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Abstract: Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus (DM), which 

often lead to hospitalization and non-traumatic amputations in the United States. Diabetes 

prevalence estimates in South Texas exceed the national estimate and the number of diagnosed cases 

is higher among Hispanic adults compared to their non-Hispanic white counterparts. San Antonio, 

a predominantly Hispanic city, reports significantly higher annual rates of diabetic amputations 

compared to Texas. The late identification of severe foot ulcers minimizes the likelihood of reducing 

amputation risk. The aim of this study was to identify molecular factors related to the severity of 

DFUs by leveraging a multimodal approach. We first utilized electronic health records (EHRs) from 

two large demographic groups, encompassing thousands of patients, to identify blood tests such as 

cholesterol, blood sugar, and specific protein tests that are significantly associated with severe 

DFUs. Next, we translated the protein components from these blood tests into their ribonucleic acid( 

RNA) counterparts and analyzed them using public bulk and single-cell RNA sequencing datasets. 

Using these data, we applied a machine learning pipeline to uncover cell-type-specific and 

molecular factors associated with varying degrees of DFU severity. Our results showed that several 

blood test results, such as the Albumin/Creatinine Ratio (ACR) and cholesterol and coagulation 

tissue factor levels, correlated with DFU severity across key demographic groups. These tests 

exhibited varying degrees of significance based on demographic differences. Using bulk RNA-

Sequenced (RNA-Seq) data, we found that apolipoprotein E (APOE) protein, a component of 

lipoproteins that are responsible for cholesterol transport and metabolism, is linked to DFU severity. 

Furthermore, the single-cell RNA-Seq (scRNA-seq) analysis revealed a cluster of cells identified as 

keratinocytes that showed overexpression of APOE in severe DFU cases. Overall, this study 

demonstrates how integrating extensive EHRs data with single-cell transcriptomics can refine the 

search for molecular markers and identify cell-type-specific and molecular factors associated with 

DFU severity while considering key demographic differences. 

Keywords: diabetic foot ulcer; electronic health records; machine learning; risk factors; OCHIN  
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1. Introduction 

Diabetes prevalence estimates in South Texas exceed the national estimate and the 

number of diagnosed cases is higher among Hispanic adults compared to their non-

Hispanic white counterparts. Bexar County and the city of San Antonio report 

significantly higher annual rates of diabetic amputations than Texas despite reporting a 

similar prevalence of diabetes. In 2017, Hispanic adults in Bexar County were hospitalized 

for diabetic amputations at significantly higher rates (10.7/10,000) than non-Hispanic 
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black (7.4/10,000) and non-Hispanic white (6.0/10,000) adults [1]. Diabetic foot ulcers 

(DFUs) are a severe complication of diabetes mellitus (DM), which is characterized by 

high blood glucose levels due to insufficient insulin. DFUs, which manifest as ulcers on 

the feet, lead to more hospitalizations than other diabetic complications and are the 

leading cause of non-traumatic amputations in the U.S. In 2023, about 5% of diabetic 

patients developed DFUs, and around 1% resulted in amputations [2]. In addition to this, 

studies have shown that other risk factors, such as previous amputation history and other 

risk factors, can increase the likelihood of amputation in DFU prognosis [3,4] 

The Meggitt–Wagner system grades DFUs from 0 to 5 based on severity. Grade 0 

indicates an intact foot at risk for ulcers, Grade 1 is a superficial ulcer, Grade 2 involves 

deeper structures, Grade 3 includes abscesses, Grade 4 involves gangrene in the forefoot, 

and Grade 5 includes gangrene of the entire foot [5]. Treatments range from wound care 

to amputation. 

Risk factors for DFUs include diabetic neuropathy [6], peripheral vascular disease 

[7], previous ulcers, poor glycemic control, long-term diabetes, race/ethnicity, smoking, 

insulin use, poor vision, age, and sex [8]. The prevalence and severity of DFUs can vary 

significantly across demographic groups due to genetic, lifestyle, and socio-economic 

factors. Understanding these demographic differences is crucial for developing targeted 

interventions and improving clinical outcomes. Utilizing electronic health records (EHRs) 

and machine learning can improve DFU prediction and knowledge [9,10]. Electronic 

health records (EHRs) contain patient information in all forms and formats. Unstructured 

EHRs typically contain clinician notes, discharge summaries, and imaging interpretations 

and lack a predefined format. Structured EHRs, however, store data in predefined formats 

like tables, making information storage and retrieval systematic. These data include 

details such as birth and death dates, race, socioeconomic status, sex, and housing 

situation, providing a comprehensive view of the patient’s health. 

Structured EHRs also use standardized coding systems to encode medical 

information. Common codes include the International Classification of Diseases, 10th 

Edition (ICD-10), for diseases and conditions; Current Procedural Terminology (CPT) for 

procedures; Healthcare Common Procedure Coding System (HCPCS); Systematized 

Nomenclature of Medicine—Clinical Terms (SNOMED-CT); and the National Drug Code 

(NDC). This project uses Logical Observation Identifiers Names and Codes (LOINC) to 

track and identify laboratory tests conducted during disease management [11]. Using 

EHR data and key demographic information, we aimed to understand the factors 

influencing diabetic foot ulcers (DFUs).  

In this work, we applied a multimodal approach to identify factors related to the 

severity of DFUs (Figure 1). We used LOINC codes from the EHR laboratory tests carried 

out on DFU patients. We continued our multimodal approach by analyzing bulk RNA 

and single-cell RNA sequencing datasets to identify molecular factors related to DFU 

severity and validate the findings derived from using the EHRs. Bulk RNA sequencing 

gives a broad overview of gene expression across many cells, while single-cell RNA 

sequencing reveals individual cell details and functions within tissues. 
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Figure 1. Workflow illustrating the stages of the multimodal approach. The pipeline consists of data 

sourcing, preprocessing, and classification/feature extraction, and feature translational studies, 

culminating in bulk RNA sequencing and single-cell RNA sequencing analyses. 

Several efforts have been made to use EHRs to identify factors related to disease 

severity. Adelaide M. Arruda-Olson et al. [12] developed a prognostic tool for patients 

with peripheral arterial disease utilizing automated data extracted from EHRs. This 

allowed for real-time and personalized risk prediction during patient care. Wang et al. 

applied this towards the early detection of diabetic retinopathy [13]. This developed 

predictive technology served as an early warning system, encouraging patients to 

undergo regular eye examinations for early screening and potential treatment of diabetic 

retinopathy. Hamid Safi et al. [14] also developed a method for the early detection of 

diabetic retinopathy. However, they explored the changes in protein expression as a 

diagnostic biomarker. The use of molecular changes in proteins and changes in the 

expression of the associated genes served as a bridge in our study between the findings in 

EHRs to our use of transcriptomics datasets. 

In the fast-changing realm of diabetes research, transcriptomics has become vital for 

understanding the intricate molecular mechanisms behind the disease and its 

complications, such as diabetic foot DFUs, nephropathy, and retinopathy. The two main 

techniques in diabetes research are bulk RNA sequencing and single-cell RNA 

sequencing, which offer distinct insights. Bulk RNA sequencing gives a broad overview 

of gene expression across tissues, aiding in finding molecular factors and treatment targets 

in diabetic tissues. However, it lacks the ability to consider the different cell types present. 

On the other hand, scRNA-seq allows for a detailed examination of cellular compositions, 

pinpointing the roles of specific cells in disease processes. There have also been efforts to 

use the collaborative knowledge of bulk and single-cell RNA sequencing datasets and 

analyses in the identification of tumor immune microenvironment-related signatures [15], 

and in the construction of a stemness-related signatures for predicting prognoses and 

immunotherapy responses in hepatocellular carcinoma [16]. However, to the best of our 

knowledge, no studies have successfully incorporated clinical data from EHRs and 

transcriptomics in the identification of factors for severe DFUs. 

Multimodal approaches significantly contribute to both the healthcare [17] and 

computational fields by filling important gaps in DFU severity prediction and 

management. In healthcare, we aim to identify factors of DFU severity that can be used 

for further investigation of biomarkers and to understand the molecular mechanisms 

involved in severe DFUs. Our approach links EHRs with transcriptomic data to reduce 

the search space in the low number of single-cell datasets due to their present cost. On the 

computational side, we introduce an innovative technique for combining structured 

clinical data from EHRs with bulk RNA sequencing and single-cell RNA sequencing 

datasets. By employing machine learning algorithms, we can effectively pinpoint key 

significant factors of DFU severity and progression. Using transcriptomics datasets, we 

further confirmed factors such as the APOE gene, which could guide customized 

interventions. Ultimately, this study established a model for incorporating clinical and 

molecular data for the identification of factors in chronic diseases. 

The subsequent sections of this paper will present a detailed account of the findings 

derived from the dataset analysis (Section 2), followed by an in-depth discussion (Section 

3) that contextualizes the results and their implications. Additionally, the conclusions of 

this study will be addressed in this same section. The methodology employed in this study 

will be expounded upon in Section 4. 
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2. Results 

In this section, we divided the results to reflect the stages of the integration of EHRs 

and transcriptomics. Section 2.1 details the results from the EHRs, Section 2.2 details the 

results from bulk RNA sequencing, and Section 2.3 details the results using single-cell 

RNA sequencing data. 

2.1. Analysis Using Electronic Health Records 

We divided our results using the EHRs into two parts, as listed below. 

2.1.1. Data Preprocessing and Interpretation from EHRs 

In this study, we processed electronic health record data and shed light on notable 

demographic distinctions. Our analysis started with a thorough analysis of EHR data 

consisting of 8969 de-identified patient records. To work with only the most relevant 

dataset, we meticulously filtered the dataset by categorizing patients into Type 1 diabetes, 

Type 2 diabetes, and an ‘other’ group, subsequently excluding entries under ‘other’ from 

our analysis. 

Our focus was centered on understanding how demographic factors, such as age, sex, 

and socio-economic status, influence the molecular differences observed in the laboratory 

test results. This approach aimed to identify specific demographic variations that may 

contribute to the severity of DFUs, allowing for more personalized risk assessments and 

treatment strategies. These differences, influenced by genetic, lifestyle, and socio-

economic factors, may have contributed to the varying likelihood of developing diabetic 

foot ulcer disease. To enhance the data quality, entries lacking laboratory data were 

excluded, leaving us with 7153 patient records for analysis. As our strategy aimed to 

identify factors related to severe DFUs in two demographic groups, we split the samples 

in the dataset into Hispanic and non-Hispanic subsets. Figure 2 below illustrates the initial 

filtering steps of the dataset. 

 

 

Figure 2. Flowchart of patient selection for study on diabetic patients by Hispanic origin. 
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The dataset also contained demographic information, which was used as labels for 

further feature selection, including vital status (alive or deceased), biological sex, income 

relative to the current Federal Poverty Line (FPL) (which gives insight into the economic 

power of the patients), whether the patient resides in a rural community, and whether 

they live in the northern or southern states of the United States. Analyzing these 

demographic variables alongside clinical data provided insights into their effects on 

disease development. In this work, vital status was particularly useful in defining severity. 

In addition to demographic data, clinical laboratory test results are critical in 

identifying factors. EHRs contain LOINC codes that are used to track the laboratory tests 

conducted to diagnose and manage diseases. Our dataset included 63 such codes, which 

we used for further analysis. Given our focus on identifying differences in DFU diagnoses 

between Hispanic and non-Hispanic populations, we employed machine learning 

techniques, specifically Random Forest, to analyze the high-dimensional dataset and 

identify the most important factors. 

Machine learning is essential for handling the large number of variables in this 

dataset, as manual methods would be inadequate for discovering complex relationships 

between demographic, clinical, and molecular data. Random Forest was chosen for its 

ability to handle both structured and unstructured data, making it ideal for the diverse 

formats found in EHRs. Additionally, Random Forest mitigates the risk of overfitting by 

aggregating decisions from multiple trees, providing more reliable predictions. This 

model is also more interpretable compared to other machine learning techniques, which 

is crucial for identifying key predictors of DFU risk. 

After identifying the 63 laboratory tests in the dataset, we ranked them by importance 

using the Mean Decrease in Accuracy (MDA) metric from the Random Forest model. This 

allowed us to prioritize features based on their impact on predictive accuracy, ensuring 

that we focused on the most relevant tests that distinguished between Hispanic and non-

Hispanic groups. Figure 3 illustrates the MDA rankings, with the most important feature 

being the total cholesterol to high-density lipoprotein (HDL) cholesterol ratio. Other 

significant features included the Albumin/Creatinine Ratio (ACR), hemoglobin level, and 

monocyte count, pinpointing the importance of renal function, oxygen transport capacity, 

and immune response in predicting DFU outcomes. 

Once all the tests were ranked, we further looked for statistical differences between 

the Hispanic and non-Hispanic groups using the Mann–Whitney U test.  

By combining machine learning-driven feature selection with rigorous statistical 

testing, we identified specific molecular and demographic factors that are especially 

influential in DFU development. The laboratory tests that showed the most significant 

differences served as the focus for further analysis. Table 1 presents the tests with the 

greatest statistical differences. This integrated approach provides a comprehensive 

overview of the factors contributing to DFU severity and lays the groundwork for 

personalized interventions. 
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Table 1. A table of laboratory tests that show statistically significant differences between Hispanic 

and non-Hispanic groups. The p-value was evaluated using the Mann–Whitney U test. 

Feature Normal Values 
Mean  

(Hispanic) 

Mean 

(Non-Hispanic) 

Median  

(Hispanic) 

Median  

(Non-Hispanic) 

p-Value  

(Mann–Whitney 

U Test) 

Alkaline phosphatase 44–147 IU/L 107.74 99.64 96.5 90.5 1.26 × 10−14 

Albumin/creatinine (U) [Mass 

ratio] in urine 
0–30 mg/g 746.78 454.4 130 64.375 5.85 × 10−14 

Urea nitrogen/creatinine 10–20  20.76 18.88 20 18 2.7 × 10−18 

Coagulation tissue factor-

induced 
0.8–1.1 2 2.99 1.2 2.65 0.000986 

Albumin/globulin [ratio] in 

blood 
1–2 1.34 1.38 1.35 1.375 0.00022 

Monocyte count 0.02–0.08 0.56 0.62 0.52 0.5845 2 × 10−19 

Glomerular filtration rate 90–120 86.71 81.18 91 82.5 9.9 × 10−13 

Erythrocyte mean 

corpuscular hemoglobin 

concentration 

32–36 32.99 32.79 33.15 32.9 2.57 × 10−9 

Erythrocyte count 4.2–6.1 4.364 4.48 4.375 4.5 1.16 × 10−11 

Platelet mean volume 8–12 10.48 10.32 10.4 10.3 0.000266 

Lymphocytes/100 leukocytes 20–40% 26.80 26.37 26.6 25.875 0.00306 

Neutrophils 2500–7000 3294.91 2339.42 3893.5 52 0.000549 



Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 21 
 

 

 

Figure 3. Feature importance rankings for laboratory tests in predicting the DFU outcomes in the 

Hispanic population using a Random Forest model. 

2.1.2. Albumin/Creatinine Ratio Test as Basis for Assessing DFU Risk in Hispanics 

We observed significant differences in the Albumin/Creatinine Ratio (ACR) test 

results across different demographic groups. Figure 4a illustrates one such difference, 

with a Mann–Whitney U test p-value of 5.85 × 10−14, highlighting how demographic factors 

can influence kidney function and DFU severity. Elevated ACR levels, indicating potential 

kidney dysfunction, were found to be associated with higher DFU severity, suggesting a 
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key relationship between renal health and DFU outcomes across these groups. This 

substantial difference highlights the key molecular and protein compositions that may 

vary between these groups. Chronic kidney disease (CKD), a common complication of 

diabetes, signals a progression of DFUs when present. The use of the ACR as a severity 

factor allows us to explore and quantify the statistically significant differences in kidney 

function between Hispanic and non-Hispanic populations. Additionally, when evaluating 

the relationship between vital status (alive vs. deceased) across different demographic 

groups, Figure 4b shows that deceased patients generally had significantly higher ACR 

values compared to those who were alive ( p = 0.0021 and 2.78 × 10-7 in Hispanic and non-

Hispanic, respectively). This underscores the potential of the ACR as a critical indicator of 

disease severity and mortality risk, irrespective of demographic background. However, 

the impact of elevated ACR levels appears to be more pronounced among Hispanic 

patients (Figure 4). 

Several studies support the utility of the ACR in understanding ethnic disparities in 

kidney-related complications, especially in the context of diabetes. For example, Lawrence 

et al. [18] demonstrated a significant association between diabetes-related lower-extremity 

complications, such as amputations, among Hispanic and non-Hispanic populations. In 

their study, Mexican Americans had a higher incidence of amputations compared to non-

Hispanic white patients, with rates of 7.4 per 1000 versus 4.1 per 1000, respectively. 

Additionally, the amputation-to-ulcer ratio was higher among Mexican Americans (8.7%), 

suggesting that kidney and lower-extremity complications progress more aggressively in 

this population. Since kidney dysfunction is often linked to diabetes complications, 

including DFU severity, the elevated ACR values observed in Hispanic populations 

indicate a potential factor contributing to these poorer outcomes. Further, Carmen et al. 

[19] reported that Hispanics exhibit a higher occurrence of albuminuria, a condition 

characterized by excessive albumin in the urine, compared to white patients. They also 

found that the Albumin/Creatinine Ratio was significantly elevated in Hispanics relative 

to other populations. Albuminuria, particularly as measured by the ACR, is a well-

established early indicator of kidney damage and a marker of systemic vascular 

dysfunction, making it a valuable tool for stratification of patients at risk of CKD and 

DFUs. 

These findings highlight the clinical relevance of the ACR as a factor for identifying 

kidney function and diabetes-related complications. The higher incidence of albuminuria 

and elevated ACR levels in Hispanics, along with their increased risk of severe 

complications like amputations, supports the use of the ACR as a sensitive marker. Given 

the strong statistical differences observed in our analysis, the ACR was shown to be an 

effective tool for assessing kidney function, making it valuable for early detection, risk 

stratification, and targeted interventions in populations at risk of severe DFUs. 

In this analysis, we further investigated the factors differentiating high and low ACR 

values by segmenting the ACR data based on the median value of all measurements from 

the EHRs. This method enabled us to leverage machine learning techniques to assess 

feature importance, helping us pinpoint the most significant predictors of high ACR 

levels. 
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Figure 4. Box plots illustrating significant differences in Albumin/Creatinine Ratio: (a) demonstrates 

statistical difference between Hispanic and non-Hispanic groups as indicated by p-value of 

5.85 × 10−14; (b) ACR differences between surviving and deceased individuals within the Hispanic 

and non-Hispanic population. 

2.2. Analysis Using Bulk RNA Dataset 

In our analysis of the blood test results from the electronic health records (EHRs), 

which primarily measure protein concentrations, we aimed to correlate our findings with 

publicly available RNA-sequencing datasets, a method that provides an averaged gene 

expression profile across entire tissue samples. The goal was to identify molecular factors 

for severe DFUs. Our dataset included three stages of disease progression: control 

(healthy tissue), healing DFU tissue (from DFU patients showing healing progression over 

a 12-week period), and non-healing DFU tissue. By examining publicly accessible bulk 

RNA datasets, we observed a significant decrease in the mean gene expression levels in 

healthy samples compared to diseased samples. This comparative approach helped 
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identify key factors that differentiate these progression levels. Our methodology aligns 

closely with the approach outlined by Ran Chen et al. [20], ensuring rigor and consistency 

in validating the ACR test findings within the EHRs. Analyzing these different tissue 

categories gave us critical insights into the genes and protein markers influencing DFU 

progression. 

A major finding from this analysis was the identification of the APOE gene as a 

significant distinguishing factor. Our results showed that APOE expression decreased 

markedly from the control (117.72) to healing (27.57) and further to non-healing samples 

(15.83). The Kruskal–Wallis test statistic of 13.18 and a highly significant p-value of 0.0014 

suggest that APOE plays an essential role in the progression of DFUs, particularly in 

relation to non-healing ulcers. Previous studies, such as those by Xuan He et al. [21], have 

shown that the APOE gene is linked to the ACR, indicating a genetic connection between 

lipid metabolism and kidney function. Individuals with certain APOE alleles are more 

prone to both dyslipidemia (abnormal lipid metabolism) and kidney damage, 

underscoring the importance of considering genetic factors in clinical assessments [22,23]. 

The higher APOE expression in healthy compared to non-healing tissue indicates a 

possible disruption in lipid metabolism and immune regulation in more severe DFU cases. 

This disruption could be influenced by various demographic factors, such as age, sex, or 

socio-economic status, which may exacerbate the impact of genetic predispositions like 

APOE allele variations on disease progression. Given APOE’s role in lipid metabolism and 

its connection to cardiovascular health [24], its decreased expression in non-healing DFUs 

may reflect disrupted lipid metabolism, contributing to poor wound healing and kidney 

complications in diabetic patients. 

While there were significant differences in GATM and CKMT2 expression (0.0077313 

and 0.0034734, respectively), there was no clear trend between the control, healing, and non-

healing samples. For instance, GATM expression sharply dropped from control (55.80) to 

healing (8.33) and remained relatively low in non-healing (9.67), while CKMT2 decreased 

from the control (4.13) to healing (0.82) and remained similar in non-healing samples 

(0.73). This lack of a clear, progressive pattern from control to non-healing samples limits 

these proteins as markers of wound healing progression. In contrast, LDLR expression 

showed a more consistent trend across the groups, increasing from the control (70.72) to 

healing samples (92.86) and reaching the highest level in non-healing samples (118.60). 

Although the p-value for LDLR expression (0.1552) does not indicate statistical 

significance, this gradual progression suggests a potential role in disease severity that may 

warrant further investigation. Notably, APOE is the only gene that showed both statistical 

significance (p = 0.0014) and a clear, progressive decrease in expression. The data for these 

genes, along with data for other genes, can be found in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 21 
 

 

Table 2. Transcripts per million (TPM) counts in bulk RNA dataset for a gene associated with a 

significant blood test in the diagnosis of DFUs. It also reflects the various degrees of severity of 

DFUs. APOE shows a significant difference in mean expression as the severity increases. 

Laboratory 

Test Parameter 

Associated 

Gene Names  
Control Healing Non-Healing 

Kruskal–Wallis 

Test Statistic  

p-Value from 

Mann–Whitney 

U Test     

Albumin ALB 0.205592661 0.008977797 0.029324667 8.92857 0.0115 

Creatinine 

CKM 0.499565985 0.173955302 0.207658008 3.56275 0.168406596 

SLC22A12 0.006241889 0 0.077868848 3.1312025 0.208962 

SLC22A2 0.010733984 0.004172606 0.006355688   

GATM 55.79607655 8.327619645 9.674862405 9.7249536 0.0077313 

CKB 93.50450349 52.65157717 54.05675365 3.030303 0.2197748 

CKMT1A 46.5820514 50.68992477 43.91039501 0.8126159 0.6661049 

CKMT1B 36.42784045 37.23741686 36.16401885 0.3178726 0.853050 

CKMT2 4.13219376 0.822784598 0.728522893 11.32522 0.0034734 

Cholesterol 

LDLR 70.72075147 92.85914778 118.6011276 3.725572 0.155239 

PCSK9 5.25025018 2.867216518 3.207883812 5.454545 0.0653974 

APOE 117.7178759 27.56887668 15.82637224 13.18058 0.0013736 

The observation of significant decreases in gene expression, particularly for APOE, 

as the tissues transitioned from healing to non-healing states led us to hypothesize that 

distinct microenvironmental changes are occurring in non-healing DFU cases. To test this 

hypothesis, we employed single-cell RNA sequencing to identify specific cell types 

expressing APOE and other key genes. The sharp decline in APOE expression in non-

healing tissues suggests that its role in lipid transport and immune modulation is 

compromised in more severe DFU cases, contributing to impaired wound healing. 

Moreover, APOE’s involvement in inflammatory responses indicates that reduced 

expression may reflect an inability to regulate immune processes effectively, potentially 

leading to poor clinical outcomes in these patients. 

2.3. Analysis Using Single-Cell RNA Sequencing Dataset 

The significant findings from the bulk RNA-seq analysis, particularly the marked 

decrease in APOE expression from healthy to non-healing DFU tissues, prompted us to 

further investigate the cellular context of this gene’s expression using single-cell RNA-

sequencing (scRNA-seq) data. While bulk RNA-seq provided an overview of the gene 

expression changes across entire tissue samples, scRNA-seq enabled us to delve into gene 

expression at the individual cell level, uncovering the heterogeneity within the tissue. To 

achieve this, we utilized the foot dataset from Theocharidis et al. [25], which comprised 

samples with four levels of DFU disease progression: control (healthy tissue), diabetic, 

healing, and non-healing samples. 

In our single-cell analysis, we first performed quality control and data normalization 

to ensure that the gene expression profiles were accurate and comparable across different 

cell populations. We then applied clustering using the Seurat package, which groups cells 

with similar gene expression patterns, allowing us to identify and label distinct cell 

populations. Figure 5a shows the Uniform Manifold Approximation and Projection 

(UMAP) plot visualizing 24 clusters from our single-cell RNA-sequencing (scRNA-seq) 

data. Figure 5b compares the cell cluster distributions across four tissue conditions: 

diabetic, healing DFU, healthy, and non-healing DFU tissues. The UMAP projection 

highlights the differences between these conditions, with some clusters (e.g., clusters 0, 3, 

and 5) appearing in all tissue types while others are specific to certain conditions. For 

example, cluster 2 was present mainly in diabetic and non-healing DFU tissues. 
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A key finding is cluster 10, which is entirely unique to the non-healing DFU sample. 

As shown in the plot (circled in red), cluster 10 was concentrated specifically in non-

healing DFU tissues, suggesting that this group of cells plays a crucial role in non-healing 

environments. The absence of this cluster in the other conditions (diabetic, healing DFU, 

and healthy tissues) suggests that these cells may be involved in pathological processes 

unique to chronic, non-healing ulcers, such as impaired tissue repair or persistent 

inflammation. 

Cluster 10 could represent a specific cell type or state that contributes to impaired 

wound healing, such as dysfunctional immune cells, fibroblasts, or keratinocytes failing 

to promote effective tissue repair. The distinct gene expression profile of this cluster likely 

reflects key molecular pathways involved in persistent inflammation or fibrosis, which are 

hallmarks of non-healing DFUs. Understanding the specific role of these cells is critical, 

as they may be driving the chronic nature of the ulcers by disrupting normal wound-

healing processes. To further explore the characteristics of cluster 10 and identify its likely 

cell type, we employed the SingleR method, a robust cell annotation tool that assigns cell 

identities by comparing the gene expression profiles of our clusters to reference datasets 

of known cell types. 

Figure 6 illustrates that keratinocytes made up the majority of the cells in cluster 10, 

with additional cell types, including epithelial cells and fibroblasts, also present. This 

suggests that keratinocytes, which are vital for maintaining the skin barrier and 

promoting wound healing, are likely dysfunctional in non-healing DFU environments 

since they form a distinct cluster from rest of keratinocytes. The presence of epithelial cells 

and fibroblasts, which are also key players in tissue repair and regeneration, further 

highlights the complexity of impaired healing in non-healing DFUs. The dysfunction of 

these cell types could be driving the chronic inflammation and fibrosis associated with 

non-healing ulcers. These findings strongly support the hypothesis that compromised 

keratinocyte function, alongside disrupted epithelial and fibroblast activity, may be 

contributing to the persistence of the non-healing state in DFUs. 

 
(a) 
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Figure 5. Uniform Manifold Approximation and Projection (UMAP) plot of single-cell RNA 

sequencing dataset. (a) UMAP plot of the integrated dataset, and (b) UMAP plot split by sample 

type. 
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(d) 

Figure 6. (a) UMAP projection showing the distribution of various cell types across the non-healing 

DFU sample. Different colors represent distinct cell types, demonstrating the distribution and 

clustering of cell populations across the dataset. (b) Bar plot representing the cell type composition 

in cluster 10, with keratinocytes forming the majority, followed by epithelial cells. (c) UMAP plots 

showing the expression of APOE across the different tissues. Higher APOE expression was observed 

in non-healing DFU samples, particularly in specific clusters, as indicated by the intensity of the red 

color. (d) UMAP highlighting APOE expression, specifically in Cluster 10. Increased APOE 

expression was prominently visible in non-healing DFU tissues, suggesting its potential role in 

disease pathology. 

To further validate our bulk RNA-seq analysis findings, we queried the single-cell 

RNA-seq dataset for the genes identified as differentially expressed in the bulk RNA 

sequencing analysis, focusing on APOE. By mapping the expression of APOE across the 

clusters in the single-cell dataset, we found that APOE was expressed in cluster 10. This 

localization of APOE to keratinocytes in the non-healing DFU tissue underscores the 

potential role of APOE in the impaired function of these cells. Keratinocytes are essential 

for skin integrity and wound healing, and the downregulation of APOE in this cell type 

may contribute to the chronic inflammation and poor healing observed in non-healing 

DFUs. The combined use of bulk and single-cell RNA-seq allowed us to confirm the gene 

expression changes at the tissue level and pinpoint the specific cell types, such as 

keratinocytes, where these changes are most relevant in driving the disease pathology. 

Finally, we conducted a differential gene expression (DGE) analysis between cluster 

10 and the other clusters to identify the genes uniquely enriched in this cluster. This 

analysis provides a clearer picture of the specific genes present in cluster 10 and highlights 

distinct biological pathways that may explain its unique characteristics compared to other 

clusters in the sample. Understanding these pathways is crucial for uncovering the 

molecular mechanisms contributing to the dysfunctional state of keratinocytes and other 

cells within cluster 10, likely driving the impaired wound healing observed in non-healing 

DFUs. By identifying these key pathways, we gain deeper insights into the factors 

differentiating cluster 10 from other cell populations in the tissue and how these 

differences may contribute to the chronic, non-healing state of DFUs. 

Differential gene expression analysis between cluster 10 and all other clusters 

identified 231 genes differentially express in cluster 10 (adjusted p-value < 0.05). Notably, 

we observed genes such as APOE, KRT14, and COL1A1 suggesting dysregulated activity 

in lipid metabolism, keratinocyte function, and extracellular matrix organization. 

Functional enrichment analysis revealed that these genes are involved in pathways related 

to wound healing, inflammatory response, and skin development. 

3. Discussion 

The findings of this study provide several key insights into the molecular 

mechanisms underlying diabetic foot ulcers (DFUs). Starting with the use of EHRs, we 

identified the Albumin/Creatinine Ratio test as a key indicator, particularly in the context 

of albumin and creatinine as indicators of kidney function and disease progression. The 

Albumin Creatinine Ratio (ACR), which we utilized as a risk indicator, is a well-
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established measure for assessing kidney function and detecting early kidney damage, a 

critical complication in diabetes [26,27]. Albumin, produced by the liver, plays a vital role 

in maintaining the oncotic pressure within blood vessels, preventing fluid leakage into 

surrounding tissues. Consequently, deviations in albumin levels are often indicative of 

liver or kidney disorders, both of which are common complications associated with DFUs. 

Recent studies have highlighted the importance of albumin levels in predicting DFU 

risk, with significant correlations between reduced albumin levels and heightened risks 

of severe complications, including non-healing ulcers [28]. Meanwhile, ACR serves as a 

marker for kidney function as it is a waste product filtered by the kidneys. Elevated 

creatinine levels typically suggest impaired kidney function, reinforcing the relevance of 

using the ACR as a robust measure of DFU risk [29]. Our analysis of the ACR as a risk 

index across different demographic groups provides insights into how biological factors 

may influence chronic disease progression and DFU severity. Understanding these 

demographic variations is crucial for developing more equitable and effective healthcare 

strategies. The Mean Decrease in Accuracy (MDA) metric further validated the ACR, with 

the associated blood tests grouped into key categories such as lipid metabolism, white 

blood cells, and red blood cells. 

Lawrence et al. [18] have already performed extensive work to show a significant link 

between Mexican American and non-Hispanic white patients regarding this disease. We 

examined the Albumin Creatinine Ratio as an indicator to distinguish between the 

Hispanic and non-Hispanic populations. The ACR, a crucial measure in assessing kidney 

function and potential kidney damage, provides insights into the overall health factors 

associated with these populations. This analysis is crucial for understanding the broader 

implications of ethnic differences in chronic disease, particularly for conditions like 

diabetes that heavily impact kidney health. 

The other blood tests assessed using the MDA also validated the ACR. They can be 

generally grouped as tests for lipids (Low-density lipoprotein- (LDL) and very Low-

density lipoprotein (VLDL) cholesterol), metabolism (calcium), white blood cells 

(neutrophils/100 leukocytes), and red blood cells (erythrocyte count). Recent studies have 

shown a significant link between the ACR and dyslipidemia, which is characterized by 

abnormal lipid levels [21,30,31]. High ACR levels are frequently associated with elevated 

triglyceride and LDL cholesterol levels, and reduced HDL cholesterol levels. These lipid 

abnormalities contribute to the progression of cardiovascular diseases, underscoring the 

interconnectedness of kidney and cardiovascular health. 

Lipid tests (LDL and VLDL cholesterol) were particularly important, as they 

highlighted a significant association between the ACR and dyslipidemia, which is 

characterized by elevated triglycerides and abnormal cholesterol levels. These findings 

suggest that lipid metabolism and kidney function are closely linked, and that 

demographic factors such as age, diet, and lifestyle may affect this relationship, 

influencing the risk and severity of DFUs. This observation aligns with studies 

demonstrating a connection between abnormal lipid levels and both cardiovascular 

disease and kidney dysfunction, underscoring the complex interplay between kidney 

health and cardiovascular risk as it pertains to complications of DFUs [32]. The enrichment 

of lipid metabolism genes, including APOE, further emphasizes the role of lipid regulation 

in DFU progression, with recent findings linking APOE alleles to abnormal lipid 

metabolism and kidney damage. The bulk RNA analysis revealed that APOE expression 

was significantly reduced in non-healing DFU tissues compared to healthy and healing 

DFU tissues. This downregulation of APOE suggests a disruption in lipid metabolism, 

which may impair wound healing and exacerbate chronic inflammation in non-healing 

DFUs. 

The pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database identified several key biological pathways that provide additional insight into 

the molecular processes associated with DFUs. Pathways related to immune responses 

and infections were significantly enriched, including those involved in Salmonella 
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infection, legionellosis, and pathogenic Escherichia coli infection. The high representation 

of these pathways suggests that immune responses and bacterial infections are 

particularly active in the sample, which aligns with the known immune dysregulation 

observed in chronic wounds like DFUs. Chronic inflammation, driven by both immune 

cell dysfunction and persistent bacterial infections, is a hallmark of non-healing wounds 

[33,34]. These findings reinforce the idea that unresolved infections play a pivotal role in 

impairing wound healing, likely contributing to the non-healing state observed in some 

DFUs [35]. 

In addition to infection-related pathways, significant enrichment was observed in cell 

signaling pathways such as the gap junction and estrogen signaling pathways. These 

pathways are integral to intercellular communication and tissue homeostasis, which are 

disrupted in chronic wounds. The enrichment of cancer-related pathways such as small 

cell lung cancer pathways and pathways in cancer indicates that cellular proliferation, 

survival, and apoptosis pathways may be dysregulated in non-healing DFU tissues. This 

dysregulation suggests that processes normally involved in tissue regeneration may be 

impaired, contributing to the chronic, non-healing state of DFUs [36]. 

One of the most significant findings from the single-cell RNA sequencing (scRNA-

seq) analysis was the identification of cluster 10, a distinct group of cells present almost 

exclusively in non-healing DFU tissues. Further analysis revealed that keratinocytes 

formed the majority of this cluster, alongside smaller populations of epithelial cells and 

fibroblasts, as shown in Figure 6. These cell types are critical for maintaining the skin 

barrier and promoting tissue repair, suggesting that their dysfunction in cluster 10 could 

be contributing to the impaired wound healing observed in non-healing DFUs. 

The differential gene expression analysis between cluster 10 and other clusters 

provided additional insights into this population’s unique gene expression profile. The 

downregulation of genes involved in cell migration, lipid metabolism, and immune 

responses suggests that these keratinocytes are not only dysfunctional but may also 

contribute to a pro-inflammatory environment that hinders healing. The use of the SingleR 

tool for cell type annotation allowed us to further confirm the identity of cells within 

cluster 10, providing a clearer understanding of how these cells contribute to non-healing 

DFU environments. 

While this study provides valuable insights, it is essential to acknowledge certain 

limitations. Firstly, the electronic health record (EHR) dataset contained incomplete or 

missing data for specific laboratory tests, potentially compromising the robustness of our 

analysis and introducing inherent bias into the results. Furthermore, the lack of 

standardization in test ordering practices among patients limited the generalizability of 

certain conclusions. Secondly, the retrospective nature of the analysis restricts our 

capacity to definitively establish causality between the identified biomarkers and disease 

progression. 

In conclusion, our study sheds light on the complex molecular mechanisms 

underlying DFU progression and identified key factors involved in the development and 

worsening of the disease. By utilizing a multimodal approach that incorporated EHRs, 

and bulk RNA-seq and single-cell RNA-seq datasets, we highlighted the crucial roles of 

inflammation, immune responses, lipid metabolism, and eventual cell dysfunction in 

DFUs. The integration of these datasets allowed us to pinpoint key molecular markers, 

such as APOE, and to gain deeper insights into the specific cell populations driving the 

chronic, non-healing state of DFUs. These findings provide valuable therapeutic targets 

for improving wound healing outcomes, particularly for patients at high risk of 

developing chronic, non-healing ulcers. Future research will further explore the roles of 

APOE and other key genes in DFU progression, and leverage advanced transcriptomics 

techniques, such as spatial transcriptomics, to investigate potential interventions aimed at 

modulating these pathways and promoting tissue repair. 
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4. Materials and Methods 

4.1. Data Source 

The dataset utilized in this study was sourced from the OCHIN database [37,38]. The 

OCHIN database has been utilized and referenced by over 300 research works, dating 

back to its earliest known application in 2007. Approximately 26 of these studies are 

specifically focused on diabetes-related research. The contributions of other research 

teams, such as Chamine et al. [39] and Gemelas et al. [40] who also leveraged the OCHIN 

database, has significantly enhanced our knowledge of healthcare outcomes and patient 

populations, shedding light on various medical conditions and how quality datasets can 

advance the field of healthcare research. After data acquisition, we filtered the data to 

ensure data integrity in the rest of the studies. This study was conducted in compliance 

with the ethical principles outlined in the Declaration of Helsinki. The Declaration sets 

forth guidelines for medical research involving human subjects, emphasizing respect for 

individuals, the need to obtain informed consent, and the protection of patient rights. 

Ethical approval for this study was obtained from UTSA (IRB Number FY22-23-75). All 

data extracted from electronic health records (EHRs) were anonymized to ensure patient 

confidentiality and compliance with institutional and national ethical standards. 

The steps taken are detailed in Figure 7 below. 

 

Figure 7. Workflow of integrating EHR data and transcriptomics analysis for diabetic foot ulcer 

study. 

4.2. Data Preprocessing 

Because the dataset was pooled from several medical facilities, there is a likelihood 

of high variance in LOINC code entries due to varying units of measurements or data 

entry protocols [41]. Careful and thorough data scrubbing was carried out to ensure that 

this was not an issue. We evaluated the normal range for each test, cross-referencing with 

recorded lab tests. We evaluated the median value for each of the LOINC codes for each 

test and used this value to determine a threshold beyond which, the test results were 

considered an error. Test results with human errors were excluded. Overall, about 5% of 

the test results were excluded. 

After this process, we carried out data segmentation to apply machine learning 

algorithms to the dataset. We especially checked for data imbalances after segmentation 
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and significant differences to ensure the validity of our findings. We used the Random 

Forest machine learning algorithm to determine the Mean Decrease in Accuracy. 

4.3. Machine Learning 

Random Forest is a popular machine learning algorithm known for its versatility and 

robustness. It is based on the concept of ensemble learning, where multiple decision trees 

are combined to make robust predictions. Random Forest offers exceptional performance 

in various tasks such as classification, regression, and anomaly detection. The algorithm 

operates by constructing a multitude of decision trees during the training phase, with each 

tree built using a random subset of the original features and a random subset of the 

training data, a technique known as bootstrap aggregation or “bagging” [42]. These 

individual trees collectively form a “forest”, where the final prediction is made by 

averaging the results of all the trees (for regression) or by majority vote (for classification). 

In this study, the Random Forest algorithm was implemented using the Scikit-learn 

library in Python. The model was trained using default hyperparameters, including 100 

trees (n_estimators = 100) and the Gini impurity criterion for node splitting. The data were 

split into training and test sets, with 80% used for training and 20% for testing. All 

computations were performed on a computer with an Intel Core i7 processor (3.8 GHz) 

and 32 GB of RAM, and running Python 3.9. After evaluating the Mean Decrease in 

Accuracy, laboratory test labels were cross-referenced in the LOINC code database to 

ascertain protein names and their associated genes, which were then linked to the RNA 

datasets for further analysis. [43] 

4.4. Transcriptomics 

In this study, we utilized the bulk RNA-seq dataset previously published by Ran et 

al. [20], which consisted of eight healthy samples, seven diabetic healing DFU samples, 

and six diabetic non-healing samples. The processing steps were as prescribed in the 

paper. The data was normalized using transcripts per million (TPM). 

Additionally, we incorporated a single-cell RNA-seq dataset, which enables high-

resolution profiling of gene expression at the individual cell level. The dataset used in this 

study was previously published by Georgios Theocharidis et al. [44]. It consists of eight 

healthy patients, six diabetic non-DFU patients, seven diabetic healing DFU patients, and 

four diabetic non-healing DFU patients. To process the single-cell RNA-seq data, we 

employed a set of computational methods and deep learning tools. First, quality control 

was performed to filter out low-quality cells based on the number of detected genes, 

percentage of mitochondrial expression, and unique molecular identifiers (UMIs). Next, 

normalization and scaling were conducted to account for the sequencing depth and 

technical variability between cells. In this step, we used the SCTransform function 

provided by the Seurat R package, which is based on regularized negative binomial 

regression. 

As a third step, dimensionality reduction techniques including Principal Component 

Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) were 

applied to reduce the dimensionality of the data by preserving the variance and global 

structure. This was followed by clustering using the Leiden algorithm implementation in 

Seurat, a graph-based clustering algorithm that was used to identify groups of cells with 

similar gene expression patterns. 

Finally, the sample data were integrated in two steps. First the data from samples 

from the same severity type were integrated together. Then, the data from the samples 

with the four different degrees of severities were integrated. This was performed through 

the Canonical Correlation Analysis (CCA) method provided by the Seurat R package. 

After the data integration, we used the SingleR Cell-Type Annotation package to annotate 

the clusters and perform further downstream analysis. 
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