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A B S T R A C T

We present data-driven methods for power system transient stability analysis using a unit eigenfunction of the
Koopman operator. We show that the Koopman eigenfunction with unit eigenvalue can identify the region of
attraction of the post-fault stable equilibrium. We then leverage this property to estimate the critical clearing
time of a fault. We provide two data-driven methods to estimate said eigenfunction; the first method utilizes
time averages over long trajectories, and the second method leverages nonparametric learning of system
dynamics over reproducing kernel Hilbert spaces with short bursts of state propagation. Our methods do not
require explicit knowledge of the power system model, but require a simulator that can propagate states
through the power system dynamics. Numerical experiments on three power system examples demonstrate the
efficacy of our method.
1. Introduction

Transient stability analysis of a power system seeks to answer
whether grid dynamics will converge to a stable equilibrium point,
following the clearing of a line fault or a generator failure. It is a
mature field of research with extensive prior literature, e.g., see [1–
3] among others. Time-domain simulation via numerical integration of
ower system models is perhaps the most widely used technique, as
tated in [3]. Essentially, one simulates the post-fault dynamics starting

from various points on the fault-on trajectory to certify whether the
system will quickly converge to a stable equilibrium point, exhibit
large oscillations, or even diverge. However, such a method suffers
from several drawbacks when applied to large and complex modern
power systems. To begin with, it requires an accurate model of the
ower system, which becomes more challenging with the integration of
enewable energy and distributed power grid components. Consider for
nstance wind farms with interconnected wind turbines. The interaction
f fluid dynamical flows itself presents a challenge in deriving an
nalytical model [4], let alone uncertainty in wind speed, direction, etc.
oreover, numerical integration of differential equations describing

ault-on and post-fault systems can be computationally intensive, thus
endering it unsuitable for the stability assessment close to the time of
ower delivery which is required for power systems with a wide range
f operating points.

∗ Corresponding author.
E-mail addresses: amar.sagar@asu.edu (A.R. Matavalam), boyahou2@illinois.edu (B. Hou), hchoi@sandia.gov (H. Choi), boses@illinois.edu (S. Bose),

uvaidya@clemson.edu (U. Vaidya).

The direct method is an alternative approach to assessing tran-
sient stability without explicitly integrating differential equations of
post-fault systems. It utilizes Lyapunov-type functions to assess the
stability of a post-fault system, based on an approximate stability
boundary. Transient energy functions (TEF) expounded in [5–8] are
examples of such Lyapunov-style functions that decrease along the
system trajectory once the fault is cleared [9,10], a critical value of
TEF (called the critical energy) is then computed, such that the sublevel
sets can be certified to lie within the region of attraction (ROA) of
the stable equilibrium point of the post-fault dynamics. In order to
compute such critical energy, the controlling unstable equilibrium point
(UEP), closest UEP [11–14] and the boundary of stability region based
controlling unstable equilibrium point (BCU) method in [6,15] are
widely established. Nevertheless, computing critical energy is not easy,
as it requires finding several unstable equilibrium points surrounding
the stable equilibrium point of post-fault dynamics and determining
which UEP is the most relevant to the faulted system. The Poten-
tial Energy Boundary Surface (PEBS) method [16] avoids computing
the relevant UEP by finding a local approximation of the stability
boundary of the original system model using an analytically derived
approximate potential energy function of the power system. However,
beyond the single-machine infinite bus system, sufficient conditions
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or PEBS method to provides accurate stability assessments are not
well-understood.

Another major limitation of the direct method is the choice of the
Lyapunov function itself, which depends on the mathematical descrip-
tion of the power system model. These functions are only known for
 limited class of simplified power system models. Authors in [17–20]
ave proposed to construct such functions for general power systems

using polynomial optimization, following the seminal work of Parrilo
n [10]. While promising in theory, state-of-the-art software for these
ethods does not scale favorably with the size of the model. In partic-
lar, they require explicit analytical models of various power system
omponents. This poses a challenge since deriving accurate system
quations that capture nuances of modern power system components
x-ante is not only tedious but may be impossible in some situations.
or example, consider the emerging inverter-dominated power systems
here the inverter/plant dynamics are not expressed as analytical
quations, but are instead represented by compiled dynamically linked
ibraries in order to protect the intellectual property of inverter man-
facturers. In other words, the underlying dynamics of an inverter are

deliberately hidden from system operators in order to protect intellec-
tual property, thus limiting the applicability of the direct method. Even
if the mathematical models of these components were easily accessible,
he exact representation of the model, whether in the phasor domain
r a more detailed counterpart, can heavily influence stability assess-
ents, e.g., see [21]. Furthermore, the aforementioned methods are

ll fault-dependent and focus on assessing a particular fault. Since the
ritical energy is different for each fault, the computational challenge

compounds with multiple possible counterfactual fault scenarios.
To cope with some of the above challenges, we propose a data-

driven transient stability assessment tool based on the Koopman op-
rator. First developed in [22], the Koopman operator lifts the finite-
imensional nonlinear evolution of the state to a linear but infinite-
imensional evolution in the function space of observables (scalar
appings of the state). Approximation of the Koopman operator from
ata is well studied in the literature, see [23–28] for details. As a
inear operator, its spectra reveal information relevant to stability
onitoring [29–33]. In this paper, we show that eigenfunctions of

the Koopman operators of the post-fault dynamics reveals its ROA.
One advantage of using the Koopman operator for transient stability
analysis is that these eigenfunctions can be learned from data of states
ropagated through the system dynamics, but do not require explicit
nalytical models. Prior literature such as [34–36] have investigated
ata-driven transient stability assessment by leveraging the learned
oopman operator. Nevertheless, accurate estimates of the Koopman
perator and its leading eigenfunctions require a pre-selected set of

observables to be rich enough. Given the challenges of selecting such
a basis, we leverage the results in [37] to approximate the Koop-

an eigenfunction nonparametrically in a reproducing kernel Hilbert
pace (RKHS). As shown in [38], kernel methods demonstrate excellent
mpirical performance in data-limited regimes. Still, the scalability
ften suffers with larger datasets. To counter this difficulty, we allow
elective loss in the representation of that operator to control model
omplexity.

The paper is organized as follows. In Section 2, we recast the
roblem of transient stability analysis into learning the ROA-indicator
unction, which in turn relies on approximate eigenfunctions of the
oopman operator associated with eigenvalue one. We then relate
umerical integration used by commercial software to the computation
f such an eigenfunction that is similar in spirit to a discretized version
f a Fourier averaging introduced in [39]. Such a connection will likely
ake our exposition and algorithms more amenable to adoption as

n add-on to existing software. Building on those insights, we then
everage this connection to approximate the ROA using a so-called
‘seeding function’’ in Section 3. Given the difficulty of selecting a
roper seeding function, we next propose a non-parametric kernel

ethod in Section 4. This exposition builds on well-studied properties w

2 
Fig. 1. ROA of post-fault stable equilibrium (gray). Starting from 𝑥0, when the fault
is cleared before the fault-on trajectory (black) exits ROA (e.g., at 𝑥cl,𝑎), the post-fault
dynamics converges to 𝑥𝑠. In contrast, the purple trajectory plots post-fault behavior
when the fault is cleared at 𝑥cl,𝑏 after the fault-on dynamics leaves the ROA.

of the interaction of the Koopman operator with RKHSs in [40], for
which sample complexity has been characterized in [37]. In addition,
to control the growth of model complexity, we propose to learn a
sparse variant of the Koopman operator from data using the framework
in [37]. We emphasize that thanks to the data-oriented nature of our
proposed methods, our algorithm can be used in tandem with black-box
simulators such as PSSE, PSLF, PowerWorld, DigSilent, etc., and do not
rely on the mathematical structure of the power system model. With a
learned post-fault dynamical system, our method allows one to analyze
multiple fault-on trajectories efficiently. We demonstrate the efficacy of
ur data-driven methods using a single-machine infinite bus system, a
-bus power system example, and the 39-bus New England example in
ection 5. The experiments in this paper are meant to provide a proof
f concept; our ultimate goal is to scale our methods to large power
ystems in future work. Concluding remarks and interesting research
irections are outlined in Section 6.

Our key contributions are as follows: (a) we establish the con-
ection between the unit Koopman eigenfunction and time-domain
imulation, where the latter is widely adopted in industry. (b) In order

to approximate the unit eigenfunction of the Koopman operator, we
present a nonparametric algorithm to construct the Koopman operator
associated with the post-fault dynamics. Since the learned Koopman
operator serves as a model of the system dynamics, we further control
model complexity via sparsification. (c) Leveraging the learned unit
eigenfunction of the Koopman operator, we propose a data-driven
algorithm to assess power system transient stability.

2. Transient stability analysis with Koopman operator

Transient stability analysis requires one to compute the critical
learing time (CCT) of a fault, that is, the time required for the fault-
n trajectory to leave the region of attraction (ROA) of the stable
quilibrium point of the post-fault power system dynamics. In this
ection, we relate the eigenfunction of the Koopman operator to the
dentification of said ROA.

To make the connection between CCT estimation and Koopman
igenfunctions, consider a power system for which the shaded region in
ig. 1 depicts the ROA of the post-fault system whose equilibrium point
s 𝑥𝑠. Henceforth, we indicate this region by ROA(𝑥𝑠). The trajectory
marked in black) starting from 𝑥0 is the fault-on trajectory. If the fault
s cleared at 𝑥cl,𝑎 before that trajectory leaves the ROA of the post-fault
ystem, the system dynamics will naturally drive the state to 𝑥𝑠. If the
ault is cleared at 𝑥cl,𝑏 outside of the shaded region, the system will
iverge from 𝑥𝑠.1

1 Such dynamics will typically converge to other equilibria but can oscillate
ildly before it does so, which runs the risk of tripping relays or switches.
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Fig. 2. Nonlinear evolution of state in the finite-dimensional state space is lifted to a linear evolution of observables in the infinite-dimensional space of all 𝐿2-measurable functions
of the state.
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Consider the indicator function of ROA(𝑥𝑠), defined as

̄ (𝑥) =
{

1, if 𝑥 ∈ ROA(𝑥𝑠),
0, otherwise.

(1)

To calculate the CCT for a fault originating at 𝑥0, one then needs to
umerically integrate the on-fault trajectory (denoted 𝑥on-fault(𝑡)) and
valuate

CT ∶= max{𝑡 ≥ 0 | 𝜑̄(𝑥on-fault(𝑡)) = 1}, (2)

.e., the time until which the evaluation of 𝜑̄ along the fault-on trajec-
ory remains unity before falling off to zero.

We next relate 𝜑̄ to an eigenfunction of the Koopman operator.
onsider a discrete-time deterministic non-linear dynamical system
ith states in X, described by

𝑡+1 = 𝐹 (𝑥𝑡), (3)

here 𝑥𝑡 ∈ X and 𝐹 ∶ X → X is locally Lipschitz continuous
nd invertible. For power systems represented by differential–algebraic
quations (DAE), 𝐹 represents the numerical integration of the DAE
ith a fixed time-step.

Let ℎ ∶ X → C be an observable (i.e., a scalar-valued function) over
. The Koopman operator  acts on ℎ as

ℎ](𝑥) = ℎ(𝐹 (𝑥)). (4)

This operator thus maps the observable 𝑔 to 𝑔, which when
evaluated at 𝑥, is 𝑔 evaluated at the state after being pushed forward
hrough the system dynamics in one time-step as Fig. 2 reveals. This
perator is infinite-dimensional as it acts on a suitably defined space of
unctions of the states. It is easy to verify that

(𝛼1𝑔1 + 𝛼2𝑔2) = 𝛼1𝑔1 + 𝛼2𝑔2 (5)

or scalars 𝛼1, 𝛼2 and observables 𝑔1, 𝑔2, and hence, is a linear operator.
he spectrum of this operator is rich in information about the dynamics
f the system. As we will demonstrate, the indicator function 𝜑̄ of
OA(𝑥𝑠) is intimately related to the eigenfunctions of . Before we
stablish that relationship, we emphasize that the linear operator de-
cription of the dynamical system in the space of observables is distinct
rom a local linearization around a point in the state space.

Let 𝜑𝜆(𝑥) be an eigenfunction of  with eigenvalue 𝜆, i.e., [𝜑𝜆](𝑥)
𝜆𝜑𝜆(𝑥) for all 𝑥 ∈ X. In particular, if 𝜑1 is an eigenfunction with

igenvalue equal to 1,2 then

[𝜑1](𝑥) = 𝜑1(𝐹 (𝑥)) = 𝜑1(𝑥). (6)

pplying the Koopman operator 𝑛 times, we get

1(𝑥) = [𝑛𝜑1](𝑥) = 𝜑1(𝐹 (𝑛)(𝑥)). (7)

2 The eigenfunction corresponding to eigenvalue one always exists when
he system is measure-preserving. Indeed, the set of eigenvalues forms a lattice
nd the constant function 𝜑 = 1 is always a trivial eigenfunction corresponding
o 𝜆 = 1.
3 
or any 𝑥 ∈ ROA(𝑥𝑠), we have lim𝑛→∞ 𝐹 𝑛(𝑥) = 𝑥𝑠, which combined with
6), gives

1(𝑥) = 𝜑1

(

lim
𝑛→∞

𝐹 𝑛(𝑥)
)

= 𝜑1(𝑥𝑠). (8)

n other words, 𝜑1 is constant over ROA(𝑥𝑠). Said even more differently,
𝜑1 over ROA(𝑥𝑠) is a scaled version of the indicator function 𝜑̄ of
ROA(𝑥𝑠).3 As a result, one can utilize the eigenfunction of the Koopman
operator whose eigenvalue is equal to one to construct the indicator
function of ROA(𝑥𝑠) with which one can then perform transient sta-
ility analysis. This analysis then reduces to the estimation of such an
igenfunction from data suitably obtained from system trajectories.

We further remark that the theory presented in this section also
applies to systems specified by the algebraic states. This is due to the
act that the information of mapping between the algebraic states and
he dynamic states is inherently embedded into the trajectory of the
ynamic states [41]. In other words, only the dynamic states need to
e sampled and analyzed in order to identify the ROA of post-fault
ynamics and the CCT of a fault.

. Connection between Koopman eigenfunctions and time-domain
imulation

The ROA of a stable equilibrium point of the post-fault dynamics
as long been estimated using repeated numerical integration of the
ost-fault dynamical system model, starting from a collection of points
round the boundary of the ROA of an equilibrium point. Having
tudied the relationship between the eigenfunction of the Koopman
perator with 𝜆 = 1 and the indicator function of the ROA, it is
atural to surmise a connection between these eigenfunctions and the
ime-domain simulation approach to transient stability analysis. In this

section, we precisely establish said connection. As shall become clear,
such a relation sheds light on a computational scheme to estimate the
eigenfunction with an eigenvalue equal to 1.

Consider a bounded function 𝜓 ∶ X → C on the state space with
|𝜓| ≤ 𝐵. Then, define the 𝑁-step time-averaged version of 𝜓 along a
trajectory starting from 𝑥 as

𝛹𝑁 (𝑥) ∶= 1
𝑁

𝑁
∑

𝑛=1
𝜓(𝐹 𝑛(𝑥)). (9)

Then, for 𝑥 ∈ X, triangle inequality gives
|

|

𝛹𝑁 (𝐹 (𝑥)) − 𝛹𝑁 (𝑥)|
|

= 1
𝑁

|

|

|

𝜓(𝐹𝑁+1(𝑥)) − 𝜓(𝑥)||
|

≤ 2𝐵
𝑁
. (10)

For large 𝑁 , the above bound suggests that

𝛹𝑁 ](𝑥) = 𝛹𝑁 (𝐹 (𝑥)) ≈ 𝛹𝑁 (𝑥). (11)

his relation, together with (6), indicates that 𝛹𝑁 converges pointwise
o the eigenfunction of the Koopman operator whose eigenvalue equals
ne. In the sequel, we refer to the eigenfunction with 𝜆 = 1 as the unit

eigenfunction of the Koopman operator.

3 Similar conclusions can be drawn about stable orbits and other forward
invariant subsets I ⊂ X of the state space, characterized by 𝐹 (I) = {𝐹 (𝑥) ∶ 𝑥 ∈
I} ⊆ I.
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Fig. 3. Conceptual plot of the Voronoi cells for the various points in D of a 2-D system.
The time-averaged value at these points for a well-chosen 𝜓 should be binary that take
different values inside and outside the ROA. The two different values are represented
y blue and red colors.

The above calculation sheds light on a computational scheme to
stimate a unit eigenfunction. Starting with a bounded function 𝜓 , one
an estimate 𝛹𝑁 by averaging 𝜓 along a trajectory over 𝑁 time-steps
btained via time-domain simulation.4. Then, this estimated unit eigen-
unction should be roughly constant within ROA(𝑥𝑠), using which one
an then perform transient stability analysis. While this computational
cheme does not require explicit evaluation of the Koopman operator,
t reveals the link between the conventional time-domain simulation
pproach to the estimation of ROA(𝑥𝑠) and the unit eigenfunction of the
oopman operator. Although Koopman operator learning has been ap-
lied to analyze power systems in [34,35], to the best of our knowledge,
his paper is the first to draw such a connection between time-domain
imulation and Koopman eigenfunctions for transient stability analysis..
e conclude this section with remarks on the practical implementation

f estimating an eigenfunction via this approach.
It is time-consuming to estimate 𝛹𝑁 everywhere in the state space

. Instead, one can probe 𝛹𝑁 at a finite number of points D ∶=
𝑥1, 𝑥2,… , 𝑥𝑚}, sampled around the portion of the state space ‘‘near’’
he on-fault trajectory, and then interpolate 𝛹𝑁 at any point of interest
y assigning the value of 𝛹𝑁 at its nearest-neighbor in D. Points in D
hus partition the state space X into separate regions, often referred to
s Voronoi cells, as illustrated in Fig. 3, where 𝛹𝑁 takes two different
alues on D. The interpolated value of 𝛹𝑁 (call it 𝛹̂𝑁 ) is then defined
y

̂𝑁 (𝑥) ∶= 𝛹𝑁

(

ar g min
𝑥′∈D

‖

‖

𝑥 − 𝑥′‖
‖

)

(12)

or a suitably defined norm ‖⋅‖. Fast open-source implementations for
omputing the nearest neighbor are readily available, e.g., see [42]. In
he sequel, we call this approach the time-averaged approach.

Generally, the choice of 𝜓 will affect the quality of ROA estimation
sing this approach. As our numerical experiments will suggest, a
hoice of 𝜓 that is positive everywhere, equals one at 𝑥𝑠 and that
apidly decays away from 𝑥𝑠 tends to yield favorable results. 𝑁 can
e set based on time commitments of time-domain simulation of the
ost-fault dynamics and where 𝛹𝑁 ≈ 𝛹𝑁−1 for all points in D. This
ime-averaging approach to computing a unit eigenfunction requires
ollecting post-fault trajectories over a long time horizon, which can
e computationally intensive, and each trajectory is analyzed inde-
endently. The approach we present next, on the other hand, utilizes
ultiple one-step propagation of data points that are utilized together

o obtain an interpolation.

4 It was brought to our attention that this computational scheme is a special
case of the discretized version of the Fourier average method introduced
in [39].
 

4 
4. Learning the indicator function via the Kernel method

One can approximate a unit eigenfunction of the Koopman operator
in a suitable function space. In this section, we present an approx-
mation technique to find a unit eigenfunction within a real-valued
eproducing kernel Hilbert space (RKHS), in which the dataset consists
f states propagated one time-step via the system dynamics.

We start by introducing the real-valued RKHS. Consider a sym-
etric, bivariate, positive definite, continuous, and bounded kernel

unction 𝜅 ∶ X ×X → R that satisfies the following reproducing property
for 𝑥 ∈ X. Then, define  to be Hilbert space of functions, given by
the completion of the span of {𝜅(𝑥, ⋅) ∶ 𝑥 ∈ X}. In this space, the kernel
satisfies the following reproducing property,
⟨𝑓 , 𝜅(⋅, 𝑥)⟩ = 𝑓 (𝑥), ∀𝑓 ∈ , (13)

where ⟨⋅, ⋅⟩ computes the inner product in . Associated with kernel 𝜅
its feature map

𝜈𝜅 (𝑥) = 𝜅(𝑥, ⋅) ∈ . (14)

To learn Koopman eigenfunctions in , one needs to understand
ow 𝐹 interacts with functions 𝑓 ∈ , where 𝐹 describes the system
volution in (3). Assume that  is closed under the system dynamics,
.e.,

∈  ⟹ 𝑓 = 𝑓◦𝐹 ∈ . (15)

he assumption that  is closed under system dynamics is common in
pproximation of linear transfer operators, e.g., see [43,44], It holds
hen the Koopman operator  is a Hilbert Schmidt operator mapping

rom  to . Under this assumption, the Koopman operator admits a
losed-form expression using (cross)-covariance operators, per [37,40],
nd it can be learned from a collection of data points in X and their
ne-step propagation through the system dynamics 𝐹 . In what follows,
e introduce this expression of the operator and present a way to learn
sparse variant of this operator with data from which we then compute
 unit eigenfunction for transient stability analysis. We also note that
ecent works in [45,46] hold promise to relax the closeness assumption
y considering the Koopman operator as a Hilbert–Schmidt operator
apping from  to the space of square-integrable functions.

The expression for the Koopman operator interacting with an RKHS
iven in [37,40] relies on a stochastic dynamical system model rather
han the deterministic model we introduced in (3). In particular, con-
ider a stochastic dynamical system characterized by a transition kernel
𝐹 (𝑥𝑡+1|𝑥𝑡) that maps the state 𝑥𝑡 at time 𝑡 to a probability density
f states at time 𝑡 + 1. The deterministic variant defined by 𝐹 can be
nderstood as a stochastic kernel that puts all its mass at 𝐹 (𝑥𝑡) at time
+ 1, given the state 𝑥𝑡 at time 𝑡. With this notation, suppose that
(𝑋 , 𝑋+) denotes a joint distribution over X × X, where 𝑋 is sampled
ccording to a sampling distribution and 𝑋+ is the induced states after

is propagated through the system dynamics 𝑝𝐹 . Covariance operators
an then be defined as
𝐶𝑋 𝑋 ∶= E𝑋 [𝜈𝜅 (𝑋)⊗ 𝜈𝜅 (𝑋)],

𝑋 𝑋+ ∶= E(𝑋 ,𝑋+)[𝜈𝜅 (𝑋)⊗ 𝜈𝜅 (𝑋+)],
(16)

hich are elements in the tensor product space ⊗ ∶=  ⊗, where
(𝑋 ,𝑋+) is the expectation with respect to P(𝑋 , 𝑋+). Under a closedness
ssumption similar to (15)–precisely that E(𝑋 ,𝑋+)[𝑓 (𝑋+)|𝑋] ∈  for
ll 𝑓 ∈ –it follows from [47, Theorem 4] that one can define the
oopman operator using the aforementioned covariance operators as

∶= 𝐶†
𝑋 𝑋𝐶𝑋 𝑋+ . (17)

ee [26] for details. The prevalent definition of Koopman operator
nteracting with an RKHS is via  ∶= 𝐶†

𝑋 𝑋𝐶𝑋 𝑌 . However, as pointed
ut by [48], 𝐶†

𝑋 𝑋 is not globally defined if  is infinite-dimensional.
s such, we consider its regularized variant,

( )−1

𝜀 ∶= 𝐶𝑋 𝑋 + 𝜀𝐼 𝐶𝑋 𝑋+ , (18)
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here 𝐼 is the identity operator. Owing to the regularization parameter
 > 0, the regularized covariance operator is positive definite and thus
dmits an inverse.

One can construct the operator 𝜀 from data as follows. Consider
 data-set M ∶=

{(

𝑥1, 𝑥+1
)

,… ,
(

𝑥𝑚, 𝑥+𝑚
)}

of 𝑚 samples i.i.d. from
(𝑋 , 𝑋+). Then, the empirical estimates of 𝐶𝑋 𝑋 and 𝐶𝑋 𝑋+ can be
omputed via sample average as

𝐶𝑋 𝑋 = 1
𝑚

𝑚
∑

𝑖=1
𝜈𝜅

(

𝑥𝑖
)

⊗ 𝜈𝜅
(

𝑥𝑖
)

,

𝑋̃ 𝑋+ = 1
𝑚

𝑚
∑

𝑖=1
𝜈𝜅

(

𝑥𝑖
)

⊗ 𝜈𝜅
(

𝑥+𝑖
)

.

(19)

While the approximation accuracy improves with more data, data
storage and computational issues compound when 𝑚 grows large. To
circumvent this burden, we prune M to construct a sparse dictionary
M𝛾 based on the notion of coherency introduced in [49]. Specifically,

e construct M𝛾 by identifying a subset of M that satisfies
|

|

|

|

|

𝜅⊗

(

(𝑥𝑖, 𝑥+𝑖 ), (𝑥𝑗 , 𝑥+𝑗 )
)

|

|

|

|

|

√

𝜅⊗

(

(𝑥𝑖, 𝑥+𝑖 ), (𝑥𝑖, 𝑥+𝑖 )
)

𝜅⊗

(

(𝑥𝑗 , 𝑥+𝑗 ), (𝑥𝑗 , 𝑥+𝑗 )
)

≤ 𝛾 , (20)

for each 𝑖, 𝑗 such that (𝑥𝑖, 𝑥+𝑖 ), (𝑥𝑗 , 𝑥+𝑗 ) are in M𝛾 . This condition ensures
hat points that are sufficiently ‘‘close’’ to each other in M are dis-

carded as they do not add to the richness of the representation of the
perators in question. Here, 𝜅⊗ is defined as 𝜅⊗

(

(𝑥1, 𝑥+1 ), (𝑥2, 𝑥+2 )
)

=

(𝑥1, 𝑥2) 𝜅(𝑥+1 , 𝑥+2 ). Let 𝛾 be the indices among 1,… , 𝑚 for which
𝑥𝑖, 𝑥+𝑖 ) are in M𝛾 and define the feature matrices 𝑉𝑋 , 𝑉𝑋+ whose 𝑖th
olumns are feature map 𝜈𝜅 centered at 𝑥𝑖, 𝑥+𝑖 , for 𝑖 ∈ 𝛾 . One can then
onstruct the sparse estimator of 𝐶𝑋 𝑋+ (𝐶𝑋 𝑋) as

𝑋̂ 𝑋+ = 𝑉𝑋𝐴𝛼𝑉
⊤
𝑋+ , 𝐶𝑋 𝑋 = 𝑉𝑋𝐴𝛽𝑉

⊤
𝑋 , (21)

here 𝐴𝛼 (and similarly, 𝐴𝛽) is a diagonal matrix whose entries on the
ain diagonal minimize5

‖

‖

‖

‖

‖

‖

1
𝑚

𝑚
∑

𝑖=1
𝜈𝜅

(

𝑥+𝑖
)

⊗ 𝜈𝜅
(

𝑥𝑖
)

−
∑

𝑖∈𝛾

𝛼𝑖𝜈𝜅
(

𝑥+𝑖
)

⊗ 𝜈𝜅
(

𝑥𝑖
)

‖

‖

‖

‖

‖

‖

2

⊗

(22)

over 𝛼 ∈ R|𝛾 |. The sparse kernel Koopman estimator can then be defined
s

̂𝜀 ∶=
(

𝐶𝑋 𝑋 + 𝜀𝐼
)−1

𝐶𝑋 𝑋+ , (23)

er [37]. When underlying system is ergodic and the stationary distri-
ution is absolutely continuous with respect to the Lebesgue measure
n X, [37] further studies finite-sample convergence behavior of such
 sparse estimator.

We next compute the eigenfunction of ̂𝜀 whose eigenvalue equals
. Define the Gram matrices

𝑋 𝑋 = 𝑉 ⊤
𝑋 𝑉𝑋 , 𝐺𝑋+𝑋 = 𝑉 ⊤

𝑋+𝑉𝑋 , (24)

nd construct

∶=
(

𝐴𝛽𝐺𝑋 𝑋 + 𝜀𝐼
)−1 𝐴𝛼𝐺𝑋+𝑋 . (25)

rom [40, Proposition 3.1], an operator of the form ̂𝜀 = 𝑉𝑋𝛶 𝑉 ⊤
𝑋+

has
n eigenvalue equals to one with the corresponding eigenfunction

1(𝑥) = 𝑘(𝑥)𝑤, [𝑘(𝑥)]𝑖 = 𝜅(𝑥𝑖, 𝑥), 𝑖 ∈ 𝛾 , (26)

f and only if 𝑤 is a right eigenvector of 𝛶 associated with the same
igenvalue. This observation enables us to construct eigenfunctions of
̂𝜀 analytically from finite-dimensional Gram matrices 𝐺𝑋 𝑋 and 𝐺𝑋+𝑋 .

5 In practice, one can also choose uniform weights, i.e., 𝛼 = 𝛽 = 𝟏∕|𝛾 |, to
speed up computation, see [37] for details.
 e

5 
However, the unit eigenfunction (26) is not perfectly constant inside the
ROA of the stable equilibrium as it is an approximation derived from a
finite representation of the Koopman operator instead of the ideal unit
eigenfunction. We thus estimate an indicator function from 𝜑1(𝑥) via

̄ (𝑥) =
{

1, if |𝜑1(𝑥) − 𝜑1(𝑥𝑠)| ≤ 𝜖◦
0, otherwise,

(27)

where 𝜖◦ defines a user-specified tolerance. We remark that alterna-
tively, one can also apply clustering techniques to 𝜑1(𝑥) where the
number of clusters is two. The RKHS-based approximation to a unit
eigenfunction is summarized in Algorithm 1.

Algorithm 1 Approximating Indicator Function in RKHS
Require: kernel 𝜅; sample pairs M; coherence parameter 𝛾
1: Prune M to get M𝛾 that satisfies (20)
2: Solve for coefficients 𝛼 , 𝛽 as in (22)
3: Construct 𝛶 according to (25)
4: Find the right unit eigenvector 𝒗 of 𝛶 and compute unit

eigenfunction 𝜑1(𝑥) using (26)
5: Compute 𝜑̄(𝑥) via (27)
6: return 𝜑̄(𝑥).

5. Numerical experiments

In this section, we present numerical results for data-driven tran-
sient stability assessment on three power system examples: (1) a two-
tate single-machine infinite-bus example simulated in Python as an
rdinary differential equation (ODE); (2) a four-state two-machine
nfinite-bus example simulated in Python as an ODE; and (3) the ten-
achine New-England system simulated with constant power loads in
SSE. Both the kernel method and the time-averaged method were
mplemented in Python to estimate the CCT in each test fault scenario.
n the description, we use the notation 𝑗 =

√

−1. We emphasize that our
goal in this section is to reveal the efficacy of RKHS-based Koopman
pproximation and the time-averaged estimation of the unit eigenfunc-
ion to perform transient stability analysis. A more comprehensive and
calable implementation of large power system examples is left for

future endeavors.

5.1. The Single-Machine Infinite-Bus (SMIB) system

Consider a per unit (pu) system whose one-line diagram is given in
ig. 4(a). Its electromechanical dynamics is described by
̇ = 𝜔, 𝜔̇ = −𝐷 𝜔 + 𝑃𝑚 − 𝑃𝑒 sin(𝛿), (28)

ith damping constant 𝐷 = 1.3 r ad−1s, mechanical power input 𝑃𝑚 = 5
u, and electrical power coefficient 𝑃𝑒 = 10 pu which corresponds to the
aximum electrical power that can be transferred from this generator.
he stable equilibrium point of this system is [0.53 r ad, 0]. Thus, the
ystem under consideration is measure-preserving with respect to the
irac delta measure at the equilibrium point. We consider the case
here a transmission line fault happens and subsequently, 𝑃𝑒 deviates

rom its value under normal operating conditions. In the most extreme
ase, a bolted fault corresponds to 𝑃𝑒 = 0. While the value of 𝑃𝑒 is
etermined by the fault location and impedance, for this experiment,
e choose a set of values of 𝑃𝑒. The smaller the value of 𝑃𝑒, the lesser

he power deliverable to the infinite bus, indicating a more severe
ault condition. In our study, we study three fault-on scenarios with
𝑒 ∈ {0.95, 0.75, 0.45} pu.

In order to construct the indicator function using RKHS, we sampled
500 initial points 𝑥 = [𝛿 , 𝜔] that are uniformly distributed over [𝛿 , 𝜔] ∈
−4, 4] × [−6, 6]. We then numerically integrated the ODE starting from
ach 𝑥 for a time interval of 0.1 s to obtain 𝑥+. For this 2-D system,
e first scaled 𝜔 by 1∕2 and then used a Gaussian kernel 𝜅(𝑥1, 𝑥2) =
xp(− ‖𝑥 − 𝑥 ‖

2 ∕2 × 0.52). The indicator function was then derived from

‖ 1 2‖2
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Fig. 4. (a) The SMIB system consists of a single generator connected to an infinite bus through a transmission line. A fault occurs in the transmission line and the electrical power
𝑃𝑒 deviates from its normal operating value. (b) A plot of the estimated indicator function which reveals the ROA.
t
F

×
𝛾

𝐸

a

o
C

Fig. 5. Value of the indicator function 𝜑̄ evaluated at fault-on trajectories with
𝑃𝑒 = 0.95, 0.75, and 0.45.

1 using (27) with 𝜖◦ = 8 × 10−4. For the time-averaged indicator
unction, the same 1500 initial points were simulated for 20 s with a
ime-step of 0.05 s. The seeding function was the radial basis function
RBF) centered at [0.53 r ad, 0] with a standard deviation of 0.25 along
and a standard deviation of 0.5 along 𝜔. 𝜑̄ was then obtained by

he nearest neighbor algorithm in scikit-learn [42]. The resulting 𝜑̄ is
lotted in Fig. 4(b).

To compute the CCTs, we evaluated the indicator function 𝜑̄ along
ach fault-on trajectory for 𝑃𝑒 ∈ {0.95, 0.75, 0.45}, and the results are
lotted in Fig. 5. As shown in the figure, the value of 𝜑̄ remains
nity until the fault-on trajectory passes through the boundary of the
OA and it drops to zero. We use the time-stamps of these transi-

ions as estimates of the CCTs that equal 0.98 s, 0.96 s, and 0.92 s,
espectively, for the aforementioned choices of 𝑃𝑒. The CCTs from
he time-averaging technique matched those obtained via the RKHS,
nd they both matched the values we obtained from time-domain
imulations of the post-fault trajectories starting from various points
f the fault-on trajectories.

.2. The Two-Machine Infinite-Bus (TMIB) system

Consider the 4-state system in Fig. 6 described by
̇𝛿1 = 𝜔1,

1𝜔̇1 = 𝑃𝑚1 −𝐷1𝜔1 −
𝐸1
𝑋1

sin(𝛿1) −
𝐸1𝐸2
𝑋12

sin(𝛿1 − 𝛿2),

̇𝛿2 = 𝜔2,

2𝜔̇2 = 𝑃𝑚2 −𝐷2𝜔2 −
𝐸2
𝑋2

sin(𝛿2) −
𝐸1𝐸2
𝑋12

sin(𝛿2 − 𝛿1),

(29)

with inertia constant 𝑀1 = 𝑀2 = 6∕(2𝜋60) r ad−1s2, damping constant
𝐷1 = 𝐷2 = 2∕2𝜋60 r ad−1s, mechanical power input 𝑃𝑚1 = 1.6, 𝑃𝑚2 = 1.4
pu, line reactances 𝑋1 = 0.6, 𝑋2 = 0.2, and 𝑋12 = 0.2 pu. The generator
terminal voltages are 𝐸1 = 1 pu and 𝐸2 = 1 pu during normal operating
onditions. We consider internal generator faults due to which 𝐸 and
1 p

6 
Fig. 6. The TMIB system consists of two generators at buses 1 and 2 connected to the
infinite bus at bus 3. The generator malfunctions and the voltages 𝐸1, 𝐸2 deviate from
their normal operating values.

𝐸2 vary between 0 and 1. We further assume that the pre-fault and the
post-fault systems are the same.

To construct D, we densely sampled regions that are more likely
to contain fault-on trajectories. Specifically, we sampled points along
a few fault-on trajectories with different values of 0 ≤ 𝐸1, 𝐸2 ≤ 1 via
𝗈𝖽𝖾𝗂𝗇𝗍() in Python. For this example, D consists of 9000 points from 900
fault-on trajectories with a sampling interval of 0.01 s.

In order to approximate the indicator function, we implemented the
time-averaged approach in Section 3 and the kernel method in Sec-
tion 4. To execute the time-averaged method, we used the same seeding
function as we used for the SMIB system. We then evaluated 𝛹 at points
in D via numerical simulations in Python, and the time-averaged value
was computed with a step size of 0.05 s for a time horizon of 20 s. 𝜑̄ was
hen obtained by the nearest neighbor algorithm in scikit-learn [42].
or the kernel method, we rearranged D into sample pairs and scaled

them via 𝖲𝗍𝖺𝗇𝖽𝖺𝗋𝖽𝖲𝖼𝖺𝗅𝖾𝗋() in Python. We utilized a Gaussian kernel
𝜅(𝑥1, 𝑥2) = 0.71 exp(− ‖

‖

𝑥1 − 𝑥2‖‖
2
2 ∕2 × 0.422) + 0.29 exp(− ‖

‖

𝑥1 − 𝑥2‖‖
2
2 ∕2

 0.752). The indicator function was constructed via Algorithm 1 with
= 0.7.

We next determined the CCT of the faulted scenario where 𝐸1 =
2 = 0.4. As illustrated in Fig. 7, the CCT of a fault was estimated as

the instant when the 𝜑̄(⋅) drops to zero along the fault-on trajectory.
We observed that the kernel method and the time-averaged method
generate estimates of 0.29 s and 0.28 s, respectively. To find the
ctual critical clearing time, time-domain simulations were performed

in Python for the same fault-on system for varying fault times followed
by the post-fault system. The evolution of 𝜔 for the fault clearing times
f 0.285 s and 0.29 s are plotted in Fig. 9. The figures indicate that the
CT is closer to 0.29 s, close to the CCTs estimated via the methods we
resented.
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Fig. 7. The value of the indicator function evaluated along the TMIB fault-on trajectory
with 𝐸1 = 𝐸2 = 0.4. The CCT is estimated to be 0.29 s via the kernel approach and
.28 s via the time-averaged approach.

Fig. 8. The total energy and the potential energy of the TMIB faulted system with
1 = 𝐸2 = 0.4. The CCT is estimated to be 0.32 s.

Fig. 9. Evolution of generator frequencies in the TMIB system with a fault 𝐸1 = 𝐸2 =
0.4 applied at 𝑡 = 0 s and (a) cleared at 𝑡 = 0.285 s, (b) cleared at 𝑡 = 0.29 s.

We compared the proposed methods to the standard potential en-
ergy boundary surface (PEBS) method in [41]. Different from our
data-driven approach, the PEBS method requires an analytic expression
of the dynamical system in order to derive a potential energy function.
Fig. 8 plots the total energy together with the total potential energy
of the faulted system with 𝐸 = 𝐸 = 0.4. The CCT is estimated to be
1 2 p

7 
Fig. 10. The ten-machine New-England Power System (also known as the IEEE 39 bus
system) consists of 10 generators and 46 lines whose parameters are specified in [50].
ource: This depiction is taken from [51].

.32 s, which is the time when the total energy of the system exceeds
he maximum potential energy. These observations suggest that the
esults from our data-driven approaches better align with the CCT for
his system, compared to the PEBS method.

.3. The ten-machine 39-Bus New-England system

We now apply our data-driven methods to the ten-machine New-
ngland system in Fig. 10, where the machines are represented by
he classical generator model, and the loads are constant power types.
able 2 lists the faults we consider. Assume that the pre- and post-
ault systems are the same. We simulated the system in Siemens PTI
SSE, and the actual value of CCT was obtained through repeated
ime-domain simulation implemented in PSSE.

To implement the time-averaging approach,
we generated D by sampling and perturbing points at all 39 buses

long five fault-on trajectories with fault admittances being [102 −
102𝑗 , 103− 103𝑗 , 104− 104𝑗 , 105− 105𝑗 , 106− 106𝑗] pu. A total of 150 points
long each trajectory are collected and perturbed before adding them
o D. Thus, the overall number of points in D is 39 × 5 × 150 = 29,250.

PSSE was then used to simulate the post-fault system from each point
in D with a time horizon of 20 s and a step size of 0.01 s. We used the
same seeding function utilized for prior examples. Then, we estimated
̄ using the nearest neighbor function from the scikit-learn package in
Python.

To implement the kernel method, we sub-sampled 5000 trajectories
of length 0.1 s out of the whole dataset used in the time-averaged
approach. We then scaled the samples via 𝖲𝗍𝖺𝗇𝖽𝖺𝗋𝖽𝖲𝖼𝖺𝗅𝖾𝗋() in Python
and used the Gaussian kernel 𝜅(𝑥1, 𝑥2) = 0.7 exp(− ‖

‖

𝑥1 − 𝑥2‖‖
2
2 ∕2 ×

0.452) + 0.2 exp(− ‖

‖

𝑥1 − 𝑥2‖‖
2
2 ∕2 × 0.72) + 0.1 exp(− ‖

‖

𝑥1 − 𝑥2‖‖
2
2 ∕2 × 22). We

calculated 𝜑̄ via Algorithm 1 with 𝛾 = 0.8 and regularization parameter
𝜀 = 1𝑒−13 × |M𝛾 |

−0.2.
Fig. 11 and Fig. 12 plot the values of the indicator function eval-

uated along the fault-on trajectories listed in Table 2. The estimated
CTs are the instants when the indicator function evaluations drop to
ero along the trajectories. We compared the estimated CCTs with that
btained from time-domain simulation in Table 2. For illustration, we
lotted the generator rotor frequency 𝜔 for different fault clearing times
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able 1
Computation times in the different phases for the NE system.

Phase Time-averaged RKHS

Data Generation 548 s 23 s
ROA indicator function construction 9 s 54 s
CCT Estimation 0.09 s 0.12 s

Table 2
Fault information of sample cases studied for the NE system.

Case A B C

Fault 𝑌 (×105) (5 − 4𝑗) (1 − 4𝑗) (1 − 4𝑗)
Faulted Bus 33 6 24
True CCT 0.29 s 0.32 s 0.51 s
CCT (time-average) 0.29 s 0.33 s 0.49 s
CCT (kernel) 0.28 s 0.35 s 0.54 s

Fig. 11. The value of the time-averaged indicator function evaluated along fault-on
trajectories for faults listed in Table 2.

in Fig. 13, which demonstrate the converging/diverging behavior of 𝜔
when the fault duration is lesser/greater than the CCTs obtained from
the time-domain simulations. Our estimated CCTs are close (within
0.03 s) to that obtained from time-domain simulations for all faults.
The methods described are executed on a server equipped with a 3-GHz
Intel Xeon 32-core processor. The computation process involves three
distinct phases: (a) simulating trajectories using PSSE, (b) analyzing
trajectory data to derive an indicator function for the ROA, and (c)
using this indicator function to estimate the CCT. The ROA indicator
function remains applicable across various faults and perturbations as
long as the post-fault system dynamics remain consistent. Therefore,
while reducing the time spent on the initial two phases is desirable,
the ability to quickly evaluate the ROA indicator function at any point
within the state space is crucial.

Table 1 summarizes the computational expenses associated with
oth methods on the 39-bus NE system. The time-averaged method
ecessitates a substantial number of trajectories compared to the RKHS
ethod to accurately capture the ROA, resulting in an extended data-

eneration period. Conversely, the RKHS method involves more com-
lexity in the data-analytics phase, as the dictionary needs to be built
rom the data and the Koopman operator needs to be constructed before
he unit eigenfunction, corresponding to the ROA indicator function,
an be established. Ultimately, the indicator functions generated by
oth methods can be evaluated with minimal overhead (≈ 0.1 s) during
ault simulations to identify the CCT, thus demonstrating their use for
ower system planners and operators (see Fig. 12).

6. Conclusions

In this paper, we developed data-driven methods to analyze tran-
ient stability in power systems that do not require analytical equations
f system dynamics. We showed that the unit eigenfunction of the
oopman operator can identify the ROA of a stable equilibrium point

of the post-fault system. In particular, we establish the connection
between the unit Koopman eigenfunction and numerical integration,

where the latter is widely adopted in industry. We then leveraged this

8 
Fig. 12. The value of the kernel-based indicator function evaluated along fault-on
rajectories for faults listed in Table 2.

Fig. 13. The generator 𝜔 trajectories for fault scenarios listed in Table 2 with fault
durations lesser and greater than the corresponding CCT.

property to estimate the critical clearing time of a fault. To this end, we
proposed the kernel method and the time-averaged method which esti-
mate the unit function from simulation data. Both approaches eliminate
the need for explicit modeling of the system dynamics. Instead, they
only require access to a black-box simulator. This property is useful
for the emerging power system in which most renewable resources are
modeled as input–output black-box models and almost no information
bout the underlying component dynamics is available. Finally, we
alidated the efficacy of our approach on three power system examples.

The time-averaging approach requires longer sampling trajectories,
but the computation of the unit eigenfunction is typically computa-
tionally light. The kernel method on the other hand requires short
snapshot bursts, but the computation of the eigenfunction is more
nvolved compared to the time-averaging approach. The compression
echanism serves to lighten the computational burden.

There are two important directions for future work. First, we want
to scale our techniques to larger power system examples and possi-
bly automate the process of choosing kernel and seeding functions.
Second, we want to extend our methods to study transient stability

ith a collection of inverter-based resources whose timescales for
evolution may be significantly faster than the mechanical timescales
of the transmission network.
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