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Abstract: Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus (DM), which
often lead to hospitalization and non-traumatic amputations in the United States. Diabetes
prevalence estimates in South Texas exceed the national estimate and the number of diagnosed cases
is higher among Hispanic adults compared to their non-Hispanic white counterparts. San Antonio,
a predominantly Hispanic city, reports significantly higher annual rates of diabetic amputations
compared to Texas. The late identification of severe foot ulcers minimizes the likelihood of reducing
amputation risk. The aim of this study was to identify molecular factors related to the severity of
DFUs by leveraging a multimodal approach. We first utilized electronic health records (EHRs) from
two large demographic groups, encompassing thousands of patients, to identify blood tests such as
cholesterol, blood sugar, and specific protein tests that are significantly associated with severe
DFUs. Next, we translated the protein components from these blood tests into their ribonucleic acid(
RNA) counterparts and analyzed them using public bulk and single-cell RNA sequencing datasets.
Using these data, we applied a machine learning pipeline to uncover cell-type-specific and
molecular factors associated with varying degrees of DFU severity. Our results showed that several
blood test results, such as the Albumin/Creatinine Ratio (ACR) and cholesterol and coagulation
tissue factor levels, correlated with DFU severity across key demographic groups. These tests
exhibited varying degrees of significance based on demographic differences. Using bulk RNA-
Sequenced (RNA-Seq) data, we found that apolipoprotein E (APOE) protein, a component of
lipoproteins that are responsible for cholesterol transport and metabolism, is linked to DFU severity.
Furthermore, the single-cell RNA-Seq (scRNA-seq) analysis revealed a cluster of cells identified as
keratinocytes that showed overexpression of APOE in severe DFU cases. Overall, this study
demonstrates how integrating extensive EHRs data with single-cell transcriptomics can refine the
search for molecular markers and identify cell-type-specific and molecular factors associated with
DFU severity while considering key demographic differences.

Keywords: diabetic foot ulcer; electronic health records; machine learning; risk factors; OCHIN
database; healthcare analytics

1. Introduction

Diabetes prevalence estimates in South Texas exceed the national estimate and the
number of diagnosed cases is higher among Hispanic adults compared to their non-
Hispanic white counterparts. Bexar County and the city of San Antonio report
significantly higher annual rates of diabetic amputations than Texas despite reporting a
similar prevalence of diabetes. In 2017, Hispanic adults in Bexar County were hospitalized
for diabetic amputations at significantly higher rates (10.7/10,000) than non-Hispanic
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black (7.4/10,000) and non-Hispanic white (6.0/10,000) adults [1]. Diabetic foot ulcers
(DFUs) are a severe complication of diabetes mellitus (DM), which is characterized by
high blood glucose levels due to insufficient insulin. DFUs, which manifest as ulcers on
the feet, lead to more hospitalizations than other diabetic complications and are the
leading cause of non-traumatic amputations in the U.S. In 2023, about 5% of diabetic
patients developed DFUs, and around 1% resulted in amputations [2]. In addition to this,
studies have shown that other risk factors, such as previous amputation history and other
risk factors, can increase the likelihood of amputation in DFU prognosis [3,4]

The Meggitt-Wagner system grades DFUs from 0 to 5 based on severity. Grade 0
indicates an intact foot at risk for ulcers, Grade 1 is a superficial ulcer, Grade 2 involves
deeper structures, Grade 3 includes abscesses, Grade 4 involves gangrene in the forefoot,
and Grade 5 includes gangrene of the entire foot [5]. Treatments range from wound care
to amputation.

Risk factors for DFUs include diabetic neuropathy [6], peripheral vascular disease
[7], previous ulcers, poor glycemic control, long-term diabetes, race/ethnicity, smoking,
insulin use, poor vision, age, and sex [8]. The prevalence and severity of DFUs can vary
significantly across demographic groups due to genetic, lifestyle, and socio-economic
factors. Understanding these demographic differences is crucial for developing targeted
interventions and improving clinical outcomes. Utilizing electronic health records (EHRs)
and machine learning can improve DFU prediction and knowledge [9,10]. Electronic
health records (EHRs) contain patient information in all forms and formats. Unstructured
EHRs typically contain clinician notes, discharge summaries, and imaging interpretations
and lack a predefined format. Structured EHRs, however, store data in predefined formats
like tables, making information storage and retrieval systematic. These data include
details such as birth and death dates, race, socioeconomic status, sex, and housing
situation, providing a comprehensive view of the patient’s health.

Structured EHRs also use standardized coding systems to encode medical
information. Common codes include the International Classification of Diseases, 10th
Edition (ICD-10), for diseases and conditions; Current Procedural Terminology (CPT) for
procedures; Healthcare Common Procedure Coding System (HCPCS); Systematized
Nomenclature of Medicine —Clinical Terms (SNOMED-CT); and the National Drug Code
(NDCQ). This project uses Logical Observation Identifiers Names and Codes (LOINC) to
track and identify laboratory tests conducted during disease management [11]. Using
EHR data and key demographic information, we aimed to understand the factors
influencing diabetic foot ulcers (DFUs).

In this work, we applied a multimodal approach to identify factors related to the
severity of DFUs (Figure 1). We used LOINC codes from the EHR laboratory tests carried
out on DFU patients. We continued our multimodal approach by analyzing bulk RNA
and single-cell RNA sequencing datasets to identify molecular factors related to DFU
severity and validate the findings derived from using the EHRs. Bulk RNA sequencing
gives a broad overview of gene expression across many cells, while single-cell RNA
sequencing reveals individual cell details and functions within tissues.
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Sourcing _>F'repl'0l3955ing_) and feature (3 Translational
extraction Studies
Single Cell

RNA




Int. . Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 21

Figure 1. Workflow illustrating the stages of the multimodal approach. The pipeline consists of data
sourcing, preprocessing, and classification/feature extraction, and feature translational studies,
culminating in bulk RNA sequencing and single-cell RNA sequencing analyses.

Several efforts have been made to use EHRs to identify factors related to disease
severity. Adelaide M. Arruda-Olson et al. [12] developed a prognostic tool for patients
with peripheral arterial disease utilizing automated data extracted from EHRs. This
allowed for real-time and personalized risk prediction during patient care. Wang et al.
applied this towards the early detection of diabetic retinopathy [13]. This developed
predictive technology served as an early warning system, encouraging patients to
undergo regular eye examinations for early screening and potential treatment of diabetic
retinopathy. Hamid Safi et al. [14] also developed a method for the early detection of
diabetic retinopathy. However, they explored the changes in protein expression as a
diagnostic biomarker. The use of molecular changes in proteins and changes in the
expression of the associated genes served as a bridge in our study between the findings in
EHRs to our use of transcriptomics datasets.

In the fast-changing realm of diabetes research, transcriptomics has become vital for
understanding the intricate molecular mechanisms behind the disease and its
complications, such as diabetic foot DFUs, nephropathy, and retinopathy. The two main
techniques in diabetes research are bulk RNA sequencing and single-cell RNA
sequencing, which offer distinct insights. Bulk RNA sequencing gives a broad overview
of gene expression across tissues, aiding in finding molecular factors and treatment targets
in diabetic tissues. However, it lacks the ability to consider the different cell types present.
On the other hand, scRNA-seq allows for a detailed examination of cellular compositions,
pinpointing the roles of specific cells in disease processes. There have also been efforts to
use the collaborative knowledge of bulk and single-cell RNA sequencing datasets and
analyses in the identification of tumor immune microenvironment-related signatures [15],
and in the construction of a stemness-related signatures for predicting prognoses and
immunotherapy responses in hepatocellular carcinoma [16]. However, to the best of our
knowledge, no studies have successfully incorporated clinical data from EHRs and
transcriptomics in the identification of factors for severe DFUs.

Multimodal approaches significantly contribute to both the healthcare [17] and
computational fields by filling important gaps in DFU severity prediction and
management. In healthcare, we aim to identify factors of DFU severity that can be used
for further investigation of biomarkers and to understand the molecular mechanisms
involved in severe DFUs. Our approach links EHRs with transcriptomic data to reduce
the search space in the low number of single-cell datasets due to their present cost. On the
computational side, we introduce an innovative technique for combining structured
clinical data from EHRs with bulk RNA sequencing and single-cell RNA sequencing
datasets. By employing machine learning algorithms, we can effectively pinpoint key
significant factors of DFU severity and progression. Using transcriptomics datasets, we
further confirmed factors such as the APOE gene, which could guide customized
interventions. Ultimately, this study established a model for incorporating clinical and
molecular data for the identification of factors in chronic diseases.

The subsequent sections of this paper will present a detailed account of the findings
derived from the dataset analysis (Section 2), followed by an in-depth discussion (Section
3) that contextualizes the results and their implications. Additionally, the conclusions of
this study will be addressed in this same section. The methodology employed in this study
will be expounded upon in Section 4.
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2. Results

In this section, we divided the results to reflect the stages of the integration of EHRs
and transcriptomics. Section 2.1 details the results from the EHRs, Section 2.2 details the
results from bulk RNA sequencing, and Section 2.3 details the results using single-cell
RNA sequencing data.

2.1. Analysis Using Electronic Health Records
We divided our results using the EHRs into two parts, as listed below.

2.1.1. Data Preprocessing and Interpretation from EHRs

In this study, we processed electronic health record data and shed light on notable
demographic distinctions. Our analysis started with a thorough analysis of EHR data
consisting of 8969 de-identified patient records. To work with only the most relevant
dataset, we meticulously filtered the dataset by categorizing patients into Type 1 diabetes,
Type 2 diabetes, and an ‘other’ group, subsequently excluding entries under ‘other’ from
our analysis.

Our focus was centered on understanding how demographic factors, such as age, sex,
and socio-economic status, influence the molecular differences observed in the laboratory
test results. This approach aimed to identify specific demographic variations that may
contribute to the severity of DFUs, allowing for more personalized risk assessments and
treatment strategies. These differences, influenced by genetic, lifestyle, and socio-
economic factors, may have contributed to the varying likelihood of developing diabetic
foot ulcer disease. To enhance the data quality, entries lacking laboratory data were
excluded, leaving us with 7153 patient records for analysis. As our strategy aimed to
identify factors related to severe DFUs in two demographic groups, we split the samples
in the dataset into Hispanic and non-Hispanic subsets. Figure 2 below illustrates the initial
filtering steps of the dataset.

Total number of Patients in ORCHIN Dataset:

8969 patients

Exclude patients with EHRs
that do not have LOINC entry

Y

4
Patient EHRs with LOINC Code

7250 patients

Exclude patients with
diagnosis other than Type 1
Y and Type 2 diabetes

Patient with type 1 and/or type 2
Diabetes Diagnosis

7153 patients

A4

| Under the origin column, filter
“| out "Other", “Unknown” and
“No Information”. Split the
data into Hispanic and non-
Hispanic origin.

A 4 Y
Hispanic Patients

Non-Hispanic Patients
2238 Patients 4487 Patients (66.7%)

Figure 2. Flowchart of patient selection for study on diabetic patients by Hispanic origin.
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The dataset also contained demographic information, which was used as labels for
further feature selection, including vital status (alive or deceased), biological sex, income
relative to the current Federal Poverty Line (FPL) (which gives insight into the economic
power of the patients), whether the patient resides in a rural community, and whether
they live in the northern or southern states of the United States. Analyzing these
demographic variables alongside clinical data provided insights into their effects on
disease development. In this work, vital status was particularly useful in defining severity.

In addition to demographic data, clinical laboratory test results are critical in
identifying factors. EHRs contain LOINC codes that are used to track the laboratory tests
conducted to diagnose and manage diseases. Our dataset included 63 such codes, which
we used for further analysis. Given our focus on identifying differences in DFU diagnoses
between Hispanic and non-Hispanic populations, we employed machine learning
techniques, specifically Random Forest, to analyze the high-dimensional dataset and
identify the most important factors.

Machine learning is essential for handling the large number of variables in this
dataset, as manual methods would be inadequate for discovering complex relationships
between demographic, clinical, and molecular data. Random Forest was chosen for its
ability to handle both structured and unstructured data, making it ideal for the diverse
formats found in EHRs. Additionally, Random Forest mitigates the risk of overfitting by
aggregating decisions from multiple trees, providing more reliable predictions. This
model is also more interpretable compared to other machine learning techniques, which
is crucial for identifying key predictors of DFU risk.

After identifying the 63 laboratory tests in the dataset, we ranked them by importance
using the Mean Decrease in Accuracy (MDA) metric from the Random Forest model. This
allowed us to prioritize features based on their impact on predictive accuracy, ensuring
that we focused on the most relevant tests that distinguished between Hispanic and non-
Hispanic groups. Figure 3 illustrates the MDA rankings, with the most important feature
being the total cholesterol to high-density lipoprotein (HDL) cholesterol ratio. Other
significant features included the Albumin/Creatinine Ratio (ACR), hemoglobin level, and
monocyte count, pinpointing the importance of renal function, oxygen transport capacity,
and immune response in predicting DFU outcomes.

Once all the tests were ranked, we further looked for statistical differences between
the Hispanic and non-Hispanic groups using the Mann—-Whitney U test.

By combining machine learning-driven feature selection with rigorous statistical
testing, we identified specific molecular and demographic factors that are especially
influential in DFU development. The laboratory tests that showed the most significant
differences served as the focus for further analysis. Table 1 presents the tests with the
greatest statistical differences. This integrated approach provides a comprehensive
overview of the factors contributing to DFU severity and lays the groundwork for
personalized interventions.
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Table 1. A table of laboratory tests that show statistically significant differences between Hispanic
and non-Hispanic groups. The p-value was evaluated using the Mann-Whitney U test.

. . -Value
Feature Normal Values I.VIean' Me.an . N.Iedmr} Mec.han . (Mar;:n—Whitney
(Hispanic) (Non-Hispanic) (Hispanic) (Non-Hispanic) U Test)
Alkaline phosphatase 44-147 IU/L 107.74 99.64 96.5 90.5 1.26 x 1074
Albumin/ereatinine (U) [Mass o 55, 746.78 454.4 130 64.375 5.85 x 1074
ratio] in urine
Urea nitrogen/creatinine 10-20 20.76 18.88 20 18 2.7 x 10718
Coagulation tissue factor- 0.8-1.1 2 2.99 12 2.65 0.000986
induced
Albumin/globulin [ratio] in 1-2 1.34 1.38 1.35 1.375 0.00022
blood
Monocyte count 0.02-0.08 0.56 0.62 0.52 0.5845 2 x 1071
Glomerular filtration rate 90-120 86.71 81.18 91 82.5 9.9 x 1013
Erythrocyte mean
corpuscular hemoglobin 32-36 32.99 32.79 33.15 32.9 2.57 x 10~
concentration
Erythrocyte count 4.2-6.1 4.364 4.48 4.375 4.5 1.16 x 101
Platelet mean volume 8-12 10.48 10.32 10.4 10.3 0.000266
Lymphocytes/100 leukocytes 20-40% 26.80 26.37 26.6 25.875 0.00306
Neutrophils 2500-7000 3294.91 2339.42 3893.5 52 0.000549
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Figure 3. Feature importance rankings for laboratory tests in predicting the DFU outcomes in the
Hispanic population using a Random Forest model.

2.1.2. Albumin/Creatinine Ratio Test as Basis for Assessing DFU Risk in Hispanics

We observed significant differences in the Albumin/Creatinine Ratio (ACR) test
results across different demographic groups. Figure 4a illustrates one such difference,
with a Mann-Whitney U test p-value of 5.85 x 10-14, highlighting how demographic factors
can influence kidney function and DFU severity. Elevated ACR levels, indicating potential
kidney dysfunction, were found to be associated with higher DFU severity, suggesting a
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key relationship between renal health and DFU outcomes across these groups. This
substantial difference highlights the key molecular and protein compositions that may
vary between these groups. Chronic kidney disease (CKD), a common complication of
diabetes, signals a progression of DFUs when present. The use of the ACR as a severity
factor allows us to explore and quantify the statistically significant differences in kidney
function between Hispanic and non-Hispanic populations. Additionally, when evaluating
the relationship between vital status (alive vs. deceased) across different demographic
groups, Figure 4b shows that deceased patients generally had significantly higher ACR
values compared to those who were alive ( p = 0.0021 and 2.78 x 107 in Hispanic and non-
Hispanic, respectively). This underscores the potential of the ACR as a critical indicator of
disease severity and mortality risk, irrespective of demographic background. However,
the impact of elevated ACR levels appears to be more pronounced among Hispanic
patients (Figure 4).

Several studies support the utility of the ACR in understanding ethnic disparities in
kidney-related complications, especially in the context of diabetes. For example, Lawrence
et al. [18] demonstrated a significant association between diabetes-related lower-extremity
complications, such as amputations, among Hispanic and non-Hispanic populations. In
their study, Mexican Americans had a higher incidence of amputations compared to non-
Hispanic white patients, with rates of 7.4 per 1000 versus 4.1 per 1000, respectively.
Additionally, the amputation-to-ulcer ratio was higher among Mexican Americans (8.7%),
suggesting that kidney and lower-extremity complications progress more aggressively in
this population. Since kidney dysfunction is often linked to diabetes complications,
including DFU severity, the elevated ACR values observed in Hispanic populations
indicate a potential factor contributing to these poorer outcomes. Further, Carmen et al.
[19] reported that Hispanics exhibit a higher occurrence of albuminuria, a condition
characterized by excessive albumin in the urine, compared to white patients. They also
found that the Albumin/Creatinine Ratio was significantly elevated in Hispanics relative
to other populations. Albuminuria, particularly as measured by the ACR, is a well-
established early indicator of kidney damage and a marker of systemic vascular
dysfunction, making it a valuable tool for stratification of patients at risk of CKD and
DFUs.

These findings highlight the clinical relevance of the ACR as a factor for identifying
kidney function and diabetes-related complications. The higher incidence of albuminuria
and elevated ACR levels in Hispanics, along with their increased risk of severe
complications like amputations, supports the use of the ACR as a sensitive marker. Given
the strong statistical differences observed in our analysis, the ACR was shown to be an
effective tool for assessing kidney function, making it valuable for early detection, risk
stratification, and targeted interventions in populations at risk of severe DFUs.

In this analysis, we further investigated the factors differentiating high and low ACR
values by segmenting the ACR data based on the median value of all measurements from
the EHRs. This method enabled us to leverage machine learning techniques to assess
feature importance, helping us pinpoint the most significant predictors of high ACR
levels.
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Figure 4. Box plots illustrating significant differences in Albumin/Creatinine Ratio: (a) demonstrates
statistical difference between Hispanic and non-Hispanic groups as indicated by p-value of
5.85 x 1074; (b) ACR differences between surviving and deceased individuals within the Hispanic
and non-Hispanic population.

2.2. Analysis Using Bulk RNA Dataset

In our analysis of the blood test results from the electronic health records (EHRs),
which primarily measure protein concentrations, we aimed to correlate our findings with
publicly available RNA-sequencing datasets, a method that provides an averaged gene
expression profile across entire tissue samples. The goal was to identify molecular factors
for severe DFUs. Our dataset included three stages of disease progression: control
(healthy tissue), healing DFU tissue (from DFU patients showing healing progression over
a 12-week period), and non-healing DFU tissue. By examining publicly accessible bulk
RNA datasets, we observed a significant decrease in the mean gene expression levels in
healthy samples compared to diseased samples. This comparative approach helped
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identify key factors that differentiate these progression levels. Our methodology aligns
closely with the approach outlined by Ran Chen et al. [20], ensuring rigor and consistency
in validating the ACR test findings within the EHRs. Analyzing these different tissue
categories gave us critical insights into the genes and protein markers influencing DFU
progression.

A major finding from this analysis was the identification of the APOE gene as a
significant distinguishing factor. Our results showed that APOE expression decreased
markedly from the control (117.72) to healing (27.57) and further to non-healing samples
(15.83). The Kruskal-Wallis test statistic of 13.18 and a highly significant p-value of 0.0014
suggest that APOE plays an essential role in the progression of DFUs, particularly in
relation to non-healing ulcers. Previous studies, such as those by Xuan He et al. [21], have
shown that the APOE gene is linked to the ACR, indicating a genetic connection between
lipid metabolism and kidney function. Individuals with certain APOE alleles are more
prone to both dyslipidemia (abnormal lipid metabolism) and kidney damage,
underscoring the importance of considering genetic factors in clinical assessments [22,23].

The higher APOE expression in healthy compared to non-healing tissue indicates a
possible disruption in lipid metabolism and immune regulation in more severe DFU cases.
This disruption could be influenced by various demographic factors, such as age, sex, or
socio-economic status, which may exacerbate the impact of genetic predispositions like
APQOE allele variations on disease progression. Given APOE’s role in lipid metabolism and
its connection to cardiovascular health [24], its decreased expression in non-healing DFUs
may reflect disrupted lipid metabolism, contributing to poor wound healing and kidney
complications in diabetic patients.

While there were significant differences in GATM and CKMT2 expression (0.0077313
and 0.0034734, respectively), there was no clear trend between the control, healing, and non-
healing samples. For instance, GATM expression sharply dropped from control (55.80) to
healing (8.33) and remained relatively low in non-healing (9.67), while CKMT2 decreased
from the control (4.13) to healing (0.82) and remained similar in non-healing samples
(0.73). This lack of a clear, progressive pattern from control to non-healing samples limits
these proteins as markers of wound healing progression. In contrast, LDLR expression
showed a more consistent trend across the groups, increasing from the control (70.72) to
healing samples (92.86) and reaching the highest level in non-healing samples (118.60).
Although the p-value for LDLR expression (0.1552) does not indicate statistical
significance, this gradual progression suggests a potential role in disease severity that may
warrant further investigation. Notably, APOE is the only gene that showed both statistical
significance (p =0.0014) and a clear, progressive decrease in expression. The data for these
genes, along with data for other genes, can be found in Table 2.
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Table 2. Transcripts per million (TPM) counts in bulk RNA dataset for a gene associated with a
significant blood test in the diagnosis of DFUs. It also reflects the various degrees of severity of
DFUs. APOE shows a significant difference in mean expression as the severity increases.

p-Value from

Laboratory Associated Kruskal-Wallis

Test Parameter Gene Names Control Healing Non-Healing Test Statistic Maan}—]‘Z l;tltney
Albumin ALB 0.205592661 0.008977797  0.029324667 8.92857 0.0115
CKM 0.499565985 0.173955302  0.207658008 3.56275 0.168406596
SLC22A12 0.006241889 0 0.077868848 3.1312025 0.208962
SLC22A2 0.010733984 0.004172606  0.006355688
Creatinine GATM 55.79607655 8.327619645  9.674862405 9.7249536 0.0077313
CKB 93.50450349 52.65157717  54.05675365 3.030303 0.2197748
CKMT1A 46.5820514 50.68992477  43.91039501 0.8126159 0.6661049
CKMT1B 36.42784045 37.23741686  36.16401885 0.3178726 0.853050
CKMT2 4.13219376 0.822784598  0.728522893 11.32522 0.0034734
LDLR 70.72075147 92.85914778  118.6011276 3.725572 0.155239
Cholesterol PCSK9 5.25025018 2.867216518  3.207883812 5.454545 0.0653974
APOE 117.7178759 27.56887668  15.82637224 13.18058 0.0013736

The observation of significant decreases in gene expression, particularly for APOE,
as the tissues transitioned from healing to non-healing states led us to hypothesize that
distinct microenvironmental changes are occurring in non-healing DFU cases. To test this
hypothesis, we employed single-cell RNA sequencing to identify specific cell types
expressing APOE and other key genes. The sharp decline in APOE expression in non-
healing tissues suggests that its role in lipid transport and immune modulation is
compromised in more severe DFU cases, contributing to impaired wound healing.
Moreover, APOE’s involvement in inflammatory responses indicates that reduced
expression may reflect an inability to regulate immune processes effectively, potentially
leading to poor clinical outcomes in these patients.

2.3. Analysis Using Single-Cell RNA Sequencing Dataset

The significant findings from the bulk RNA-seq analysis, particularly the marked
decrease in APOE expression from healthy to non-healing DFU tissues, prompted us to
further investigate the cellular context of this gene’s expression using single-cell RNA-
sequencing (scRNA-seq) data. While bulk RNA-seq provided an overview of the gene
expression changes across entire tissue samples, scRNA-seq enabled us to delve into gene
expression at the individual cell level, uncovering the heterogeneity within the tissue. To
achieve this, we utilized the foot dataset from Theocharidis et al. [25], which comprised
samples with four levels of DFU disease progression: control (healthy tissue), diabetic,
healing, and non-healing samples.

In our single-cell analysis, we first performed quality control and data normalization
to ensure that the gene expression profiles were accurate and comparable across different
cell populations. We then applied clustering using the Seurat package, which groups cells
with similar gene expression patterns, allowing us to identify and label distinct cell
populations. Figure 5a shows the Uniform Manifold Approximation and Projection
(UMAP) plot visualizing 24 clusters from our single-cell RNA-sequencing (scRNA-seq)
data. Figure 5b compares the cell cluster distributions across four tissue conditions:
diabetic, healing DFU, healthy, and non-healing DFU tissues. The UMAP projection
highlights the differences between these conditions, with some clusters (e.g., clusters 0, 3,
and 5) appearing in all tissue types while others are specific to certain conditions. For
example, cluster 2 was present mainly in diabetic and non-healing DFU tissues.
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A key finding is cluster 10, which is entirely unique to the non-healing DFU sample.
As shown in the plot (circled in red), cluster 10 was concentrated specifically in non-
healing DFU tissues, suggesting that this group of cells plays a crucial role in non-healing
environments. The absence of this cluster in the other conditions (diabetic, healing DFU,
and healthy tissues) suggests that these cells may be involved in pathological processes
unique to chronic, non-healing ulcers, such as impaired tissue repair or persistent
inflammation.

Cluster 10 could represent a specific cell type or state that contributes to impaired
wound healing, such as dysfunctional immune cells, fibroblasts, or keratinocytes failing
to promote effective tissue repair. The distinct gene expression profile of this cluster likely
reflects key molecular pathways involved in persistent inflammation or fibrosis, which are
hallmarks of non-healing DFUs. Understanding the specific role of these cells is critical,
as they may be driving the chronic nature of the ulcers by disrupting normal wound-
healing processes. To further explore the characteristics of cluster 10 and identify its likely
cell type, we employed the SingleR method, a robust cell annotation tool that assigns cell
identities by comparing the gene expression profiles of our clusters to reference datasets
of known cell types.

Figure 6 illustrates that keratinocytes made up the majority of the cells in cluster 10,
with additional cell types, including epithelial cells and fibroblasts, also present. This
suggests that keratinocytes, which are vital for maintaining the skin barrier and
promoting wound healing, are likely dysfunctional in non-healing DFU environments
since they form a distinct cluster from rest of keratinocytes. The presence of epithelial cells
and fibroblasts, which are also key players in tissue repair and regeneration, further
highlights the complexity of impaired healing in non-healing DFUs. The dysfunction of
these cell types could be driving the chronic inflammation and fibrosis associated with
non-healing ulcers. These findings strongly support the hypothesis that compromised
keratinocyte function, alongside disrupted epithelial and fibroblast activity, may be
contributing to the persistence of the non-healing state in DFUs.
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Figure 6. (a) UMAP projection showing the distribution of various cell types across the non-healing
DFU sample. Different colors represent distinct cell types, demonstrating the distribution and
clustering of cell populations across the dataset. (b) Bar plot representing the cell type composition
in cluster 10, with keratinocytes forming the majority, followed by epithelial cells. (c) UMAP plots
showing the expression of APOE across the different tissues. Higher APOE expression was observed
in non-healing DFU samples, particularly in specific clusters, as indicated by the intensity of the red
color. (d) UMAP highlighting APOE expression, specifically in Cluster 10. Increased APOE
expression was prominently visible in non-healing DFU tissues, suggesting its potential role in
disease pathology.

To further validate our bulk RNA-seq analysis findings, we queried the single-cell
RNA-seq dataset for the genes identified as differentially expressed in the bulk RNA
sequencing analysis, focusing on APOE. By mapping the expression of APOE across the
clusters in the single-cell dataset, we found that APOE was expressed in cluster 10. This
localization of APOE to keratinocytes in the non-healing DFU tissue underscores the
potential role of APOE in the impaired function of these cells. Keratinocytes are essential
for skin integrity and wound healing, and the downregulation of APOE in this cell type
may contribute to the chronic inflammation and poor healing observed in non-healing
DFUs. The combined use of bulk and single-cell RNA-seq allowed us to confirm the gene
expression changes at the tissue level and pinpoint the specific cell types, such as
keratinocytes, where these changes are most relevant in driving the disease pathology.

Finally, we conducted a differential gene expression (DGE) analysis between cluster
10 and the other clusters to identify the genes uniquely enriched in this cluster. This
analysis provides a clearer picture of the specific genes present in cluster 10 and highlights
distinct biological pathways that may explain its unique characteristics compared to other
clusters in the sample. Understanding these pathways is crucial for uncovering the
molecular mechanisms contributing to the dysfunctional state of keratinocytes and other
cells within cluster 10, likely driving the impaired wound healing observed in non-healing
DFUs. By identifying these key pathways, we gain deeper insights into the factors
differentiating cluster 10 from other cell populations in the tissue and how these
differences may contribute to the chronic, non-healing state of DFUs.

Differential gene expression analysis between cluster 10 and all other clusters
identified 231 genes differentially express in cluster 10 (adjusted p-value < 0.05). Notably,
we observed genes such as APOE, KRT14, and COLIA1 suggesting dysregulated activity
in lipid metabolism, keratinocyte function, and extracellular matrix organization.
Functional enrichment analysis revealed that these genes are involved in pathways related
to wound healing, inflammatory response, and skin development.

3. Discussion

The findings of this study provide several key insights into the molecular
mechanisms underlying diabetic foot ulcers (DFUs). Starting with the use of EHRs, we
identified the Albumin/Creatinine Ratio test as a key indicator, particularly in the context
of albumin and creatinine as indicators of kidney function and disease progression. The
Albumin Creatinine Ratio (ACR), which we utilized as a risk indicator, is a well-
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established measure for assessing kidney function and detecting early kidney damage, a
critical complication in diabetes [26,27]. Albumin, produced by the liver, plays a vital role
in maintaining the oncotic pressure within blood vessels, preventing fluid leakage into
surrounding tissues. Consequently, deviations in albumin levels are often indicative of
liver or kidney disorders, both of which are common complications associated with DFUs.

Recent studies have highlighted the importance of albumin levels in predicting DFU
risk, with significant correlations between reduced albumin levels and heightened risks
of severe complications, including non-healing ulcers [28]. Meanwhile, ACR serves as a
marker for kidney function as it is a waste product filtered by the kidneys. Elevated
creatinine levels typically suggest impaired kidney function, reinforcing the relevance of
using the ACR as a robust measure of DFU risk [29]. Our analysis of the ACR as a risk
index across different demographic groups provides insights into how biological factors
may influence chronic disease progression and DFU severity. Understanding these
demographic variations is crucial for developing more equitable and effective healthcare
strategies. The Mean Decrease in Accuracy (MDA) metric further validated the ACR, with
the associated blood tests grouped into key categories such as lipid metabolism, white
blood cells, and red blood cells.

Lawrence et al. [18] have already performed extensive work to show a significant link
between Mexican American and non-Hispanic white patients regarding this disease. We
examined the Albumin Creatinine Ratio as an indicator to distinguish between the
Hispanic and non-Hispanic populations. The ACR, a crucial measure in assessing kidney
function and potential kidney damage, provides insights into the overall health factors
associated with these populations. This analysis is crucial for understanding the broader
implications of ethnic differences in chronic disease, particularly for conditions like
diabetes that heavily impact kidney health.

The other blood tests assessed using the MDA also validated the ACR. They can be
generally grouped as tests for lipids (Low-density lipoprotein- (LDL) and very Low-
density lipoprotein (VLDL) cholesterol), metabolism (calcium), white blood cells
(neutrophils/100 leukocytes), and red blood cells (erythrocyte count). Recent studies have
shown a significant link between the ACR and dyslipidemia, which is characterized by
abnormal lipid levels [21,30,31]. High ACR levels are frequently associated with elevated
triglyceride and LDL cholesterol levels, and reduced HDL cholesterol levels. These lipid
abnormalities contribute to the progression of cardiovascular diseases, underscoring the
interconnectedness of kidney and cardiovascular health.

Lipid tests (LDL and VLDL cholesterol) were particularly important, as they
highlighted a significant association between the ACR and dyslipidemia, which is
characterized by elevated triglycerides and abnormal cholesterol levels. These findings
suggest that lipid metabolism and kidney function are closely linked, and that
demographic factors such as age, diet, and lifestyle may affect this relationship,
influencing the risk and severity of DFUs. This observation aligns with studies
demonstrating a connection between abnormal lipid levels and both cardiovascular
disease and kidney dysfunction, underscoring the complex interplay between kidney
health and cardiovascular risk as it pertains to complications of DFUs [32]. The enrichment
of lipid metabolism genes, including APOE, further emphasizes the role of lipid regulation
in DFU progression, with recent findings linking APOE alleles to abnormal lipid
metabolism and kidney damage. The bulk RNA analysis revealed that APOE expression
was significantly reduced in non-healing DFU tissues compared to healthy and healing
DFU tissues. This downregulation of APOE suggests a disruption in lipid metabolism,
which may impair wound healing and exacerbate chronic inflammation in non-healing
DEFUs.

The pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database identified several key biological pathways that provide additional insight into
the molecular processes associated with DFUs. Pathways related to immune responses
and infections were significantly enriched, including those involved in Salmonella
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infection, legionellosis, and pathogenic Escherichia coli infection. The high representation
of these pathways suggests that immune responses and bacterial infections are
particularly active in the sample, which aligns with the known immune dysregulation
observed in chronic wounds like DFUs. Chronic inflammation, driven by both immune
cell dysfunction and persistent bacterial infections, is a hallmark of non-healing wounds
[33,34]. These findings reinforce the idea that unresolved infections play a pivotal role in
impairing wound healing, likely contributing to the non-healing state observed in some
DEFUs [35].

In addition to infection-related pathways, significant enrichment was observed in cell
signaling pathways such as the gap junction and estrogen signaling pathways. These
pathways are integral to intercellular communication and tissue homeostasis, which are
disrupted in chronic wounds. The enrichment of cancer-related pathways such as small
cell lung cancer pathways and pathways in cancer indicates that cellular proliferation,
survival, and apoptosis pathways may be dysregulated in non-healing DFU tissues. This
dysregulation suggests that processes normally involved in tissue regeneration may be
impaired, contributing to the chronic, non-healing state of DFUs [36].

One of the most significant findings from the single-cell RNA sequencing (scRNA-
seq) analysis was the identification of cluster 10, a distinct group of cells present almost
exclusively in non-healing DFU tissues. Further analysis revealed that keratinocytes
formed the majority of this cluster, alongside smaller populations of epithelial cells and
fibroblasts, as shown in Figure 6. These cell types are critical for maintaining the skin
barrier and promoting tissue repair, suggesting that their dysfunction in cluster 10 could
be contributing to the impaired wound healing observed in non-healing DFUs.

The differential gene expression analysis between cluster 10 and other clusters
provided additional insights into this population’s unique gene expression profile. The
downregulation of genes involved in cell migration, lipid metabolism, and immune
responses suggests that these keratinocytes are not only dysfunctional but may also
contribute to a pro-inflammatory environment that hinders healing. The use of the SingleR
tool for cell type annotation allowed us to further confirm the identity of cells within
cluster 10, providing a clearer understanding of how these cells contribute to non-healing
DFU environments.

While this study provides valuable insights, it is essential to acknowledge certain
limitations. Firstly, the electronic health record (EHR) dataset contained incomplete or
missing data for specific laboratory tests, potentially compromising the robustness of our
analysis and introducing inherent bias into the results. Furthermore, the lack of
standardization in test ordering practices among patients limited the generalizability of
certain conclusions. Secondly, the retrospective nature of the analysis restricts our
capacity to definitively establish causality between the identified biomarkers and disease
progression.

In conclusion, our study sheds light on the complex molecular mechanisms
underlying DFU progression and identified key factors involved in the development and
worsening of the disease. By utilizing a multimodal approach that incorporated EHRs,
and bulk RNA-seq and single-cell RNA-seq datasets, we highlighted the crucial roles of
inflammation, immune responses, lipid metabolism, and eventual cell dysfunction in
DFUs. The integration of these datasets allowed us to pinpoint key molecular markers,
such as APOE, and to gain deeper insights into the specific cell populations driving the
chronic, non-healing state of DFUs. These findings provide valuable therapeutic targets
for improving wound healing outcomes, particularly for patients at high risk of
developing chronic, non-healing ulcers. Future research will further explore the roles of
APOE and other key genes in DFU progression, and leverage advanced transcriptomics
techniques, such as spatial transcriptomics, to investigate potential interventions aimed at
modulating these pathways and promoting tissue repair.
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4. Materials and Methods
4.1. Data Source

The dataset utilized in this study was sourced from the OCHIN database [37,38]. The
OCHIN database has been utilized and referenced by over 300 research works, dating
back to its earliest known application in 2007. Approximately 26 of these studies are
specifically focused on diabetes-related research. The contributions of other research
teams, such as Chamine et al. [39] and Gemelas et al. [40] who also leveraged the OCHIN
database, has significantly enhanced our knowledge of healthcare outcomes and patient
populations, shedding light on various medical conditions and how quality datasets can
advance the field of healthcare research. After data acquisition, we filtered the data to
ensure data integrity in the rest of the studies. This study was conducted in compliance
with the ethical principles outlined in the Declaration of Helsinki. The Declaration sets
forth guidelines for medical research involving human subjects, emphasizing respect for
individuals, the need to obtain informed consent, and the protection of patient rights.
Ethical approval for this study was obtained from UTSA (IRB Number FY22-23-75). All
data extracted from electronic health records (EHRs) were anonymized to ensure patient
confidentiality and compliance with institutional and national ethical standards.

The steps taken are detailed in Figure 7 below.
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Figure 7. Workflow of integrating EHR data and transcriptomics analysis for diabetic foot ulcer
study.

4.2. Data Preprocessing

Because the dataset was pooled from several medical facilities, there is a likelihood
of high variance in LOINC code entries due to varying units of measurements or data
entry protocols [41]. Careful and thorough data scrubbing was carried out to ensure that
this was not an issue. We evaluated the normal range for each test, cross-referencing with
recorded lab tests. We evaluated the median value for each of the LOINC codes for each
test and used this value to determine a threshold beyond which, the test results were
considered an error. Test results with human errors were excluded. Overall, about 5% of
the test results were excluded.

After this process, we carried out data segmentation to apply machine learning
algorithms to the dataset. We especially checked for data imbalances after segmentation
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and significant differences to ensure the validity of our findings. We used the Random
Forest machine learning algorithm to determine the Mean Decrease in Accuracy.

4.3. Machine Learning

Random Forest is a popular machine learning algorithm known for its versatility and
robustness. It is based on the concept of ensemble learning, where multiple decision trees
are combined to make robust predictions. Random Forest offers exceptional performance
in various tasks such as classification, regression, and anomaly detection. The algorithm
operates by constructing a multitude of decision trees during the training phase, with each
tree built using a random subset of the original features and a random subset of the
training data, a technique known as bootstrap aggregation or “bagging” [42]. These
individual trees collectively form a “forest”, where the final prediction is made by
averaging the results of all the trees (for regression) or by majority vote (for classification).

In this study, the Random Forest algorithm was implemented using the Scikit-learn
library in Python. The model was trained using default hyperparameters, including 100
trees (n_estimators = 100) and the Gini impurity criterion for node splitting. The data were
split into training and test sets, with 80% used for training and 20% for testing. All
computations were performed on a computer with an Intel Core i7 processor (3.8 GHz)
and 32 GB of RAM, and running Python 3.9. After evaluating the Mean Decrease in
Accuracy, laboratory test labels were cross-referenced in the LOINC code database to
ascertain protein names and their associated genes, which were then linked to the RNA
datasets for further analysis. [43]

4.4. Transcriptomics

In this study, we utilized the bulk RNA-seq dataset previously published by Ran et
al. [20], which consisted of eight healthy samples, seven diabetic healing DFU samples,
and six diabetic non-healing samples. The processing steps were as prescribed in the
paper. The data was normalized using transcripts per million (TPM).

Additionally, we incorporated a single-cell RNA-seq dataset, which enables high-
resolution profiling of gene expression at the individual cell level. The dataset used in this
study was previously published by Georgios Theocharidis et al. [44]. It consists of eight
healthy patients, six diabetic non-DFU patients, seven diabetic healing DFU patients, and
four diabetic non-healing DFU patients. To process the single-cell RNA-seq data, we
employed a set of computational methods and deep learning tools. First, quality control
was performed to filter out low-quality cells based on the number of detected genes,
percentage of mitochondrial expression, and unique molecular identifiers (UMIs). Next,
normalization and scaling were conducted to account for the sequencing depth and
technical variability between cells. In this step, we used the SCTransform function
provided by the Seurat R package, which is based on regularized negative binomial
regression.

As a third step, dimensionality reduction techniques including Principal Component
Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) were
applied to reduce the dimensionality of the data by preserving the variance and global
structure. This was followed by clustering using the Leiden algorithm implementation in
Seurat, a graph-based clustering algorithm that was used to identify groups of cells with
similar gene expression patterns.

Finally, the sample data were integrated in two steps. First the data from samples
from the same severity type were integrated together. Then, the data from the samples
with the four different degrees of severities were integrated. This was performed through
the Canonical Correlation Analysis (CCA) method provided by the Seurat R package.
After the data integration, we used the SingleR Cell-Type Annotation package to annotate
the clusters and perform further downstream analysis.
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