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We present data-driven methods for power system transient stability analysis using a unit eigenfunction of the
Koopman operator. We show that the Koopman eigenfunction with unit eigenvalue can identify the region of
attraction of the post-fault stable equilibrium. We then leverage this property to estimate the critical clearing
time of a fault. We provide two data-driven methods to estimate said eigenfunction; the first method utilizes
time averages over long trajectories, and the second method leverages nonparametric learning of system

dynamics over reproducing kernel Hilbert spaces with short bursts of state propagation. Our methods do not
require explicit knowledge of the power system model, but require a simulator that can propagate states
through the power system dynamics. Numerical experiments on three power system examples demonstrate the

efficacy of our method.

1. Introduction

Transient stability analysis of a power system seeks to answer
whether grid dynamics will converge to a stable equilibrium point,
following the clearing of a line fault or a generator failure. It is a
mature field of research with extensive prior literature, e.g., see [1-
3] among others. Time-domain simulation via numerical integration of
power system models is perhaps the most widely used technique, as
stated in [3]. Essentially, one simulates the post-fault dynamics starting
from various points on the fault-on trajectory to certify whether the
system will quickly converge to a stable equilibrium point, exhibit
large oscillations, or even diverge. However, such a method suffers
from several drawbacks when applied to large and complex modern
power systems. To begin with, it requires an accurate model of the
power system, which becomes more challenging with the integration of
renewable energy and distributed power grid components. Consider for
instance wind farms with interconnected wind turbines. The interaction
of fluid dynamical flows itself presents a challenge in deriving an
analytical model [4], let alone uncertainty in wind speed, direction, etc.
Moreover, numerical integration of differential equations describing
fault-on and post-fault systems can be computationally intensive, thus
rendering it unsuitable for the stability assessment close to the time of
power delivery which is required for power systems with a wide range
of operating points.

* Corresponding author.

The direct method is an alternative approach to assessing tran-
sient stability without explicitly integrating differential equations of
post-fault systems. It utilizes Lyapunov-type functions to assess the
stability of a post-fault system, based on an approximate stability
boundary. Transient energy functions (TEF) expounded in [5-8] are
examples of such Lyapunov-style functions that decrease along the
system trajectory once the fault is cleared [9,10], a critical value of
TEF (called the critical energy) is then computed, such that the sublevel
sets can be certified to lie within the region of attraction (ROA) of
the stable equilibrium point of the post-fault dynamics. In order to
compute such critical energy, the controlling unstable equilibrium point
(UEP), closest UEP [11-14] and the boundary of stability region based
controlling unstable equilibrium point (BCU) method in [6,15] are
widely established. Nevertheless, computing critical energy is not easy,
as it requires finding several unstable equilibrium points surrounding
the stable equilibrium point of post-fault dynamics and determining
which UEP is the most relevant to the faulted system. The Poten-
tial Energy Boundary Surface (PEBS) method [16] avoids computing
the relevant UEP by finding a local approximation of the stability
boundary of the original system model using an analytically derived
approximate potential energy function of the power system. However,
beyond the single-machine infinite bus system, sufficient conditions
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for PEBS method to provides accurate stability assessments are not
well-understood.

Another major limitation of the direct method is the choice of the
Lyapunov function itself, which depends on the mathematical descrip-
tion of the power system model. These functions are only known for
a limited class of simplified power system models. Authors in [17-20]
have proposed to construct such functions for general power systems
using polynomial optimization, following the seminal work of Parrilo
in [10]. While promising in theory, state-of-the-art software for these
methods does not scale favorably with the size of the model. In partic-
ular, they require explicit analytical models of various power system
components. This poses a challenge since deriving accurate system
equations that capture nuances of modern power system components
ex-ante is not only tedious but may be impossible in some situations.
For example, consider the emerging inverter-dominated power systems
where the inverter/plant dynamics are not expressed as analytical
equations, but are instead represented by compiled dynamically linked
libraries in order to protect the intellectual property of inverter man-
ufacturers. In other words, the underlying dynamics of an inverter are
deliberately hidden from system operators in order to protect intellec-
tual property, thus limiting the applicability of the direct method. Even
if the mathematical models of these components were easily accessible,
the exact representation of the model, whether in the phasor domain
or a more detailed counterpart, can heavily influence stability assess-
ments, e.g., see [21]. Furthermore, the aforementioned methods are
all fault-dependent and focus on assessing a particular fault. Since the
critical energy is different for each fault, the computational challenge
compounds with multiple possible counterfactual fault scenarios.

To cope with some of the above challenges, we propose a data-
driven transient stability assessment tool based on the Koopman op-
erator. First developed in [22], the Koopman operator lifts the finite-
dimensional nonlinear evolution of the state to a linear but infinite-
dimensional evolution in the function space of observables (scalar
mappings of the state). Approximation of the Koopman operator from
data is well studied in the literature, see [23-28] for details. As a
linear operator, its spectra reveal information relevant to stability
monitoring [29-33]. In this paper, we show that eigenfunctions of
the Koopman operators of the post-fault dynamics reveals its ROA.
One advantage of using the Koopman operator for transient stability
analysis is that these eigenfunctions can be learned from data of states
propagated through the system dynamics, but do not require explicit
analytical models. Prior literature such as [34-36] have investigated
data-driven transient stability assessment by leveraging the learned
Koopman operator. Nevertheless, accurate estimates of the Koopman
operator and its leading eigenfunctions require a pre-selected set of
observables to be rich enough. Given the challenges of selecting such
a basis, we leverage the results in [37] to approximate the Koop-
man eigenfunction nonparametrically in a reproducing kernel Hilbert
space (RKHS). As shown in [38], kernel methods demonstrate excellent
empirical performance in data-limited regimes. Still, the scalability
often suffers with larger datasets. To counter this difficulty, we allow
selective loss in the representation of that operator to control model
complexity.

The paper is organized as follows. In Section 2, we recast the
problem of transient stability analysis into learning the ROA-indicator
function, which in turn relies on approximate eigenfunctions of the
Koopman operator associated with eigenvalue one. We then relate
numerical integration used by commercial software to the computation
of such an eigenfunction that is similar in spirit to a discretized version
of a Fourier averaging introduced in [39]. Such a connection will likely
make our exposition and algorithms more amenable to adoption as
an add-on to existing software. Building on those insights, we then
leverage this connection to approximate the ROA using a so-called
“seeding function” in Section 3. Given the difficulty of selecting a
proper seeding function, we next propose a non-parametric kernel
method in Section 4. This exposition builds on well-studied properties
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Fig. 1. ROA of post-fault stable equilibrium (gray). Starting from x,, when the fault
is cleared before the fault-on trajectory (black) exits ROA (e.g., at x.,), the post-fault
dynamics converges to x,. In contrast, the purple trajectory plots post-fault behavior
when the fault is cleared at x, after the fault-on dynamics leaves the ROA.

of the interaction of the Koopman operator with RKHSs in [40], for
which sample complexity has been characterized in [37]. In addition,
to control the growth of model complexity, we propose to learn a
sparse variant of the Koopman operator from data using the framework
in [37]. We emphasize that thanks to the data-oriented nature of our
proposed methods, our algorithm can be used in tandem with black-box
simulators such as PSSE, PSLF, PowerWorld, DigSilent, etc., and do not
rely on the mathematical structure of the power system model. With a
learned post-fault dynamical system, our method allows one to analyze
multiple fault-on trajectories efficiently. We demonstrate the efficacy of
our data-driven methods using a single-machine infinite bus system, a
3-bus power system example, and the 39-bus New England example in
Section 5. The experiments in this paper are meant to provide a proof
of concept; our ultimate goal is to scale our methods to large power
systems in future work. Concluding remarks and interesting research
directions are outlined in Section 6.

Our key contributions are as follows: (a) we establish the con-
nection between the unit Koopman eigenfunction and time-domain
simulation, where the latter is widely adopted in industry. (b) In order
to approximate the unit eigenfunction of the Koopman operator, we
present a nonparametric algorithm to construct the Koopman operator
associated with the post-fault dynamics. Since the learned Koopman
operator serves as a model of the system dynamics, we further control
model complexity via sparsification. (c) Leveraging the learned unit
eigenfunction of the Koopman operator, we propose a data-driven
algorithm to assess power system transient stability.

2. Transient stability analysis with Koopman operator

Transient stability analysis requires one to compute the critical
clearing time (CCT) of a fault, that is, the time required for the fault-
on trajectory to leave the region of attraction (ROA) of the stable
equilibrium point of the post-fault power system dynamics. In this
section, we relate the eigenfunction of the Koopman operator to the
identification of said ROA.

To make the connection between CCT estimation and Koopman
eigenfunctions, consider a power system for which the shaded region in
Fig. 1 depicts the ROA of the post-fault system whose equilibrium point
is x,. Henceforth, we indicate this region by ROA(x,). The trajectory
(marked in black) starting from x, is the fault-on trajectory. If the fault
is cleared at x,; , before that trajectory leaves the ROA of the post-fault
system, the system dynamics will naturally drive the state to x,. If the
fault is cleared at x., outside of the shaded region, the system will
diverge from x,.!

1 Such dynamics will typically converge to other equilibria but can oscillate
wildly before it does so, which runs the risk of tripping relays or switches.
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Fig. 2. Nonlinear evolution of state in the finite-dimensional state space is lifted to a linear evolution of observables in the infinite-dimensional space of all L,-measurable functions

of the state.

Consider the indicator function of ROA(x,), defined as

_ 1, if x € ROA(x,),
P(x) = 0

otherwise.
To calculate the CCT for a fault originating at x,, one then needs to
numerically integrate the on-fault trajectory (denoted x,, gu:(1)) and
evaluate

(€8]

CCT :=max{ > 0 | @(Xop faute(®) = 11 2

i.e., the time until which the evaluation of ¢ along the fault-on trajec-
tory remains unity before falling off to zero.

We next relate ¢ to an eigenfunction of the Koopman operator.
Consider a discrete-time deterministic non-linear dynamical system

with states in X, described by
X1 = F(x,), 3

where x, € X and F X — X is locally Lipschitz continuous
and invertible. For power systems represented by differential-algebraic
equations (DAE), F represents the numerical integration of the DAE
with a fixed time-step.

Let 4 : X - C be an observable (i.e., a scalar-valued function) over
X. The Koopman operator K acts on & as

[Kh](x) = h(F(x)). 4

This operator thus maps the observable g to Kg, which when
evaluated at x, is g evaluated at the state after being pushed forward
through the system dynamics in one time-step as Fig. 2 reveals. This
operator is infinite-dimensional as it acts on a suitably defined space of
functions of the states. It is easy to verify that

Ko g +ay8,) = a1 Kgy + a,Kgy 5)

for scalars a,, @, and observables g, g,, and hence, is a linear operator.
The spectrum of this operator is rich in information about the dynamics
of the system. As we will demonstrate, the indicator function @ of
ROA(x,) is intimately related to the eigenfunctions of K. Before we
establish that relationship, we emphasize that the linear operator de-
scription of the dynamical system in the space of observables is distinct
from a local linearization around a point in the state space.

Let ¢,(x) be an eigenfunction of K with eigenvalue 4, i.e., [Kg,;](x)
= A¢,(x) for all x € X. In particular, if ¢, is an eigenfunction with
eigenvalue equal to 1,% then

[Ko1(x) = ¢ (F(x)) = ¢ (x). (6)
Applying the Koopman operator n times, we get

@1(x) = [K"0,1(x) = @, (F™(x)). %)

2 The eigenfunction corresponding to eigenvalue one always exists when
the system is measure-preserving. Indeed, the set of eigenvalues forms a lattice
and the constant function ¢ = 1 is always a trivial eigenfunction corresponding
to A=1.

For any x € ROA(x,), we have lim,,_, ., F"(x) = x,, which combined with
(6), gives

010 = (lim F'(0) = g1(x,). ®

In other words, ¢, is constant over ROA(x,). Said even more differently,
@, over ROA(x,) is a scaled version of the indicator function ¢ of
ROA(x,).? As a result, one can utilize the eigenfunction of the Koopman
operator whose eigenvalue is equal to one to construct the indicator
function of ROA(x,) with which one can then perform transient sta-
bility analysis. This analysis then reduces to the estimation of such an
eigenfunction from data suitably obtained from system trajectories.

We further remark that the theory presented in this section also
applies to systems specified by the algebraic states. This is due to the
fact that the information of mapping between the algebraic states and
the dynamic states is inherently embedded into the trajectory of the
dynamic states [41]. In other words, only the dynamic states need to
be sampled and analyzed in order to identify the ROA of post-fault
dynamics and the CCT of a fault.

3. Connection between Koopman eigenfunctions and time-domain
simulation

The ROA of a stable equilibrium point of the post-fault dynamics
has long been estimated using repeated numerical integration of the
post-fault dynamical system model, starting from a collection of points
around the boundary of the ROA of an equilibrium point. Having
studied the relationship between the eigenfunction of the Koopman
operator with 4 = 1 and the indicator function of the ROA, it is
natural to surmise a connection between these eigenfunctions and the
time-domain simulation approach to transient stability analysis. In this
section, we precisely establish said connection. As shall become clear,
such a relation sheds light on a computational scheme to estimate the
eigenfunction with an eigenvalue equal to 1.

Consider a bounded function y : X — C on the state space with
|lw| < B. Then, define the N-step time-averaged version of y along a
trajectory starting from x as

N
VNG = < D W(F (). ©
n=1

Then, for x € X, triangle inequality gives

[P (FO) = P ()] = 5 [ (Y ) o] < 22, 10)
For large N, the above bound suggests that

[K¥N]x) = PN (F(x) = Py (). an
This relation, together with (6), indicates that ¥, converges pointwise
to the eigenfunction of the Koopman operator whose eigenvalue equals

one. In the sequel, we refer to the eigenfunction with 4 = 1 as the unit
eigenfunction of the Koopman operator.

3 Similar conclusions can be drawn about stable orbits and other forward
invariant subsets I C X of the state space, characterized by F(I) = {F(x) : x €
I cl
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Fig. 3. Conceptual plot of the Voronoi cells for the various points in D of a 2-D system.
The time-averaged value at these points for a well-chosen y should be binary that take
different values inside and outside the ROA. The two different values are represented
by blue and red colors.

The above calculation sheds light on a computational scheme to
estimate a unit eigenfunction. Starting with a bounded function v, one
can estimate ¥, by averaging y along a trajectory over N time-steps
obtained via time-domain simulation.’. Then, this estimated unit eigen-
function should be roughly constant within ROA(x,), using which one
can then perform transient stability analysis. While this computational
scheme does not require explicit evaluation of the Koopman operator,
it reveals the link between the conventional time-domain simulation
approach to the estimation of ROA(x,) and the unit eigenfunction of the
Koopman operator. Although Koopman operator learning has been ap-
plied to analyze power systems in [34,35], to the best of our knowledge,
this paper is the first to draw such a connection between time-domain
simulation and Koopman eigenfunctions for transient stability analysis..
We conclude this section with remarks on the practical implementation
of estimating an eigenfunction via this approach.

It is time-consuming to estimate ¥, everywhere in the state space
X. Instead, one can probe ¥, at a finite number of points D :=
{x1,x5,...,x,,}, sampled around the portion of the state space “near”
the on-fault trajectory, and then interpolate ¥y at any point of interest
by assigning the value of ¥, at its nearest-neighbor in D. Points in D
thus partition the state space X into separate regions, often referred to
as Voronoi cells, as illustrated in Fig. 3, where ¥y takes two different
values on D. The interpolated value of ¥y (call it ¥y ) is then defined
by

Py(x) =¥y (arg min ||x — x’||> (12)
x'eD
for a suitably defined norm ||-||. Fast open-source implementations for

computing the nearest neighbor are readily available, e.g., see [42]. In
the sequel, we call this approach the time-averaged approach.

Generally, the choice of y will affect the quality of ROA estimation
using this approach. As our numerical experiments will suggest, a
choice of y that is positive everywhere, equals one at x, and that
rapidly decays away from x; tends to yield favorable results. N can
be set based on time commitments of time-domain simulation of the
post-fault dynamics and where ¥, ~ ¥y_, for all points in D. This
time-averaging approach to computing a unit eigenfunction requires
collecting post-fault trajectories over a long time horizon, which can
be computationally intensive, and each trajectory is analyzed inde-
pendently. The approach we present next, on the other hand, utilizes
multiple one-step propagation of data points that are utilized together
to obtain an interpolation.

4 It was brought to our attention that this computational scheme is a special
case of the discretized version of the Fourier average method introduced
in [39].
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4. Learning the indicator function via the Kernel method

One can approximate a unit eigenfunction of the Koopman operator
in a suitable function space. In this section, we present an approx-
imation technique to find a unit eigenfunction within a real-valued
reproducing kernel Hilbert space (RKHS), in which the dataset consists
of states propagated one time-step via the system dynamics.

We start by introducing the real-valued RKHS. Consider a sym-
metric, bivariate, positive definite, continuous, and bounded kernel
function « : X x X — R that satisfies the following reproducing property
for x € X. Then, define H to be Hilbert space of functions, given by
the completion of the span of {«(x,) : x € X}. In this space, the kernel
satisfies the following reproducing property,

(f.k(,x)) = f(x), Vf €H, 13

where (-,-) computes the inner product in H. Associated with kernel «
its feature map

Ve(x) = k(x,-) € H. a4

To learn Koopman eigenfunctions in H, one needs to understand
how F interacts with functions f € H, where F describes the system
evolution in (3). Assume that H is closed under the system dynamics,
ie.,

fEH = Kf=foFeH. (15)

The assumption that # is closed under system dynamics is common in
approximation of linear transfer operators, e.g., see [43,44], It holds
when the Koopman operator K is a Hilbert Schmidt operator mapping
from H to H. Under this assumption, the Koopman operator admits a
closed-form expression using (cross)-covariance operators, per [37,40],
and it can be learned from a collection of data points in X and their
one-step propagation through the system dynamics F. In what follows,
we introduce this expression of the operator and present a way to learn
a sparse variant of this operator with data from which we then compute
a unit eigenfunction for transient stability analysis. We also note that
recent works in [45,46] hold promise to relax the closeness assumption
by considering the Koopman operator as a Hilbert-Schmidt operator
mapping from H to the space of square-integrable functions.

The expression for the Koopman operator interacting with an RKHS
given in [37,40] relies on a stochastic dynamical system model rather
than the deterministic model we introduced in (3). In particular, con-
sider a stochastic dynamical system characterized by a transition kernel
pr(x;,1lx,) that maps the state x, at time ¢ to a probability density
of states at time ¢ + 1. The deterministic variant defined by F can be
understood as a stochastic kernel that puts all its mass at F(x,) at time
t + 1, given the state x, at time ¢. With this notation, suppose that
P(X, X*) denotes a joint distribution over X x X, where X is sampled
according to a sampling distribution and X* is the induced states after
X is propagated through the system dynamics p,. Covariance operators
can then be defined as

Cxx = Ex[v (X)) ® v.(X)],
Cxx+ =By xn v (X) @ v (X)),

which are elements in the tensor product space Hg, := H ® H, where
E x x+) is the expectation with respect to P(X, X*). Under a closedness
assumption similar to (15)-precisely that Iy yx+)[f(X X] € H for
all f € H-it follows from [47, Theorem 4] that one can define the
Koopman operator using the aforementioned covariance operators as

(16)

K :=C}  Cxxe. a7

See [26] for details. The prevalent definition of Koopman operator
interacting with an RKHS is via £ := C; «Cxy- However, as pointed
out by [48], C;(  is not globally defined if  is infinite-dimensional.
As such, we consider its regularized variant,

K, i= (Cyyx +eI)™ Cyxer (18)
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where [ is the identity operator. Owing to the regularization parameter
e > 0, the regularized covariance operator is positive definite and thus
admits an inverse.

One can construct the operator X, from data as follows. Consider
a data-set M := {(x;,x}),...,(x,.x})} of m samples iid. from
P(X, X*). Then, the empirical estimates of Cyy and Cyy+ can be
computed via sample average as

K]

1 Vi (Xi) ® Vi (xi)s

~ 1
Cyx=—
XX mi

19)

E]

Cyx+=

1 Ve (%) ® v, (xF).

1

my
While the approximation accuracy improves with more data, data
storage and computational issues compound when m grows large. To
circumvent this burden, we prune M to construct a sparse dictionary

M, based on the notion of coherency introduced in [49]. Specifically,
we construct M, by identifying a subset of M that satisfies

Kg ((x,-, xD), (x;, xj)) ‘

\/K‘® <(x,~,x:r), (x,»,x?')>K® ((Xj= x;'), (xj’ x}'))

for each i, j such that (x;, x;“), (x;, x;.r) are in M. This condition ensures
that points that are sufficiently “close” to each other in M are dis-
carded as they do not add to the richness of the representation of the

(20)

operators in question. Here, kg is defined as kg | (x|, x]), (x5, x}) | =

K(x,X,) K(x;f,x;). Let 7, be the indices among 1,...,m for which

(xi,xf) are in M, and define the feature matrices Vy, Vx+ whose ith
columns are feature map v, centered at x;, x§, for i € Z,. One can then
construct the sparse estimator of Cy y+ (Cxx) as

Cxxr =VxA Ve, Cxx =VxAVy. (21)

where A, (and similarly, A;) is a diagonal matrix whose entries on the

main diagonal minimize®
2

ve (5F) ® vie (x1) = D v (x7) ® v (x;) (22)

1 i€T, He

M=

1
m 4
i

over a € R'%/|. The sparse kernel Koopman estimator can then be defined
as
~ A~ -1 A
g, = (CXX + g[) Cxrs (23)
per [37]. When underlying system is ergodic and the stationary distri-
bution is absolutely continuous with respect to the Lebesgue measure
on X, [37] further studies finite-sample convergence behavior of such
a sparse estimator.

We next compute the eigenfunction of £, whose eigenvalue equals
1. Define the Gram matrices

Gxx =VyVx. Gyix =V Vx, (24)
and construct

Y = (A45Gyy +el) AGyox. (25)
From [40, Proposition 3.1], an operator of the form I@E = VXYV;+ has
an eigenvalue equals to one with the corresponding eigenfunction
@1(x) = k(xw, [k()]; =x(x;,x), i€T, (26)

if and only if w is a right eigenvector of Y associated with the same
eigenvalue. This observation enables us to construct eigenfunctions of
K, analytically from finite-dimensional Gram matrices Gy y and Gy+ x.

5 In practice, one can also choose uniform weights, i.e., a = f = 1/|1,], to
speed up computation, see [37] for details.
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However, the unit eigenfunction (26) is not perfectly constant inside the
ROA of the stable equilibrium as it is an approximation derived from a
finite representation of the Koopman operator instead of the ideal unit
eigenfunction. We thus estimate an indicator function from ¢, (x) via

P(x) = {1, if |@)(x) — @ (x| < ¢ o

0, otherwise,
where ¢, defines a user-specified tolerance. We remark that alterna-
tively, one can also apply clustering techniques to ¢,(x) where the
number of clusters is two. The RKHS-based approximation to a unit
eigenfunction is summarized in Algorithm 1.

Algorithm 1 Approximating Indicator Function in RKHS

Require: kernel «; sample pairs M; coherence parameter y

Prune M to get M, that satisfies (20)

Solve for coefficients «, # as in (22)

Construct Y according to (25)

Find the right unit eigenvector v of Y and compute unit
eigenfunction ¢, (x) using (26)

Compute @(x) via (27)

return @(x).

Hwbhe

AN

5. Numerical experiments

In this section, we present numerical results for data-driven tran-
sient stability assessment on three power system examples: (1) a two-
state single-machine infinite-bus example simulated in Python as an
ordinary differential equation (ODE); (2) a four-state two-machine
infinite-bus example simulated in Python as an ODE; and (3) the ten-
machine New-England system simulated with constant power loads in
PSSE. Both the kernel method and the time-averaged method were
implemented in Python to estimate the CCT in each test fault scenario.
In the description, we use the notation j = \/—_1 . We emphasize that our
goal in this section is to reveal the efficacy of RKHS-based Koopman
approximation and the time-averaged estimation of the unit eigenfunc-
tion to perform transient stability analysis. A more comprehensive and
scalable implementation of large power system examples is left for
future endeavors.

5.1. The Single-Machine Infinite-Bus (SMIB) system

Consider a per unit (pu) system whose one-line diagram is given in
Fig. 4(a). Its electromechanical dynamics is described by

6=w, &=-Do+ P, — P,sin(5), (28)

with damping constant D = 1.3 rad~'s, mechanical power input P,, = 5
pu, and electrical power coefficient P, = 10 pu which corresponds to the
maximum electrical power that can be transferred from this generator.
The stable equilibrium point of this system is [0.53 rad,0]. Thus, the
system under consideration is measure-preserving with respect to the
Dirac delta measure at the equilibrium point. We consider the case
where a transmission line fault happens and subsequently, P, deviates
from its value under normal operating conditions. In the most extreme
case, a bolted fault corresponds to P, = 0. While the value of P, is
determined by the fault location and impedance, for this experiment,
we choose a set of values of P,. The smaller the value of P,, the lesser
the power deliverable to the infinite bus, indicating a more severe
fault condition. In our study, we study three fault-on scenarios with
P, € {0.95,0.75,0.45} pu.

In order to construct the indicator function using RKHS, we sampled
1500 initial points x = [, w] that are uniformly distributed over [, w] €
[—4,4] X [-6,6]. We then numerically integrated the ODE starting from
each x for a time interval of 0.1 s to obtain x*. For this 2-D system,
we first scaled w by 1/2 and then used a Gaussian kernel «(x;,x,) =
exp(— ||x; — x, ||§ /2x0.5%). The indicator function was then derived from
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(b)

Fig. 4. (a) The SMIB system consists of a single generator connected to an infinite bus through a transmission line. A fault occurs in the transmission line and the electrical power
P, deviates from its normal operating value. (b) A plot of the estimated indicator function which reveals the ROA.

;
1t ) ]
IR
i
0.8 i ' i
P
S06r .
0.4 | |—-=-P_ =095 il i
——-P =075 i
L i
028 P —045 i
e [ i
0 ‘ ‘ ‘ ‘ til
0 02 04 0.6 038 I

Fault time(s)

Fig. 5. Value of the indicator function @ evaluated at fault-on trajectories with
P, =0.95, 0.75, and 0.45.

@, using (27) with e, = 8 x 107*. For the time-averaged indicator
function, the same 1500 initial points were simulated for 20 s with a
time-step of 0.05 s. The seeding function was the radial basis function
(RBF) centered at [0.53 rad, 0] with a standard deviation of 0.25 along
6 and a standard deviation of 0.5 along w. @ was then obtained by
the nearest neighbor algorithm in scikit-learn [42]. The resulting ¢ is
plotted in Fig. 4(b).

To compute the CCTs, we evaluated the indicator function @ along
each fault-on trajectory for P, € {0.95,0.75,0.45}, and the results are
plotted in Fig. 5. As shown in the figure, the value of ¢ remains
unity until the fault-on trajectory passes through the boundary of the
ROA and it drops to zero. We use the time-stamps of these transi-
tions as estimates of the CCTs that equal 0.98 s, 0.96 s, and 0.92 s,
respectively, for the aforementioned choices of P,. The CCTs from
the time-averaging technique matched those obtained via the RKHS,
and they both matched the values we obtained from time-domain
simulations of the post-fault trajectories starting from various points
of the fault-on trajectories.

5.2. The Two-Machine Infinite-Bus (TMIB) system

Consider the 4-state system in Fig. 6 described by
5, =,

. E EE
M,&, = P,; — Dyw; — X_l sin(6y) — X, sin(é; — 6,),

. (29)
0y =y,

E\E, .
X, sin(6, — ),

E, .
M6, = P,, — Dy, — X—Z sin(s,) -

with inertia constant M, = M, = 6/(2z60) rad™'s?, damping constant
D, = D, = 2/2x60 rad”'s, mechanical power input P, = 1.6, P,, = 1.4
pu, line reactances X; = 0.6, X, = 0.2, and X,, = 0.2 pu. The generator
terminal voltages are E; = 1 pu and E, = 1 pu during normal operating
conditions. We consider internal generator faults due to which E; and

1 3

2

I

Infinite
Bus

Fig. 6. The TMIB system consists of two generators at buses 1 and 2 connected to the
infinite bus at bus 3. The generator malfunctions and the voltages E,, E, deviate from
their normal operating values.

E, vary between 0 and 1. We further assume that the pre-fault and the
post-fault systems are the same.

To construct D, we densely sampled regions that are more likely
to contain fault-on trajectories. Specifically, we sampled points along
a few fault-on trajectories with different values of 0 < E|, E, < 1 via
odeint() in Python. For this example, D consists of 9000 points from 900
fault-on trajectories with a sampling interval of 0.01 s.

In order to approximate the indicator function, we implemented the
time-averaged approach in Section 3 and the kernel method in Sec-
tion 4. To execute the time-averaged method, we used the same seeding
function as we used for the SMIB system. We then evaluated ¥ at points
in D via numerical simulations in Python, and the time-averaged value
was computed with a step size of 0.05 s for a time horizon of 20 s. » was
then obtained by the nearest neighbor algorithm in scikit-learn [42].
For the kernel method, we rearranged D into sample pairs and scaled
them via StandardScaler() in Python. We utilized a Gaussian kernel
K(x1,%y) = 0.71exp(=||x; = x, 3 /2 X 0.422) + 0.29 exp(~ ||x; = x, 3 /2
x 0.75%). The indicator function was constructed via Algorithm 1 with
y=0.7.

We next determined the CCT of the faulted scenario where E, =
E, = 0.4. As illustrated in Fig. 7, the CCT of a fault was estimated as
the instant when the @(-) drops to zero along the fault-on trajectory.
We observed that the kernel method and the time-averaged method
generate estimates of 0.29 s and 0.28 s, respectively. To find the
actual critical clearing time, time-domain simulations were performed
in Python for the same fault-on system for varying fault times followed
by the post-fault system. The evolution of w for the fault clearing times
of 0.285 s and 0.29 s are plotted in Fig. 9. The figures indicate that the
CCT is closer to 0.29 s, close to the CCTs estimated via the methods we
presented.



A.R. Matavalam et al.

—=-=-Time Averaged '! 1
0.8 |- — RKHS i ]
[ Drops to
0.6 [ i
9. Drops to zero at 0.28s ) zero at
04 '! \ 0.29s |
11
02+ P / ]
11

0 |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Fault time (s)

Fig. 7. The value of the indicator function evaluated along the TMIB fault-on trajectory
with E, = E, = 0.4. The CCT is estimated to be 0.29 s via the kernel approach and
0.28 s via the time-averaged approach.
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Fig. 8. The total energy and the potential energy of the TMIB faulted system with
E, = E, = 0.4. The CCT is estimated to be 0.32 s.
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Fig. 9. Evolution of generator frequencies in the TMIB system with a fault E, = E, =
0.4 applied at =0 s and (a) cleared at 1 = 0.285 s, (b) cleared at 1 =0.29 s.

We compared the proposed methods to the standard potential en-
ergy boundary surface (PEBS) method in [41]. Different from our
data-driven approach, the PEBS method requires an analytic expression
of the dynamical system in order to derive a potential energy function.
Fig. 8 plots the total energy together with the total potential energy
of the faulted system with E; = E, = 0.4. The CCT is estimated to be
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Fig. 10. The ten-machine New-England Power System (also known as the IEEE 39 bus
system) consists of 10 generators and 46 lines whose parameters are specified in [50].
Source: This depiction is taken from [51].

0.32 s, which is the time when the total energy of the system exceeds
the maximum potential energy. These observations suggest that the
results from our data-driven approaches better align with the CCT for
this system, compared to the PEBS method.

5.3. The ten-machine 39-Bus New-England system

We now apply our data-driven methods to the ten-machine New-
England system in Fig. 10, where the machines are represented by
the classical generator model, and the loads are constant power types.
Table 2 lists the faults we consider. Assume that the pre- and post-
fault systems are the same. We simulated the system in Siemens PTI
PSSE, and the actual value of CCT was obtained through repeated
time-domain simulation implemented in PSSE.

To implement the time-averaging approach,

we generated D by sampling and perturbing points at all 39 buses
along five fault-on trajectories with fault admittances being [10? —
102,103 =103}, 10*—10%/,10°—10%, 10— 10°] pu. A total of 150 points
along each trajectory are collected and perturbed before adding them
to D. Thus, the overall number of points in D is 39 x 5 x 150 = 29,250.
PSSE was then used to simulate the post-fault system from each point
in D with a time horizon of 20 s and a step size of 0.01 s. We used the
same seeding function utilized for prior examples. Then, we estimated
@ using the nearest neighbor function from the scikit-learn package in
Python.

To implement the kernel method, we sub-sampled 5000 trajectories
of length 0.1 s out of the whole dataset used in the time-averaged
approach. We then scaled the samples via StandardScaler() in Python
and used the Gaussian kernel x(x;,x,) = 0.7exp(—|x; —x2||§ /2 %
0.45%) +0.2exp(~ ||x; = x5 /2% 0.7) + 0.1 exp(~ [|x; = x,|3 /2% 2?). We
calculated ¢ via Algorithm 1 with y = 0.8 and regularization parameter
e=1e713 x |M, 702,

Fig. 11 and Fig. 12 plot the values of the indicator function eval-
uated along the fault-on trajectories listed in Table 2. The estimated
CCTs are the instants when the indicator function evaluations drop to
zero along the trajectories. We compared the estimated CCTs with that
obtained from time-domain simulation in Table 2. For illustration, we
plotted the generator rotor frequency w for different fault clearing times
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Table 1

Computation times in the different phases for the NE system.

Phase Time-averaged RKHS
Data Generation 548 s 23s
ROA indicator function construction 9s 54 s
CCT Estimation 0.09 s 0.12 s
Table 2
Fault information of sample cases studied for the NE system.
Case A B C
Fault Y (x10%) (5-4) (1-4j) (1-4))
Faulted Bus 33 6 24
True CCT 0.29 s 0.32's 0.51 s
CCT (time-average) 0.29 s 0.33 s 0.49 s
CCT (kernel) 0.28 s 0.35s 0.54 s
1 T T T "
Case A
—— Case B
——Case C
=
5 0.5 B
0.29s 0.33s 0.49s
0 L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6

Fault Duration (s)

Fig. 11. The value of the time-averaged indicator function evaluated along fault-on
trajectories for faults listed in Table 2.

in Fig. 13, which demonstrate the converging/diverging behavior of ®
when the fault duration is lesser/greater than the CCTs obtained from
the time-domain simulations. Our estimated CCTs are close (within
0.03 s) to that obtained from time-domain simulations for all faults.
The methods described are executed on a server equipped with a 3-GHz
Intel Xeon 32-core processor. The computation process involves three
distinct phases: (a) simulating trajectories using PSSE, (b) analyzing
trajectory data to derive an indicator function for the ROA, and (c)
using this indicator function to estimate the CCT. The ROA indicator
function remains applicable across various faults and perturbations as
long as the post-fault system dynamics remain consistent. Therefore,
while reducing the time spent on the initial two phases is desirable,
the ability to quickly evaluate the ROA indicator function at any point
within the state space is crucial.

Table 1 summarizes the computational expenses associated with
both methods on the 39-bus NE system. The time-averaged method
necessitates a substantial number of trajectories compared to the RKHS
method to accurately capture the ROA, resulting in an extended data-
generation period. Conversely, the RKHS method involves more com-
plexity in the data-analytics phase, as the dictionary needs to be built
from the data and the Koopman operator needs to be constructed before
the unit eigenfunction, corresponding to the ROA indicator function,
can be established. Ultimately, the indicator functions generated by
both methods can be evaluated with minimal overhead (~ 0.1 s) during
fault simulations to identify the CCT, thus demonstrating their use for
power system planners and operators (see Fig. 12).

6. Conclusions

In this paper, we developed data-driven methods to analyze tran-
sient stability in power systems that do not require analytical equations
of system dynamics. We showed that the unit eigenfunction of the
Koopman operator can identify the ROA of a stable equilibrium point
of the post-fault system. In particular, we establish the connection
between the unit Koopman eigenfunction and numerical integration,
where the latter is widely adopted in industry. We then leveraged this

International Journal of Electrical Power and Energy Systems 162 (2024) 110307

1 T T T T T
Case A
——Case B
——Case C

% 05+ R
0.28s 0.35s  0.55s
O L L L L L
0 0.1 0.2 0.3 04 0.5 0.6

Fault Duration (s)

Fig. 12. The value of the kernel-based indicator function evaluated along fault-on
trajectories for faults listed in Table 2.
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Fig. 13. The generator w trajectories for fault scenarios listed in Table 2 with fault
durations lesser and greater than the corresponding CCT.

property to estimate the critical clearing time of a fault. To this end, we
proposed the kernel method and the time-averaged method which esti-
mate the unit function from simulation data. Both approaches eliminate
the need for explicit modeling of the system dynamics. Instead, they
only require access to a black-box simulator. This property is useful
for the emerging power system in which most renewable resources are
modeled as input-output black-box models and almost no information
about the underlying component dynamics is available. Finally, we
validated the efficacy of our approach on three power system examples.

The time-averaging approach requires longer sampling trajectories,
but the computation of the unit eigenfunction is typically computa-
tionally light. The kernel method on the other hand requires short
snapshot bursts, but the computation of the eigenfunction is more
involved compared to the time-averaging approach. The compression
mechanism serves to lighten the computational burden.

There are two important directions for future work. First, we want
to scale our techniques to larger power system examples and possi-
bly automate the process of choosing kernel and seeding functions.
Second, we want to extend our methods to study transient stability
with a collection of inverter-based resources whose timescales for
evolution may be significantly faster than the mechanical timescales
of the transmission network.
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