encodes how distribution over one random variable relates to another.
Specifically, let Py, denote the conditional distribution of the random
variable Y given X = x € X. The embedding of Py, into 7, is the
Bochner conditional expectation.

ey, '= By ()X = x]
Under the prevalent definition given by Song et al. [35], the con-

ditional mean embedding operator U" : H, — H,, is a linear operator

that satisfies

ey, = Uy (0. 9

In addition, if Ey[f(NIX =x] € H, for all f € H, and x € X, then
we have

Vx € X. ®

U =CyxC} . (10)

For technical reasons concerning inverting a linear operator, we con-
sider the regularized version, defined as

U, = Cyx (Cyx +£1d)7", (an

for € > 0, where Id is the identity operator.

We remark that the assumption Ey [/NIX = x] € H, for all
f € H, requires the RKHS to be closed with respect to the evolution
of functions through the system dynamics. Such closedness assumption
is not new to applications utilizing the CME operator (see Song et al.
[35], Song et al. [47], Klus et al. [28], Hou et al. [38]) and Koopman
operator-based analysis (Yeung et al. [22], Nandanoori et al. [48]).
According to Song et al. [35], this assumption holds for finite domains
with a characteristic kernel; see Muandet et al. [36] for a definition of a
characteristic kernel. Yet as noted by Park and Muandet [49], Klebanov
et al. [50], this assumption can be restrictive in a more general setting.
In light of recent developments in Li et al. [51], when the assumption
does not hold, U, defined in (11) can be viewed as an approximation of
the true CME operator U" for which the approximation is always off by
a term that encodes how far the operator is from the hypothesis space.

2.2. CMEs for discrete-time dynamical systems

Let N be the set of nonnegative integers and {X,},cr be a discrete
time dynamical system described by the recursion
x4 = F(x,0), teT, (12)

where the mapping F : Xx W — X is diffeomorphism and w, are i.i.d.
random variable with values in W that are independent of X|,. Such
dynamics can also be specified by the transition kernel density p as'

]P(Xx-H EAIX, = x) = /Ap(ﬂx)dy, (13)

for measurable A C X. If f is a probability density over X, then the
Perron-Frobenius (PF) operator P propagates f as

PHY) = / p(YIx)f (x)dx. (14)

! For a deterministic dynamical system of the form x,,, = F(x,), it can be
described under the more general framework (13) with P(-|x) being the Dirac
delta measure 6, supported on the point x* = F(x), per Dellnitz and Junge
[52].
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Fig. 1. The CME operator U" propagates the embedded distribution of states u through
system dynamics.

Recall from Section 2.1 that CME encodes how the probability
distribution over one random variable relates to another. If the random
variables correspond to successive states of a discrete-time dynamical
system, the CME operator naturally captures the state transition dy-
namics. In this regard, one can identify the PF operator as the CME
operator, since V' : pup, > pp, satisfies

ux+ =UVpy, 15)

per Song et al. [35] and Hou et al. [30], where x* is the system state
at the next time-step starting from x. In other words, the embedded
PF operator P is the CME operator that propagates the embedded
distribution of states through the system dynamics as Fig. 1 illustrates.

3. Propagating uncertainty in initial conditions

We now present our method to propagate uncertainty in initial con-
ditions through system dynamics, where the uncertainty is described by
a probability distribution on X. Our approach proceeds in two stages.
First, we learn a sparse representation of the system dynamics via the
CME operator. Then, after receiving samples of uncertain initial points,
we define an empirical estimate of the distribution using KME and then
evolve it through the learned sparse CME operator.

3.1. Sparse learning of dynamical system in RKHS

Consider an RKHS H associated with kernel « XxX - R
and feature map ¢ X — H. Given M snapshot pairs D :=
{(x1,xT)....., (xp>x},) } sampled from Py, the empirical estimates
of Cyy and Cyy+ are

Mz

M
~ 1 ~ 1
Cxx = i Z(p(xi’xi)’ Cxx+ = oM @ (x;.x7) 16)
i=1 i=1

The regularized empirical estimate of the CME operator can be defined
as

V. i=Cyiy (GXX +e Id) b a7

The sample complexity of (16) with independently and identically
distributed data is well understood (see Muandet et al. [36]). While
the estimation accuracy improves with more samples, the increase in
computational complexity makes learning in RKHS computationally
burdensome when scales to large data, as mentioned by Engel et al.
[39], Engel et al. [53], Kivinen et al. [40], Hou et al. [30]. To effi-
ciently estimate the CME operator, we leverage the notion of coherency
proposed by Richard et al. [45] to identify a subset of D based on
which a sparse CME operator is constructed. Informally, one throws
away those points in D that are deemed “look-alike” with respect to «.
To be precise, we prune D to construct a sparse dictionary D such that

<\ JreGl L Xy, x7), (18)

for each i, j where (x, x;f) is either (x;, x;) or (x]", x;’), and (x;, x}), (x;, x}“)

‘K(xi*, x;)

are in D. The sparse dictionary D can be constructed as follows.
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Consider Gram matrices computed using all elements in D with kernel
function «. Since (18) consists of two conditions, i.e., one for (x;, x;
and one for (x,fr,x;.r), the process involves two Gram matrices K and
K* whose elements are given be K;; = «(x;,x;) and Kl.’;. = K(x:',x;?).
For two indices s,t with s < 1, if (xS,x;’) and (x,,xt*) violate (18), we
keep (x,,x}) in D, but throw away (x,, x:’). At the same time, we delete
the row/column associated with x, from both K and the row/column
associated with x; from K*. We then repeat such a process until all
elements in the Gram matrices satisfy (18) to obtain D. To compute
the sparse cross-covariance and covariance estimators 6X+ x and 6X X
based on 23, let T be the indices among 1,..., M for which (x;, xi*) are
in D. Then, we define the sparse estimators as

Cyex = Zai(ﬂ (xf.x), Cxx= Zﬁi(P (xi:%;) 5 (19)

i€l i€l

where « (and similarly, f) solves

M

. 1 —

n%m - Z(p(x;*,x,-) - Za,-(p (x?',x,-) . (20)
i=1 iel HeH

Such weight vector admits an explicit representation « = G~'g where

G € RIPXIDI j5 the Gram matrix associated with elements in D, given

by

G;; =K<X?—,X;')K'(XI-,XJ-), 21
foreachiand jin 7 and g € RID! is defined as

| M
lg]; = M;G”’ jer (22)
Using Cy y and Cy-y, we compute the regularized sparse CME estimator

by

—~ ~

~ -1
U i=Cyiy (CXX +e Id) . 23)
3.2. Uncertainty propagation via CME

Having learned a sparse model encoded in 1//\‘5, we next apply it
to propagate uncertainty in initial conditions. Given initial samples
Z = (z,-)fil where z € X, the embedded distribution of initial state
is computed as

N
ﬁozzwo(i)r((zi,~), Vi=1,--,N. 24)

i=1

=L
~

Let d = Iﬁl, Ay+x = diag(a),Ayy := diag(p) and define feature
matrices

Dy = [p(x))s - px)] s Py = [ (xT) D)
6X+X, éxx in (19) can then be rewritten as
Cy+x = Dy+ Ax+x D, Cxx = Dy AxxPy.

Using the above representations, the one-step propagation of embedded
state distribution can be computed as

iy =V
~ ~ -1
=Cy+x (CXX +EIC1> Ho
PN
=@y Ay @) (PxAxx P} +e1d)” fy

(@ -1 ~
=Dy Ay+y (GXXAXXJ’_EId) CD}(MO,

=w;
= ¢X+w]1

where Gyy = @}47 x is the Gram matrix, line (a) follows from the
identity (I + PQ)™'P = P(I + QP)"!, and the d-dimensional column
vector w is

-1 ~
wy = Ax+x (GyxAxx +€1d)” @17,
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Hence, we have
A =@yrw, = Z wy (i) k (x,.*, ) .
iel
Likewise, the embedded distribution of states at ¢ > 2 can be computed
as
B =V, iy
~ ~ -1
:CX+X <CXX +81d> ﬁ,_]
-1 A
=Dy Axex Py (PyAxx @y +e1d) iy
-1 T A
=@y Ayry (GxxAxx +€1d)” @14,
=D w, ik (xf,),
iel

where the vector w, of coefficients is given by
w, = Aysy (GyxAxy +¢1d)" ®LA,_,. (25)

To summarize, the empirical estimate of embedded state distribution at

time ¢ can be constructed as a linear combination of {x(x,-)};c7, given
1

by

o 4 A~ .
i = (m)yozzw,(,)K(xj,.), reN\ {0}, (26)
iel
where the evolution of the weight vector w,,t € N captures the evolu-
tion of the uncertainty in initial conditions through system dynamics.

3.2.1. Moment propagation

With an estimation of embedded state distribution, one can also
compute the ath order moment of state distribution by taking an inner
product with y,. To illustrate, consider a 1-dimensional random variable
X. Suppose x“ € H,? then, we have

mé :=E[X7] = (X u)y. @7)
Utilizing i,, one can approximate m{ as
M= (X )y = (X D w ()i (xF )

i€l

= sz DXk (X, )y (28)

iel

= z w, (i) (x?')a.

i€l

We summarize the algorithm in Algorithm 1.

Algorithm 1 Uncertainty propagation in RKHS

Require: Kernel function «; Snapshot pairs D; Coherence parameter y;
Realizations of initial uncertainty set Z.

: Prune D to get y-coherent dictionary D that satisfies (18)

: Solve for coefficients a, g according to (19),(20).

: At time 7 = 0, assign uniform weight to w, as (24).

: fort=1,-- do

Find the coefficient vector w, using (25)

Compute /¢ via (28)

: end for

Nooswne

3.3. Theoretical analysis

We now present an upper bound on the estimation error of embed-
ded state distribution. We use the notation ||-|| to denote operator norm,
and

ZW) =1+ /2log(1/v),

veR.

2 When this is not satisfied, the derivation can be viewed as a formal
approximation technique.
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Assume that kernel x is continuous and bounded as
sup,ex kK(x,x) < B, < oo for some B, € R,. Let yu; := U, pu, be the
one-step propagation of the embeded distribution. Given datasets D and Z
that consist of M and N iid. samples drawn according to Py y+ and Py,
respectively, u, and fi; satisfies

Theorem 1.

A~ 3/2 1 _(6 - 6 _
iy = 2l < BY [ﬁ: (3)o() +v(Mrg)o(e 2)] 29)
with probability at least 1 — 5, § € [0,1], if 6X x 18 positive semi-definite,*
and
1 D]
w(M,y;6) = —E@6)+|1-— 1—y2. (30)
VM < M )

Our result suggests that the estimation error consists of two parts:
the first term in (29) reflects the initial sampling error being propagated
through the iteration which depends on ﬁ , and the second term in
(29) captures the error induced by sparse approximation of V. For the
latter one, we leverage Hou et al. [30, Theorem 1] to obtain the ap-
proximation accuracy which depends on both the number of snapshot
pairs M and the level of sparsity controlled by y. In other words, the
term /1 — y2 encapsulates the price we pay for sparsity. Furthermore,
our error estimate depends on the regularization parameter . A recent
work by Li et al. [51] shows the potential to improve the dependency on
e that we plan to explore in future work. In addition, Theorem 1 implies
that the estimation error of embedded state distribution is independent
of the dimension of the state space—a hallmark property of kernel
methods.

Theorem 1 is a “high probability” guarantee on the error in prop-
agating uncertainty, much along the lines of Kostic et al. [31], Meanti
et al. [32] derived for the Koopman operator. This result characterizes
finite-sample performance and essentially has three parts to the error—
one due to the variance from sampling initial points, second due to
the variance of the point-pairs used to learn the Koopman operator,
and third the bias from sparsification of the operator. Recall from
Section 2.1 that our results are derived under a closedness condition
that Ex+ [f(X )X = x] € H for all f € H. A measure-theoretically
sound alternate approach developed in Park and Muandet [49], Li
et al. [51] avoids this requirement. With this definition, bounds on
how well the operator itself can be learned can be developed as in Li
et al. [51]. These bounds include an additional bias term from the
inability to represent the target operator within the hypothesis space.
Extending that analysis to a refined bound on learning the KME/CME
for uncertainty propagation is left for future endeavors.

4. Illustrative examples

We begin our numerical experiments with three simple dynamical
systems and defer the power system examples to the next section. The
performance of our method indeed depends upon the choice of the
kernel function. We remark that even that choice can be optimized
along the lines of Gretton et al. [54]. To capture all information of
a probability distribution in its embedding, one requires the kernel
to be characteristic, i.e., the mapping Py — up_is injective so that
up, uniquely determines Py. See Muandet et al. [36] for details. In
our experiments, we adopt Gaussian kernels that are known to be
characteristic (see Fukumizu et al. [55]).

3 Such an assumption is satisfied when coefficients § > 0.
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Fig. 2. Approximations of the mean (====) and second-order moments () (m—)
(m===) along three exemplary dimensions of the linear system with Gaussian noise.
Dashed lines are those obtained from analytic solutions.

4.1. A 50-dimensional linear system

Consider a stochastic linear dynamical system,

x(t+ 1) = Ax(@®) + (1),  x(0) ~ N'(0,%,), VieN,

where w(r) are i.i.d. according to N'(0, X,) and are independent of x(0).
The w(r)’s have zero means for all + € T, and thus the mean of the
system is O for all + € N. The covariances X(¢)’s satisfy the recursion,

St+1)=AZOAT + X

w?

vVt €N, 31

which converges to the steady-state covariance if and only if A is stable.
In this experiment, we consider a 50-dimensional system, i.e., x(f) €
R for all + € N, where the matrix A € R is generated via
random.rand() in Python. The maximum eigenvalue of A is 1.25, and
thus the iterates in (31), diverge. We take X, =0.2Id and X, = 0.01 Id.
In order to learn the CME operator, we collected |D| = 2,500 samples
uniformly distributed on [0, 11°° and propagated them one step forward
with a sampling interval of 0.01 s. The kernel function is chosen as a
( eyl )
2><zfi2

where (5,,75,73) = (0.1,0.8,0.1) and (o, 0,,03) = (4,4.8,11). We then
set y = 0.52 to get the sparse dictionary D with |D| = 2278. We
applied Algorithm 1 by setting the regularization parameter as ¢ =
le=13 x |ﬁ|_0' . We compared estimates of moments with the analytic
solutions. Fig. 2 indicates that our algorithm is able to form accurate
estimates of the true moments that can be calculated analytically.

combination of three Gaussian kernels x(x,y) = Zil 1; eXp

4.2. A simple 2-D system

Consider a 2-dimensional nonlinear dynamical system

x3

x2=—%x1—x2+32, (32)
which admits a stable equilibrium at (0,0). As shown in Fig. 3(a), tra-
jectories starting from the initial uncertainty set (-1.5,—1.1) x (0.4,0.8)
converge to the stable equilibrium point (0, 0). In practice, observations
are often corrupted by noise. To this end, we add Gaussian noise with
zero mean and standard deviation of le=3 to sampled data points.

In order to construct 1/f: defined in (23)," we randomly selected
1000 initial points in a circle around the origin with a radius of 3 and
numerically integrated 9 steps forward in Python with odeint-solver
using At = 0.1 s. The kernel function is a combination of two Gaussian

) where (n;,1,) = (0.5,0.5) and

X| = Xy,

2
Zlx=yll”

2
kernels x(x,y) = Y. eXp( Ixo?

4 For the case of a deterministic dynamical system, we consider the em-
bedding of the Dirac delta function. Under the assumption that the kernel
function is bounded, such embedding is well-defined and we use l//\‘& as its
approximation.
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Fig. 3. (a) Trajectories starting from uncertainty set (—1.5,—1.1) x (0.4,0.8) that converge to the stable equilibrium point (0,0). (b) Estimated moments up to order 2 using the
proposed algorithm (solid lines) versus the Monte Carlo method (dashed lines). E[x,](mm=), FE[x,]( =), [x](m=—), E[x,x,](m—), J[x3](m—).
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Fig. 4. Starting from two initial uncertainty sets, the estimated moments up to order 3 are plotted using the proposed algorithm (solid lines) and the Monte Carlo method (dashed
lines). In (a), moments that are dominated by x,, i.e., Elx,], E[x3], E[x], E[x,x3] (=) rise with time while moments dominated by x,, i.e., E[x,], E[x}], E[x]], E[x}x,](m==) as

well as E[x,x,](===), decay with time. The reverse is true in (b).

(61,00) = (0.7,0.18). We then pruned the dataset comprising 9000
sample pairs to obtain |D| = 2186 using y = 0.99 and use ¢ =
le 13 x |ﬁ|70' . Fig. 3(b) shows the comparison between the estimated
moments obtained from Algorithm 1 and the Monte Carlo method.
The convergence of all moments to zero indicates that all trajectories
converge to the stable equilibrium point eventually.

4.3. Genetic bi-stable toggle

We next consider the kinetics of the concentration of two pro-
teins that inhibit each other, also known as the genetic toggle switch
per Gardner et al. [56], described by

1 . 1

= _05x, %= ——— —05x,.
14355 S TS 2 33)

X
As shown in Fig. 4(a), the system admits two equilibrium points—
(0.16,2) and (0.161,0.2)-with complementary regions of attraction. We
consider two initial uncertainty regions with different shapes: (a) S,—
a circle centered at (0.4,0.8) with radius 0.2 and (b) S,—a square
(1.2,1.4) x (0.5,0.7). Fig. 4(a) demonstrates that samples starting from
those two initial uncertainty sets converge to (0.16,2) and (0.161,0.2).
We also consider the case where observations are corrupted by additive
Gaussian noise with zero mean and standard deviation of le*.

To compute 175, 1600 initial points were selected over [0,0.25] x
[0,0.25]. We then numerically integrated 9 steps forward with a time
interval of At = 0.1s. The kernel function is a combination of two Gaus-

_ux—yu2> where (1;,1,) = (0.55,0.45)

2x02
and (o}, 0,) = (0.475,1). Next, we prun(’ed the original dataset consisting
of 14,400 samples with y = 0.99 to obtain a sparse dictionary with
|D| = 1463 and use € = le~!3 x |ﬁ|_0'2. Following Algorithm 1, the
true and estimated moments are plotted in Fig. 4. Comparing Fig. 4(b)
with 4(c) suggests that different moments dominate the plots as time
advances. In the case of Fig. 4(b), the moments that are expressions of

sian kernels k(x, y) = 2,2:1 n; eXp

only x, rise with time while the moments concerning x, decay with
time. Those trends imply that all trajectories starting from S, converge
to (0.16,2). The opposite is true in Fig. 4(c).

5. Applications to power systems

In this section, we apply our framework to propagating uncertainty
in example power systems. We illustrate that our proposed data-driven
method is faster than the Monte Carlo method. All experiments were
run on a MacBook Pro with Apple M1 pro chip.

5.1. Single Machine Infinite Bus System (SMIB)

Consider the dynamical system of SMIB, described by

§=w, &=-Dw+ P, — P,sin(s), (€D

with D = 1.3, P, =5 and P, = 10. The stable equilibrium of this system
is at [0.53 rad,0]. We are interested in uncertainties in the rotor angles
of the generator with 0.3 rad < 6 < /6 rad.

To build a sparse representation of the underlying dynamics, we
first sampled 900 initial points x = [§, @] that are uniformly distributed
over [6,w] € [—4,4] X [-8,8]. We then collected 10 points along each
trajectory with sampling interval Ar = 0.1. The kernel function is a
( eyl >

2><ai2
where (n,m,1;) = (0.1,0.8,0.1) and (o},0;,03) = (0.12,0.56,1). We
pruned the dataset utilize y = 0.9 to get ‘ﬁ‘ = 2081 and use ¢ =

combination of three Gaussian kernels x(x,y) = Z;.Ll 1; eXp

le 13 x |ﬁ|70‘2. 7, and moments are then computed based on 7/.. The
comparison with results from the Monte Carlo-based moment propaga-
tion in Fig. 5(b) reveals that Algorithm 1 achieves very similar accuracy
as the Monte—Carlo method, and that the system returns to the nominal
operating condition with time as the variance is damped down to zero.
In particular, with learned 12, the computation time for a time horizon
of 10s takes only 2.2 s. By contrast, the Monte Carlo simulation takes
20.4 s as it is typically more data intensive.
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Fig. 6. (a) One-line diagram of TMIB. (b)(c) Plots of mean E[§,|(====), [E[5,](====) and variance Var[§,](====)  Var[5,|(====) of two generators using Algorithm 1 (solid lines)
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5.2. Two Machine Infinite Bus System (TMIB)

Next, consider the TMIB described by
8 =w;,

E\E,

M;&, =P,,; — D,w; — L sin(8;) — sin(8; — §;),
Xi 12

for i = 1,2. The uncertainties in the initial conditions are in rotor

angles of generator one with 0 rad < §;, < 0.35 rad. We scale w,,®,

by a factor of 1/8 and utilize a combination of three Gaussian kernels

2
Zlx=yl" ) where (”17’72s’73) = (0.45,0.35,0.2)

3

and (0'1,0'2,63) = (0.15,0.38,0.75). To compute 1//\'5, we collected 5000
sample pairs from 500 trajectories with 10 evaluations along each and
constructed a sparse dictionary with |D| = 2653 and use € = 1e13 x
|13|_0'2. U, is then used to estimates i, for t € T following line 4-6 in
Algorithm 1. Fig. 6 plots the mean and variance of rotor angles obtained
from Algorithm 1 and the Monte Carlo method. It can be seen that the
uncertainty of §,; is propagated to §, as its mean and variance increase
from 0 before decaying. We also observe that eventually, V[§,], V[6,]
stay close to 0 eventually, indicating that the system converges to the
nominal operating point.

For this particular example, constructing l//\‘é took around 182.07 s.
Computing propagated moments for a time horizon of 10s with a
learned sparse model took merely 3.65 s since only algebraic operations
are involved. By contrast, the Monte Carlo simulation took around
1020.33 s, which is even beyond the time horizon of interest. In
conclusion, the proposed method is more computationally efficient for
the propagation of initial uncertainty.

Our experiments suggest € = le™13 x Iﬁl_o'2 as a good thumb rule
for the choice of the regularization parameter. A more comprehensive
empirical work is needed to test the efficacy of such a choice. In
our experiments, we utilized Gaussian kernels with different widths.
According to Sriperumbudur et al. [57], the Gaussian kernel is charac-
teristic, and thus, the embedding can preserve all information about

K(x,y) =

the distribution. Automating the process of choosing an appropriate
kernel is an interesting direction for future work. As for the coherence
parameter, upon decreasing the value of y, we obtain a less coherent
dictionary D with fewer elements. For a kernel function with B, = 1,
one typically chooses y between 0.5 and 1. We refer interested readers
to Hou et al. [38] for a detailed discussion of the practical benefits of
sparsification and the role of y.

6. Conclusions

In this paper, we provided an algorithm to propagate uncertainty in
initial conditions through unknown system dynamics in RKHS. A sparse
representation of the dynamical system is learned through the CME
operator. We have provided sample complexity bounds for approxima-
tions of embedded uncertainty. Five exemplary numerical experiments
confirmed the effectiveness of our approach. Scaling the proposed
framework to larger power system examples is an interesting direction
for future work.
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Appendix. Proof of Theorem 1

We start with the following lemma that provides a uniform
bound on the operator norm of U, and its sparse estimate U,.

Lemma 1. Under assumptions of Theorem 1, U, defined in (11) and
V. defined in (23) satisfies vl <B I /€.

Proof. To prove the first claim, notice that by definition,

V]l = || Cxex (Cxx +e1d) 7|

IN

||CX+X|| ”(CXX t+e Id)_l ” (A1)

1
— Cxexll:

IA

where the last line follows from the fact that Cyy is positive
semi-definite and self-adjoint, which implies |[(Cyy +& Id)_] H < 1/e.
In order to bound ||Cy+x|, note that Cy.y is a Hilbert-Schmidt
operator and that the space of Hilbert-Schmidt operator from H
to H is isometric isomorphism to the tensor product Hilbert space
H ® H Aubin [58]. Together with the fact that the operator norm is
dominated by the Hilbert-Schmidt norm, we have

ICxx* <llCxxllis
2
A

= (Exex [9X) @ 600)] By [#X D @ 9X)])

=E o, x1+x [(¢(x+> ® 600, $(X' ) ® $(X'))

HRH
=Eyexxry [(#X60) (900.6X)),,]
=Byex e [FOOH XX, X0)|
<B,

(A.2)
where (X’,X'*) is an independent copy of (X,X*) and the
last line follows from boundedness of x and the fact that
sup, vex |K(x, x")| = sup,ex xk(x,x) per Steinwart and Christmann [33,

Section 4.3].
Likewise, if Cyy is positive semi-definite, we have

v,

3

Crox (Cux+e Id)_lu

IN

| ” (Gux+erd)” ” A3)

By definition, 6X+ x defined in (19),(20) is the projection of 6x+ X

defined in (16) onto the closed subspace {qa(xl ,x):i€l} of HOH.
Let I1; be the (linear) projection operator and we have

o

IN

= Jéxex

fratel,

fererl <l forls  aw
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On the other hand,

2
‘HS

2

M
- Z BH ® blx,)

”CXU(

H®H

g~
T_'Ms

M
) ® Plx). — Z PN ® ¢(x,-)>
M 5

H®H

|-

(¢(x+) ® b0x). HC) @ b)) A5)

g|-

Mz M=

[(¢(x+> B, (900, 9G:)) ]

= 5

M2 Z K(X X; )K(x,,x)

ij=1
<B,
Combining Egs. (A.1)-(A.5) gives

B =2 o (A.6)

[V < . -

7 <.

We now return to the proof of Theorem 1. At time 7 = 1, we have

ll#e = daell, = - 12/70“71
—74170"‘74/70—72!’4\0“7{
@ . N
< ||V (mo =0 | +”<Ug—7fg>ﬂo N

R (A7)
< Vel luo = ol

®
< Vel llmo =

© R
< B, |luo = iolly

where in (a), we break down the error into two terms: the first one
encodes propagation of approximation error in the initial estimate
through iterations and the second one captures the error at time
t = 1 when starting from the same initial empirical estimator. Line
(b) and (c) follows from Lemma 1

Next, we apply Muandet et al. [36, Theorem 3. 4] and Hou et al.
[30, Theoreml] to bound ||y — fiy||;, and |L§/‘ 1/‘ “, respectively.
We then conclude that at time ¢ = 1, with probability at least 1 — 6,

Nl = e3¢
sBu\/B_E (6/2) + B *w (M, y; 5/4)( w>
N £
B, . A8
=<ﬂ £ 562+ By (M.y: 5/4)< A x2x||> (a.8)
£ N &

-2 ( s

where y is defined in (30).

Z2@/D0 (7)) +w (M, y;6/4)0 (5—2)> ,
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